
98 First-Order Logic

6.6 The Model Existence Game

In this section we learn a new game associated with trying to construct a model
for a sentence or a set of sentences. This is of fundamental importance in the
sequel.

Let us first recall the game SG(M, T): The winning condition for II in the
game SG(M, T) is the only place where the model M (rather than the set
M) appears. If we do not start with a model M we can replace the winning
condition with a slightly weaker one and get a very useful criterion for the
existence of some M such that M |= T :

Definition 6.29 The Model Existence Game MEG(T, L) of the set T of L-
sentences in NNF is defined as follows. Let C be a countably infinite set of new
constant symbols. MEG(T, L) is the game G!(W) (see Figure 6.11), where
W consists of sequences (x0, y0, x1, y1, . . .) where player II has followed the
rules of Figure 6.18 and for no atomic L[C-sentence ' both ' and ¬' are in
{y0, y1, . . .}.

The idea of the game MEG(T, L) is that player I does not doubt the truth
of T (as there is no model around) but rather the mere consistency of T . So
he picks those ' 2 T that he thinks constitute a contradiction and offers them
to player II for confirmation. Then he runs through the subformulas of these
sentences as if there was a model around in which they cannot all be true. He
wins if he has made player II play contradictory basic sentences. It turns out
it did not matter that we had no model around, as two contradictory sentences
cannot hold in any model anyway.

Definition 6.30 Let L be a vocabulary with at least one constant symbol. A
Hintikka set (for first-order logic) is a set H of L-sentences in NNF such that:

1. ⇡tt 2 H for every constant L-term t.
2. If '(x) is basic, '(c) 2 H and ⇡tc 2 H , then '(t) 2 H .
3. If ' ^ 2 H , then ' 2 H and 2 H .
4. If ' _ 2 H , then ' 2 H or 2 H .
5. If 8x'(x) 2 H , then '(c) 2 H for all c 2 L

6. If 9x'(x) 2 H , then '(c) 2 H for some c 2 L.
7. For every constant L-term t there is c 2 L such that ⇡ct 2 H .
8. There is no atomic sentence ' such that ' 2 H and ¬' 2 H .

Lemma 6.31 Suppose L is a vocabulary and T is a set of L-sentences. If T
has a model, then T can be extended to a Hintikka set.

Incomplete version for students of easllc2012 only.
6.6 The Model Existence Game 99

xn yn Explanation

' I enquires about ' 2 T .

' II confirms.

⇡tt I enquires about an equation.

⇡tt II confirms.

'(t

0
) I chooses played '(t) and ⇡tt

0 with ' basic
and enquires about substituting t

0 for t in '.

'(t

0
) II confirms.

'i I tests a played '0 ^ '1 by choosing i 2 {0, 1}.

'i II confirms.

'0 _ '1 I enquires about a played disjunction.

'i II makes a choice of i 2 {0, 1}

'(c) I tests a played 8x'(x) by choosing c 2 C.

'(c) II confirms.

9x'(x) I enquires about a played existential statement.

'(c) II makes a choice of c 2 C

t I enquires about a constant L [C-term t.

⇡ct II makes a choice of c 2 C

Figure 6.18 The game MEG(T, L).

Proof Let us assume M |= T . Let L0 ◆ L such that L0 has a constant
symbol ca /2 L for each a 2 M . Let M⇤ be an expansion of M obtained by
interpreting ca by a for each a 2 M . Let H be the set of all L0-sentences true
in M. It is easy to verify that H is a Hintikka set.

Incomplete version for students of easllc2012 only.

100 First-Order Logic

Lemma 6.32 Suppose L is a countable vocabulary and T is a set of L-
sentences. If player II has a winning strategy in MEG(T, L), then the set T
can be extended to a Hintikka set in a countable vocabulary extending L by
constant symbols.

Proof Suppose player II has a winning strategy in MEG(T, L). We first run
through one carefully planned play of MEG(T, L). This will give rise to a
model M. Then we play again, this time providing a proof that M |= T . To
this end, let Trm be the set of all constant L [C-terms. Let

T = {'n : n 2 N},
C = {cn : n 2 N},

T rm = {tn : n 2 N}.

