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Chapter 1

Dependence Logic

Dependence logic introduces the concept of dependence into first order

logic by adding a new kind of atomic formula. We call these new atomic

formulas atomic dependence formulas. The definition of the semantics

for dependence logic is reminiscent of the definition of the semantics for

first order logic. But instead of defining satisfaction for assignments, we

follow [12] and jump one level up considering sets of assignments. This

leads us to formulate the semantics of dependence logic in terms of the

concept of the type of a set of assignments.

The reason for the transition to a higher level is, roughly speaking,

that one cannot manifest dependence, or independence for that matter,

in a single assignment. To see a pattern of dependence one needs a

whole set of assignments.

This is because dependence notions can be best investigated in a con-

text involving repeated actions by agents presumably governed by some

possibly hidden rules. In such a context dependence is manifested by

recurrence, and independence by lack of it.

Our framework consists of three components: teams, agents, and features.

Teams are sets of agents. Agents are objects with features. Features are

like variables which can have any value in a given fixed set.

Although our treatment of dependence logic is entirely mathematical,

our intuition of dependence phenomena comes from real life examples,

thinking of different ways dependence manifests itself in the real world.

Statisticians certainly have much to say about this but when we go
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deeper into the logic of dependence we see that the crucial concept is de-

termination, not mere dependence. Another difference with statistics is

that we study total dependence, not statistically significant dependence.

It would seem reasonable to define probabilistic dependence logic, but

we will not go into that here.

1.1 Examples and a Mathematical Model for Teams

In practical examples a feature is anything that can be in the domain of

a function: color, length, weight, prize, profession, salary, gender, etc.

To be specific, we use variables x0, x1, ... to denote features. If features

are variables then agents are assignments. When we define dependence

logic, we use the variable xn to refer to the value s(xn) of the feature xn
in an agent s.

1. Consider teams of soccer players. In this case the players are the

agents. The number of the player as well as the colors of their

shirts and pants are the features, denoted by variables x0, x1, x2,

respectively. Teams are sets of players in the usual sense of the word

“team.” Figure 1.1 depicts a team. If we counted only the color of

(player) (shirt) (pants)
x0 x1 x2

s0 1 yellow white
s1 2 yellow white
s2 3 yellow white
s3 4 yellow white
s4 5 red white
s5 6 red black
s6 7 red black

Figure 1.1: Soccer players as a team.

the players’ shirts and pants as features, we would get the generated

team of three agents depicted in Figure 1.2.

2. Databases are good examples of teams. By a database we mean

in this context a table of data arranged in columns and rows. The

3

Cambridge University Press 2007



(shirt) (pants)
x1 x2

s0 yellow white
s1 red white
s2 red black

Figure 1.2: A generated team.

columns are the features, the rows are the agents, and the set con-

sisting of the rows is the team. In database theory the columns are

often called fields or attributes, and the rows are called records or

tuples. Figure 1.3 is an example of a database. If the row number (1

to k in Figure 1.3) is counted as a feature, then all rows are differ-

ent agents. Otherwise rows with identical values in all the features

are identified, resulting an a team called the generated team, i.e.

the team generated by the particular database. Figure 1.4 depicts a

database, arising from a game, and the generated team.

Fields

Record x1 x2 ... xn

1 52 24 ... 1

2 68 362 ... 0

3 11 7311 ... 1

... ... ... ... ...

k 101 43 ... 1

Figure 1.3: A database.

3. The game history team: Imagine a game where players make moves,

following a strategy they have chosen with a certain goal in mind. We

are thinking of games in the sense of von Neumann and Morgenstern

“Theory of Games and Economic Behavior” [29]. Examples of such

games are board and card games, business games, games related to

social behavior, etc. We think of the moves of the game as features. If

during a game 350 moves are made by the players, then we have 350

features. Plays, i.e. sequences of moves of the game that comprise

an entire play of the game, are the agents. Any collection of plays is
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a team. A team may arise for example as follows: Two players play

a certain game 25 times thus producing 25 sequences of moves. A

team of 25 agents is created.

It may be desirable to know answers to the following kinds of ques-

tions:

(a) What is the strategy that a player is following, or is he or she

following any strategy at all?

(b) Is a player using information about his or her (or other players’)

moves that he or she is committed not to use? This issue is closely

related to game-theoretic semantics of dependence logic treated

in Chapter 3.

The following game illustrates how a player can use information that

may be not admitted: There are two players I and II. Player I starts

by choosing an integer n. Then II chooses an integer m. After this

II makes another move and chooses, this time without seeing n, an

integer l. So player II is committed to choose l without seeing n

even if she saw n when she picked m. One may ask, how can she

forget a number she has seen once, but if the number has many

digits this is quite plausible. Player II wins if l > n. In other words,

II has the impossible looking task of choosing an integer l which is

bigger than an integer n that she is not allowed to know. Her trick,

which we call the signalling-strategy, is to store information about n

into m and then choose l only on the basis of what m is. Figure 1.4

shows an example of a game history team in this game. We can see

that player II has been using the signalling-strategy. If we instead

observed the behavior of Figure 1.5, we could doubt whether II is

obeying the rules, as her second move seems clearly to depend on

the move of I which she is not supposed to see.

4. Every formula φ(x1, ..., xn) of any logic and structure M together

give rise to the team of all assignments that satisfy φ(x1, ..., xn) in
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Play I II II
1 1 1 2
2 40 40 41
3 2 2 3
4 0 0 1
5 1 1 2
6 2 2 3
7 40 40 41
8 100 100 101

x0 x1 x2

S0 0 0 1
S1 1 1 2
S2 2 2 3
S3 40 40 41
S4 100 100 101

Figure 1.4: A game history and the generated team.

Play I II II
1 1 0 2
2 40 0 41
3 2 0 3
4 0 0 1
5 1 0 2
6 2 0 3
7 40 0 41
8 100 0 101

x0 x1 x2

s0 0 0 1
s1 1 0 2
s2 2 0 3
s3 40 0 41
s4 100 0 101

Figure 1.5: A suspicious game history and the generated team.

M. In this case the variables are the features and the assignments

are the agents. This (possibly quite large) team manifests the de-

pendence structure φ(x1, ..., xn) expresses in M. If φ is the first

order formula x0 = x1, then φ expresses the very strong dependence

of x1 on x0, namely of x1 being equal to x0. The team of assign-

ments satisfying x0 = x1 in a structure is the set of assignments s

which give to x0 the same value as to x1. If φ is the infinitary formula

(x0 = x1)∨(x0·x0 = x1)∨(x0·x0·x0 = x1)∨..., then φ expresses the

dependence of x1 on x0 of being in the set {x0, x0 ·x0, x0 ·x0 ·x0, ...}.
See Figure ??.

5. Every first order sentence φ and structure M together give rise to

teams consisting of assignments that arise in the semantic game (see

Section 3.1) of φ and M. The semantic game is a game for two

players I and II, in which I tries to show that φ is not true in M,

and II tries to show that φ is indeed true inM. The game proceeds

according to the structure of φ. At conjunctions player I chooses

a conjunct. At universal quantifiers player I chooses a value for
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the universally bound variable. At disjunctions player II chooses

a disjunct. At existential quantifiers player II picks up a value for

the existentially bound variable. At negations the players exchange

roles. Thus the players build up move by move an assignment s.

When an atomic formula is met, player II wins if the formula is

true in M under the assignment s, otherwise player I wins. See

Section 3.1 for details. If M |= φ and the winning strategy of II

is τ in this semantic game, a particularly interesting team consists

of all plays of the semantic game in which II uses τ . This team is

interesting because the strategy τ can be read off from the team. We

can view the study of teams of plays in this game as a generalization

of the study of who wins the semantic game. The semantic game of

dependence logic is treated in Chapter 3.

We now give a mathematical model for teams:

Definition 1 An agent is any function s from a finite set dom(s)

of variables, also called features, to a fixed set M . The set dom(s)

is called the domain of s, and the set M is called the codomain of

s. A team is any set X of agents with the same domain, called

the domain of X and denoted by dom(X), and the same codomain,

likewise called the codomain of X. A team with codomain M is called

a team of M . If V is a finite set of variables, we use Team(M,V )

to denote the set of all teams of M with domain V .

Since we have defined teams as sets, not multisets, of assignments,

one assignment can occur only once in a team. Allowing multisets would,

however, change nothing essential in this study.

1.2 Formulas as Types of Teams

We define a logic which has an atomic formula for expressing depen-

dence. We call this logic the dependence logic and denote it by
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D. We will later in Section 1.6 recover independence friendly logic as a

fragment of dependence logic.

In first order logic the meaning of a formula is derived from the con-

cept of an assignment satisfying the formula. In dependence logic the

meaning of a formula is based on the concept of a team being of the

(dependence) type of the formula.

Recall that teams are sets of agents (assignments) and that agents

are functions from a finite set of natural numbers, called the domain

of the agent into an arbitrary set called the codomain of the agent

(Definition 1). In a team the domain of all agents is assumed to be

the same set of natural numbers, just as the codomain of all agents is

assumed to be the same set.

Our atomic dependence formulas have the form =(t1, ..., tn). The in-

tuitive meaning of this is “the value of the term tn depends only on the

values of the terms t1,...,tn−1.” As singular cases we have =(), which

we take to be universally true, and =(t), which declares that the value

of the term t depends on nothing, i.e. is constant. Note that =(x1) is

quite non-trivial and indispensable if we want to say that all agents are

similar as far as feature x1 is concerned. Such similarity is manifested

by the team of Figure 1.5, where all agents have value 0 in their feature

x1.

Actually, our atomic formulas express determination rather than de-

pendence. The reason for this is that determination is a more basic

concept than dependence. Once we can express determination, we can

define dependence and independence. Already dependence logic has

considerable strength. Further extensions formalizing the concepts of

dependence and independence are even stronger, and in addition lack

many of the nice model-theoretic properties that our dependence logic

enjoys. We will revisit the concepts of dependence and particularly in-

dependence later below.

Definition 2 Suppose L is a vocabulary. If t1, ..., tn are L-terms
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and R is a relation symbol in L with arity n, then strings ti =

tj,=(t1, ..., tn),Rt1...tn are L-formulas of dependence logic D. They

are called atomic formulas. If φ and ψ are L-formulas of D, then

(φ∨ψ) and ¬φ are L-formulas of D. If φ is an L-formula of D and

n ∈ N, then ∃xnφ is an L-formula of D.

As is apparent from Definition 2, the syntax of dependence logic D
is very similar to that of first order logic, the only difference being the

inclusion of the new atomic formulas =(t1, ..., tn). We use (φ ∧ ψ) to

denote ¬(¬φ ∨ ¬ψ), (φ→ ψ) to denote (¬φ ∨ ψ), (φ↔ ψ) to denote

((φ → ψ) ∧ (ψ → φ)), and ∀xnφ to denote ¬∃xn¬φ. A formula

of dependence logic which does not contain any atomic formulas of the

form =(t1, ..., tn) is called first order. The veritas symbol> is definable

as =().

The set Fr(φ) of free variables of a formula s is defined otherwise as

for first order logic, except that we have the new case Fr(=(t1, ..., tn)) =

Var(t1) ∪ ... ∪Var(tn). If Fr(φ) = ∅, we call φ an L-sentence of depen-

dence logic.

We define now two important operations on teams, the supplement

and the duplication operations. The supplement operation adds a new

feature to the agents in a team, or alternatively changes the value of an

existing feature.

Definition 3 If M is a set, X is a team with M as its codomain

and F : X → M , we let X(F/xn) denote the supplement team

{s(F (s)/xn) : s ∈ X}.

A duplicate team is obtained by duplicating agents of a team until all

possibilities occur as far as a particular feature is concerned.

Definition 4 If M is a set, X a team of M we use X(M/xn) to

denote the duplicate team {s(a/xn) : a ∈M, s ∈ X}.

We are ready to define the semantics of dependence logic:
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Definition 5 Let the set T be the smallest set that satisfies:

E1 (t1 = t2, X, 1) ∈ T iff for all s ∈ X we have tM1 〈s〉 = tM2 〈s〉.

E2 (t1 = t2, X, 0) ∈ T iff for all s ∈ X we have tM1 〈s〉 6= tM2 〈s〉.

E3 (=(t1, ..., tn), X, 1)) ∈ T iff for all s, s′ ∈ X such that

tM1 〈s〉 = tM1 〈s′〉,...,tMn−1〈s〉 = tMn−1〈s′〉, we have tMn 〈s〉 = tMn 〈s′〉.

E4 (=(t1, ..., tn), X, 0) ∈ T iff X = ∅.

E5 (Rt1...tn, X, 1) ∈ T iff for all s ∈ X we have (tM1 〈s〉, ..., tMn 〈s〉) ∈
RM.

E6 (Rt1...tn, X, 0) ∈ T iff for all s ∈ X we have (tM1 〈s〉, ..., tMn 〈s〉) /∈
RM.

E7 (φ ∨ ψ,X, 1) ∈ T iff X = Y ∪ Z such that dom(Y ) = dom(Z),

(φ, Y, 1) ∈ T and (ψ,Z, 1) ∈ T .

E8 (φ ∨ ψ,X, 0) ∈ T iff (φ,X, 0) ∈ T and (ψ,X, 0) ∈ T .

E9 (¬φ,X, 0) ∈ T iff (φ,X, 1) ∈ T .

E10 (¬φ,X, 1) ∈ T iff (φ,X, 0) ∈ T .

E11 (∃xnφ,X, 1) ∈ T iff (φ,X(F/xn), 1) ∈ T for some F : X →
M .

E12 (∃xnφ,X, 0) ∈ T iff (φ,X(M/xn), 0) ∈ T .

We define X is of type φ in M, denoted M |=X φ if (φ,X, 1) ∈ T .

Furthermore, φ is true in M, denoted M |= φ, if M |={∅} φ, and

φ is valid, denoted |= φ, if M |= φ for all M.

Note that,

M |=X ¬φ if (φ,X, 0) ∈ T
M |= ¬φ if (φ, {∅}, 0) ∈ T . Then we say that φ is false inM.

We will see in a moment that it is not true in general that (φ,X, 1) ∈ T
or (φ,X, 0) ∈ T . Likewise it is not true in general that M |= φ or
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M |= ¬φ, nor that M |= φ ∨ ¬φ. In other words, no sentence can be

both true and false in a model but some sentences can be neither true

nor false in a model. This gives our logic a nonclassical flavor.

Example 6 Let M be a structure with M = {0, 1}. Consider the

team

x0 x1 x2 x3

s0 0 0 0 1

s1 1 0 1 0

s2 0 0 0 1

This team is of type =(x1), since si(x1) = 0 for all i. This team is

of type x0 = x2, as si(x0) = si(x2) for all i. This team is of type

¬x0 = x3, as si(x0) 6= si(x3) for all i. This team is of type =(x0, x1),

as si(x0) = sj(x0) implies si(x3) = sj(x3). This team is not of type

=(x1, x2), as s0(x1) = s1(x1), but s0(x2) 6= s1(x2). Finally, this

team is of type =(x0) ∨ =(x0) as it can be represented as the union

{s0, s2} ∪ {s1}, where {s0, s2} and {s1} both are of type =(x0).

Note that

• (φ ∧ ψ,X, 1) ∈ T iff (φ,X, 1) ∈ T and (ψ,X, 1) ∈ T .

• (φ ∧ ψ,X, 0) ∈ T iff X = Y ∪ Z such that dom(Y ) = dom(Z),

(φ, Y, 0) ∈ T and (ψ,Z, 0) ∈ T .

• (∀xnφ,X, 1) ∈ T iff (φ,X(M/xn), 1) ∈ T .

• (∀xnφ,X, 0) ∈ T iff (φ,X(F/xn), 0) ∈ T for some F : X →M .

It may seem strange to define (D4) as (=(t1, ..., tn), ∅, 0) ∈ T . Why

not allow (=(t1, ..., tn), X, 0) ∈ T for non-empty X? The reason is that

if we negate “for all s, s′ ∈ X such that tM1 〈s〉 = tM1 〈s′〉,...,tMn−1〈s〉 =

tMn−1〈s′〉, we have tMn 〈s〉 = tMn 〈s′〉,” maintaining analogy with (D2) and

(D6), we get “for all s, s′ ∈ X we have tM1 〈s〉 = tM1 〈s′〉,...,tMn−1〈s〉 =

tMn−1〈s′〉 and tMn 〈s〉 6= tMn 〈s′〉,” which is only possible if X = ∅.
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Some immediate observations can be made using Definition 5. We first

note that the empty team ∅ is of the type of any formula, as (φ, ∅, 1) ∈ T
holds for all φ. In fact:

Lemma 7 For all φ andM we have (φ, ∅, 1) ∈ T and (φ, ∅, 0) ∈ T .

Proof. Inspection of definition 5 reveals that all the necessary impli-

cations hold vacuously when X = ∅.�
In other words, the empty team is for all φ of type φ and of type ¬φ.

Since the type of a team is defined by reference to all agents in the team,

the empty team ends up having all types, just as it is usually agreed

that the intersection of an empty collection of subsets of a set M is the

set M itself. A consequence of this is that there are no formulas φ and

ψ of dependence logic such thatM |=X φ impliesM 6|=X ψ, for allM
and all X . Namely, letting X = ∅ would yield a contradiction.

The following test is very important and will be used repeatedly in

the sequel. Closure downwards is a fundamental property of types in

dependence logic.

Proposition 8 (Closure Test) Suppose Y ⊆ X. Then M |=X φ

implies M |=Y φ.

Proof. Every condition from E1 to E12 is closed under taking a subset

of X . So if (φ,X, 1) ∈ T and Y ⊆ X , then (φ, Y, 1) ∈ T . �

The intuition behind the Closure Test is the following: To witness

the failure of dependence we need a counterexample, two or more as-

signments that manifest the failure. The smaller the team the fewer

counterexamples. In a one-agent team no counterexample to depen-

dence is any more possible. On the other hand, the bigger the team,

the more likely it is that some lack of dependence becomes exposed. In

the maximal team of all possible assignments no dependence is possible,

unless the universe has just one element.

Corollary 9 There is no formula φ of dependence logic such that

for all X 6= ∅ and all M we have M |=X φ ⇐⇒ M 6|=X =(x0, x1).
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Proof. Suppose for a contradictionM has at least two elements a, b.

Let X consist of s = {(x0, a), (x1, a)} and s′ = {(x0, a), (x1, b)}. Now

M 6|=X =(x0, x1), so M |=X φ. By Closure Test, M |={s} φ, whence

M 6|={s} =(x0, x1). But this is clearly false. �

We can replace “allM” by “someM with more than one element in

the universe” in the above corollary. Note that in particular we do not

have for all X 6= ∅: M |=X ¬=(x0, x1) ⇐⇒ M 6|=X =(x0, x1).

Example 10 Every team X, the domain of which contains xi and

xj is of type xi = xj ∨¬xi = xj, as we can write X = Y ∪Z, where

Y = {s ∈ X : s(xi) = s(xj)} and Z = {s ∈ X : s(xi) 6= s(xj)}. Note

that then Y is of type xi = xj, and Z is of type xi 6= xj.

It is important to take note of a difference between universal quan-

tification in first order logic and universal quantification in dependence

logic. It is perfectly possible to have a formula φ(x0) of dependence

logic of the empty vocabulary with just x0 free such that for a new con-

stant symbol c we have |= φ(c) and still 6|= ∀x0φ(x0), as the following

example shows. For this example, remember that =(x1) is the type “x1

is constant” of a team in which all agents have the same value for their

feature x1.

Example 11 Suppose M is a model of the empty1 vocabulary with

at least two elements in its domain. Let φ be the sentence ∃x1(=(x1)∧
c = x1) of dependence logic. Then

(M, a) |= ∃x1(=(x1) ∧ c = x1) (1.1)

for all expansions of (M, a) of M to the vocabulary {c}. To prove

(1.1) suppose we are given an element a ∈ M . We can define

Fa(∅) = a and then (M, a) |={{(x1,a)}} (=(x1) ∧ c = x1), where we

have used {∅}(Fa/x1) = {{(x1, a)}}. HoweverM 6|= ∀x0∃x1(=(x1)∧
x0 = x1). To prove this suppose the contrary, that is M |={∅}

1The empty vocabulary has no constant, relation or function symbols. Structures for the empty vocabulary consists of merely a
non-empty set as the universe.
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∀x0∃x1(=(x1) ∧ x0 = x1). Then M |={{(x0,a)}:a∈M} ∃x1(=(x1) ∧ x0 =

x1), where we have written {∅}(M/x0) out as {{(x0, a)} : a ∈ M}.
Let F : {{(x0, a)} : a ∈M} →M such thatM |={{(x0,a),(x1,G(a))}:a∈M}
(=(x1) ∧ x0 = x1), where G(a) = F ({(x0, a)}) and {{(x0, a)} : a ∈
M}(F/x1) has been written as {{(x0, a), (x1, G(a))} : a ∈ M}. In

particular M |={{(x0,a),(x1,G(a))}:a∈M} =(x1), which means that F has

to have a constant value. Since M has at least two elements, the

fact M |={{(x0,a),(x1,G(a))}:a∈M} x0 = x1 contradicts (D1).

Exercise 1 Suppose L = {R}, #L(R) = 2. Show that every team

X, the domain of which contains xi and xj is of type Rxixj∨¬Rxixj.

Exercise 2 LetM = (N,+, ·, 0, 1). Which teams X ∈ Team(M, {x0, x1})
are of type (a) =(x0, x0 + x1), (b) =(x0 · x0, x1 · x1).

Exercise 3 Let L be the vocabulary {f, g}. Describe teams X ∈
Team(M, {x0, x1, x2}) of type (a) =(x0, x1, x2), (b) =(x0, x0, x2).

Exercise 4 Let M = (N,+, ·, 0, 1) and Xn = {{(0, a), (1, b)} : 1 <

a ≤ n, 1 < b ≤ n, a ≤ b}. Show that X5 is of type =(x0 + x1, x0 ·
x1, x0). This is also true for Xn for any n, but is slightly harder to

prove.

Exercise 5 For which of the following formulas φ it is true that for

all X 6= ∅: M |=X ¬φ ⇐⇒ M 6|=X φ:

(=(x0, x1) ∧ ¬x0 = x1)

(=(x0, x1)→ x0 = x1)

(=(x0, x1) ∨ ¬x0 = x1)

Exercise 6 ([12]) This exercise shows that the Closure Test is the

best we can do. Let L be the vocabulary of one n-ary predicate

symbol R. Let M be a finite set and m ∈ N. Suppose S is a set

of assignments of M with domain {x1, ..., xm} such that S is closed

under subsets. Find an interpretation RM ⊆ Mn and a formula φ

of D such that a team X with domain {x1, ..., xk} is of type φ in

M if and only if X ∈ S.
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Exercise 7 Use the method of [3], mutatis mutandis, to show that

there is no compositional semantics for dependence logic in which

the meanings of formulas are sets of assignments (rather than sets

of teams) and which agrees with Definition 5 for sentences.

1.3 Logical Equivalence

The concept of logical consequence and the derived concept of logical

equivalence are both defined below in a semantic form. In first order

logic there is also a proof theoretic (or syntactic) concept of logical

consequence and it coincides with the semantic concept. This fact is

referred to as the Gödel Completeness Theorem. In dependence logic we

have only semantic notions. There are obvious candidates for syntactic

concepts but they are not well understood yet. For example, it is known

that the Gödel Completeness Theorem fails badly (see Section 2.5).

Definition 12 ψ is a logical consequence of φ, φ ⇒ ψ, if for all

M and all X with dom(X) ⊇ Fr(φ) ∪ Fr(ψ) and M |=X φ we have

M |=X ψ. ψ is a strong logical consequence of φ,φ ⇒∗ ψ, if for

all M and for all X with dom(X) ⊇ Fr(φ) ∪ Fr(ψ) and M |=X φ

we have M |=X ψ, and all X with dom(X) ⊇ Fr(φ) ∪ Fr(ψ) and

M |=X ¬ψ we have M |=X ¬φ. ψ is logically equivalent with φ,

φ ≡ ψ, if φ ⇒ ψ and ψ ⇒ φ. ψ is strongly logically equivalent with

φ, φ ≡∗ ψ, if φ⇒∗ ψ and ψ ⇒∗ φ.

Note that φ ⇒∗ ψ if and only if φ ⇒ ψ and ¬ψ ⇒ ¬φ. Thus the

fundamental concept is φ⇒ ψ and φ⇒∗ ψ reduces to it. Note also that

φ and ψ are logically equivalent if and only if for all X with dom(X) ⊇
Fr(φ) ∪ Fr(ψ) (φ,X, 1) ∈ T if and only if (ψ,X, 1) ∈ T , and φ and ψ

are strongly logically equivalent if and only if for all X with dom(X) ⊇
Fr(φ) ∪ Fr(ψ) and all d, (φ,X, d) ∈ T if and only if (ψ,X, d) ∈ T .

We have some familiar looking strong logical equivalences in proposi-

tional logic, reminiscent of axioms of semigroups with identity. In the
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following lemma we group the equivalences according to duality:

Lemma 13 The following strong logical equivalences hold in depen-

dence logic:

1. ¬¬φ ≡∗ φ

2.(a) (φ ∧ >) ≡∗ φ
(b) (φ ∨ >) ≡∗ >

3.(a) (φ ∧ ψ) ≡∗ (ψ ∧ φ)

(b) (φ ∨ ψ) ≡∗ (ψ ∨ φ)

4.(a) (φ ∧ ψ) ∧ θ ≡∗ φ ∧ (ψ ∧ θ)

(b) (φ ∨ ψ) ∨ θ ≡∗ φ ∨ (ψ ∨ θ)

5.(a) ¬(φ ∨ ψ) ≡∗ (¬φ ∧ ¬ψ)

(b) ¬(φ ∧ ψ) ≡∗ (¬φ ∨ ¬ψ)

Proof. We prove only Claim (iii) (b) and leave the rest to the reader.

By (E8), (φ∨ψ,X, 0) ∈ T if and only if ((φ,X, 0) ∈ T and (ψ,X, 0) ∈
T ) if and only if (ψ ∨ φ,X, 0) ∈ T . Suppose then (φ ∨ ψ,X, 1) ∈ T .

By (E7) there are Y and Z such that X = Y ∪ Z, (φ, Y, 1) ∈ T and

(ψ,Z, 1) ∈ T . By (D7), (ψ∨φ,X, 1) ∈ T . Conversely, if (ψ∨φ,X, 1) ∈
T , then there are Y and Z such that X = Y ∪ Z, (ψ, Y, 1) ∈ T and

(φ, Z, 1) ∈ T . By (D7), (φ ∨ ψ,X, 1) ∈ T .�

However, many familiar propositional equivalences fail on the level of

strong equivalence, in particular the Law of Excluded Middle, weakening

laws, and distributivity laws. See Exercise 8.

We have also some familiar looking strong logical equivalences for

quantifiers. In the following lemma we again group the equivalences

according to duality:

Lemma 14 The following strong logical equivalences and conse-

quences hold in dependence logic:
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1.(a) ∃xm∃xnφ ≡∗ ∃xn∃xmφ
(b) ∀xm∀xnφ ≡∗ ∀xn∀xmφ

2.(a) ∃xn(φ ∨ ψ) ≡∗ (∃xnφ ∨ ∃xnφ)

(b) ∀xn(φ ∧ ψ) ≡∗ (∀xnφ ∧ ∀xnφ)

3.(a) ¬∃xnφ ≡∗ ∀xn¬φ
(b) ¬∀xnφ ≡∗ ∃xn¬φ

4.(a) φ⇒∗ ∃xnφ
(b) ∀xnφ⇒∗ φ

A useful method for proving logical equivalences is the method of sub-

stitution. In first order logic this is based on the strong compositionality2

of the semantics. The same is true for dependence logic.

Definition 15 Suppose θ is a formula in the vocabulary L ∪ {P},
where P is an n-ary predicate symbol. Let Sb(θ, P, φ(x1, ..., xn)) be

obtained from θ by replacing Pt1...tn everywhere by φ(t1, ..., tn).

Lemma 16 (Preservation of equivalence under substitution)

Suppose φ0(x1, ..., xn) and φ1(x1, ..., xn) are L-formulas of depen-

dence logic such that φ0(x1, ..., xn) ≡∗ φ1(x1, ..., xn). Suppose θ is a

formula in the vocabulary L ∪ {P}, where P is an n-ary predicate

symbol. Then Sb(θ, P, φ0(x1, ..., xn)) ≡∗ Sb(θ, P, φ1(x1, ..., xn)).

Proof. The proof is straightforward. We use induction on θ. Let us

use Sbd(θ) as a shorthand for Sb(θ, P, φd).

Atomic case. Suppose θ is Rt1...tn. Now Sbd(θ) = φd. The claim

follows from φ0 ≡∗ φ1.

Disjunction. Note that Sbd(φ ∨ ψ) = Sbd(φ) ∨ Sbd(ψ). Now (Sbd(φ ∨
ψ), X, 1) ∈ T if and only if (Sbd(φ) ∨ Sbd(ψ), X, 1) ∈ T if and only

if (X = Y ∪ Z such that (Sbd(φ), Y, 1) ∈ T and (Sbd(ψ), Z, 1) ∈ T ).
2In compositional semantics, roughly speaking, the meaning of a compound formula is completely determined by the way the

formula is built from parts and by the meanings of the parts.
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By the induction hypothesis this is equivalent to (X = Y ∪ Z such

that (Sb1−d(φ), Y, 1) ∈ T and (Sb1−d(ψ), Z, 1) ∈ T ) i.e. (Sb1−d(φ) ∨
Sb1−d(ψ), X, 1) ∈ T , which is finally equivalent to (Sb1−d(φ∨ψ), X, 1) ∈
T . On the other hand, (Sbd(φ ∨ ψ), X, 0) ∈ T if and only if (Sbd(φ) ∨
Sbd(ψ), X, 0) ∈ T if and only if ((Sbd(φ), X, 0) ∈ T and (Sbd(ψ), X, 0) ∈
T ). By the induction hypothesis this is equivalent to (Sb1−d(φ), X, 0) ∈
T and (Sb1−d(ψ), X, 0) ∈ T ) i.e. (Sb1−d(φ) ∨ Sb1−d(ψ), X, 0) ∈ T ,

which is finally equivalent to (Sb1−d(φ ∨ ψ), X, 0) ∈ T .

Negation. Sbe(¬φ) = ¬ Sbe(φ). Now (Sbe(¬φ), X, d) ∈ T if and only

if (¬ Sbe(φ), X, d) ∈ T , which is equivalent to (Sbe(φ), X, 1 − d) ∈
T . By the induction hypothesis this is equivalent to (Sb1−e(φ), X, 1 −
d) ∈ T i.e. (¬ Sb1−e(φ), X, d) ∈ T , and finally this is equivalent to

(Sb1−e(¬φ), X, d) ∈ T .

Existential quantification. Note that Sbd(∃xnφ) = ∃xn Sbd(φ). We

may infer, as above, that (Sbd(∃xnφ), X, 1) ∈ T if and only if (∃xn Sbd(φ), X,

1) ∈ T if and only if: there is F : X →M such that (Sbd(φ), X(F/xn), 1)

∈ T . By the induction hypothesis this is equivalent to: there is F :

X →M such that (Sb1−d(φ), X(F/xn), 1) ∈ T , i.e. to (∃xn Sb1−d(φ), X, 1) ∈
T , which is finally equivalent to (Sb1−d(∃xnφ), X, 1) ∈ T . On the other

hand, (Sbd(∃xnφ), X, 0) ∈ T if and only if (∃xn Sbd(φ), X, 0) ∈ T , if

and only if ((Sbd(φ), X(M/xn), 0) ∈ T . By the induction hypothesis

this is equivalent to (Sb1−d(φ), X(M/xn), 0) ∈ T , i.e. (∃xn Sb1−d(φ), X, 0) ∈
T , which is finally equivalent to (Sb1−d(∃xnφ), X, 0) ∈ T . �

We will see later (see Section 5.3) that there is no hope of explaining

φ ⇒ ψ in terms of some simple rules. There are examples of φ and ψ

such that to decide whether φ ⇒ ψ or not, one has to decide whether

there are measurable cardinals in the set theoretic universe. Likewise,

there are examples of φ and ψ such that to decide whether φ⇒ ψ, one

has to decide whether the Continuum Hypothesis holds.

We examine next some elementary logical properties of formulas of

dependence logic. The following lemma shows that the truth of a formula
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depends only on the interpretations of the variables occurring free in the

formula. To this end, we define X�V to be {s�V : s ∈ X}.

Lemma 17 Suppose V ⊇ Fr(φ). Then M |=X φ if and only if

M |=X�V φ.

Proof. Key to this result is the fact that tM〈s〉 = tM〈s�V 〉 whenever

Fr(t) ⊆ V . We use induction on φ to prove (φ,X, d) ∈ T ⇐⇒
(φ,X�V, d) ∈ T whenever Fr(φ) ⊆ V . If φ is atomic, the claim is

obvious, even in the case of =(t1, ..., tn).

Disjunction. Suppose (φ ∨ ψ,X, 1) ∈ T . Then X = Y ∪ Z such

that (φ, Y, 1) ∈ T and (ψ,Z, 1) ∈ T . By the induction hypothesis

(φ, Y �V, 1) ∈ T and (ψ,Z�V, 1) ∈ T . Of course, X � V = (Y �
V ) ∪ (Z � V ). Thus (φ ∨ ψ,X�V, 1) ∈ T . Conversely suppose (φ ∨
ψ,X�V, 1) ∈ T . Then X � V = Y ∪ Z such that (φ, Y, 1) ∈ T and

(φ, Z, 1) ∈ T . Choose Y ′ and Z ′ such that Y ′�V = Y , Z ′�V = Z.

and X = Y ′ ∪ Z ′. Now we have (φ, Y ′, 1) ∈ T and (ψ,Z ′, 1) ∈
T by the induction hypothesis. Thus (φ ∨ ψ,X, 1) ∈ T . Suppose

then (φ ∨ ψ,X, 0) ∈ T . Then (φ,X, 0) ∈ T and (ψ,X, 0) ∈ T .

By the induction hypothesis (φ,X�V, 0) ∈ T and (ψ,X�V, 0) ∈ T .

Thus (φ ∨ ψ,X�V, 0) ∈ T . Conversely, suppose (φ ∨ ψ,X�V, 0) ∈ T .

Then (φ,X�V, 0) ∈ T and (ψ,X�V, 0) ∈ T . Now (φ,X, 0) ∈ T and

(ψ,X, 0) ∈ T by the induction hypothesis. Thus (φ ∨ ψ,X, 0) ∈ T .

Negation. Suppose (¬φ,X, d) ∈ T . Then (φ,X, 1 − d) ∈ T . By the

induction hypothesis (φ,X�V, 1 − d) ∈ T . Thus (¬φ,X�V, d) ∈ T .

Conversely, suppose (¬φ,X�V, d) ∈ T . Then (φ,X�V, 1 − d) ∈ T .

Now we have (φ,X, 1 − d) ∈ T by the induction hypothesis. Thus

(¬φ,X, d) ∈ T .

Existential quantification. Suppose (∃xn, X, 1) ∈ T . Then there

is F : X → M such that (φ,X(F/xn), 1) ∈ T . By the induction

hypothesis (φ,X(F/xn)�W, 1) ∈ T , where W = V ∪ {n}. Note that,

X(F/xn)�W = (X�V )(F/xn). Thus (∃xnφ,X�V, 1) ∈ T . Conversely,
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suppose (∃xnφ,X�V, 1) ∈ T . Then there is F : X�V → M such that

(φ, (X�V )(F/xn), 1) ∈ T . Again, X(F/xn)�W = (X�V )(F/xn), thus

by the induction hypothesis, (φ,X(F/xn), 1) ∈ T , i.e. (∃xnφ,X, 1) ∈
T .

�

In the next Lemma we have the restriction, familiar from substitution

rules of first order logic, that in substitution no free occurrence of a

variable should become a bound.

Lemma 18 (Change of free variables) Let the free variables of

φ and ψ be x1, ..., xn. Let i1, ..., in be distinct. Let φ′ be obtained

from φ by replacing xj everywhere by xij , where j = 1, ..., n. If X

is an assignment set with dom(X) = {1, ..., n}, let X ′ consist of

the assignments xij 7→ s(xj), where s ∈ X. Then M |=X φ ⇐⇒
M |=X ′ φ

′.

Finally, we note the important fact that types are preserved by iso-

morphisms:

Lemma 19 (Isomorphism preserves truth) SupposeM∼=M′.

If φ ∈ D, then M |= φ ⇐⇒ M′ |= φ.

Exercise 8 Prove the following non-equivalences :

1.(a) φ ∨ ¬φ 6≡∗ >
(b) φ ∧ ¬φ 6≡∗ ¬>, but φ ∧ ¬φ ≡ ¬>

2. (φ ∧ φ) 6≡∗ φ, but (φ ∧ φ) ≡ φ

3. (φ ∨ φ) 6≡∗ φ

4. (φ ∨ ψ) ∧ θ 6≡∗ (φ ∧ θ) ∨ (ψ ∧ θ)

5. (φ ∧ ψ) ∨ θ 6≡∗ (φ ∨ θ) ∧ (ψ ∨ θ)

Note that each of these non-equivalences is actually an equivalence

in first order logic.
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1.4 First Order Formulas

Some formulas of dependence logic can be immediately recognized as

first order by their mere appearance. They simply do not have any oc-

currences of the dependence formulas =(t1, ..., tn) as subformulas. We

then appropriately call them first order. Other formulas may be appar-

ently non-first order, but turn out to be logically equivalent to a first

order formula. Our goal in this section is to show that for apparently

first order formulas our dependence logic truth definition (Definition 5

with X 6= ∅) coincides with the standard first order truth definition

(Definition ??). We also give a simple criterion called the Flatness

Test that can be used to test whether a formula of dependence logic is

logically equivalent to a first order formula.

We begin by proving that a team is of a first order type φ if every

assignment s in X satisfies φ. Note the a priori difference between an

assignment s satisfying a first order formula φ and the team {s} being

of type φ. We will show that these conditions are equivalent, but this

indeed needs a proof.

Proposition 20 If an L-formula φ of dependence logic is first or-

der, then:

1. If M |=s φ for all s ∈ X, then (φ,X, 1) ∈ T .

2. If M |=s ¬φ for all s ∈ X, then (φ,X, 0) ∈ T .

Proof. We use induction:

1. If tM1 〈s〉 = tM2 〈s〉 for all s ∈ X , then (t1 = t2, X, 1) ∈ T by D1.

2. If tM1 〈s〉 6= tM2 〈s〉 for all s ∈ X , then (t1 = t2, X, 0) ∈ T by D2.

3. (=(), X, 1) ∈ T by D3.

4. (=(), ∅, 0) ∈ T by D4.

5. If (tM1 〈s〉, ..., tMn 〈s〉) ∈ RM for all s ∈ X , then (Rt1...tn, X, 1) ∈ T
by D5.
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6. If (tM1 〈s〉, ..., tMn 〈s〉) /∈ RM for all s ∈ X , then (Rt1...tn, X, 0) ∈ T
by D6.

7. IfM |=s ¬(φ ∨ ψ) for all s ∈ X , thenM |=s ¬φ for all s ∈ X and

M |=s ¬ψ for all s ∈ X , whence (φ,X, 0) ∈ T and (ψ,X, 0) ∈ T ,

and finally ((φ ∨ ψ), X, 0) ∈ T by D7.

8. If M |=s φ ∨ ψ for all s ∈ X , then X = Y ∪ Z such that M |= φ

for all s ∈ Y and M |= ψ for all s ∈ Z. Thus (ψ, Y, 1) ∈ T and

(ψ,Z, 1) ∈ T , whence ((φ ∨ ψ), Y ∪ Z, 1) ∈ T by D8.

9. IfM |=s ¬φ for all s ∈ X , then (φ,X, 0) ∈ T , whence (¬φ,X, 1) ∈
T by D9.

10. IfM |=s ¬¬φ for all s ∈ x, then (φ,X, 1) ∈ T , whence (¬φ,X, 0) ∈
T by D10.

11. If M |=s ∃xnφ for all s ∈ X , then for all s ∈ X there is as ∈ M
such thatM |=s(as/xn) φ. Now (φ, {s}(F/xn), 1) ∈ T for F : X →
M such that F (s) = as. Thus (∃xnφ,X, 1) ∈ T .

12. If M |=s ¬∃xnφ for all s ∈ X , then for all a ∈ M we have for

all s ∈ X M |=s(a/xn) ¬φ. Now (φ,X(M/xn), 0) ∈ T . Thus

(∃xnφ,X, 0) ∈ T .

�

Now for the other direction:

Proposition 21 If an L-formula φ of dependence logic is first or-

der, then:

1. If (φ,X, 1) ∈ T , then M |=s φ for all s ∈ X.

2. If (φ,X, 0) ∈ T , then M |=s ¬φ for all s ∈ X.

Proof. We use induction:

1. If (t1 = t2, X, 1) ∈ T , then tM1 〈s〉 = tM2 〈s〉 for all s ∈ X by E1.
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2. If (t1 = t2, X, 0) ∈ T , then tM1 〈s〉 6= tM2 〈s〉 for all s ∈ X by E2.

3. (=(), X, 1) ∈ T and likewiseM |=s > for all s ∈ X .

4. (=(), ∅, 0) ∈ T and likewiseM |=s ¬> for all (i.e. none) s ∈ ∅.

5. If (Rt1...tn, X, 1) ∈ T , then (tM1 〈s〉, ..., tMn 〈s〉) ∈ RM for all s ∈ X
by E5.

6. If (Rt1...tn, X, 0) ∈ T , then (tM1 〈s〉, ..., tMn 〈s〉) /∈ RM for all s ∈ X
by E6.

7. If (φ ∨ ψ,X, 0) ∈ T , then (φ,X, 0) ∈ T and (ψ,X, 0) ∈ T by E7,

whence M |=s ¬φ for all s ∈ X and M |=s ¬ψ for all s ∈ X ,

whence finallyM |=s ¬(φ ∨ ψ) for all s ∈ X .

8. If (φ ∨ ψ,X, 1) ∈ T , then X = Y ∪ Z such that (φ, Y, 1) ∈ T and

(ψ,Z, 1) ∈ T by E8, whence M |=s φ for all s ∈ Y and M |=s ψ

for all s ∈ Z, and thereforeM |=s φ ∧ ψ for all s ∈ X .

We leave the other cases as an exercise. �

We are now ready to combine Propositions 20 and 21 in order to prove

that the semantics we gave in Definition 5 coincides in the case of first

order formulas with the more traditional semantics given in Section ??.

Corollary 22 Let φ be a first order L-formula of dependence logic.

Then:

1.M |={s} φ if and only if M |=s φ.

2.M |=X φ if and only if M |=s φ for all s ∈ X.

Proof. If M |={s} φ, then M |=s φ by Proposition 21. If M |=s φ,

thenM |={s} φ by Proposition 20.�

We shall now introduce a test, comparable to the Closure Test intro-

duced above. The Closure Test was used to test which types of teams are

definable in dependence logic. With our new test we can check whether

a type is first order, at least up to logical equivalence.
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Definition 23 (Flatness3 Test) We say that φ passes the Flat-

ness Test if for all M and X:M |=X φ ⇐⇒ (M |={s} φ for all s ∈
X).

Proposition 24 Passing the Flatness Test is preserved by logical

equivalence.

Proof. Suppose φ ≡ ψ and φ passes the Flatness Test. Suppose

M |={s} ψ for all s ∈ X . By logical equivalence M |={s} φ for all

s ∈ X . But φ passes the Flatness Test. SoM |=X φ, and therefore by

our assumption,M |=X ψ. �

Proposition 25 Any L-formula φ of dependence logic that is logi-

cally equivalent to a first order formula satisfies the Flatness Test.

Proof. Suppose φ ≡ ψ, where ψ is first order. Since ψ satisfies the

Flatness Test, also φ does, by Proposition 24. �

Example 26 =(x0, x1) does not pass the Flatness Test, as the team

X = {{(0, 0), (1, 1)}, {(0, 1), (1, 1)}} in a model M with at least two

elements 0 and 1 shows. Namely, M 6|=X =(x0, x1), but M |={s}
=(x0, x1) for s ∈ X. We conclude that =(x0, x1) is not logically

equivalent to a first-order formula.

Example 27 ∃x2(=(x0, x2) ∧ x2 = x1) does not pass the Flatness

Test, as the team X = {s, s′}, s = {(0, 0), (1, 1)}, s′ = {(0, 0), (1, 0)}
in a model M with at least two elements 0 and 1 shows. Namely,

if F : X → M witnesses M |=X(F/x2) =(x0, x2) ∧ x2 = x1, then

s(x0) = s′(x0), but 1 = s(x1) = F (s) = F (s′) = s′(x1) = 0, a

contradiction. We conclude that ∃x2(=(x0, x2) ∧ x2 = x1) is not

logically equivalent to a first-order formula.