Let (x0, y0, x1, y1, . . .) be a play in which player II has used her winning
strategy and player I has maintained the following conditions:

1. If n = 3i, then xn = 'i.
2. If n = 2 · 3i, then xn is ⇡cici.
3. If n = 4 · 3i · 5j · 7k · 11l, yi is ⇡tjtk, and yl is '(tj), then xn is '(tk).
4. If n = 8 · 3i · 5j , yi is ✓0 ^ ✓1, and j < 2, then xn is ✓j .
5. If n = 16 · 3i, and yi is ✓0 _ ✓1, then xn is ✓0 _ ✓1.
6. If n = 32 · 3i · 5j , yi is 8x'(x), then xn is '(cj).
7. If n = 64 · 3i, and yi is 9x'(x), then xn is 9x'(x).
8. If n = 128 · 3i, then xn is ti.

The idea of these conditions is that player I challenges player II in a maximal
way. To guarantee this he makes a plan. The plan is, for example, that on round
3i he always plays 'i from the set T . Thus in an infinite game every element
of T will be played. Also the plan involves the rule that if player II happens
to play a conjunction ✓0 ^ ✓1 on round i, then player I will necessarily play
✓0 on round 8 · 3i and ✓1 on round 8 · 3i · 5, etc. It is all just book-keeping –
making sure that all possibilities will be scanned. This strategy of I is called
the enumeration strategy. It is now routine to show that H = {y0, y1, . . .} is a
Hintikka set.

Lemma 6.33 Every Hintikka set has a model in which every element is the
interpretation of a constant symbol.

Proof Let c ⇠ c0 if ⇡c0c 2 H . The relation ⇠ is an equivalence relation
on C (see Exercise 6.77). Let us define an L [C-structure M as follows.

Incomplete version for students of easllc2012 only.
6.6 The Model Existence Game 101

We let M = {[c] : c 2 C}. For c 2 C we let cM = [c]. If f 2 L and
#(f) = n we let fM([ci1], . . . , [cin]) = [c] for some (any – see Exercise 6.78)
c 2 C such that ⇡cfci1 . . . cin 2 H . For any constant term t there is a c 2 C
such that ⇡ct 2 H . It is easy to see that tM = [c]. For the atomic sentence
' = Rt1 . . . tn we let M |= ' if and only if ' is in H . An easy induction
on ' shows that if '(x1, . . . , xn) is an L-formula and '(d1, . . . , dn) 2 H for
some d1 . . . , dn, then M |= '(d1, . . . , dn) (see Exercise 6.79). In particular,
M |= T .

Lemma 6.34 Suppose L is a countable vocabulary and T is a set of L-
sentences. If T can be extended to a Hintikka set in a countable vocabulary
extending L, then player II has a winning strategy in MEG(T, L)

Proof Suppose L⇤ is a countable vocabulary extending L such that some
Hintikka set H in the vocabulary L⇤ extends T . Let C = {cn : n 2 N} be
a new countable set of constant symbols to be used in MEG(T, L). Suppose
D = {tn : n 2 N} is the set of constant terms of the vocabulary L⇤. The
winning strategy of player II in MEG(T, L) is to maintain the condition that
if yi is '(c1, . . . , cn), then '(t1, . . . , tn) 2 H .

We can now prove the basic element of the Strategic Balance of Logic,
namely the following equivalence between the Semantic Game and the Model
Existence Game:

Theorem 6.35 (Model Existence Theorem) Suppose L is a countable vocab-
ulary and T is a set of L-sentences. The following are equivalent:

1. There is an L-structure M such that M |= T .
2. Player II has a winning strategy in MEG(T, L).

Proof If there is an L-structure M such that M |= T , then by Lemma 6.31
there is a Hintikka set H ◆ T . Then by Lemma 6.34 player II has a winning
strategy in MEG(T, L). Suppose conversely that player II has a winning strat-
egy in MEG(T, L). By Lemma 6.32 there is a Hintikka set H ◆ T . Finally,
this implies by Lemma 6.33 that T has a model.