Example 28 Let L = {+, ·, 0, 1, <} and M = (N,+, ·, 0, 1, <), the

standard model of arithmetic. The formula ∃x0(=(x0) ∧ (x1 < x0))

fails to meet the Flatness Test. To see this, we first note that if
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X = {s}, then X is of the type of the formula, as we can choose as
to be equal to s(x1) + 1. On the other hand, let X = {sn : n ∈ N},
where sn(x1) = n. It is impossible to choose a such that a > sn(x1)

for all n ∈ N.

Exercise 9 Find a logically equivalent first order formula for ∃x0(=(x1, x0)∧
Px0).

Exercise 10 Which of the following formulas are logically equiva-

lent to a first order formula: =(x0, x1, x2)∧x0 = x1, (=(x0, x2)∧x0 =

x1)→ =(x1, x2),=(x0, x1, x2) ∨ ¬=(x0, x1, x2)

Exercise 11 Let L = ∅ and let M be an L-structure with M =

{0, 1}. Show that the following types of a team X with domain

{x0, x1, x2} are non-first order:

a) ∃x0(=(x2, x0) ∧ ¬(x0 = x1))

b) ∃x0(=(x2, x0) ∧ (x0 = x1 ∨ x0 = x2))

c) ∃x0(=(x2, x0) ∧ (x0 = x1 ∧ ¬x0 = x2)).

Exercise 12 Let L = {R}, #(R) = 1. Find an L-structure M
which demonstrates that the following properties of a team X with

domain {x0, x1, x2} are non-first order:

a) ∃x0(Rx0 ∧ =(x1, x0) ∧ ¬x0 = x2)

b) ∃x0(=(x2, x0) ∧ (Rx0 ↔ Rx1))

c) ∃x0(=(x2, x0) ∧ ((Rx1 ∧ ¬Rx0) ∨ (¬Rx1 ∧Rx0))).

Exercise 13 A formula φ of dependence logic is coherent if the

following holds: Any team X is of type φ if and only if for every

s, s′ ∈ X the pair team {s, s′} is of type φ. Note that the formula

(=(x1, ..., xn)∧φ) is coherent if φ is. Show that for every first order

φ with Fr(φ) = {x1}, the type ∃x0(=(x1, x0) ∧ φ) is coherent. Give

an example of a formula φ of dependence logic which is not coherent

(see Exercise 13 for the definition of coherence).
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1.5 The Flattening Technique

We now introduce a technique which may seem frivolous at first sight

but proves very useful in the end. This is the process of flattening,

by which we mean getting rid of the dependence formulas =(t1, ..., tn).

Naturally we lose something, but this is a method to reveal whether a

formula has genuine occurrences of dependence or just ersatz ones.

Definition 29 The flattening φf of a formula φ of dependence logic

is defined by induction as follows:

(t1 = t2)f = t1 = t2 (Rt1...tn)f = Rt1...tn
(=(t1, ..., tn))f = > (¬φ)f = ¬φf

(φ ∨ ψ)f = φf ∨ ψf (∃xnφ)f = ∃xnφf

Note that the result of flattening is always first order. The main

feature of flattening is that it preserves truth:

Proposition 30 If φ is an L-formula of dependence logic, then

φ⇒ φf .

Proof. Inspection of Definition 5 reveals immediately that in each

case where (φ,X, d) ∈ T , we also have (φf , X, d) ∈ T . �

We can use the above proposition to prove various useful little results

which are often comforting in enforcing our intuition. We first point

out that although a team may be of the type of both a formula and its

negation, this can only happen if the team is empty and thereby is of

the type of any formula.

Corollary 31M |=X (φ ∧ ¬φ) if and only if X = ∅.

Proof. We already know thatM |=∅ (φ∧¬φ). On the other hand, if

M |=X (φ ∧ ¬φ) and s ∈ X , thenM |=s (φf ∧ ¬φf), a contradiction.

�
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Corollary 32 (Modus Ponens) SupposeM |=X φ→ ψ andM |=X

φ. Then M |=X ψ. (See also Exercise 15.)

Proof. M |=X ¬φ ∨ ψ implies X = Y ∪ Z such that M |=Y ¬φ
and M |=Z ψ. Now M |=Y φ and M |=Y ¬φ, whence Y = ∅. Thus

X = Z andM |=X ψ follows. �

In general we may conclude from Proposition 30 that a non-empty

team cannot have the type of a formula which is contradictory in first

order logic when flattened. When all the subtle properties of dependence

logic are laid bare in front of us, we tend to seek solace in anything solid,

anything that we know for certain from our experience in first order

logic. Flattening is one solace. By simply ignoring the dependence

statements =(t1, ..., tn) we can recover in a sense the first-order content

of the formula. When we master this technique, we begin to understand

the effect of the presence of dependence statements in a formula.

Example 33 No non-empty team can have the type of any of the

following formulas, whatever formulas of dependence logic the for-

mulas φ and ψ are:

φ(c) ∧ ∀x0¬φ(x0),

∀x0¬φ ∧ ∀x0¬ψ ∧ ∃x0(φ ∨ ψ),

¬(((φ→ ψ)→ φ)→ φ).

The flattenings of these formulas are respectively

φf(c) ∧ ∀x0¬φf(x0),

∀x0¬φf ∧ ∀x0¬ψf ∧ ∃x0(φf ∨ ψf),

¬(((φf → ψf)→ φf)→ φf),

none of which can be satisfied by any assignment in first order logic.

In the last case one can use truth-tables to verify this.
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As the previous example shows, the Truth-Table Method, so useful in

predicate calculus, has a role also in dependence logic.

Exercise 14 Let φ be the formula ∃x0∀x1¬(=(x2, x1)∧(x0 = x1)) of

D. Show that the flattening of φ is not a strong logical consequence

of φ.

Exercise 15 If M |=X (φ→ ψ) and M |=X ¬ψ, then M |=X ¬φ.

Exercise 16 Show that no non-empty team can have the type of

any of the following formulas:

¬=(x0, x1)

¬(=(x0, x1)→ =(x2, x1))

¬=(fx0, x0) ∨ ¬=(x0, fx0)

∀x0∃x1∀x2∃x3¬(φ→ =(x0, x1))

Exercise 17 Explain the difference between teams of type =(x0, x2)∧
=(x1, x2) and teams of type =(x0, x1, x2).

Exercise 18 If φ has only x0 and x1 free, then ∀x0∃x1φ⇒ ∀x0∃x1(=(x0, x1)∧
φ).

Exercise 19 Show that the formulas ∀x0∃x1∀x2∃x3(=(x0, x1)∧=(x2, x3)∧
φ) and ∀x2∃x3∀x0∃x1(=(x0, x1)∧=(x2, x3)∧ φ), where φ is first or-

der, are logically equivalent.

Exercise 20 Prove ∃xn(φ ∧ ψ) ≡∗ φ ∧ ∃xnψ if xn not free in φ.

Exercise 21 Prove that |= ∃x1(=(x1)∧x1 = c) but 6|= ∀x0∃x1(=(x1)∧
x1 = x0).

Exercise 22 (Prenex Normal Form) A formula of dependence

logic is in prenex normal form if all quantifiers are in the beginning

of the formula. Use Lemma 14 and Exercise 20 to prove that ev-

ery formula of dependence logic is strongly equivalent to a formula

which has the same free variables and is in the prenex normal form.
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1.6 Dependence/Independence Friendly Logic

We review the relation of our dependence logic D to the independence

friendly logics of [10], [11] and [12].

The backslashed quantifier

∃xn\{xi0, ..., xim−1}φ, (1.2)

introduced in [11], with the intuitive meaning

“there exists xn, depending only on xi0...xim−1, such that φ,” (1.3)

can be defined in dependence logic by the formula

∃xn(=(xi0, ..., xim−1, xn) ∧ φ). (1.4)

Conversely, we can define =(xi0, ..., xim−1) in terms of (1.2) by means of

the formula

∃xn\{xi0, ..., xim−2}(xn = xim−1). (1.5)

Similarly, we can define =(t1, ..., tn) in terms of (1.2), when t1, ..., tn are

terms.

Dependence friendly logic, denoted DF, is the fragment of depen-

dence logic obtained by leaving out the atomic dependence formulas

=(t1, ..., tn) and adding all the backslashed quantifiers (1.2). Depen-

dence logic and DF have the same expressive power, not just on the

level of sentences, but even on the level of formulas in the following

sense:

Proposition 34 1. For every φ in D there is φ∗ in DF so that for

all models M and all teams X: M |=X φ ⇐⇒ M |=X φ∗.

2. For every ψ in DF there is ψ∗∗ in D so that for all models M
and all teams X: M |=X ψ ⇐⇒ M |=X ψ∗∗.

We can base the study of dependence either on the atomic formu-

las t1 = tn, Rt1...tn, =(t1, ..., tn), together with the logical operations

¬,∨,∃xn, as we have done in this book, or on the atomic formulas t1 =
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tn,Rt1...tn, together with the logical operations¬,∨,∃xn\{xi0, ..., xim−1}.
The results of this book remain true if D is replaced by DF.

The slashed quantifier

∃xn/{xi0, ..., xim−1}φ, (1.6)

used in [12] has the intuitive meaning

“there exists xn, independently of xi0...xim−1, such that φ,” (1.7)

which we take to mean

“there exists xn, depending only on variables other than

xi0...xim−1, such that φ,”
(1.8)

If the other variables, referred to in (1.8) are xj0...xjl−1, then (1.7) is

intuitively equivalent with

∃xn\{xj0, ..., xjl−1}φ. (1.9)

Independence friendly logic, denoted IF, is the fragment of depen-

dence logic obtained by leaving out the atomic dependence formulas

=(t1, ..., tn) and adding all the slashed quantifiers (1.6) with (1.7) (or

rather (1.9)) as their meaning. Sentences of dependence logic and IF

have the same expressive power in the following sense:

1. For every sentence φ in D there is a sentence φ∗ in IF so that for all

modelsM: M |= φ ⇐⇒ M |= φ∗.

2. For every sentence ψ in IF there is a sentence ψ∗∗ in D so that for

all modelsM: M |= ψ ⇐⇒ M |= ψ∗∗.

We observed that we can base the study of dependence on D or DF

and everything will go through more or less in the same way. However,

IF differs more from D than DF, even if the expressive power is in the

above sense the same as that of D, and even if there is the intuitive

equivalence of (1.7) and (1.9).

Dealing with (1.8) rather than (1.3) involves the complication, that

one has to decide whether “other variable” refers to other variables
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actually appearing in a formula φ, or to other variables in the domain

of the team X under consideration. In the latter case variables not

occurring in the formula φ may still determine whether the team X is

of type φ.

Consider, for example, the formula θ : ∃x0/{x1}(x0 = x1). The

teams

x0 x1 x2

1 1 1

1 3 3

1 8 8

x0 x1 x2

1 1 5

1 3 2

1 8 1

are of type θ as we can let x0 depend on x2. The variable x2, which

does not occur in θ, signals what x1 is. However, the team

x0 x1 x2

1 1 5

1 3 5

1 8 5

is not of type θ, even though all three teams agree on all variables that

occur in θ. The corresponding formula ∃x0\{x2}(x0 = x1) of DF avoids

this as all variables that are actually used are mentioned in the formula.

In this respect DF is easier to work with than IF.

Exercise 23 Give a logically equivalent formula in D for the DF-

formula ∃x2\Rx1x2.

Exercise 24 Give for both of the following D-formulas

∃x2∃x3(=(x0, x2) ∧ =(x1, x3) ∧Rx0x1x2x3)

=(x0) ∨ =(x1)

a logically equivalent formula in DF.

Exercise 25 Give for each of the following D-sentences φ

∀x0∃x1(¬=(x0, x1) ∧ ¬x1 = x0)

∀x0∀x1∃x2(=(x1, x2) ∧ ¬x2 = x1)
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a sentence φ∗ in IF so that φ and φ∗ have the same models.

Exercise 26 Give for both of the following IF-sentences

∀x0∃x1/{x0}(x0 = x1)

∀x0∃x1/{x0}(x1 ≤ x0)

a first order sentence with the same models.

Exercise 27 Give a definition of =(t1, ..., tn) in DF.
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Chapter 2

Examples

We study now some more complicated examples involving many quan-

tifiers. In all these examples we use quantifiers to express the existence

of some functions. There is a certain easy trick for accomplishing this

which hopefully becomes apparent to the reader. The main idea is that

some variables stand for arguments and some stand for values of func-

tions that the sentence stipulates to exist.

2.1 Even Cardinality

On a finite set {a1, ..., an} of even size one can define a one to one

function f which is its own inverse and has no fixed points, as in the

picture:

Conversely, any finite set with such a function has even cardinality. In

the following sentence we think of f (x0) as x1 and of f (x2) as x3. So x1

depends only on x0, and x3 depends only on x2, which is guaranteed by

=(x2, x3). To make sure f has no fixed points we stipulate ¬(x0 = x1).

The condition (x1 = x2 → x3 = x0) says in effect (f (x0) = x2 →
f (x2) = x0). i.e. f (f (x0)) = x0. Let:
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Φeven : ∀x0∃x1∀x2∃x3(=(x2, x3) ∧ ¬(x0 = x1)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x2 → x3 = x0))

The sentence Φeven of dependence logic is true in a finite structure if

and only if the size of the structure is even.

Exercise 28 Give a sentence of dependence logic which is true in

a finite structure if and only if the size of the structure is odd. Note

that ¬Φeven would not do.

2.2 Cardinality

The domain of a structure is infinite if and only if there is a one to one

function that maps the domain into a proper subset. For example, if

the domain contains an infinite set A = {a0, a1, ...} we can map A onto

the proper subset {a1, a2, ...} with the mapping an 7→ an+1, and the

outside of A onto itself by the identity mapping. On the other hand, if

f : M →M is a one to one function that not have a in its range, then

{a, f (a), f (f (a)), ...} is an infinite subset.

In the following sentence we think of f (x0) as x1 and of g(x2) as

x3. So x1 depends only on x0, and x3 depends only on x2, which is

guarantees by =(x2, x3). The condition ¬(x1 = x4) says x4 is outside

the range of the function f . To make sure that f = g we stipulate

(x0 = x2 → x1 = x3). The condition (x1 = x3 → x0 = x2) says f is

one to one. Let:

Φ∞ : ∃x4∀x0∃x1∀x2∃x3(=(x2, x3) ∧ ¬(x1 = x4)

∧ (x0 = x2 ↔ x1 = x3))
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We conclude that Φ∞ is true in a structure if and only if the domain

of the structure is infinite.

Exercise 29 A graph is a pair M = (G,E) where G is a set of

elements called vertices and E is an anti-reflexive symmetric binary

relation on G called the edge-relation. The degree of a vertex is

the number of vertices that are connected by a (single) edge to v.

The degree of v is said to be infinite if the set of vertices that are

connected by an edge to v is infinite. Give a sentence of dependence

logic which is true in a graph if and only if every vertex has infinite

degree.

Exercise 30 Give a sentence of dependence logic which is true in

a graph if and only if the graph has infinitely many isolated vertices

(a vertex is isolated if it has no neighbors).

Exercise 31 Give a sentence of dependence logic which is true in a

graph if and only if the graph has infinitely many vertices of infinite

degree (the degree of a vertex is the cardinality of the set of neighbor

of the vertex).

A more general question about cardinality is equicardinality. In this

case we have two unary predicates P and Q on a set M and we want

to know whether they have the same cardinality; that is, whether there

is a bijection f from P to Q. In the following sentence Φ= we think of

f (x0) as x1 and of f (x2) as x3.

Φ= : ∀x0∃x1∀x2∃x3(=(x2, x3) ∧ ((Px0 ∧Qx2)→
(Qx1 ∧ Px3 ∧
(x0 = x3 ↔ x1 = x2))))

Suppose we want to test whether a unary predicate Q has at least

as many elements as another unary predicate P . Here we can use a

simplification of Φ=:

35

Cambridge University Press 2007



Φ≤ : ∀x0∃x1∀x2∃x3(=(x2, x3) ∧ (Px0 → (Qx1 ∧
(x0 = x2 ↔ x1 = x3))))

On the other hand, the following variant of Φ= clearly expresses the

isomorphism of two linear orders (P,<P ) and (Q,<Q):

Φ∼= : ∀x0∃x1∀x2∃x3(=(x2, x3) ∧ ((Px0 ∧Qx2)→
∧ (Qx1 ∧ Px3 ∧
∧ (x0 <P x3 ↔ x1 <Q x2))))

An isomorphismM→M is called an automorphism. The identity

mapping is, of course, always an automorphism. An automorphism is

non-trivial if it is not the identity mapping. Below is a picture of a

finite structure with a non-trivial automorphism:

A structure is rigid if it has only one automorphism, namely the identity.

Finite linear orders and e.g. (N, <) are rigid1, but for example (Z, <)

is non-rigid. We can express the non-rigidity of a linear order with the

following sentence

Φnr : ∃x4∀x0∃x1∀x2∃x3(=(x2, x3) ∧ (x0 = x4 → ¬(x1 = x4))

∧ (x0 < x3 ↔ x1 < x2))

Exercise 32 Write down a sentence of D which is true in a group2

if and only if the group is non-rigid.

Exercise 33 Write down a sentence of D which is true in a finite

structure M if and only if the unary predicate P contains in M at

least half of the elements of M .
1Any automorphism has to map the first element to the first element, the second element to the second element, the third element

to the third element, etc
2A group is a structure (G, ◦, e) with a binary function ◦ and a constant e such that (1) for all a, b, c ∈ G: (a ◦ b) ◦ c = a ◦ (b ◦ c),

(2) for all a ∈ G: e ◦ a = a ◦ e = a, (3) for all a ∈ G there is b ∈ G such that a ◦ b = b ◦ a = e. The group is abelian if in addition: (4)
for all a, b ∈ G: a ◦ b = b ◦ a.
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Exercise 34 A natural number n is a prime power if and only if

there is a finite field of n elements. Use this fact to write down a

sentence of D in the empty vocabulary which has finite models of

exactly prime power cardinalities.

Exercise 35 A group (G, ◦, e) is right orderable if there is a partial

order ≤ in the set G such that x ≤ y implies x ◦ z ≤ y ◦ z for all

x, y, z in G. Write down a sentence of D which is true in a group

if and only if the group is right orderable.

Exercise 36 An abelian group (G,+, 0) is the additive group of a

field if there are a binary operation · on G and an element 1 in G

such that (G,+, ·, 0, 1) is a field. Write down a sentence of D which

is true in an abelian group if and only if the group is the additive

group of a field.

2.3 Completeness

Suppose we want to test whether a linear order< on a setM is complete

or not, i.e. whether every non-empty A ⊆M with an upper bound has

a least upper bound. Since we have to talk about arbitrary subsets A of

a domain M , we use a technique called guessing. This is nothing else

than fixing an element a of M and then taking an arbitrary function

from M to M . We call a the “head” as if we were tossing coin. The

set A corresponds to the set of elements of M mapped to the head.

For simplicity, we take the head to be an upper bound of A which we

assume to exist anyway.

A linear order is incomplete if and only if there is a non-empty initial

segment A without a last point but with an upper bound such that for

every element not in A there is a smaller element not in A. To express
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this we use the sentence

Φcmpl : ∃x6∃x7∀x0∃x1∀x2∃x3

∀x4∃x5∀x8∃x9( =(x2, x3) ∧ =(x4, x5) ∧ =(x8, x9)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x6 → x0 < x6)

∧ (x0 = x7 → x1 = x6)

∧ ((x0 < x2 ∧ x3 = x6)

→ x1 = x6)

∧ ((¬(x1 = x6) ∧ x0 = x4 ∧ x2 = x5)

→ (x5 < x0 ∧ ¬(x3 = x6)))

∧ ((x0 = x8 ∧ x1 = x6 ∧ x2 = x9)

→ (x8 < x9 ∧ x3 = x6)))

The sentence Φcmpl is true in a linear order if and only if the linear

order is incomplete. (Φcmpl is not necessarily the simplest one with this

property.)

Explanation of Φcmpl: The mapping x0 7→ x1 is the guessing function

and x2 7→ x3 is a copy of it, as witnessed by (x0 = x2 → x1 = x3). x6

is the head, therefore we have (x1 = x6 → x0 < x6). x7 manifests non-

emptiness of the guessed initial segment as witnessed by (x0 = x7 →
x1 = x6). The clause ((x0 < x2 ∧ x3 = x6)→ x1 = x6) guarantees the

guessed set is really an initial segment. Finally we need to say that if an

element x0 is above the initial segment (x1 6= x6) then there is a smaller

element x5 also above the initial segment. The mapping x8 7→ x9 makes

sure the initial segment does not have a maximal element.

The sentence Φcmpl has many quantifier alternations but that is not

really essential as we could equivalently use the universal-existential

sentence:
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Φ′cmpl : ∀x0∀x2∀x4∀x8∃x1∃x3

∃x5∃x6∃x7∃x9( =(x0, x1) ∧ =(x2, x3)

∧ =(x4, x5) ∧ =(x6) ∧ =(x7)

∧ =(x8, x9)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x6 → x0 < x6)

∧ (x0 = x7 → x1 = x6)

∧ ((x0 < x2 ∧ x3 = x6)→ x1 = x6)

∧ ((¬(x1 = x6) ∧ x0 = x4 ∧ x2 = x5)

→ (x5 < x0 ∧ ¬(x3 = x6)))

∧ ((x0 = x8 ∧ x1 = x6 ∧ x2 = x9)

→ (x8 < x9 ∧ x3 = x6)))

Exercise 37 Give a sentence of D which is true in a linear order if

and only if the linear order is isomorphic to a proper initial segment

of itself.

2.4 Well-Foundedness

A binary relation R on a set M is well-founded if and only if there is

no sequence a0, a1, ... in M such that an+1Ran for all n, and otherwise

ill-founded. An equivalent definition of well-foundedness is that there is

no non-empty subset X of M such that for every element a in X there

is an element b of X such that bRa. To express ill-foundedness we use
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the sentence

Φwf : ∃x6∃x7∀x0∃x1∀x2∃x3∀x4∃x5( =(x2, x3)

∧ =(x4, x5)

∧ (x0 = x2 → x1 = x3)

∧ (x0 = x7 → x1 = x6)

∧ ((x1 = x6 ∧ x0 = x4 ∧ x2 = x5)

→ (x3 = x6 ∧Rx5x4))

The sentence Φwf is true in a binary structure (M,R) if and only if R

is ill-founded.

Explanation: The mapping x0 7→ x1 guesses the set X as the pre-

image of x6. The mapping x2 7→ x3 is a copy of the mapping x0 7→ x1,

as witnessed by (x0 = x2 → x1 = x3). x7 manifests non-emptiness of

the guessed initial segment as witnessed by (x0 = x7 → x1 = x6). The

clause ((x1 = x6∧x0 = x4∧x2 = x5)→ (x3 = x6∧Rx5x4)) guarantees

the guessed set has no R-smallest element,

Exercise 38 A partially ordered set is an L-structureM = (M,≤M
) for the vocabulary L = {≤}, where ≤M is assumed to be reflexive

(x ≤ x), transitive (x ≤ y ≤ z ⇒ x ≤ z) and anti-symmetric

(x ≤ y ≤ x ⇒ x = y). We shorten (x ≤M y & x 6= y) to x <M y.

A chain of a partial order is a subset of M which is linearly ordered

by ≤M. Give a sentence of D which is true in a partially ordered

set if and only if the partial order has an infinite chain.

Exercise 39 A tree is a partially ordered set M such that the set

{x ∈ M : x <M t} of predecessors of any t ∈ M is well-ordered

by ≤M and there is a unique smallest element in M, called the

root of the tree. Thus for any t <M s in M there is an immediate

successor r of t such that t <M r ≤M s. A subtree of a tree is a

substructure which is a tree. A tree is binary if every element has

at most two immediate successors, and a full binary tree if every
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element has exactly two immediate successors. Give a sentence of

D which is true in a tree if and only if the tree has a full binary

subtree.

Exercise 40 The cofinality of a linear order is the smallest cardinal

κ such that the order has an unbounded subset of cardinality κ. In

particular, a linear order has cofinality ω if the linear order has a

cofinal increasing sequence a0, a1, .... Give a sentence of D which is

true in a linear order if and only if the order is either ill-founded

or else well-founded and of cofinality ω.

2.5 Natural Numbers

Let P− be the first order sentence

∀x0(x0 + 0 = 0 + x0 = x0)∧
∀x0∀x1(x0 + (x1 + 1) = (x0 + x1) + 1)∧
∀x0(x0 · 0 = 0 · x0 = 0)∧
∀x0∀x1(x0 · (x1 + 1) = (x0 · x1) + x0)∧
∀x0∀x1(x0 < x1 ↔ ∃x2(x0 + (x2 + 1) = x1))

∀x0(x0 > 0→ ∃x1(x1 + 1 = x0))∧
0 < 1 ∧ ∀x0(0 < x0 → (1 < x0 ∨ 1 = x0))

and ΦN the following sentence of D, reminiscent of Φ∞:

¬P− ∨ ∃x5∃x4∀x0∃x1∀x2∃x3(=(x2, x3) ∧ x4 < x5

∧ ((x0 = x2 ∧ x0 < x5)↔
(x1 = x3 ∧ x1 < x4)))

The sentence ΦN is of course true in models that do not satisfy the

axiom P−. However, in models of ΦN where P− does hold, something

interesting happens: the initial segments determined by x4 and x5 are

mapped onto each other by the bijection x0 7→ x1. Thus such models

cannot be isomorphic to (N,+, ·, 0, 1, <), in which all initial segments

are finite and of different finite cardinality.
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Lemma 35 If φ is a sentence of dependence logic in the vocabulary

of arithmetic, then the following are equivalent:

1. φ is true in (N,+, ·, 0, 1, <).

2. ΦN ∨ φ is valid in D.

Proof. Suppose first |= ΦN∨φ. Since (N,+, ·, 0, 1, <) 6|= ΦN, we have

necessarily (N,+, ·, 0, 1, <) |= φ. Conversely, suppose (N,+, ·, 0, 1, <
) |= φ and letM be arbitrary. IfM |= ΦN, then trivially |= ΦN∨φ. Sup-

pose then M 6|= ΦN. Necessarily M |= P−. If M � (N,+, ·, 0, 1, <),

we getM |= ΦN contrary to our assumption. ThusM∼= (N,+, ·, 0, 1, <
), whenceM |= φ. �

If Lemma 35 is combined with Tarski’s Undefinability of Truth (see

Theorem 73), we obtain, using pφq to denote the Gödel number of φ

according to some obvious Gödel numbering of sentences of D:

Corollary 36 The set {pφq : φ is valid in D} is non-arithmetical.

In particular, there cannot be any effective axiomatization of depen-

dence logic, for then {pφq : φ is valid in D} would be recursively enu-

merable and therefore arithmetical. We return to this important issue

later.

2.6 Real Numbers

Let RF be the first order axiomatization of ordered fields. The ordered

field (R,+, ·, 0, 1, <) of real numbers is the unique ordered field in which

the order is a complete order. The proof of this can be found in standard

textbooks on real analysis. Accordingly, let ΦR be the sentence ¬RF ∨
Φcmpl of D. Exactly as in Lemma 35, we have:

Lemma 37 If φ is a sentence of D in the vocabulary of ordered

fields, then the following are equivalent:

1. φ is true in (R,+, ·, 0, 1, <).
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2. ΦR ∨ φ is valid in D.

This is not as noteworthy as in the case of natural numbers, as the

truth of a first order sentence in the ordered field of reals is actually

effectively decidable. This is a consequence of the fact, due to Tarski,

that this structure admits elimination of quantifiers (see e.g. [18]). What

is noteworthy, is that we can add integers to the structure (R,+, ·, 0, 1, <
), obtaining the structure (R,+, ·, 0, 1, <,N) with a unary predicate N

for the set of natural numbers, making the first order theory of the

structure undecidable, and still get a reduction as in Lemma 37. To this

end, let ΦN be

N(0) ∧ ∀x0(N(x0)→ N(x0 + 1))

∧ ∀x0(N(x0)→ (0 = x0 ∨ 0 < x0))

∧ ∀x0∀x1((N(x0) ∧N(x1) ∧ x0 < x1)→
(x0 + 1 = x1 ∨ x0 + 1 < x1)).

Let ΦR,N be the sentence ¬RF ∨Φcmpl∨¬ΦN of D. Then any structure

that is not a model of ΦR,N is isomorphic to (R,+, ·, 0, 1, <,N). Thus

we obtain easily:

Lemma 38 If φ is a sentence of D in the vocabulary of ordered

fields supplemented by the unary predicate N , then the following

are equivalent:

1. φ is true in (R,+, ·, 0, 1, <,N).

2. ΦR,N ∨ φ is valid in D.

2.7 Set Theory

The vocabulary of set theory consists of just one binary predicate symbol

E. As a precursor to real set theory let us consider the following simpler

situation. We have, in addition toE, also two unary predicatesR and S.

Let θ be the conjunction of the first order sentence ∀x0∀x1(x0Ex1 →
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(Rx0 ∧ Sx1))∧∀x0(Sx0 → ¬Rx0) and the axiom of extensionality

∀x0∀x1(∀x2(x2Ex0 ↔ x2Ex1) → x0 = x1). Canonical examples of

models of θ are models of the form (M,∈, X,P(X)). Indeed, M |= θ

if and only ifM∼= N for some N such that EN = {(a, b) ∈ N 2 : a ∈
RN , b ∈ SN , a ∈ b} and SN ⊆ P(RN ). Let

Φext : ¬θ ∨ ∃x6∀x0∃x1∀x2∃x3∀x4∃x5( =(x2, x3)

∧ =(x4, x5)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x6 → Rx0)

∧ ((Sx4 ∧ x0 = x5)→
(x5Ex4 = x1 = x6)))

The sentence Φext is true in a structure M if and only if M ∼= N for

some N such that EN = {(a, b) ∈ N 2 : a ∈ RN , b ∈ SN , a ∈ b} and

SN 6= P(RN ).

Explanation: The mapping x0 7→ x1 guesses a set X as the pre-image

of x6. The mapping x2 7→ x3 is a copy of the mapping x0 7→ x1, as

witnessed by (x0 = x2 → x1 = x3). The clause (x1 = x6 → Rx0) makes

sure X is a subset of R. The clause ((Sx4 ∧ x0 = x5) → (x5Ex4 =
x1 = x6)) guarantees the guessed set is not in the set S.

Lemma 39 If φ is a sentence of D in the vocabulary {E,R, S},
then the following are equivalent:

1. φ is true in every model of the form (M,∈, X,P(X)).

2. Φext ∨ φ is valid in D.

The cumulative hierarchy of sets is defined as follows:

V0 = ∅
Vα+1 = P(Vα)

Vν =
⋃
β<α Vβ for limit ν

(2.1)
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Thus V1 is the powerset of ∅, i.e. {∅}, V2 is the powerset of {∅}, i.e.

{∅, {∅}}, etc. The sets Vn, n ∈ N, are all finite, Vω is countable and for

α > ω the set Vα is uncountable. For more on the cumulative hierarchy,

see Section 5.2.

Let ZFC∗ be a large but finite part of the Zermelo-Fraenkel axioms

for set theory (see e.g. [16] for the axioms). It follows from the axioms

that every set is in some Vα. Models of the form (Vα,∈), α a limit

ordinal, are canonical examples of models of ZFC∗.

Let

Φset : ¬ZFC∗ ∨ ∃x6∃x7∀x0∃x1∀x2∃x3 ∀x4∃x5(=(x2, x3) ∧
∧ =(x4, x5)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x6 → x0Ex7)

∧ (x0 = x5 →
(x5Ex4 = x1 = x6)))

Lemma 40 If φ is a sentence of D in the vocabulary {E}, then the

following are equivalent:

1. (Vα,∈) |= φ for all models (Vα,∈) of ZFC∗.

2. Φset ∨ φ is valid in D.

In consequence, there are Ψ1, Ψ2, Ψ3 and Ψ4 in dependence logic such

that

1. The Continuum Hypothesis holds if and only is Ψ1 is valid in D

2. The Continuum Hypothesis fails if and only is Ψ2 is valid in D

3. There are no inaccessible cardinals if and only is Ψ3 is valid in D

4. There are no measurable cardinals if and only is Ψ4 is valid in D

These examples show that to decide whether a sentence of D is valid

or not is tremendously difficult. On may have to search through the

45

Cambridge University Press 2007



whole set theoretic universe. This is in sharp contrast to first order logic

where to decide whether a sentence is valid or not it suffices to search

through finite proofs, that is, essentially just through natural numbers.

By means of the sentence Φset it is easy to show that for any first

order structure M definable in the set-theoretical structure (Vω·3,∈),

which includes virtually all commonly used mathematical structures,

and any first order φ there is a sentence ΦM,φ such that the following

are equivalent:

1. φ is true inM.

2. ΦM,φ is valid in D.

Moreover, ΦM,φ can be found effectively on the basis of φ and the defin-

ing formula ofM.

Exercise 41 Give a sentence φ of D such that φ has models of all

infinite cardinalities, and for all κ ≥ ω, φ has a unique model (up

to isomorphism) of cardinality κ if and only if κ is a strong limit

cardinal (i.e. λ < κ implies 2λ < κ).
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Chapter 3

Game Theoretic Semantics

We begin with a review of the well-known game theoretic semantics of

first order logic (see e.g. [9]). This is the topic of Section 3.1. There are

two ways of extending the first order game to dependence logic. The

first, presented in Section 3.2, corresponds to the transition in seman-

tics from assignments to teams. The second game theoretic semantics

for dependence logic is closer to the original semantics of independence

friendly logic presented in [8, 10]. In the second game theoretic for-

mulation the dependence relation =(x0, ..., xn) does not come up as an

atomic formula but as the possibility to incorporate imperfect infor-

mation into the game. A player who aims at securing =(x0, ..., xn)

when the game ends has to be able to choose a value for xn only on the

basis of what the values of x0, ..., xn−1 are. In this sense the player’s

information set is restricted to x0, ..., xn−1 when he or she chooses xn.

3.1 The Semantic Game of First Order Logic

The game theoretic semantics of first order logic has a long history. The

basic idea is that if a sentence is true, its truth, asserted by us, can

be defended against a doubter. A doubter can question the truth of a

conjunction φ ∧ ψ by doubting the truth of, say, ψ. He can doubt the

truth of a disjunction φ∨ψ by asking which of φ and ψ is the one that

is true. He can doubt the truth of a negation ¬φ by claiming that φ

is true instead of ¬φ. At this point we become the doubter and start
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questioning why φ is true. This interaction can be formulated in terms

of a simple game between two players that we call players I and II. We

call them opponents of each other. The opponent of player α is denoted

by α∗. In the literature these are sometimes called Abelard and Eloise.

We go along to the extent that we refer to player I as “he” and to player

II as “she.” The players observe a formula φ and an assignment s in

the context of a given model M. In the beginning of the game player

II claims that assignment s satisfies φ inM, and player I doubts this.

During the game their roles may change, as we just saw in the case of

negation. To keep track of who is claiming what we use the notation

(φ, s, α) for a position in the game. Here α is either I or II. The idea

is that α indicates which player is claiming that s satisfies φ inM.

Definition 41 The semantic game H(φ) of first order logic in a

model M is the following game: There are two players, I and II.

A position of the game is a triple (ψ, s, α), where ψ is a subformula

of ø, s is an assignment the domain of which contains the free

variables of ψ, and α ∈ {I, II}. In the beginning of the game the

position is (φ, ∅, II). The rules of the game are as follows:

1. The position is (t1 = t2, s, α): If tM1 〈s〉 = tM2 〈s〉, then player α

wins and otherwise the opponent wins.

2. The position is (R(t1, . . . , tn), s, α): If s satisfies R(t1, . . . , tn) in

M, then player α wins, otherwise the opponent wins.

3. The position is (¬ψ, s, α): The game switches to the position

(ψ, s, α∗), where α∗ is the opponent of α.

4. The position is (ψ ∨ θ, s, α): The next position is (ψ, s, α) or

(θ, s, α), and α decides which.

5. The position is (∃xnψ, s, α): Player α chooses a ∈ M and the

next position is (ψ, s(a/xn), α).
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The above game is a zero-sum game, i.e. one player’s loss is the other

player’s victory. It is also a game of perfect information in the sense the

strategies of both players are allowed to depend on the whole sequence

of previous positions. By the Gale-Stewart Theorem [5] all finite zero-

sum games of perfect information are determined. All the possible

positions of this game form in a canonical way a tree, which we call the

game tree. The game tree for H(φ) starts from the position (φ, ∅, II).

Any (maximal) branch of this tree represents a possible play of the

game. We call proper initial segments of plays partial plays.

Inspection of the game tree is vital for success in a game. It is clear

that in order to be able to declare victory a player has to have a clear

picture in his or her mind what to play in each position. The following

concept of strategy is the heart of game theory. It is a mathematically

exact concept which tries to capture the idea of a player knowing what

to play in each position.

Definition 42 A strategy of player α in H(φ) is any sequence τ

of functions τi defined on the set of all partial plays (p0, ..., pi−1)

satisfying:

• If pi−1 = (φ∨ψ, s, α), then τ tells player α which formula to pick,

i.e. τi(p0, ..., pi−1) ∈ {0, 1}. If the strategy gives value 0, player

α picks the left-hand1 formula φ, and otherwise the right-hand

formula ψ.

• If pi−1 = (∃xnφ, s, α), then τ tells player α which element a ∈M
to pick, that is τi(p0, ..., pi−1) ∈M .

We say that player α has used strategy τ in a play of the game

H(φ) if in each relevant case player α has used τ to make his or

her choice. More exactly, player α has used τ in a play p0, ..., pn if

the following two conditions hold for all i < n:
1One may ask why the values of the strategy are numbers 0 and 1 rather than the formulas themselves. The reason is that the

formulas may be one and the same. It is a delicate point whether it then makes any difference which formula is picked. For first
order logic there is no difference but there are extensions of first order logic where a difference emerges.
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• If pi−1 = (φ ∨ ψ, s, α) and τi(p0, ..., pi−1) = 0, then pi = (φ, s, α),

while if τi(p0, ..., pi−1) = 1, then pi = (ψ, s, α).

• If pi−1 = (∃xmφ, s, α) and τi(p0, ..., pi−1) = a, then

pi = (φ, s(a/xm), α).

A strategy τ of player α in the game H(φ) is a winning strategy, if

player α wins every play in which he or she has used τ .

Note that the property of a strategy τ being a winning strategy is

defined without any reference to actual playing of the game. This is

not an oversight but an essential feature of the mathematical theory of

games. We have reduced the intuitive act of players choosing their moves

to combinatorial properties of some functions. One has to be rather

careful in such a reduction. It is possible that the act of playing and

handling formulas may use some property of formulas that is intuitively

evident but not coded by the mathematical model. One such potential

property is the place of a subformula in a formula. We will return to

this point later.

Theorem 43 Suppose φ is a sentence of first order logic. Then

M |=∅ φ in first order logic if and only if player II has a winning

strategy in the semantic game H(φ).

Proof. Suppose M |=∅ φ in first order logic. Consider the following

strategy of player II. She maintains the condition:

(?) If the position is (φ, s, II), thenM |=s φ. If the position is (φ, s, I),

thenM |=s ¬φ.

It is completely routine to check that II can actually follow this strategy

and win. Note that in the beginningM |=∅ φ, so (?) holds.

For the other direction, suppose player II has a winning strategy τ

in the semantic game starting from (φ, ∅, II). It is again completely

routine to show:
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(??) If a position (ψ, s, α) is reached in the game, player II using τ ,

thenM |=s ψ if α = II, andM |=s ¬ψ if α = I .

Since the initial position (φ, ∅, II) is reached in the beginning of the

game, we obtain from (??) the desired conclusionM |=∅ φ. �

Exercise 42 Consider the game H(∃x0∀x1(x0 = x1∨x0Ex1)) in the

graph below. Draw the game tree and use it to describe the winning

strategy of the player who has it.

1 32

Exercise 43 Let L consist of two unary predicates P and R. Let

M be an L-structure such that M = {0, 1, 2, 3}, PM = {0, 1, 2}
and RM = {1, 2, 3}. Who has a winning strategy in H(φ) if φ is

∃x0(Px0∧Rx0)?, ∀x0∃x1¬(x0 = x1)? Describe the winning strategy.

Exercise 44 SupposeM is the binary structure ({0, 1, 2}, R), where

R is as in Figure 3.1. Who has a winning strategy in G(φ) if φ is

∀x0∃x1(¬Rx0x1 ∧ ∀x2∃x3(¬Rx2x3))? Describe the winning strat-

egy.

Figure 3.1: A binary structure

Exercise 45 SupposeM is the binary structure ({0, 1, 2}, R), where

R is as in Figure 3.1. Who has a winning strategy in H(φ) if φ is

∃x0∀x1(Rx0x1 ∨ ∃x2∀x3(Rx2x3)). Describe the winning strategy.

Exercise 46 Show that if τ is a strategy of player II in H(φ) and

σ is a strategy of player I in H(φ), then there is one and only one

play of H(φ) in which player II has used τ and player I has used

σ. We denote this play by [τ, σ].

Exercise 47 Show that a strategy τ of player II in G(φ) is a win-

ning strategy if and only if player II wins the play [τ, σ] for every

strategy σ of player I.
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3.2 A Perfect Information Game for Dependence Logic

In this section we define a game of perfect information, introduced in

[27]. This game is very close to our definition of the semantics of depen-

dence logic. In this game the moves are triples (φ,X, d), where X is a

team, φ is a formula and d ∈ {0, 1}. If φ is a conjunction and d = 0,

we may have an ordered pair of teams. This game has less symmetry

than H(φ). On the other hand, the game has formulas of dependence

logic as arguments, and D does not enjoy the same kind of symmetry

as first order logic. In particular, we cannot let negation correspond to

exchanging the roles of the players, as in the case of H(φ), and at the

same time have sentences which are neither true nor false.

The game we are going to define has two players called I and II. A

position in the game is a triple p = (φ,X, d), where φ is a formula, X

is a team, the free variables of φ are in dom(X), and d ∈ {0, 1}.

Definition 44 Let M be a structure. The game G(φ) is defined by

the following inductive definition for all sentences φ of dependence

logic. The type of the move of each player is determined by the

position as follows:

(M1) The position is (φ,X, 1) and φ = φ(xi1, ..., xik) is of the form

t1 = t2 or of the form Rt1...tn. Then the game ends. Player II

wins if

(∀s ∈ X)(M |= φ(s(xi1), ..., s(xik))).

Otherwise player I wins.

(M2) The position is (φ,X, 0) and φ = φ(xi1, ..., xik) is of the form

t1 = t2 or of the form Rt1...tn. Then the game ends. Player II

wins if

(∀s ∈ X)(M 6|= φ(s(xi1), ..., s(xik))).

Otherwise player I wins.
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(M3) The position is (=(t1, ..., tn), X, 1). Then the game ends. Player

II wins if M |=X =(t1, ..., tn). Otherwise player I wins.

(M4) The position is (=(t1, ..., tn), X, 0). Then the game ends. Player

II wins if X = ∅. Otherwise player I wins.

(M5) The position is (¬φ,X, 1). The game continues from the po-

sition (φ,X, 0).

(M6) The position is (¬φ,X, 0). The game continues from the po-

sition (φ,X, 1).

(M7) The position is (φ∨ψ,X, 1). Now player II chooses Y and Z

such that X = Y ∪Z, and we move to position (φ∨ψ, (Y, Z), 1).

Then player I chooses whether the game continues from position

(φ, Y, 1) or (ψ,Z, 1).

(M8) The position is (φ ∨ ψ,X, 0). Now player I chooses whether

the game continues from position (φ,X, 0) or (ψ,X, 0).

(M9) The position is (∃xnφ,X, 1). Now player II chooses F : X →
M and then the game continues from the position (φ,X(F/xn), 1).

(M10) The position is (∃xnφ,X, 0). Now the game continues from

the position (φ,X(M/xn), 0).

In the beginning of the game, the position is (φ, {∅}, 1).

Note that case (M8) generates two rounds for the game: during the

first round player II makes a choice for Y and Z. We call this round

a half-round. During the next round player I makes a choice between

them. Thus after the position (φ ∨ ψ,X, 1) there is the position (φ ∨
ψ, (Y, Z), 1), from which the game then proceeds to either (φ, Y, 1) or

(ψ,Z, 1). Note also that player II has something to do only in the cases

(M7) and (M9). Likewise, player I has something to do only in cases

(M7) and (M8). Otherwise the game goes on in a determined way with

no interaction from the players.
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All the possible positions of this game form a tree, just as in the case of

the game H(φ). The tree for G(φ) starts from the position (φ, {∅}, 1).

Depending on φ it continues in different way. Note that player II has

always a winning strategy in a position of the form (φ, ∅, d).