Corollary Suppose L is a countable vocabulary, T a set of L-sentences and
' an L-sentence. Then the following conditions are equivalent:

1. T |= '.
2. Player I has a winning strategy in MEG(T [{¬'}, L).

Proof By Theorem 3.12 the game MEG(T [{¬'}, L) is determined. So
by Theorem 6.35, condition 2 is equivalent to T [{¬'} not having a model,
which is exactly what condition 1 says.

Incomplete version for students of easllc2012 only.

102 First-Order Logic

Condition 1 of the above Corollary is equivalent to ' having a formal proof
from T . (See Enderton (2001), or any standard textbook in logic for a definition
of formal proof.) We can think of a winning strategy of player I in MEG(T [
{¬'}, L) as a semantic proof. In the literature this concept occurs under the
names semantic tree or Beth tableaux.

6.7 Applications

The Model Existence Theorem is extremely useful in logic. Our first applica-
tion – The Compactness Theorem – is a kind of model existence theorem itself
and very useful throughout model theory.

Theorem 6.36 (Compactness Theorem) Suppose L is a countable vocabu-
lary and T is a set of L-sentences such that every finite subset of T has a
model. Then T has a model.

Proof Let C be a countably infinite set of new constant symbols as needed in
MEG(T, L). The winning strategy of player II in MEG(T, L) is the follow-
ing. Suppose

(x0, y0, . . . , xn�1, yn�1)

has been played up to now, and then player I plays xn. Player II has made
sure that T [{y0, . . . , yn�1} is finitely consistent, i.e. each of its finite sub-
sets has a model. Now she makes such a move yn that T [{y0, . . . , yn} is still
finitely consistent. Suppose this is the case and player I asks a confirmation for
', where ' 2 T . Now T [{y0, . . . , yn�1,'} is finitely consistent as it is the
same set as T [{y0, . . . , yn�1}. Suppose then player I asks a confirmation for
✓0, where ✓0^✓1 = yi for some i < n. If T0[{y0, . . . , yn�1, ✓0} has no model,
where T0 is a finite subset of T , then surely T0[{y0, . . . , yn�1} has no models
either, a contradiction. Suppose then player I asks for a decision about ✓0_ ✓1,
where ✓0 _ ✓1 = yi for some i < n. If T0 [{y0, . . . , yn�1, ✓0} has no models,
where T0 is a finite subset of T , and also T1 [{y0, . . . , yn�1, ✓1} has no mod-
els, where T1 is another finite subset of T , then T0[T1[{y0, . . . , yn�1} has no
models, a contradiction. Suppose then player I asks for a confirmation for'(c),
where 8x'(x) = yi for some i < n and c 2 C. If T0 [{y0, . . . , yn�1,'(c)}
has no models, where T0 is a finite subset of T , then T0 [{y0, . . . , yn�1} has
no models either, a contradiction. Suppose then player I asks a decision about
9x'(x), where 9x'(x) = yi for some i < n. Let c 2 C so that c does not
occur in {y0, . . . , yn�1}. We claim that T [{y0, . . . , yn�1,'(c)} is finitely

Incomplete version for students of easllc2012 only.
6.7 Applications 103

consistent. Suppose the contrary. Then there is a finite conjunction of sen-
tences in T such that

{y0, . . . , yn�1, } |= ¬'(c).

Hence

{y0, . . . , yn�1, } |= 8x¬'(x).

But this contradicts the fact that {y0, . . . , yn�1, } has a model in which 9x'(x)
is true. Finally, if t is a constant term, it follows as above that there is a constant
c 2 C such that T [{y0, . . . , yn�1,⇡ct} is finitely consistent.

It is a consequence of the Compactness Theorem that a theory in a countable
vocabulary is consistent in the sense that every finite subset has a model if and
only if it is consistent in the sense that T itself has a model. Therefore the word
“consistent” is used in both meanings.

As an application of the Compactness Theorem consider the vocabulary L =
{+, · , 0, 1} of number theory. An example of an L-structure is the so-called
standard model of number theory N = (N,+, · , 0, 1). L-structures may be
elementary equivalent to N and still be non-standard in the sense that they are
not isomorphic to N . Let c be a new constant symbol. It is easy to see that the
theory

{' : N |= '} [{1 < c,+11 < c,++ 111 < c, . . .}

is finitely consistent. By the Compactness Theorem it has a model M. Clearly
M ⌘ N and M 6⇠= N .