Example 45 Suppose M has at least 2 elements. Player I has a

winning strategy in G(∀x0∃x1(=(x1) ∧ x0 = x1)). Note that when

(M9) is applied, the tree splits into as many branches as there are

functions F . In the end of the game the winner is decided on the

basis of (M1)-(M4).

We define now what we mean by a strategy in the game G(φ).

Definition 46 A strategy of player II in G(φ) is any sequence τ

of functions τ defined on the set of all partial plays (p0, ..., pi−1)

satisfying:

• If pi−1 = (φ ∨ ψ,X, 1), then τ tells player II how to cover X

with two sets, one corresponding to φ and the other to ψ, i.e.

τi(p0, ..., pi−1) = (Y, Z) such that X = Y ∪ Z.

• If pi−1 = (∃xnφ,X, 1), then τ tells player II how to supplement

X, i.e. τi(p0, ..., pi−1) is a function F : X →M .

We say that player II has used strategy τ in a play of the game

G(φ) if in the cases (M7) and (M9) player II has used τ to make

the choice. More exactly, player II has used τ in a play p0, ..., pn if

the following two conditions hold for all i < n:

• If pi−1 = (φ ∨ ψ,X, 1) and τi(p0, ..., pi−1) = (Y, Z), then pi =

(φ ∨ ψ, (Y, Z), 1).

• If pi−1 = (∃xnφ,X, 1) and τi(p0, ..., pi−1) = F , then pi = (φ,X(F/xn),

1).

A strategy of player I in G(φ) is any sequence σ of functions σi
defined on the set of all partial plays p0, ..., pi−1 satisfying:
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• If pi−1 = (φ ∨ ψ,X, 0), then σ tells player I which formula to

pick, i.e. σi(p0, ..., pi−1) ∈ {0, 1}. If the strategy gives value 0,

player I picks the left-hand formula φ, and otherwise the right-

hand formula ψ.

• If pi−1 = (φ ∨ ψ, (Y, Z), 1), then σi(p0, ..., pi−1) ∈ {0.1}.

We say that player I has used strategy σ in a play of the game

G(φ) if in the cases (M7) and (M8) player I has used σ to make

the choice. More exactly, I has used σ in a play p0, ..., pn if the

following two conditions hold:

• If pi−1 = (φ∨ψ,X, 0) and σi(p0, ..., pi−1) = 0, then pi = (φ,X, 0),

and if σi(p0, ..., pi−1) = 1, then pi = (ψ,X, 0).

• If pi−1 = (φ∨ψ, (Y, Z), 1), then pi = (φ, Y, 0), if σi(p0, ..., pi−1) =

0, and pi = (ψ,Z, 0), if σi(p0, ..., pi−1) = 1.

A strategy of player α in the game G(φ) is a winning strategy, if

player α wins every play in which she has used the strategy.

Theorem 47M |= φ if and only if player II has a winning strategy

in G(φ).

Proof. Assume first M |= φ. We describe a winning strategy of

player II in G(φ). Player II maintains in G(φ) the condition that if the

position (omitting half-rounds) is (ψ,X, d), then (ψ,X, d) ∈ T . We

prove this by induction on φ:

S1 Position (φ,X, 1), where φ is t = t′ or Rt1...tn. Since (φ,X, 1) ∈ T ,

player II wins, by Definition 44 (M1).

S2 Position (φ,X, 0), where φ is t = t′ or Rt1...tn. Since (φ,X, 0) ∈ T ,

player II wins, by Definition 44 (M2).

S3 Position (=(t1, ..., tn), X, 1). Since (=(t1, ..., tn), X, 1) ∈ T , player

II wins, by definition.
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S4 Position (=(t1, ..., tn), X, 0). Since (=(t1, ..., tn), X, 0) ∈ T , we have

X = ∅ and therefore II wins by definition.

S5 Position (¬φ,X, 1). Since (¬φ,X, 1) ∈ T , we have (φ,X, 0) ∈ T .

Thus II can play this move according to her plan.

S6 Position (¬φ,X, 0). Since (¬φ,X, 0) ∈ T , we have (φ,X, 1) ∈ T .

Thus II can play this move according to her plan.

S7 Position (φ ∨ ψ,X, 0). We know (φ ∨ ψ,X, 0) ∈ T and therefore

both (φ,X, 0) ∈ T and (ψ,X, 0) ∈ T . Thus whether the game

proceeds to (φ,X, 0) or (ψ,X, 0), player II maintains her plan.

S8 Position (φ ∨ ψ,X, 1). We know (φ ∨ ψ,X, 1) ∈ T , and hence

(φ, Y, 1) ∈ T and (ψ,Z, 1) ∈ T for some Y and Z with X = Y ∪Z.

Thus we can let player II play the ordered pair (Y, Z). After this

half-round player I wants the game to proceed either to (φ, Y, 1)

or to (ψ,Z, 1). In either case player II can fulfil her plan, as both

(φ, Y, 1) ∈ T and (ψ,Z, 1) ∈ T .

S9 Position (∃xnφ,X, 1). Thus there is F : X → M such that the

triple (φ,X(F/xn), 1) is in T . Player II can now play the function

F , for in the resulting position (φ,X(F/xn), 1) she can maintain

the condition (φ,X(F/xn), 1) ∈ T .

S10 Position (∃xnφ,X, 0). We know (φ,X(M/xn), 0) ∈ T . But the

triple (φ,X(M/xn), 0) is the next position, so II can maintain her

plan.

For the other direction, we assume player II has a winning strategy τ

in G(φ) and use this to showM |= φ. We prove by induction on φ that

if II is using τ and a position (ψ,X, d) is reached, then (ψ,X, d) ∈ T .

This gives the desired conclusion as the initial position (φ, {∅}, 1) is

trivially reached.

S1′ Position (φ,X, 1), where φ is t = t′ or Rt1...tn. Since II has been

playing her winning strategy, (φ,X, 1) ∈ T by Definition 44 (M1).
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S2′ Position (φ,X, 0), where φ is t = t′ or Rt1...tn. Since II has been

playing her winning strategy, (φ,X, 0) ∈ T by Definition 44 (M2).

S3′ Position (=(t1, ..., tn), X, 1). Since II has been playing her winning

strategy, (=(t1, ..., tn), X, 1) ∈ T by definition.

S4′ Position (=(t1, ..., tn), X, 0). Since II is winning, X = ∅, and there-

fore (=(t1, ..., tn), X, 0) ∈ T by definition.

S5′ Position (¬φ,X, 1). The game continues, still following τ , to the

position (φ,X, 0). By the induction hypothesis, (φ,X, 0) ∈ T , and

therefore (¬φ,X, 1) ∈ T .

S6′ Position (¬φ,X, 0). The game continues, still following τ , to the

position (φ,X, 1). By the induction hypothesis, (φ,X, 1) ∈ T , and

therefore (¬φ,X, 0) ∈ T .

S7′ Position (φ ∨ ψ,X, 0). To prove (φ ∨ ψ,X, 0) ∈ T , we need both

(φ,X, 0) ∈ T and (ψ,X, 0) ∈ T . Let us try to prove (φ,X, 0) ∈ T .

Since II is following a winning strategy, we can let the game proceed

to position (φ,X, 0). By the induction hypothesis, (φ,X, 0) ∈ T .

The same argument gives (ψ,X, 0) ∈ T . Thus we have proved

(φ ∨ ψ,X, 0) ∈ T .

S8′ Position (φ∨ψ,X, 1). To get (φ∨ψ,X, 1) ∈ T we need (φ, Y, 1) ∈
T and (ψ,Z, 1) ∈ T for some Y and Z withX = Y ∪Z. Indeed, the

winning strategy τ gives an ordered pair (Y, Z) with X = Y ∪ Z.

Let us try to prove (φ, Y, 1) ∈ T . Since II is following a win-

ning strategy, we can let the game proceed to position (φ, Y, 1). By

the induction hypothesis, (φ, Y, 1) ∈ T . The same argument gives

(ψ,Z, 1) ∈ T . Thus we have proved (φ ∨ ψ,X, 1) ∈ T .

S9′ Position (∃xnφ,X, 1). The strategy τ gives F : X → M such

that II has a winning strategy in position (φ,X(F/xn), 1). By the

induction hypothesis (φ,X(F/xn), 1) ∈ T . Hence (∃xnφ,X, 1) ∈
T .
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S10′ Position (∃xnφ,X, 0). The game continues, still following τ , to the

position (φ,X(M/xn), 0). By the induction hypothesis, the triple

(φ,X(M/xn), 0) is in T , and therefore (∃xnφ,X, 0) ∈ T .

�

Theo Janssen [15] has pointed out the following example:

Example 48 The sentence

∀x0∃x1((=(x1) ∧ ¬x0 = x1) ∨ (=(x1) ∧ ¬x0 = x1)) (3.1)

is true in the natural numbers. The trick is the following: For

s ∈ {∅}(N/x0) let F (s) ∈ {0, 1} be such that F (s) 6= s(x0). The

team {∅}(N/x0)(F/x1) is a subset of the union of {∅}(N/x0)(F0/x1)

and {∅}(N/x0)(F1/x1), where F0 is the constant function 0 and F1

is the constant function 1. Both parts satisfy (=(x1) ∧ ¬x0 = x1).

The above example shows that when we play a game that follows the

structure of a formula, we may have to take the formula structure into

the game. To accomplish this and in order to be sufficiently precise,

we identify formulas with finite strings of symbols. Variables xn are

treated as separate symbols. The other symbols are the symbols of the

vocabulary, =, ), (,¬,∧,∃ and the comma. Each string S has a length,

which we denote by len(S). We number the symbols in a formula with

positive integers starting from the left, as in:

(= (x0) ∨ ¬x0 = x1)

( = ( x0 ) ∨ ¬ x0 = x1 )

1 2 3 4 5 6 7 8 9 10 11

If the nth symbol of φ starts a string which is a subformula of φ, we

denote the subformula by Λ(φ, n). Thus every subformula of φ is of the

form Λ(φ, n) for some n and some may occur with several n. In the case

that φ is the formula (3.1), the subformula (=(x1) ∧ ¬x0 = x1) occurs

as both Λ(φ, 6) and Λ(φ, 18). Note that:
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1. If Λ(φ, n) = ¬ψ, then Λ(φ, n + 1) = ψ

2. If Λ(φ, n) = (ψ∨θ), then Λ(φ, n+1) = ψ and Λ(φ, n+2+len(ψ)) =

θ.

3. If Λ(φ, n) = ∃xmψ, then Λ(φ, n + 2) = ψ.

We let Gplace(φ) be the elaboration of the game G(φ) in which the rules

are the same as in G(φ) but the positions are of the form (ψ, n,X, d),

and it is assumed all the time that Λ(φ, n) = ψ. Thus the formula

ψ could be computed from the number n and it is mentioned in the

position only for the sake of clarity.

Definition 49 Let M be a structure. The game G
place

(φ) is defined

by the following inductive definition for all sentences φ of depen-

dence logic. The type of the move of each player is determined by

the position as follows:

(M1′) The position is (φ, n,X, 1) and φ = φ(xi1, ..., xik) is of the

form t1 = t2 or of the form Rt1...tn. Then the game ends. Player

II wins if

(∀s ∈ X)(M |= φ(s(xi1), ..., s(xik))).

Otherwise player I wins.

(M2′) The position is (φ, n,X, 0) and φ = φ(xi1, ..., xik) is of the

form t1 = t2 or of the form Rt1...tn. Then the game ends. Player

II wins if

(∀s ∈ X)(M 6|= φ(s(xi1), ..., s(xik))).

Otherwise player I wins.

(M3′) The position is (=(t1, ..., tn),m,X, 1). Then the game ends.

Player II wins if M |=X =(t1, ..., tn). Otherwise player I wins.

(M4′) The position is (=(t1, ..., tn),m,X, 0). Then the game ends.

Player II wins if X = ∅. Otherwise player I wins.
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(M5′) The position is (¬φ, n,X, 1). The game continues from the

position (φ, n + 1, X, 0).

(M6′) The position is (¬φ, n,X, 0). The game continues from the

position (φ, n + 1, X, 1).

(M7′) The position is (φ∨ψ, n,X, 0). Now player I chooses whether

the game continues from position (φ, n + 1, X, 0) or (ψ, n + 2 +

len(φ), X, 0).

(M8′) The position is (φ ∨ ψ, n,X, 1). Now player II chooses X0

and X1 such that X = X0 ∪ X1, and we move to position (φ ∨
ψ, n, (X0, X1), 1). Then player I chooses whether the game con-

tinues from position (φ, n+ 1, X0, 1) or (ψ, n+ 2 + len(φ), X1, 1).

(M9′) The position is (∃xnφ,m,X, 1). Now player II chooses F :

X →M and then the game continues from the position (φ,m+

2, X(F/xn), 1).

(M10′) The position is (∃xnφ,m,X, 0). Now the game continues

from the position (φ,m + 2, X(M/xn), 0).

In the beginning of the game, the position is (φ, 1, {∅}, 1).

The following easy observation shows that coding the location of the

subformula into the game makes no difference. However, we shall use

Gplace(φ) later.

Proposition 50 If player II has a winning strategy in G(φ), she

has a winning strategy in G
place

(φ), and vice versa.

Proof. Assume II has winning strategy τ in G(φ). We describe her

winning strategy in Gplace(φ). While playing Gplace(φ) she also plays G(φ)

maintaining the condition that if the position in Gplace(φ) is (φ, n,X, d),

then the position in G(φ) is (φ,X, d) while she uses τ in G(φ).

1. Position is (φ, n,X, d), where φ is t = t′ or Rt1...tn. Player II wins

since by assumption she wins G(φ) in position (φ,X, d).
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2. Position is (=(t1, ..., tn), n,X, d). Player II wins as we assume she

wins G(φ) in position (=(t1, ..., tn), X, d).

3. Position is (¬φ, n,X, d). Player II moves to the position (φ, n +

1, X, 1 − d) in Gplace(φ) and to the position (φ,X, 1 − d) in G(φ).

Her strategy is still valid.

4. Position is ((φ ∨ ψ), n,X, 0). Player II proceeds, according to the

choice of player I, to the position (φ, n + 1, X, 0) or to the position

(ψ, n+ 2 + len(φ), X, 0) in Gplace(φ) and, respectively to the position

(φ,X, 0) or to the position (ψ,X, 0) in G(φ). Whichever way the

game proceeds, her strategy is still valid.

5. Position is ((φ∨ψ), n,X, 1). We know that II is using τ in G(φ) so

in the position ((φ∨ψ), X, 1) ∈ T she has Y and Z withX = Y ∪Z,

she can still win with τ from positions (φ, Y, 1) and (ψ,Z, 1). Thus

we let player II play the ordered pair (Y, Z). After this half-round

player I wants the game to proceed either to (φ, n + 1, Y, 1) or to

(ψ, n + 2 + len(φ), Z, 1). In either case player II can maintain her

plan.

6. Position is (∃xnφ,m,X, 1). The strategy τ gives player II a func-

tion F : X → M and the game G(φ) proceeds to the position

(φ,X(F/xn), 1). We let II play this function F . The game Gplace(φ)

proceeds to the position (φ,m + 2, X(F/xn), 1) and II maintains

her plan.

7. Position is (∃xnφ,m,X, 0). Player II proceeds to the position

(φ,m + 2, X(M/xn), 0) in Gplace(φ) and to the respective position

(φ,X(M/xn), d) in G(φ). Player II maintains her plan.

For the other direction, assume II has winning strategy τ in Gplace(φ).

We describe her winning strategy in G(φ). While playing G(φ) she also

plays Gplace(φ) maintaining the condition that if the position in G(φ) is
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(φ,X, d), then the position in G(φ) is (φ, n,X, d) for some n while she

uses τ in Gplace(φ).

1. Position is (ψ,X, d), where ψ is atomic. Player II wins since by

assumption she wins Gplace(φ) in position (ψ, n,X, d) for some n.

2. Position in Gplace(φ) is (¬φ,X, d) and in Gplace(φ) it is (¬φ, n,X, d).

Player II moves to the position (φ, n + 1, X, 1− d) in Gplace(φ) and

to the position (φ,X, 1− d) in G(φ). Her strategy is still valid.

3. Position is ((φ ∨ ψ), X, 0) and in Gplace(φ) it is ((φ ∨ ψ), n,X, 0).

Player II moves to the position (φ,X, 0) or to the position (ψ,X, 0)

in Gplace(φ) and, respectively to the position (φ, n+ 1, X, 0) or to the

position (ψ, n+ 2 + len(φ), X, 0) in G(φ). Whichever way the game

proceeds, her strategy is still valid.

4. Position is ((φ ∨ ψ), X, 1) and in Gplace(φ) it is ((φ ∧ ψ), n,X, 1).

We know that II is using τ in Gplace(φ) so in the position ((φ ∨
ψ), n,X, 1) ∈ T she has Y and Z with X = Y ∪ Z, she can still

win with τ from positions (φ, n+1, Y, 1) and (ψ, n+2+len(φ), Z, 1).

Thus we let player II play the ordered pair (Y, Z). After this half-

round player I wants the game to proceed either to (φ, Y, 1) or to

(ψ,Z, 1). Player II moves in Gplace(φ) respectively to (φ, n+ 1, Y, 1)

or to (ψ, n+ 2 + len(φ), Z, 1). In either case player II can maintain

her plan.

5. Position is (∃xnφ,X, 1) and in Gplace(φ) it is (∃xnφ,m,X, 1). The

strategy τ gives player II a function F : X → M and the game

Gplace(φ) proceeds to the position (φ,m + 2, X(F/xn), 1). We let

II play this function F . The game G(φ) proceeds to the position

(φ,X(F/xn), 1) and II maintains her plan.

6. Position is (∃xnφ,X, 0) and in Gplace(φ) it is (∃xnφ,m,X, 0). Player

II proceeds to the position (φ,m + 2, X(M/xn), 0) in Gplace(φ) and
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to the position (φ,X(M/xn), d) in G(φ). Player II maintains her

plan.

�

Lemma 51 Suppose player II uses the strategy τ in G
place

(φ) and the

game reaches a position (ψ, n,X, d). Then X and d are uniquely

determined by τ and n.

Proof. Let k0, ..., km be the unique sequence of numbers such that if

we denote Λ(φ, ki) by φi, then φ0 = φ, φi+1 is an immediate subformula

of φi, and φm = ψ. This sequence is uniquely determined by the number

n.

During the game that ended in (ψ, n,X, d), the positions (omitting

half-rounds) were (φi, ki, Xi, di), i = 0, ...,m. We know that φ0 = φ,

X0 = {∅} and d0 = 1. If φi = ¬φi+1, then necessarily Xi+1 = Xi

and di+1 = 1 − di. If φi+1 is a conjunct of φi, and di = 1, then

Xi+1 = Xi and di+1 = 1. If φi+1 is a conjunct of φi = ψ ∧ θ, and

di = 0, then τ determines, on the basis of (φj, kj, Xj, dj), j = 0, ..., i,

two sets Y and Z such that Xi = Y ∪ Z. Player I chooses whether

Xi+1 = Y orXi+1 = Z. The result is completely determined by whether

ki+1 = ki + 1 or ki+1 = ki + 2 + len(ψ). If φi = ∃xnφi+1 and di = 0,

then Xi+1 = Xi(M/xn) and di+1 = di, both uniquely determined by

Xi and di. If φi = ∃xnφi+1 and di = 1, then τ determines F : X →M

on the basis of (φj, kj, Xj, dj), j = 0, ..., i. Then Xi+1 = Xi(F/xn) and

di = 1, again uniquely determined by τ and Xi.

�

Exercise 48 Draw the game tree for G(φ), when φ is ¬∃x0Px0 ∧
¬∃x0Rx0, or ∃x0(Px0 ∧Rx0).

Exercise 49 Draw the game tree for G(φ), when φ is ∀x0(Px0 ∨
Rx0), or ∀x0∃x1(Px0 ∧ ∃x2Rx2x1).
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Exercise 50 Draw the game tree for G(φ), when φ is ∃x0¬Px0 → ∀x0(Px0 ∨Rx0).

Exercise 51 Let L consist of two unary predicates P and R. Let

M be an L-structure such that M = {0, 1, 2, 3}, PM = {0, 1, 2},
RM = {1, 2, 3}. Who has a winning strategy in G(φ) if φ is ∀x0(Px0 →
∃x1(¬(x0 = x1) ∧ Px0 ∧Rx1))?

Exercise 52 Use the game tree to analyze the formula (3.1).

Exercise 53 SupposeM is the binary structure ({0, 1, 2}, R), where

R is as in Figure 3.1. Who has a winning strategy in G(φ) if φ is

∀x0∃x1(¬Rx0x1 ∧ ∀x2∃x3(=(x2, x3) ∧ ¬Rx2x3))? Describe the win-

ning strategy.

Exercise 54 SupposeM is the binary structure ({0, 1, 2}, R), where

R is as in Figure ??. Who has a winning strategy in G(φ) if φ

is ∃x0∀x1(Rx0x1 ∨ ∃x2∀x3(=(x2, x3)→ Rx2x3))? Describe the win-

ning strategy.

Exercise 55 Show that if τ is a strategy of player II in G(φ) and

σ is a strategy of player I in G(φ), then there is one and only one

play of G(φ) in which player II has used τ and player I has used

σ. We denote this play by [τ, σ].

Exercise 56 Show that a strategy τ of player II in G(φ) is a win-

ning strategy if and only if player II wins the play [τ, σ] for every

strategy σ of player I.

3.3 An Imperfect Information Game for Dependence Logic

The semantics of dependence logic can be defined also by means of a sim-

pler game. In this case, however, we have to put a uniformity restriction

on strategies in order to get the correct truth-definition. The restriction

has the effect of making the game a game of partial information.
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As in the previous section, we pay attention to where a subformula

occurs in a formula. This is taken care of by the parameter n in the

definition below. It should be borne in mind that conjunctions are

assumed to have brackets around them, as in (ψ ∧ θ). Then if this

formula is Λ(φ, n), we can infer that ψ is Λ(φ, n+ 1) and θ is Λ(φ, n+

2 + len(ψ)).

Definition 52 Let φ be a sentence of dependence logic. The se-

mantic game H(φ) in a model M is the following game: There

are two players, I and II. A position of the game is a quadruple

(ψ, n, s, α), where ψ is Λ(φ, n), s is an assignment the domain of

which contains the free variables of ψ, and α ∈ {I, II}. In the be-

ginning of the game the position is (φ, 1, ∅, II). The rules of the

game are as follows:

1. The position is (t1 = t2, n, s, α): If tM1 〈s〉 = tM2 〈s〉, then player

α wins and otherwise the opponent wins.

2. The position is (Rt1 . . . tm, n, s, α): If s satisfies Rt1 . . . tm inM,

then player α wins, otherwise the opponent wins.

3. The position is (=(t1, . . . , tm), n, s, α): Player α wins.

4. The position is (¬φ, n, s, α): The game switches to the position

(φ, n + 1, s, α∗), where α∗ is the opponent of α.

5. The position is (ψ∨θ, n, s, α): The next position is (ψ, n+1, s, α)

or (θ, n + 2 + len(ψ), s, α), and α decides which.

6. The position is (∃xmφ, n, s, α): Player α chooses a ∈M and the

next position is (φ, n + 2, s(a/xm), α).

Thus (=(t1, ..., tn), n, s, α) is a safe haven for α. Note that the game

is a determined zero-sum game of perfect information. However, we are

not really interested in who has a winning strategy in this determined

game, but in who has a winning strategy with extra uniformity, as
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defined below. The uniformity requirement in effect makes the game

into a non-determined game of imperfect information.

The concepts of a game tree, play and partial play are defined for this

game exactly as for the game G(φ).

Definition 53 A strategy of player α in H(φ) is any sequence τ

of functions τi defined on the set of all partial plays (p0, ..., pi−1)

satisfying:

• If pi−1 = (φ ∨ ψ, n, s, α), then τ tells player α which formula to

pick, i.e. τi(p0, ..., pi−1) ∈ {n + 1, n + 2 + len(φ)}. If the strategy

gives the lower value, player α picks the left-hand formula φ,

and otherwise the right-hand formula ψ.

• If pi−1 = (∃xmφ, n, s, α), then τ tells player α which element

a ∈M to pick i.e. τi(p0, ..., pi−1) ∈M .

We say that player α has used strategy τ in a play of the game

H(φ) if in each relevant case player α has used τ to make his or

her choice. More exactly, player α has used τ in a play p0, ..., pn if

the following two conditions hold for all i < n:

• If pi−1 = (φ ∨ ψ,m, s, α) and τi(p0, ..., pi−1) = m + 1, then pi =

(φ,m + 1, s, α), while if τi(p0, ..., pi−1) = m + 2 + len(φ), then

pi = (ψ,m + 2 + len(φ), s, α).

• If pi−1 = (∃xkφ,m, s, α) and τi(p0, ..., pi−1) = a, then pi = (φ,m+

2, s(a/xk), α).

A strategy of player α in the game H(φ) is a winning strategy, if

player α wins every play in which she has used the strategy.

Definition 54 We call a strategy τ of player II in the game H(φ)

uniform if the following condition holds: Suppose (Λ(φ,m),m, s, II)

and (Λ(φ,m),m, s′, II) are two positions arising in the game when

II has played according to τ . Moreover we assume that Λ(φ,m) is
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=(t1, ..., tn). Then if s and s′ agree about the values of t1, . . . , tn−1,

they agree about the value of tn.

Theorem 55 Suppose φ is a sentence of dependence logic. Then

M |={∅} φ if and only if player II has a uniform winning strategy

in the semantic game H(φ).

Proof. Suppose M |=X φ. Let τ be a winning strategy of II in

Gplace(φ). Consider the following strategy of player II: She keeps playing

Gplace(φ) as an auxiliary game such that if she is in a position (φ, n,X, d)

in Gplace(φ) and has just moved in the semantic game, then:

(?) Suppose the position is (φ, n, s, α). Then II is in a position (φ, n,X, d),

playing τ , in Gplace(φ) and s ∈ X . If α = II then d = 1. If α = I

then d = 0.

Let us check that II can actually follow this strategy and win. In the

beginningM |={∅} φ, so (?) holds.

1. φ is t1 = t2 or Rt1 . . . tn. If α = II, s satisfies φ inM. So II wins.

If α = I, s does not satisfy φ inM, and again II wins.

2. φ is =(t1, ..., tn). If α = II, then II wins by definition. On the other

hand s ∈ X , so X 6= ∅, and we must have α = II.

3. φ is ¬ψ and the position in Gplace(φ) is (¬ψ, n,X, d). By the rules of

Gplace(φ), the next position is (ψ, n + 1, X, 1 − d). So the game can

proceed to position (ψ, n + 1, s, α∗) and II maintains (?).

4. φ is (ψ∨θ) and the position in Gplace(φ) is ((ψ∨θ), n,X, d). Suppose

α = I and d = 0. Then both (ψ, n + 1, X, d) and (θ, n + 2 +

len(ψ), X, d) are possible positions in Gplace(φ) while II uses τ . The

next position is (ψ, n + 1, s, 0) or (θ, n + 2 + len(ψ0), s, 0), and I

chooses which. Condition (?) remains valid, whichever she has to

hold. Suppose then α = II and d = 1. Strategy τ gives X0 and X1

such that X = X0 ∪ X1 and II wins with τ both in the position

67

Cambridge University Press 2007



(ψ, n+ 1, X0, 1) and in (θ, n+ 2 + len(ψ0), X1, 1). Since s ∈ X , we

have either s ∈ X0 or s ∈ X1. Let us say s ∈ X0. We let I play ψ

in Gplace(φ). The game Gplace(φ) proceeds to (ψ, n + 1, X0, 1). We let

II play in H(φ) the sentence ψ. Condition (?) remains valid. The

situation is similar if s ∈ X1.

5. φ is ∃xψ. We leave this as an exercise.

We claim that the strategy is uniform. Suppose s and s′ are as-

signments arising from the game when II plays the above strategy and

the game ends in the same dependence formula =(t1, ..., tn). Let the

ending positions be (Λ(φ, n), s, α) and (Λ(φ, n), s′, α). Since II wins,

α = II. When the games ended, player II had reached the position

(=(t1, ..., tn), n,X, 1) on one hand and the position (=(t1, ..., tn), n,X ′, 1)

on the other hand in Gplace(φ) playing τ . By Lemma 51, X = X ′. Sup-

pose s and s′ agree about the values of t1, . . . , tn−1. Since II wins in

the position (=(t1, ..., tn), n,X, 1) and s, s′ ∈ X , it follows that s and

s′ agree about the value of tn. This strategy gives one direction of the

theorem.

For the other direction, suppose player II has a uniform winning

strategy τ in the semantic game starting from (φ, 1, ∅, II). Let Xn

be the set of s such that (Λ(φ, n), n, s, α) is the position in some play

where II used τ . Note that α depends only on n, so we can denote

it by αn. We show by induction on subformulas Λ(φ, n) of φ that

(Λ(φ, n), Xn, dn) ∈ T , where dn = 1 if and only if αn = II. Putting

n = 1 we get α1 = II and we get the desired result.

1. Suppose Λ(φ, n) is t1 = t2 or R(t1, . . . , tn). We show that the

quadruple (Λ(φ, n), n,Xn, d) is in T . Let s ∈ Xn. Let the quadruple

(Λ(φ, n), n, s, αn) be a position in some play where II used τ . Since

II wins with τ , (Λ(φ, n), Xn, d) ∈ T .

2. Suppose Λ(φ, n) is =(t1, ..., tn). Suppose first αn = II. Suppose

s and s′ are in Xn and agree about the values of t1, . . . , tn−1. By
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the definition of Xn, (Λ(φ, n), n, s, II) and (Λ(φ, n), n, s′, II) are

positions in some plays where II used τ . Since τ is uniform, s and

s′ agree about the value of tn. The case αn = I cannot occur since

τ is a winning strategy.

3. Suppose Λ(φ, n) is ¬ψ. Note that Xn = Xn+1. By the induction

hypothesis, (ψ,Xn, 1− d) ∈ T , hence (¬ψ,Xn, d) ∈ T .

4. Suppose Λ(φ, n) is (ψ ∨ θ). Suppose first αn = I. Then both

(Λ(φ, n+1), n+1, s, I) and (Λ(φ, n+2+len(ψ)), n+2+len(ψ), s, I)

can be a positions in some plays where II has used τ . By the

induction hypothesis, (ψ,Xn+1, 0) ∈ T and (θ,Xn+2+len(ψ), 0) ∈ T .

Note that Xn ⊆ Xn+1 ∩ Xn+2+len(ψ). Hence (ψ ∨ θ,Xn, 0) ∈ T .

Suppose then αn = II. Now X = Y ∪ Z, where Y is the set of

s ∈ Xn such that (Λ(φ, n + 1), n + 1, s, αn) and Z is the set of

s ∈ Xn such that (Λ(φ, n+2+len(ψ)), n+2+len(ψ), s, αn) By the

induction hypothesis, (ψ,Xn+1, 1) ∈ T and (θ,Xn+2+len(ψ), 1) ∈ T .

Hence (ψ ∧ θ,Xn, 1) ∈ T .

5. Suppose Λ(φ, n) is ∃xψ. We leave this as an exercise.

�

Exercise 57 Draw the game tree for H(φ), when φ is (¬∃x0 =(x0) ∨ ¬∃x0Rx0).

Exercise 58 Draw the game tree for H(φ), when φ is ∀x0∃x1(=(x1) ∨Rx0).

Exercise 59 Draw the game tree for H(φ), when φ is ∃x0(¬Px0 → ∀x1(=(x0, x1) ∧Rx1)).

Exercise 60 Let L consist of two unary predicates P and R. Let

M be an L-structure such that M = {0, 1, 2, 3}, PM = {0, 1, 2}
and RM = {1, 2, 3}. Who has a winning strategy in H(φ) if φ is

∃x0(=(x0) ∧Rx0)? Describe the winning strategy.

Exercise 61 Let M be as in Exercise 60. Does II have a uniform

winning strategy in H(φ) if φ is the sentence ∀x0(Px0 → ∃x1(=(x0, x1) ∧ ¬(x0 = x1) ∧ Px0 ∧Rx1))?
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Exercise 62 Let M be as in Exercise 60. Does II have a uniform

winning strategy in H(φ) if φ is the sentence ∃x0(Px0 ∧ ∀x1(=(x0, x1) ∨ (x0 = x1) ∨Rx1))?

Exercise 63 SupposeM is the binary structure ({0, 1, 2}, R), where

R is as in Figure ??. Does II have a uniform winning strategy in

H(φ) if φ is ∀x0∃x1(¬Rx0x1 ∧ ∀x2∃x3(=(x2, x3) ∧ ¬Rx2x3))?

Exercise 64 SupposeM is the binary structure ({0, 1, 2}, R), where

R is as in Figure ??. Does II have a uniform winning strategy in

H(φ) if φ is ∃x0∀x1(Rx0x1 ∨ ∃x2∀x3(=(x2, x3)→ Rx2x3))?

Exercise 65 Show that neither of the below two winning strategies

of player II in H(φ) is uniform, when φ is the sentence ∀x0∃x1((=(x1)∧
x0 = x1) ∨ (=(x1) ∧ x0 = x1)) and the universe is {0, 1, 2}.

x0 x1 ∨
0 0 left

1 1 left

2 2 right

x0 x1 ∨
0 0 left

1 1 right

2 2 right

Exercise 66 Which of the below two strategies of player II in H(φ)

can be completed so that the strategy becomes a uniform winning

strategy of II? Here φ is the sentence ∀x0∃x1((=(x1)∧¬x0 = x1)∨
(=(x1) ∧ ¬x0 = x1))) and the universe is {0, 1, 2}.

x0 x1 ∨
0 2 left

1 2

2 0 right

x0 x1 ∨
0 1 left

1 2

2 0 right
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Chapter 4

Model Theory

Many model theoretic results for dependence logic can be proved by

means of a reduction to existential second order logic. We establish this

reduction in the first section of this chapter. This gives immediately such

results as the Compactness Theorem, the Löwenheim-Skolem Theorem,

and the Craig Interpolation Theorem.

4.1 From D to Σ1
1

We associate with every formula φ of dependence logic a second order

sentence which is in a sense equivalent to φ. This is in fact nothing more

than a formalization of the truth definition of φ (Definition 5). What is

interesting is that the second order sentence, which we denote by τ1,φ(S),

is not just any second order sentence but a particularly simple second

order existential sentence, called a Σ1
1-sentence. Such sentences have a

close relationship with first order logic, especially on countable models.

It turns out that their relationship with dependence logic is even closer.

In a sense they are one and the same thing. It is the main purpose of

this section to explain exactly what is this sense in which they are one

and the same thing.

Theorem 56 We can associate with every formula φ(xi1, ..., xin)

of D in vocabulary L and every d ∈ {0, 1} a Σ1
1-sentence τd,φ(S),

where S is n-ary, such that for all L-structures M and teams X

with dom(X) = {xi1, ..., xin} the following are equivalent
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1. (φ,X, d) ∈ T

2. (M, X) |= τd,φ(S).

Proof. We modify the approach of [13, Section 3] to fit our setup. The

sentence τd,φ(S) is simply Definition 5 written in another way. There

is nothing new in τd,φ(S), and in each case the proof of the claimed

equivalence is straightforward (see Exercises ?? and ??).

Case 1: Suppose φ(xi1, ..., xin) is t1 = t2 or Rt1...tn. We rewrite (D1),

(D2), (D5) and (D6) of Definition 5 by letting τ1,φ(S) be ∀xi1...∀xin(Sxi1...xin →
φ(xi1, ..., xin)) and by letting τ0,φ(S) be ∀xi1...∀xin(Sxi1...xin → ¬φ(xi1, ..., xin)).

Case 2:

Suppose φ(xi1, ..., xin) is the dependence formula

=(t1(xi1, ..., xin), ..., tm(xi1, ..., xin)), where i1 < ... < in. Recall con-

ditions (D3) and (D4) of Definition 5. Following these conditions, we

define τ1,φ(S) as follows:

Subcase 2.1: m = 0. We let τ1,φ(S) = > and τ0,φ(S) = ¬>.

Subcase 2.2: m = 1. Now φ(xi1, ..., xin) is the dependence formula

=(t1(xi1, ..., xin)). We let τ1,φ(S) be the formula

∀xi1...∀xin∀xin+1...∀xin+n((Sxi1...xin ∧ Sxin+1...xin+n)

→ t1(xi1, ..., xin) = t1(xin+1, ..., xin+n))

and we further let τ0,φ(S) be the formula ∀xi1...∀xin¬Sxi1...xin.
Subcase 2.3: If m > 1 we let τ1,φ(S) be the formula

∀xi1...∀xin∀xin+1...∀xin+n((Sxi1...xin ∧ Sxin+1...xin+n ∧
t1(xi1, ..., xin) = t1(xin+1, ..., xin+n) ∧
...

tm−1(xi1, ..., xin) = tm−1(xin+1, ..., xin+n))

→ tm(xi1, ..., xin) = tm(xin+1, ..., xin+n))

and we further let τ0,φ(S) be the formula ∀xi1...∀xin¬Sxi1...xin.
Case 3: Suppose φ(xi1, ..., xin) is the disjunction
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(ψ(xj1, ..., xjp) ∨ θ(xk1, ..., xkq)), where {i1, ..., in} = {j1, ..., jp} ∪
{k1, ..., kq}. We let the sentence τ1,φ(S) be

∃R∃T (τ1,ψ(R) ∧ τ1,θ(T )∧
∀xi1...∀xin(Sxi1...xin → (Rxj1...xjp ∨ Txk1...xkq)))

and we let the sentence τ0,φ(S) be

∃R∃T (τ0,ψ(R) ∧ τ0,θ(T )∧
∀xi1...∀xin(Sxi1...xin → (Rxj1...xjp ∧ Txk1...xkq))).

.

Case 4: φ is ¬ψ. τd,φ(S) is the formula τ1−d,ψ(S).

Case 5: Suppose φ(xi1, ..., xin) is the formula ∃xin+1ψ(xi1, ..., xin+1).

τ1,φ(S) is the formula

∃R(τ1,ψ(R) ∧ ∀xi1...∀xin(Sxi1...xin → ∃xin+1Rxi1...xin+1))

and τ0,φ(S) is the formula

∃R(τ0,ψ(R) ∧ ∀xi1...∀xin(Sxi1...xin → ∀xin+1Rxi1...xin+1)).

�

∃f∀x∀yφ(x, y, f (x, y), f (y, x))

∀x∀y∃z∀x′∀y′∃z′

(= (x′, y′, z′)∧
((x = x′ ∧ y = y′)→ z = z′)∧
((x = y′ ∧ x′ = y)→ φ(x, y, z, z′))

Corollary 57 For every sentence φ of D there are Σ1
1-sentences τ1,φ

and τ0,φ such that for all modelsM we haveM |= φ if and only if M |=
τ1,φ.M |= ¬φ if and only if M |= τ0,φ.

Proof. Let τd,φ be the result of replacing in τd,φ(S) every occurrence

of the 0-ary relation symbol S by >. Now the claim follows from The-

orem 56. �
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Exercise 67 Write down τ1,∃x1 =(x1)(S) and τ0,∃x1 =(x1)(S).

Exercise 68 What is τ1,φ(S) if φ is ∃x1(=(x1) ∨ x1 = x0)?

Exercise 69 What is τ1,φ(S) if φ is: ∀x0∃x1∀x2∃x3(=(x2, x3) ∧ ¬(x1 = x4) ∧ (x0 = x2 ↔ x1 = x3))?

Exercise 70 Show that if φ is Σ1
1, M |= φ and M ∼= N , then

N |= φ.

4.2 Applications of Σ1
1

The Σ1
1-representation of D-formulas yields some immediate but all the

same very important applications. They are all based on model theoretic

properties of first order logic, which we now review:

Compactness Theorem of first order logic: Suppose T is an

arbitrary set of sentences of first order logic such that every finite subset

of T has a model. Then T itself has a model.

Löwenheim-Skolem Theorem of first order logic: Suppose

φ is a sentence of first order logic such that φ has an infinite model

or arbitrarily large finite models. Then φ has models of all infinite

cardinalities.

Craig Interpolation Theorem of first order logic: Suppose

φ and ψ are sentences of first order logic such that |= φ→ ψ. Suppose

the vocabulary of φ is Lφ and that of ψ is Lψ. Then there is a first order

sentence θ of vocabulary Lφ ∩ Lψ such that |= φ→ θ and |= θ → ψ.

We can now easily derive similar results for dependence logic by ap-

pealing to the Σ1
1-representation of D-sentences:

Theorem 58 (Compactness Theorem of D) Suppose Γ is an ar-

bitrary set of sentences of dependence logic such that every finite

subset of Γ has a model. Then Γ itself has a model.

Proof. Let Γ = {φi : i ∈ I} and let L be the vocabulary of Γ. Let

τ1,φi = ∃Si1...∃Siniψi, where ψi is first order. By changing symbols we
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can assume all Sij are different symbols. Let T be the first order theory

{ψi : i ∈ I} in the vocabulary L′ = L ∪ {Sij : i ∈ I, 1 ≤ j ≤ ni}.
Every finite subset of T has a model. By the Compactness Theorem of

first order logic there is an L′-structureM′ that is a model of the theory

T itself. The reduction M = M′�L of M′ to the original vocabulary

L is, by definition, a model of Γ. �

Theorem 59 (Löwenheim-Skolem Theorem of D) Suppose φ

is a sentence of dependence logic such that φ either has an infinite

model or has arbitrarily large finite models. Then φ has models of

all infinite cardinalities, in particular, φ has a countable model and

an uncountable model.

Proof. Let τ1,φ = ∃S1...∃Snψ, where ψ is first order in the vocabu-

lary L′ = L ∪ {S1, ..., Sn}. Suppose κ is an arbitrary infinite cardinal

number. By the Löwenheim-Skolem Theorem of first order logic there

is an L′-modelM′ of ψ of cardinality κ. The reductionM =M′�L of

M′ to the original vocabulary L is a model of φ of cardinality κ. �

Corollary 60 ([21]) A sentence of dependence logic in the empty

vocabulary is true in one infinite model (or arbitrarily large finite

ones) if and only it is true in every infinite model.

Proof. All models of the empty vocabulary of the same cardinality

are isomorphic. Thus the claim follows from Theorem 59. �

We shall address the Craig Interpolation Theorem later and derive

first a Separation Theorem which is an equivalent formulation in the

case of first order logic.

Theorem 61 (Separation Theorem) Suppose φ and ψ are sen-

tences of dependence logic such that φ and ψ have no models in

common. Let the vocabulary of φ be L and the vocabulary of ψ be

L′. Then there is a sentence θ of D in the vocabulary L ∩ L′ such
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that every model of φ is a model of θ, but θ and ψ have no models

in common. In fact, θ can be chosen to be first order.

Proof. Let τ1,φ = ∃S1...∃Snφ0, where φ0 is first order in the vocabu-

lary L0. Let τ1,ψ = ∃S ′1...∃S ′mψ0, where ψ0 is first order in the vocabu-

lary L′0. Without loss of generality, {S1, ..., Sn}∩{S ′1, ..., S ′m} = ∅. Note

that |= φ0 → ¬ψ0 for ifM is a model of φ0 ∧ ψ0, thenM�L |= φ∧ ψ,

contrary to the assumption that φ and ψ have no models in common. By

the Craig Interpolation Theorem for first order logic there is a first order

sentence θ of vocabulary L ∩ L′ such that |= φ0 → θ and |= θ → ¬ψ0.

Every model of φ is a model of θ, but θ and ψ have no models in

common. �

A particularly striking application of Theorem 61 is the following spe-

cial case in which φ and ψ not only have no models in common but

furthermore every model satisfies one of them:

Theorem 62 (Failure of the Law of Excluded Middle) Suppose

φ and ψ are sentences of dependence logic such that for all mod-

els M we have M |= φ if and only if M 6|= ψ. Then φ is logically

equivalent to a first order sentence θ such that ψ is logically equiv-

alent to ¬θ.

Proof. The first order θ obtained in the proof of Theorem 61 is the θ

we seek. �

Note that it is perfectly possible to have for all finite models M
M |= φ if and only ifM 6|= ψ without φ or ψ being logically equivalent

to a first order sentence. For example, in the empty vocabulary φ can

say the size of the universe is even while ψ says it is odd.

Definition 63 A sentence φ of dependence logic is called deter-

mined in M if M |= φ or M |= ¬φ. Otherwise φ is called non-

determined in M. We say that φ is determined if φ is determined

in every structure.
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A typical non-determined sentence (from [1]) is ∀x0∃x1(=(x1)∧x0 =

x1), which is non-determined in every structure with at least two ele-

ments. The following corollary shows that it is not at all difficult to find

other non-determined sentences.