Example 6.37 Suppose T is a theory in a countable vocabulary L, and T has
for each n > 0 a model Mn such that (Mn, EMn) is a graph with a cycle of
length � n. We show that T has a model N such that (N,EN) is a graph with
an infinite cycle (i.e. an infinite connected subgraph in which every node has
degree 2). To this end, let cz, z 2 Z, be new constant symbols. Let T 0 be the
theory

T [{czEcz+1 : z 2 Z}.

Any finite subset of T 0 mentions only finitely constants cz , so it can be satisfied
in the model Mn for a sufficiently large n. By the Compactness Theorem T 0

has a model M. Now M � L |= T and the elements cMz , z 2 Z, constitute an
infinite cycle in M.

As another application of the Model Existence Game we prove the so-called

Incomplete version for students of easllc2012 only.

6.8 Interpolation 107

Thus

(N,+, · , 0, 1, A) ⌘ M0 ⌘ M.

2

In general, the significance of the Omitting Types Theorem is the fact that it
can be used – as above – to get “standard” models.

6.8 Interpolation

The Craig Interpolation Theorem says the following: Suppose |= ' ! ,
where ' is an L1-sentence and is an L2-sentence. Then there is an L1 \L2-
sentence ✓ such that |= '! ✓ and |= ✓ ! . Here is an example:

Example 6.39 L1 = {P,Q,R}, L2 = {P,Q, S}. Let

' = 8x(Px ! Rx) ^ 8x(Rx ! Qx)

and

 = 8x(Sx ! Px) ! 8x(Sx ! Qx).

Now

|= '! ,

and indeed, if

✓ = 8x(Px ! Qx),

then ✓ is an L1 \ L2-sentence such that

|= '! ✓ and |= ✓ ! .

The Craig Interpolation Theorem is a consequence of the following remark-
able subformula property of the Model Existence Game MEG(T, L): Player
II never has to play anything but subformulas of sentences of T up to a substi-
tution of terms for free variables.

Theorem 6.40 (Craig Interpolation Theorem) Suppose |= ' ! , where '
is an L1-sentence and is an L2-sentence. Then there is an L1 \L2-sentence
✓ such that |= '! ✓ and |= ✓ ! .

Proof We assume, for simplicity, that L1 and L2 are relational. This re-
striction can be avoided (see Exercise 6.97). Let us assume that the claim
of the theorem is false and derive a contradiction. Since |= ' ! , player
I has a winning strategy in MEG({',¬ }, L1 [L2). Therefore to reach

Incomplete version for students of easllc2012 only.
108 First-Order Logic

a contradiction it suffices to construct a winning strategy for player II in
MEG({',¬ }, L1 [L2). If ' alone is inconsistent, we can take any incon-
sistent L-sentence as ✓. Likewise if ¬ alone is inconsistent, we can take any
valid L-sentence as ✓. Let L = L1\L2. Let us consider the following strategy
of player II. Suppose C = {cn : n 2 N} is a set of new constant symbols.
We denote L [C-sentences by ✓(c0, . . . , cm�1) where ✓(z0, . . . , zm�1) is as-
sumed to be an L-formula. Suppose player II has played Y = {y0, . . . , yn�1}
so far. While she plays, she maintains two subsets Sn

1 and Sn
2 of Y such that

Sn
1 [Sn

2 = Y . The set Sn
1 consists of all L1 [C-sentences in Y , and Sn

2

consists of all L2 [C-sentences in Y . Let us say that an L [C-sentence ✓
separates Sn

1 and Sn
2 if Sn

1 |= ✓ and Sn
2 |= ¬✓. Player II plays so that the

following condition holds at all times:

(?) There is no L [C-sentence ✓ that separates Sn
1 and Sn

2 .

Let us check that she can maintain this strategy: (There is no harm in assuming
that player I plays ' and ¬ first.)

Case 1. Player I plays '. We let S0
1 = {'} and S0

2 = ;. Condition (?) holds,
as Sn

1 is consistent.