Corollary 64 Every determined sentence of dependence logic is

strongly logically equivalent to a first order sentence.

Proof. Suppose φ is determined. Thus for all M we have M |= φ

or M |= ¬φ. It follows that for all M we have M |= φ if and only if

M 6|= ¬φ. By Theorem 62 there is a first order θ such that φ is logically

equivalent to θ and ¬φ is logically equivalent to ¬θ. Thus φ is strongly

logically equivalent to θ. �

Thus we can take any sentence of dependence logic, which is not

strongly equivalent to a first order sentence, and we know that there are

models in which the sentence is non-determined.

Example 65 The sentence Φwf is non-determined in every infinite

well-ordered structure. This can be seen either by a direct argument

based on the truth definition, or by the following indirect argument:

Suppose M is an infinite well-ordered linear order in which Φwf is

determined. Thus M |= ¬Φwf. Let Γ be the following set of sen-

tences of dependence logic: ¬Φwf, c1 < c0, c2 < c1, ..., cn+1 < cn, ...

It is evident that every finite subset of Γ is true in an expansion

of M. By the Compactness Theorem there is a model M′ of the

whole Γ. Then M′ is ill-founded and therefore satisfies Φwf. This

contradicts the fact that M′ also satisfies ¬Φwf.

For more examples of non-determinacy, see [28].

Exercise 71 Show that the sentence Φwf is non-determined in all

sufficiently big finite linear orders.

Exercise 72 Show that Φeven is non-determined in every sufficiently

large finite model of odd size.
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Exercise 73 Show that Φ∞ is non-determined in every sufficiently

big finite model.

Exercise 74 Show that Φcmpl is non-determined in every complete

dense linear order.

Exercise 75 Suppose φn, n ∈ N, are sentences of D such that each

φn is true in some model, and moreover φn+1 ⇒ φn for all n. Show

that there is one model M in which each φn is true.

Exercise 76 Show that if φ is a sentence of D and ψ is a first

order sentence such that every countable1 model of φ is a model of

ψ, then every model of φ is a model of ψ.

Exercise 77 Give a sentence φ of D and a first order sentence ψ

such that every countable model of ψ is a model of φ and vice versa,

but some model of ψ is not a model of φ.

4.3 From Σ1
1 to D

We have seen that representing formulas of dependence logic in Σ1
1 form

is a powerful method for getting model theoretic results about depen-

dence logic. We now show that this method is in a sense the best possi-

ble. Namely, we can also translate any Σ1
1-sentence back to dependence

logic.

We prove first a fundamental property of first order and Σ1
1 formulas.

Its various formulations all carry the name of Thoralf Skolem ([24] (see

[25])), who proved the below result already in 1920. The basic idea is

that the existential second order quantifiers in front of Σ1
1-formulas are

so powerful that they subsume all other existential quantifiers.

Theorem 66 (Skolem Normal Form Theorem) Every Σ1
1 for-

mula φ is logically equivalent to an existential second order formula

∃f1 . . . ∃fn∀x1 . . . ∀xmψ, (4.1)
1i.e. countably infinite or finite
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where ψ is quantifier free and f1, . . . , fn are function symbols. The

formula (4.1) is called a Skolem Normal Form of φ.

Corollary 67 (Skolem Normal Form Theorem for D) For ev-

ery formula φ of dependence logic and every d ∈ {0, 1} there is a

Σ1
1-sentence τ ∗d,φ(S) of the form

∃f1 . . . ∃fn∀x1 . . . ∀xmψ, (4.2)

where ψ is quantifier free, such that the following are equivalent:

1. (φ,X, d) ∈ T

2. (M, X) |= τ ∗d,φ(S)

In particular, for every sentence φ of dependence logic there are Σ1
1-

sentences τ ∗1,φ and τ ∗0,φ of the form (4.2) such that for all models M
we haveM |= φ if and only if M |= τ ∗1,φ.M |= ¬φ if and only if M |=
τ ∗0,φ.

The above corollary gives an easy proof of the Löwenheim-Skolem

Theorem for dependence logic (Theorem 59). Namely, suppose φ is a

given sentence of dependence logic with an infinite model or arbitrarily

large finite models. By compactness we may assume φ indeed has an

infinite model M. Let τ ∗1,φ be of the form ∃f1 . . . ∃fn∀x1 . . . ∀xmψ.

Thus there are interpretations fM
′

i of the function symbols fi in an

expansion ofM′ ofM such thatM′ satisfies ∀x1 . . . ∀xmψ. Let N be

a countable subset of M such that N is closed under all the n functions

fM
′

i . Because ∀x1 . . . ∀xmψ is universal, it is still true in the countable

substructureM∗ ofM generated by N . ThusM∗ is a countable model

of φ. This is in line with the original proof of Skolem. If we wanted

a model of size κ for a given infinite cardinal number κ, the argument

would be similar but we would first use compactness to get a model of

size at least κ.
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Theorem 68 ([4],[30]) For every Σ1
1-sentence φ there is a sen-

tence φ∗ in dependence logic such that for all M: M |= φ ⇐⇒
M |= φ∗.

Proof. We may assume φ is of the form

Φ = ∃f1 . . . ∃fn∀x1 . . . ∀xmψ, (4.3)

where ψ is quantifier free. We will perform some reductions on (4.3) in

order to make it more suitable for the construction of φ.

Step 1: If ψ contains nesting of the function symbols f1, . . . , fn or of

the function symbols of the vocabulary, we can remove them one by one

by using the equivalence of |= ψ(fi(t1, . . . , tm)) and ∀x1 . . . ∀xm((t1 =

x1 ∧ . . .∧ tm = xm)→ ψ(fi(x1, . . . , xm))). Thus we may assume that

all terms occurring in ψ are of the form xi or fi(xi1, . . . , xik).

Step 2: If ψ contains an occurrence of a function symbol fi(xi1, . . . , xik)

with the same variable occurring twice, e.g. is = ir, 1 < r < k, we can

remove such by means of a new variable xl and the equivalence

|= ∀x1 . . . ∀xmψ(fi(xi1, . . . , xik))↔
∀x1 . . . ∀xm∀xl(xl = xr → ψ(fi(xi1, . . . , xir−1, xl, xir+1, . . . , xik)))

Thus we may assume that if a term such as fi(xi1, . . . , xik) occurs in ψ,

its variables are all distinct.

Step 3: If ψ contains two occurrences of the same function symbol but

with different variables or with the same variables in different order,

we can remove such using appropriate equivalences. If {i1, ..., ik} ∩
{j1, ..., jk} = ∅, we have the equivalence

|= ∀x1 . . . ∀xmψ(fi(xi1, . . . , xik), fi(xj1, . . . , xjk))↔
∃f ′i∀x1 . . . ∀xm(ψ(fi(xi1, . . . , xik), f

′
i(xj1, . . . , xjk)) ∧

((xi1 = xj1 ∧ . . . ∧ xik = xjk)→
fi(xi1, . . . , xik) = f ′i(xj1, . . . , xjk)))
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We can reduce the more general case, where {i1, ..., ik} ∩ {j1, ..., jk} 6=
∅, to this case by introducing new variables, as in Step 2. (We are

grateful to Ville Nurmi for pointing out the necessity of this.) Thus we

may assume that for each function symbol fi occurring in ψ there are

ji1, . . . , j
i
ni

such that all occurrences of fi are of the form fi(xji1
, . . . , xjimi

)

and ji1, . . . , j
i
mi

are all different from each other.

In sum we may assume the function terms that occur in ψ are of

the form fi(xji1
, . . . , xjimi

) and for each i the variables xji1
, . . . , xjimi

and

their order is the same. Let N be greater than all the xjik
. Following

the notation of (4.3), let φ∗ be the sentence

∀x1 . . . ∀xm∃xN+1 . . . ∃xN+n (=(xj11
, . . . , xj1m1

, xN+1) ∧
. . .

(=(xjn1 , . . . , xjnmn , xN+n) ∧ ψ′)

where ψ′ is obtained from ψ by replacing everywhere fi(xji1
, . . . , xjimi

)

by xN+i. This is clearly the desired sentence. �

It is noteworthy that theD-representation of a given Σ1
1-sentence given

above is of universal-existential form, that is, of the form ∀xn1...∀xnk∃xm1...∃xml
ψ,

where ψ is quantifier-free. Moreover, ψ is just a conjunction of depen-

dence statements =(x1, ..., xn) and a quantifier-free first order formula.

This is a powerful normal form for dependence logic.

Corollary 69 For any sentence φ of dependence logic of vocabulary

L and for every L′ ⊆ L there is a sentence φ′ of dependence logic

of vocabulary L′ such that the following are equivalent:

1.M |= φ′.

2. There is an expansion N of M such that N |= φ.

Proof. Let ψ be a Σ1
1-sentence logically equivalent with φ. We assume

for simplicity that L \ L′ consists of just one predicate symbol R. Let
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φ′ be a sentence of dependence logic logically equivalent with the Σ1
1-

sentence ∃Rψ. Then φ′ is a sentence satisfying the equivalence of the

conditions 1 and 2. �

Corollary 69 implies in a trivial way the

Corollary 70 (Uniform Interpolation Property) Suppose φ is

a sentence of D. Let L be the vocabulary of φ. For every L′ ⊆ L

there is a sentence φ′ of D in the vocabulary L′ which is a uniform

interpolant of φ in the following sense: φ ⇒ φ′ and if ψ is a sen-

tence of D in a vocabulary L′′ such that φ ⇒ ψ and L ∩ L′′ = L′,

then φ′ ⇒ ψ.

Proof. Let φ′ be as in Corollary 69. By its very definition, φ′ is

a logical consequence of φ. Suppose then ψ is a sentence of D in a

vocabulary L′′ such that φ ⇒ ψ and L ∩ L′′ = L′. If M′′ is an L′′-

structure which is a model of φ′, thenM′′�L′ is a model of φ′, whence

there is an expansionM ofM′′�L′ to a model of φ. Since φ⇒ ψ,M
is a model of ψ. ButM�L′′ =M′′�L′′. ThusM′′ |= ψ. �

For a version of the Beth Definability Theorem, see Exercise 86.

Exercise 78 Give a Skolem Normal Form for the following first or-

der formulas ∀x0∃x1x0 = x1, ∃x0∀x1¬x0 = x1, (∃x0Px0∨∀x0¬Px0).

Exercise 79 Give a Skolem Normal Form for the following first

order formula ∀x0∃x1∀x2∃x3((x0 = x4 → ¬(x1 = x4)) ∧ (x0 < x3 ↔
x1 < x2))).

Exercise 80 Write the following Σ1
1-sentences in Skolem Normal

Form:

1. ∃x0∃f∀x1(¬fx1 = x0 ∧ ∀x2(fx0 = fx1 → x0 = x1)).

2. ∃R(∀x0∀x1∀x2((Rx0x1 ∧Rx1x2)→ Rx0x2)

∧ ∀x0∀x1(Rx0x1 ∨Rx1x0 ∨ x0 = x1)

∧ ∀x0¬Rx0x0 ∧ ∀x0∃x1Rx0x1).
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Exercise 81 Give a sentence of D which is logically equivalent to

the following Σ1
1-sentence in Skolem Normal Form:

1. ∃f0∃f1∀x0∀x1φ(x0, x1, f0(x0, x1), f1(x0, x1)).

2. ∃f0∃f1∀x0∀x1φ(x0, x1, f0(x0, x1), f1(x1)).

3. ∃f0∃f1∀x0φ(x0, f0(x0), f1(x0)).

In each case φ is quantifier-free and first order.

Exercise 82 Give a sentence of D which is logically equivalent to

the Σ1
1-sentence

∃f∀x0∀x1φ(x0, x1, f (x0, x1), f (x1, x0)),

where φ is quantifier-free.

Exercise 83 Express the Henkin quantifier

(
∀x ∃y
∀u ∃v

)
R(x, y, u, v)↔

∃f∃g∀x∀uR(x, f (x), u, g(u))by a formula of dependence logic.

Exercise 84 Suppose M is an L-structure and P ⊆ Mn. We say

that P is D-definable in M if there is a sentence φ(c1, ..., cn) of

D with new constant symbols c1, ..., cn such that the following are

equivalent for all a1, ..., an ∈M :

1. (a1, ..., an) ∈ P

2. (M, a1, ..., an) |= φ,

where (M, a1, ..., an) denotes the expansion ofM obtained by inter-

preting ci in (M, a1, ..., an) by ai. We then say that φ defines P in

M. Show that if P and Q are D- definable, then so are P ∩Q and

P ∪Q, but not necessarily P \Q.

Exercise 85 Recall the definition of D-definability in a model in

Exercise 84. Let L be a vocabulary. Suppose ψ is a D-sentence in a

vocabulary L ∪ {R}, where R is a new n-ary predicate symbol. We

say that R is D-definable in models of ψ, if there is a D-sentence φ
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of vocabulary L ∪ {c1, ..., cn} such that φ defines R in every model

of ψ. Prove the following useful criterion for D-undefinability: If ψ

has two models M and N such that M�L = N �L but RM 6= RN ,

then R is not D-definable in models of ψ. (In the case of first order

logic this is known as the Padoa Principle.)

Exercise 86 Recall the definition of D-definability in models of a

sentence in Exercise 85. Let L be a vocabulary. Suppose ψ is a D-

sentence in a vocabulary L∪{R}, where R is a new n-ary predicate

symbol. Suppose any two models M and N of ψ such that M�L =

N �L satisfy also RM = RN . Show that R is D-definable in models

of ψ (In the case of first order logic this is known as the Beth

Definability Theorem.)

Exercise 87 [2] Suppose φ and ψ are D-sentences such that no

model satisfies both φ and ψ. Show that there is a sentence θ of D
such thatM |= φ if and only if M |= θ andM |= ψ if and only if M |=
¬θ.

4.4 Truth-Definitions

In 1933 the Polish logician Alfred Tarski defined the concept of truth

in a general setting (see e.g. [26]) and pointed out what is known

as Tarski’s Undefinability of Truth argument: no language can de-

fine its own truth, owing to the Liar Paradox, namely to the sentence

“This sentence is false.” This sentence is neither true nor false, contrary

to the Law of Excluded Middle, which Tarski took for granted. Already

1931 the Austrian logician Kurt Gödel (see [7]), working not on arbitrary

formalized languages but on first order number theory, had constructed,

using a lengthy process referred to as the arithmetization of syntax, the

sentence “This sentence is unprovable.” This sentence cannot be prov-

able, for then it would be true, hence unprovable. So it is unprovable and

hence true. Its negation cannot be provable either, for else the negation
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would be true. So it is an example of a sentence which is independent

of first order number theory. This is known as Gödel’s First Incomplete-

ness Theorem. Gödel’s technique could be used to make exact sense of

undefinability of truth (see below) and to prove it exactly for first order

number theory.

Exercise 88 Consider “If this sentence is true, then its negation

is true.” Derive a contradiction.

Exercise 89 Consider “It is not true that this sentence is true.”

Derive a contradiction.

Exercise 90 ([19]) Consider the sentences

(1) It is raining in Warsaw.

(2) It is raining in Vienna.

(3) Exactly one the sentences (1)-(3) is true.

Under what kind of weather conditions in Europe is sentence (3)

paradoxical?

4.4.1 Undefinability of Truth

To even formulate the concept of definability of truth we have to intro-

duce a method for speaking about a formal language in the language

itself. The clearest way of doing this is by means of Gödel-numbering.

Each sentence φ is associated with a natural number pφq, its Gödel-

number, in a systematic way, described in section 4.4.2. Moreover, we

assume that our language has a name n for each natural number n.

Definition 71 A truth-definition for any model M and any formal

language L, such as first order logic or dependence logic, is a for-

mula τ (x0) of some possibly other formal language L′ such that for

each sentence φ of L we have

M |= φ if and only if M |= τ (pφq). (4.4)

85

Cambridge University Press 2007



A stronger requirement would beM |= φ↔ τ (pφq), but this would

be true only in the presence of the Law of Excluded Middle, as (φ ↔
ψ)⇒ (φ∨¬φ). An even stronger requirement would be the provability

of φ ↔ τ (pφq) from some axioms, but we abandon this, too, in the

current setup.

By the vocabulary L{+,×} of arithmetic we mean a vocabulary ap-

propriate for the study of number theory, with a symbol N for the set

of natural numbers. We specify L{+,×} in detail below. We call an

L-structure Mω, where L ⊇ L{+,×}, “a model of Peano’s axioms” if

the reduct of Mω to the vocabulary {N,+,×} satisfies the first order

Peano axioms of number theory. The results on definability of truth are

relevant even if we assume that NMω is the whole universe of the model

Mω. Below,Mω denotes such a model of Peano’s axioms.

Theorem 72 (Gödel’s Fixed Point Theorem) For any first or-

der formula φ(x0) in the vocabulary of arithmetic there is a first

order sentence ψ of the same vocabulary such that for all models

Mω of Peano’s axioms, Mω |= ψ if and only if Mω |= φ(pψq).

Proof. Let Sub be the set of triples 〈pwq, pw′q, n〉 where w′ is ob-

tained from w by replacing x0 by the term n. Since recursive relations

are representable in models of Peano’s axioms, there is a first order

formula σ(x0, x1, x2) such that

〈n,m, k〉 ∈ Sub ⇐⇒ Mω |= σ(n,m, k).

W.l.o.g. x0 is not bound in σ(x0, x1, x2) and x0 and x1 are not bound

in φ(x0). Let θ(x0) be the formula ∃x1(φ(x1) ∧ σ(x0, x1, x0)). Let k =

pθ(x0)q and ψ = θ(k). Then Mω |= ψ if and only if Mω |= φ(pψq).
�

The above result does not hold just for first order logic but for any

extension of first order logic the syntax of which is sufficiently effectively

given, for example dependence logic.
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Theorem 73 (Tarski’s Undefinability of Truth Result) First

order logic does not have a truth-definition in first order logic for

any model Mω of Peano’s axioms.

Proof. Let τ (x0) be as in Definition 71. By Theorem 72 there is a

sentence ψ such that

Mω |= ψ if and only ifMω |= ¬τ (pψq). (4.5)

If Mω |= ψ, then Mω |= τ (pψq) by (4.4), and Mω |= ¬τ (pψq) by

(4.5). Hence Mω 6|= ψ. Now Mω 6|= τ (pψq) by (4.4), and Mω 6|=
¬τ (pψq) by (4.5). So neither τ (pψq) nor ¬τ (pψq) is true in Mω.

This contradicts the Law of Excluded Middle, which says in this case

Mω |= (τ (pψq) ∨ ¬τ (pψq)). �

Theorem 73 has many stronger formulations. As the almost trivial

proof above shows, no language for which the Gödel Fixed Point Theo-

rem can be proved and which satisfies the Law of Excluded Middle for

its negation can have a truth-definition in the language itself. We shall

not elaborate more on this point here, as our topic, dependence logic,

certainly does not satisfy the Law of Excluded Middle for its negation.

Exercise 91 Prove Mω |= ψ if and only if Mω |= φ(pψq) in the

proof of Theorem 72.

4.4.2 Definability of Truth in First Order Logic

We turn to another important contribution of Tarski, namely that truth

is implicitly (or even better – inductively) definable in first order logic.

In dependence logic the implicit definition can even be turned into an

explicit definition by means of Theorem 68, as emphasized by Hintikka

[10]. So after all, truth is definable, albeit only implicitly. The realiza-

tion of this may be an even more important contribution of Tarski to

logic than the undefinability of truth.

We shall carry out in some detail the definition of truth for first order

logic. We shall omit many details, as these are well covered by the
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literature. For simplicity, we assume the vocabulary L{+,×} of arithmetic

includes all the machinery needed for arithmetization. All that we really

need is a pairing function, but the pursuit of such minimalism is not

relevant for the main argument and belongs to other contexts. Another

simplification is that we only consider truth in models Mω of Peano’s

axioms.

We consider a finite vocabulary L = {c1, ..., cn, R1, ..., Rm, f1, ..., fk}
containing L{+,×}. When we specify below what L{+,×} should con-

tain we assume they are all among c1, ..., cn, R1, ..., Rm, f1, ..., fk. Let

ri = #(Ri). If w = w0...wk is a string of symbols in the alphabet

=, ci, Ri, fi, (, ),¬,∨,∃, the Gödel-number pwq of w is the natural num-

ber pwq = p0
#(w0)+1 · . . . ·pk#(wk)+1 where p0, p1, ... are the prime num-

bers in increasing order and

#(=) = 0 #(() = 1 #()) = 2 #(¬) = 3

#(∨) = 4 #(∧) = 5 #(∃) = 6 #(∀) = 7

#(ci) = 4 + 4i #(xi) = 5 + 4i #(Ri) = 6 + 4i #(fi) = 7 + 4i

The vocabulary L{+,×} has a symbol 0 for zero, a symbol 1 for one,
and the names n of the other natural numbers n are defined inductively
as terms +n1. We assume L{+,×} has the following symbols used to
represent syntactic operations:

Symbol Interpretation in Mω

POS-IDx0x1x2 x0 is pt = t′q,
where x1 = ptq and x2 = pt′q

NEG-IDx0x1x2 x0 is p¬t = t′q,
where x1 = ptq and x2 = pt′q

POS-ATOMix0x1...xri x0 is pRit1...triq,
where x1 = pt1q,..., xri = ptriq

NEG-ATOMix0x1...xri x0 is p¬Rit1...triq,
where x1 = pt1q,..., xri = ptriq

CONJx0x1x2 x0 is p(φ ∧ ψ)q,
where x1 = pφq and x2 = pψq

DISJx0x1x2 x0 is p(φ ∨ ψ)q,
where x1 = pφq and x2 = pψq

EXIx0x1x2 x0 is p∃xnφq,
where x1 = n and x2 = pφq

UNIx0x1x2 x0 is p∀xnφq,
where x1 = n and x2 = pφq

We assume that among the symbols of L{+,×} are functions that pro-
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vide a bijection between elements of the model and finite sequences of

elements of the model2. Thus it makes sense to interpret arbitrary ele-

ments ofMω as assignments. We assume L{+,×} has also the following

symbols: (We think of x0 as an assignment below):
TRUE-IDx0x1x2 x0 satisfies the identity t = t′,

where x1 = ptq and x2 = pt′q
FALSE-IDx0x1x2 x0 satisfies the non-identity ¬t = t′,

where x1 = ptq and x2 = pt′q
TRUE-ATOMix0x1...xri x0 satisfies Rit1...tri ,

where x1 = pt1q,...,xri = ptriq
FALSE-ATOMix0x1...xri x0 satisfies ¬Rit1...tri ,

where x1 = pt1q,...,xri = ptriq
AGRx0x1x2 x0 and x2 are assignments that

agree about variables other than x1

All the above symbols are easily definable in terms of + and · in first
order logic any model Mω of Peano’s axioms, if wanted. Now we take
a new predicate symbol SAT, not to be included in L{+,×}, (and not to
be definable in terms of + and · in first order logic) with the intuitive
meaning:

SATx0x1 x0 is an assignment s and x1 is pφq for some
L-formula φ such that Mω |=s φ.