Case 2. Player I plays ¬ having already played '. We let S1
1 = {'} and

S1
2 = {¬ }. Suppose ✓(c0, . . . , cm�1) separates S1

1 and S1
2 . Then |= ' !

8z0 . . . 8zm�1✓(z0, . . . , zm�1) and |= 8z0 . . . 8zm�1✓(z0, . . . , zm�1) !
contrary to assumption.

Case 3. Player I plays ⇡cc, where, for example, c 2 L1 [C. We let Sn+1
1 =

Sn
0 [{⇡cc} and Sn+1

2 = Sn
1 [{⇡cc}. Suppose ✓(c0, . . . , cm�1) separates

Sn+1
1 and Sn+1

2 . Then clearly also ✓(c0, . . . , cm�1) separates Sn
1 and Sn

2 , a
contradiction.
Case 4. Player I plays '0(c1), where, for example, '0(c0),⇡c0c1 2 Sn

1 . We
let Sn+1

1 = Sn
1 [{'0(c1)} and Sn+1

2 = Sn
2 . Suppose ✓(c0, . . . , cm) separates

Sn+1
1 and Sn+1

2 . Then as Sn
1 |= '0(c1) clearly ✓(c0, . . . , cm�1) separates Sn

1

and Sn
2 , a contradiction.

Case 5. Player I plays 'i, where, for example, '1 ^ '1 2 Sn
1 . We let Sn+1

1 =
Sn
1 [{'i} and Sn+1

2 = Sn
2 . Suppose ✓(c0, . . . , cm�1) separates Sn+1

1 and
Sn+1
2 . Then, as Sn

1 |= 'i, clearly ✓(c0, . . . , cm�1) separates Sn
1 and Sn

2 , a
contradiction.
Case 6. Player I plays '0 _ '1, where, for example, '0 _ '1 2 Sn

1 . We claim
that for one of i 2 {0, 1} the sets Sn

1 [{'i} and Sn
2 satisfy (?). Otherwise

there is for both i 2 {0, 1} some ✓i(c0, . . . , cm�1) that separates Sn
1 [{'i}

Incomplete version for students of easllc2012 only.

6.8 Interpolation 109

and Sn
2 . Let

✓(c0, . . . , cm�1) = ✓0(c0, . . . , cm�1) _ ✓1(c0, . . . , cm�1).

Then, as Sn
1 |= '0 _ '1, clearly ✓(c0, . . . , cm�1) separates Sn

1 and Sn
2 , a

contradiction.
Case 7. Player I plays '(c0), where, for example, 8x'(x) 2 Sn

1 . We claim that
the sets Sn

1 [{'(c0)} and Sn
2 satisfy (?). Otherwise there is ✓(c0, . . . , cm�1)

that separates Sn
1 [{'(c0)} and Sn

2 . Let

✓0(c1, . . . , cm�1) = 8x✓(x, c1, . . . , cm�1).

Then, as Sn
1 |= 8x'(x), we have Sn

1 |= '(c0), and hence ✓0(c0, c1, . . . , cm�1)
separates Sn

1 and Sn
2 , a contradiction.

Case 8. Player I plays 9x'(x), where, for example, 9x'(x) 2 Sn
1 . Let c 2 C

be such that c does not occur in Y yet. We claim that the sets Sn
1 [{'(c)}

and Sn
2 satisfy (?). Otherwise there is some ✓(c, c0, . . . , cm�1) that separates

Sn
1 [{'(c)} and Sn

2 . Let

✓0(c1, . . . , cm�1) = 9x✓(x, c0, . . . , cm�1).

Then, as Sn
1 |= 9x'(x) and Sn

1 |= '(c) ! ✓(c, c0, . . . , cm�1) we clearly have
that ✓0(c1, . . . , cm�1) separates Sn

1 and Sn
2 , a contradiction.

Example 6.41 The Craig Interpolation Theorem is false in finite models. To
see this, let L1 = {R} and L2 = {P} where R and P are distinct binary
predicates. Let ' say that R is an equivalence relation with all classes of size 2
and let say P is not an equivalence relation with all classes of size 2 except
one of size 1. Then M |= ' ! holds for finite M. If there were a sentence
✓ of the empty vocabulary such that M |= ' ! ✓ and M |= ✓ ! for all
finite M, then ✓ would characterize even cardinality in finite models. It is easy
to see with Ehrenfeucht–Fraı̈ssé Games that this is impossible.

Theorem 6.42 (Beth Definability Theorem) Suppose L is a vocabulary and
P is a predicate symbol not in L. Let ' be an L [{P}-sentence. Then the
following are equivalent:

1. If (M, A) |= ' and (M, B) |= ', where M is an L-structure, then A = B.
2. There is an L-formula ✓ such that

' |= 8x0 . . . xn�1(✓(x0, . . . , xn�1) $ P (x0, . . . , xn�1)).

If condition 1 holds we say that ' defines P implicitly. If condition 2 holds,
we say that ✓ defines P explicitly relative to '.

Incomplete version for students of easllc2012 only.
110 First-Order Logic

Proof Let '0 be obtained from ' by replacing everywhere P by P 0 (another
new predicate symbol). Then condition 1 implies

|= (' ^ Pc0 . . . cn�1) ! ('0 ! P 0c0 . . . cn�1).

By the Craig Interpolation Theorem there is an L-formula ✓(x0, . . . , xn�1)
such that

|= (' ^ Pc0 . . . cn�1) ! ✓(c0, . . . , cn�1)

and

|= ✓(c0, . . . , cn�1) ! ('0 ! P 0c0 . . . cn�1).

It follows easily that ✓ is the formula we are looking for.

Example 6.43 The Beth Definability Theorem is false in finite models. Let
' be the conjunction of

1. “< is a linear order”.
2. 9x(Px ^ 8y(⇡xy _ x < y)).
3. 8x8y(“y immediate successor of x” ! (Px $ ¬Py)).

Every finite linear order has a unique P with ', but there is no {<}-formula
✓(x) which defines P in models of '. For then the sentence

9x(✓(x) ^ 8y(⇡xy _ y < x))

would characterize ordered sets of odd length among finite ordered sets, and
it is easy to see with Ehrenfeucht–Fraı̈ssé Games that no such sentence can
exist. There are infinite linear orders (e.g. (N+ Z, <)) where several different
P satisfy '.

Recall that the reduct of an L-structure M to a smaller vocabulary K is the
structure N = M � K which has M as its universe and the same interpreta-
tions of all symbols of K as M. In such a case we call M an expansion of N
from vocabulary K to vocabulary L. Another useful operation on structures is
the following. The relativization of an L-structure M to a set N is the structure
N = M(N) which has N as its universe, RM\N#(R) as the interpretation of
any predicate symbol R 2 L, fM � N#(f) as the interpretation of any func-
tion symbol f 2 L, and cM as the interpretation of any constant symbol c 2 L.
Relativization is only possible when the result actually is an L-structure. There
is a corresponding operation on formulas: The relativization of an L-formula
' to a predicate P 2 L is defined by replacing every quantifier 8y . . . in ' by
8y(Py ! . . .) and every quantifier 9y . . . in ' by 9y(Py ^ . . .). We denote
the relativization by (P).

Incomplete version for students of easllc2012 only.

6.8 Interpolation 111

Lemma 6.44 Suppose L is a relational vocabulary and P 2 L is a unary
predicate symbol. The following are equivalent for all L-formulas ' and all
L-structures M such that PM 6= ;:

1. M |= '(P).
2. M(PM) |= '.

Proof Exercise 6.101.

Definition 6.45 Suppose L is a vocabulary. A class K of L-structures is an
EC-class if there is an L-sentence ' such that

K = {M 2 Str(L) : M |= '}

and a PC-class if there is an L0-sentence ' for some L0 ◆ L such that

K = {M � L : M 2 Str(L0) and M |= '}.

Example 6.46 Let L = ;. The class of infinite L-structures is a PC-class
which is not an EC class. (Exercise 6.102.)

Example 6.47 Let L = ;. The class of finite L-structures is not a PC-class.
(Exercise 6.103.)

Example 6.48 Let L = {<}. The class of non-well-ordered L-structures is
a PC-class which is not an EC-class. (Exercise 6.104.)

Suppose |= '! , where ' is an L1-sentence and is an L2-sentence. Let

K1 = {M � (L1 \ L2) : M |= '}

and

K2 = {M � (L1 \ L2) : M |= ¬ }.

Now K1 and K2 are disjoint PC-classes. If there is an L1 \ L2-sentence ✓
such that |= '! ✓ and |= ✓ ! , then the EC-class

K = {M : M |= ✓}

separates K1 and K2 in the sense that K1 ✓ K and K2 \ K = ;. On the
other hand, if an EC-class K separates in this sense K1 and K2, then there
is an L1 \ L2-sentence ✓ such that |= ' ! ✓ and |= ✓ ! . Thus the Craig
Interpolation Theorem can be stated as: disjoint PC-classes can always be
separated by an EC-class.

Theorem 6.49 (Separation Theorem) Suppose K1 and K2 are disjoint PC-
classes of models. Then there is an EC-class K that separates K1 and K2, i.e.
K1 ✓ K and K2 \K = ;.

Incomplete version for students of easllc2012 only.
112 First-Order Logic

Proof The claim has already been proved in Theorem 6.40, but we give here a
different – model-theoretic – proof. This proof is of independent interest, being
as it is, in effect, the proof of the so-called Lindström’s Theorem (Lindström
(1973)), which gives a model theoretic characterization of first order logic.

Case 1: There is an n 2 N such that some union K of 'n
p -equivalence classes

of models separates K1 and K2. By Theorem 6.5 the model class K is an
EC-class, so the claim is proved.

Case 2: There are, for any n 2 N, L1 \ L2-models Mn and Nn such that
Mn 2 K1, Nn 2 K2, and there is a back-and-forth sequence (Ii : i  n)
for Mn and Nn. Suppose K1 is the class of reducts of models of ', and K2

respectively the class of reducts of models of . Let T be the following set of
sentences:

1. '(P1).
2. (P2).
3. (R,<) is a non-empty linear order in which every element with a predeces-

sor has an immediate predecessor.
4. 8z(Rz ! Q0z).
5. 8z8u1 . . . 8um8v1 . . . 8vm((Rz ^Qnzu1 . . . umv1 . . . vm) !

(✓(u1, . . . , um) $ ✓(v1, . . . , vm))) for all atomic L1 \ L2-formulas ✓.
6. 8z8u1 . . . 8un8v1 . . . 8vm((Rz^Qnzu1 . . . umv1 . . . vm) ! 8z08x((Rz0^

z0 < z ^ 8w(w < z ! (w < z0 _ w = z0)) ^ P1x) ! 9y(P2y ^
Qn+1z0u1 . . . umxv1 . . . vmy))).

7. 8z8u1 . . . 8um8v1 . . . 8vm((Rz^Qnzu1 . . . umv1 . . . vm) ! 8z08y((Rz0^
z0 < z ^ 8w(w < z ! (w < z0 _ w = z0)) ^ P2y) ! 9x(P1x ^
Qn+1z0u1 . . . umxv1 . . . vmy))).

For all n 2 N there is a model An of T with (R,<) of length n. The model
An is obtained as follows. The universe An is the (disjoint) union of Mn, Nn,
and {1, . . . , n}. The L1-structure (An � L1)P

An
1 is chosen to be a copy of the

model Mn of '. The L2-structure (An � L2)P
An
2 is chosen to be a copy of

the model Nn of . The 2i+1-ary predicate Qi is interpreted in An as the set

{(n� i, u1, . . . , ui, v1, . . . , vi) : {(u1, v1), . . . , (ui, vi)} 2 In�i}.

By the Compactness Theorem, there is a countable model M of T with (R,<)
non-well-founded (see Exercise 6.107). That is, there are an, n 2 N, in M such
that an+1 is an immediate predecessor of an in M for all n 2 N. Let M1 be
the L1\L2-structure (M � (L1\L2))(P

M
1). Let M2 be the L1\L2-structure

(M � (L1 \L2))(P
M
2). Now M1 'p M2, for we have the back-and-forth set:

P = {{(u1, v1), . . . , (un, vn)} : M |= Qnanu1 . . . unv1 . . . vn, n 2 N}.

Incomplete version for students of easllc2012 only.