The point is that SAT is (implicitly) definable in terms of the others

by the first order sentence θL as follows:
∀x0∀x1(SATx0x1 ↔
∃x2∃x3(POS-IDx1x2x3 ∧ TRUE-IDx0x2x3)∨
∃x2∃x3(NEG-IDx1x2x3 ∧ FALSE-IDx0x2x3)∨
∃x2...∃xr1+1 (POS-ATOM1x1x2...xr1+1 ∧ TRUE-ATOM1x0x2...xr1+1)∨
. . .
∃x2...∃xrm+1(POS-ATOMmx1x2...xrm+1 ∧ TRUE-ATOMmx0x2...xrm+1)∨
∃x2...∃xr1+1 (NEG-ATOM1x1x2...xr1+1 ∧ FALSE-ATOM1x0x2...xr1+1)∨
. . .
∃x2...∃xrm+1(NEG-ATOMmx1x2...xrm+1 ∧ FALSE-ATOMmx0x2...xrm+1)∨
∃x2∃x3(CONJx1x2x3 ∧ (SATx0x2 ∧ SATx0x3))∨
∃x2∃x3(DISJx1x2x3 ∧ (SATx0x2 ∨ SATx0x3))∨
∃x2∃x3(EXIx1x2x3 ∧ ∃x4(AGRx0x2x4 ∧ SATx4x3))∨
∃x2∃x3(UNIx1x2x3 ∧ ∀x4(AGRx0x2x4 → SATx4x3)))

The implicit (or inductive) nature of this definition (known as Tarski’s

Truth Definition) manifests itself in the fact that SAT appears on both

sides of the equivalence sign in θL, and only positively in each case.

There is no guarantee that θ really fixes what SAT is (see e.g. [17]).

However, for the part of the actual formulas, or their representatives in

Mω, the set SAT is unique.
2In the special case that NMω (i.e. N) is the whole universe of Mω the encoding of finite sequences of elements of the model by

elements of the model can be achieved by means of the unique factorization of integers, or alternatively by means of the Chinese
Remainder Theorem.
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Theorem 74 If the L-structure Mω is a model of Peano’s axioms,

then:

1. (Mω, SatN) |= θL, where SatN is the set of pairs 〈s, pφqMω〉 such

that Mω |=s φ.

2. If (Mω, S) |= θL and (Mω, S
′) |= θL, then S ∩SatN = S ′∩SatN.

Proof. Claim (i) is tedious but trivial, assuming that our concepts are

correctly defined. The claim we prove is the second one. To this end

suppose (Mω, S) |= θL and (Mω, S
′) |= θL. We prove

〈s, pφqMω〉 ∈ S if and only ifMω |=s φ (4.6)

for all φ. Since the same holds for S ′ by symmetry, we get the desired

result.

Case 1: φ is of the form t = t′, ¬t = t′, Rit1...tn or ¬Rit1...tn. Claim

(4.6) follows from our interpretation of POS-ID, NEG-ID, POS-ATOM.

NEG-ATOM,TRUE-ID, FALSE-ID, TRUE-ATOMi, and FALSE-ATOMi

inMω.

Case 2: φ is of the form (φ0 ∧ φ1). Claim (4.6) follows from the con-

junction part of the definition of θL and our interpretation of CONJ in

Mω.

Case 3: φ is of the form (φ0 ∨ φ1). Claim (4.6) follows from the dis-

junction part of the definition of θL and our interpretation of DISJ in

Mω.

Case 4: φ is of the form ∃xnψ. Claim (4.6) follows from the part of

the existential quantifier of the definition of θL and our interpretation

of AGR and EXI inMω.

Case 5: φ is of the form ∀xnψ. Claim (4.6) follows from the part of

the universal quantifier of the definition of θL and our interpretation of

AGR and UNI inMω. �

By means of the satisfaction relation SAT we can define truth by

means of the formula: TRUE(x0) = ∃x1SATx1x0.
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Corollary 75 The following are equivalent for all first order sen-

tences φ in the vocabulary L and any model Mω of Peano’s axiom:

1.Mω |= φ.

2. (Mω, S) |= (θL ∧ TRUE(pφq)) for some S ⊆ N2.

3. (Mω, S) |= (θL → TRUE(pφq)) for all S ⊆ N2.

Let us call a modelMω of Peano’s axioms standard if the interpreta-

tion of the predicate N of the vocabulary of arithmetic inMω is the set

of natural numbers, the interpretation of + is the addition of natural

numbers, and the interpretation of × is the multiplication of natural

numbers.

Corollary 76 Suppose Mω is any standard model of Peano’s ax-

ioms. If (Mω, S) |= θL and (Mω, S
′) |= θL, then S = S ′.

First order definable relations on standardMω are called arithmeti-

cal. The definition of truth given by Corollary 75 is not first order, so

we cannot say truth is arithmetical. A definition that has both existen-

tial second order and universal second order definition, as truth in the

above corollary, is called hyperarithmetical. So we can say first order

truth on Mω is not arithmetical but hyperarithmetical. For more on

hyperarithmetical definitions see [22].

Exercise 92 Show that we cannot remove “standard” from Corol-

lary 76.

4.4.3 Definability of Truth in D

We now move from first order logic back to dependence logic. We ob-

served in Corollary 75 that the truth definition of first order logic on

a model Mω of Peano’s axioms can be given in first order logic if one

existential second order quantifier is allowed. In dependence logic we

can express the existential second order quantifier and thus the truth
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definition of first order logic on Mω can be given in dependence logic.

This can be extended to a truth definition of all of dependence logic and

that is our goal in this section.

The fact that Σ1
1 has a truth definition in Σ1

1 on a structure with

enough coding is well-known in descriptive set theory. It was observed

in [10] that, as an application of Theorem 68, we have a truth definition

for D in D on any structure with enough coding.

We shall consider below a vocabulary L ⊇ L{+,×} ∪ {c}, where c is

a new constant symbol. If φ is a sentence of D in this vocabulary, we

indicate the inclusion of a new constant by writing φ as φ(c). Then if

d is another constant symbol, then φ(d) is the sentence obtained from

φ(c) by replacing c everywhere by d.

Theorem 77 ([10]) Suppose L ⊇ L{+,×} ∪ {c} is finite. There is

a sentence τ (c) of D in the vocabulary L such that for all sentences

φ of D in the vocabulary L and all models Mω of Peano’s axioms:

Mω |= φ if and only if Mω |= τ (pφq).

Proof. By Theorem 56 every sentence of D is logically equivalent to

a Σ1
1-sentence of the form

∃R1 . . . ∃Rnφ
∗, (4.7)

where φ∗ is first order. We now replace the second order quantifiers

∃R1 . . . ∃Rn by just one second order quantifier ∃R0, whereR0 is a unary

predicate symbol not in L. At the same time we replace every occurrence

of Rit1...tn in φ∗ by R0〈i, t1, ..., tn〉, where (a1, ..., an) 7→ 〈a1, ..., an〉 is

the function in L{+,×} coding n-sequences. Let the result be φ∗∗. Now

the following are equivalent for any φ in D in vocabulary L and any

L-structureMω, which is a model of Peano’s axioms:

(i)Mω |= φ.

(ii) (Mω, Z) |= φ∗∗ for some Z ⊆ N.

Let L′ = L ∪ {R0}. By Corollary 75, we obtain the equivalence of (ii)

with
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(iii) (Mω, Z, Sat) |= (θL′ ∧ TRUE(pφ∗∗q)) for some Sat ⊆ N2 and

some Z ⊆ N.

By Corollary 69 there is a sentence τ0(c) of vocabulary L such that (iii)

is equivalent to

(iv)Mω |= τ0(pφ∗∗q).

Let t(x0) be a term of the vocabulary L{+,×} such that for all sentences

φ of D of vocabulary L the value of t(pφq) in any L{+,×}-model of

Peano’s axioms is pφ∗∗q. Let τ (c) be the L-sentence τ0(t(c)). Then

(i)-(iv) are equivalent to

(v)Mω |= τ (pφq).

�

Now that we have constructed the truth definition by recourse to Σ1
1-

sentences, it should be pointed out that we could write τ (c) also directly

in D, imitating the inductive definition of truth given in Definition 5.

This is the approach of [14].

Let us now go back to the Liar Paradox. By Theorem 72 there is a

sentence λ of D in the vocabulary L{+,×} such that for allMω Mω |=
λ if and only ifMω |= ¬τ (pλq). Intuitively, λ says “This sentence

is not true.” By Theorem 77, Mω |= λ if and only ifMω |= τ (pλq).
ThusMω |= τ (pλq) if and only ifMω |= ¬τ (pλq), which is, of course,

only possible if Mω 6|= τ (pλq) andMω 6|= ¬τ (pλq). Still another way

of putting this is: Mω 6|= τ (pλq) ∨ ¬τ (pλq). Thus we get the pleasing

result that the assertion that the Liar sentence is true (in the sense of

τ (c)) is non-determined. This is in harmony with the intuition that the

Liar sentence does not have a truth value.

Exercise 93 Suppose Mω |= ψ0 if and only if Mω |= τ (pψ1q) and

Mω |= ψ1 if and only if Mω |= ¬τ (pψ0q). Show that τ (pψ0q) and

τ (pψ1q) are non-determined.
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Exercise 94 Contemplation of the sentence ”This sentence is not

true” leads immediately to the paradox (?): the sentence is true if

and only if it is not true. We have seen that we can write a sentence

λ with the meaning ”This sentence is not true” in D. Still we do not

get the result that (λ ↔ ¬λ) is true. Indeed, show that (φ ↔ ¬φ)

has no models, whatever φ in D is. Explain why the existence of λ

does not lead to the paradox (?).

Exercise 95 Suppose ψ says “If ψ is true, then ¬ψ is true,” i.e.

Mω |= ψ if and only if Mω |= (τ (pψq) → τ (p¬ψq)). Show that ψ

is non-determined.

Exercise 96 Suppose ψ says “It is not true that ψ is true.” i.e.

Mω |= ψ if and only if Mω |= ¬τ (pτ (pψq)q). Show that τ (pτ (pψq)q)
is non-determined.

Exercise 97 Show that there cannot be τ ′(c) in D such that for all

φ and all Mω we have Mω 6|= φ if and only if Mω |= τ ′(pφq).

Exercise 98 [[23]] Suppose Mω is a model of Peano’s axioms, as

above. Let T be the set of sentences of D that are true in Mω.

Show that there is a model M of T such that for some a ∈ M we

have M |= (τ (a) ∧ τ (¬a)).

4.5 The Ehrenfeucht-Fräıssé Game for Dependence Logic

We define the concept of elementary equivalence of models and give this

concept a game characterization. In this section we assume vocabularies

do not contain function symbols, for simplicity.

Definition 78 Two models M and N of the same vocabulary are

D-equivalent, in symbols M ≡D N if they satisfy the same sen-

tences of dependence logic.

It is easy to see that isomorphic structures are D-equivalent and that

D-equivalence is an equivalence relation. However, despite the quite
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strong Löwenheim-Skolem Theorem of dependence logic we have the

following negative result about D-equivalence.

Proposition 79 There is an uncountable model M in a finite vo-

cabulary such that M is not D-equivalent to any countable models.

Proof. LetM = (R,N) be a model for the vocabulary {P}. Suppose

M≡D N , where N is countable. It ic clear that there is a one-to-one

function from N into PN . Let φ be a sentence of D which says exactly

this. Since N |= φ, we haveM |= φ, a contradiction. �

It turns out that the following more basic concept is a far better

concept to start with:

Definition 80 Suppose M and N are structures for the same vo-

cabulary. We say that M is D-semiequivalent to N , in symbols

MVDN if N satisfies every sentence of dependence logic that is

true in M.

Note that equivalence and semiequivalence are equivalent concepts if

dependence logic is replaced by first order logic.

Proposition 81 Every infinite model in a countable vocabulary is

D-semiequivalent to models of all infinite cardinalities.

Proof. Suppose M is an infinite model with a countable vocabulary

L. Let T be the set of sentences of dependence logic in the vocabulary

L that are true in M. By Theorem 59 the theory T has models of all

infinite cardinalities (Theorem 59 is formulated for sentences only but

the proof for countable theories is the same). �

We now introduce an Ehrenfeucht-Fräıssé game adequate for depen-

dence logic and use this game to characterize VD.

Definition 82 Let M and N be two structures of the same vocab-

ulary. The game EFn has two players and n moves. The position

after move m is a pair (X, Y ), where X ⊆ Mm and Y ⊆ Nm for

95

Cambridge University Press 2007



some m. In the beginning the position is ({∅}, {∅}) and i0 = 0.

Suppose the position after move number m is (X, Y ). There are the

following possibilities for the continuation of the game:

Splitting move: Player I represents X as a union X = X0 ∪X1.

Then player II represents Y as a union Y = Y0∪Y1. Now player

I chooses whether the game continues from the position (X0, Y0)

or from the position (X1, Y1).

Duplication move: Player I decides that the game should con-

tinue from the new position

(X(M/xim), Y (N/xim)).

Supplementing move: Player I chooses a function F : X → M .

Then player II chooses a function G : Y → N . Then the game

continues from the position (X(F/xim), Y (G/xim)).

After n moves the position (Xn, Yn) is reached and the game ends.

Player II is the winner if

M |=Xn φ⇒ N |=Yn φ

holds for all atomic and negated atomic and dependence formulas

of the form φ(x0, ..., xin−1). Otherwise player I wins.

This is a game of perfect information and the concept of winning

strategy is defined as usual. By the Gale-Stewart theorem the game is

determined.

Definition 83 1. qr(φ) = 0 if φ is atomic or a dependence for-

mula.

2. qr(φ ∨ ψ) = max(qr(φ), qr(ψ)) + 1.

3. qr(∃xnφ) = qr(φ) + 1.

4. qr(¬φ) :
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(a) qr(¬φ) = 0 if φ is atomic or a dependence formula.

(b) qr(¬¬φ) = qr(φ).

(c) qr(¬(φ ∨ ψ)) = max(qr(¬φ), qr(¬ψ)).

(d) qr(¬∃xnφ) = qr(¬φ) + 1.

Let Fmlmn be the set of formulas φ of D with qrφ ≤ m and with

free variables among x0, ..., xn−1. We write M Vn
D N if M |= φ

implies N |= φ for all φ in Fmln0 , and M ≡nD N if M |= φ is

equivalent to N |= φ for all φ in Fmln0 .

Note that there are for each n and m, up to logical equivalence, only

finitely many formulas in Fmlmn .

Theorem 84 Suppose M and N are models of the same vocabu-

lary. Then the following are equivalent:

(1) Player II has a winning strategy in the game EFn(M,N ).

(2)MVn
D N .

Proof. We prove the equivalence, for all n, of the following two

statements:

(3)m Player II has a winning strategy in the game EFm(M,N ) in po-

sition (X, Y ), where X ⊆Mn and Y ⊆ Nn.

(4)m If φ is a formula in Fmlmn , then

M |=X φ⇒ N |=Y φ. (4.8)

The proof is by induction on m. For each m we prove the claim

simultaneously for all n. The case m = 0 is true by construction. Let

us then assume (3)m ⇐⇒ (4)m as an induction hypothesis. Assume

now (3)m+1 and let φ be a formula in Fmlm+1
n such that M |=X φ. As

part of the induction hypothesis we assume that the claim (4.8) holds

for formulas shorter than φ.
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Case 1: φ = ψ0∨ψ1, where ψ0, ψ1 ∈ Fmlmn . SinceM |=X φ, there are

X0 and X1 such that X = X0 ∪X1, M |=X0 ψ0 and M |=X1 ψ1. We

let I play {X0, X1}. Then II plays according to her winning strategy

{Y0, Y1}. Since the next position in the game can be either one of

(X0, Y0), (X1, Y1), we can apply the induction hypothesis to both. This

yields N |=Y0 ψ0 and N |=Y1 ψ1. Thus N |=Y φ.

Case 2: φ = ∃xnψ, where ψ ∈ Fmlmn−1. Since M |=X φ, there is a

function F : X →M such thatM |=X(F/xn) ψ. We let I play F . Then

II plays according to her winning strategy a function G : Y → N and

the game continues in position (X(F/xn), Y (G/xn)). The induction

hypothesis gives N |=Y (G/xn) ψ. Now N |=Y φ follows.

Case 3: φ = ¬¬ψ, n = max(n0, n1). Since M |=X φ, we have

M |=X ψ. By the induction hypothesis, N |=Y ψ. Thus N |=Y φ.

Case 4: φ = ¬(ψ0 ∨ ψ1), where ψ0, ψ1 ∈ Fmlmn . Since M |=X φ,

we have M |=X ¬ψ0 and M |=X ¬ψ1. By the induction hypothesis,

N |=Y ¬ψ0 and N |=Y ¬ψ1. Thus N |=Y φ.

Case 5: φ = ¬∃xnψ, where¬ψ ∈ Fmlmn+1. By assumption,M |=X(M/xn)

¬ψ. We let now I demand that the game continues in the dupli-

cated position (X(M/xn), Y (N/xn)). The induction hypothesis gives

N |=Y (N/xn) ¬ψ. Now N |=Y φ follows trivially.

To prove the converse implication, assume (4)m+1. To prove (3)m+1

we consider the possible moves that player I can make in the position

(X, Y ).

Case i: Player I writes X = X0 ∪ X1. Let φj, j < k, be a complete

list (up to logical equivalence) of formulas in Fmlmn . Since M |=X0

¬
∨
M|=X0φj

¬φj andM |=X1 ¬
∨
M|=X1φj

¬φj, we have

M |=X (¬
∨

M|=X0φj

¬φj) ∨ (¬
∨

M|=X1φj

¬φj).
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Note that qr(¬
∨
M|=X1φj

¬φj) = maxM|=X1φj
(¬¬φj) = maxM|=X1φj

φj ≤
m. Therefore by (4)m+1

N |=Y (¬
∨

M|=X0φj

¬φj) ∨ (¬
∨

M|=X1φj

¬φj).

Thus Y = Y0 ∪ Y1 such that N |=Y0 ¬
∨
M|=X0φj

¬φj and N |=Y1

¬
∨
M|=X1φj

¬φj. By this and the induction hypothesis, player II has a

winning strategy in the positions (X0, Y0), (X1, Y1). Thus she can play

{Y0, Y1} and maintain her winning strategy.

Case ii: Player I decides that the game should continue from the new

position (X(M/xn), Y (m/xn)). We claim that

M |=X(M/xn) φ⇒ N |=Y (N/xn) φ

for all φ ∈ Fmlmn+1. From this the induction hypothesis would imply

that II has a winning strategy in the position (X(M/xn), Y (N/xn)).

So let us assumeM |=X(M/xn) φ, where φ ∈ Fmlmn+1. By definition,

M |=X ¬∃xn¬φ.

Since¬∃xn¬φ ∈ Fmlm+1
n , (4)m+1 givesN |=Y ¬∃xn¬φ andN |=Y (N/xn)

φ follows.

Case iii: Player I chooses a function F : X → M . Let φi, i < M be

a complete list (up to logical equivalence) of formulas in Fmlmn+1. Now

M |=X ∃xn¬
∨
M|=X(F/xn)φi

¬φi. Note that

qr(∃xn¬
∨

M|=X(F/xn)φj

¬φj) = qr(¬
∨

M|=X(F/xn)φj

¬φj) + 1

= ( max
M|=X(F/xn)φj

qr(¬¬φj)) + 1

= ( max
M|=X(F/xn)φj

qr(φj)) + 1 ≤ m + 1,
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and hence by (4)m+1, N |=Y ∃xn¬
∨
M|=X(F/xn)φi

¬φi. Thus there is a

function G : Y → N such that

N |=Y (G/xn) ¬
∨

M|=X(F/xn)φi

¬φi.

The game continues from position (X(F/xn), Y (G/xn). Given that

now M |=X(F/xn) φ ⇒ N |=Y (G/xn) φ for all φ ∈ Fmlmn+1, the in-

duction hypothesis implies that II has a winning strategy in position

(X(F/xn), Y (G/xn)). �

Corollary 85 Suppose M and N are models of the same vocabu-

lary. Then the following are equivalent:

(1)MVD N .

(2) For all natural numbers n, player II has a winning strategy in

the game EFn(M,N ).

Corollary 86 Suppose M and N are models of the same vocabu-

lary. Then the following are equivalent:

(1)M≡D N .

(2) For all natural numbers n, player II has a winning strategy both

in the game EFn(M,N ) and in the game EFn(N ,M).

The two games EFn(M,N ) and EFn(N ,M) can be put together

into one game by simply making the moves of the former symmetric

with respect to M and N . Then player II has a winning strategy in

this new game if and only if M ≡nD N . Instead of a game we could

have used a notion of a back-and-forth sequence.

The Ehrenfeucht-Fräıssé game can be used to prove non-expressibility

results for D, but we do not yet have examples where a more direct

proof using compactness, interpolation and Löwenheim-Skolem theo-

rems would not be simpler.
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Proposition 87 There are countable models M and N such that

MVD N , but N 6≡D M.

Proof. Let M be the standard model of arithmetic. Let Φn, n ∈ ω
be the list of all Σ1

1-sentences true inM. Suppose Φn = ∃Rn
1 ...∃Rn

kn
φn.

Let M∗ be an expansion of M in which each φn is true. Let N ∗ be

a countable non-standard elementary extension of M∗. Let N be the

reduct of N ∗ to the language of arithmetic. By construction, M VD
N . On the other hand, N 6VD M as non-wellfoundedness of the

integers in N can be expressed by a sentence of D. �

Proposition 88 Suppose K is a model class3 and n is a natural

number. Then the following are equivalent:

(1) K is definable in dependence logic by a sentence in Fmln0 .

(2) K is closed under the relation Vn
D.

Proof. Suppose K is the class of models of φ ∈ Fmln0 . If M |= φ

and M Vn
D N , then by definition, N |= φ. Conversely, suppose K

is closed under Vn
D. Let φM = ¬

∨
{¬φ : φ ∈ Fmln0 ,M |= φ},

where the conjunction is taken over a finite set which covers all such

φ up to logical equivalence. Let θ be the disjunction of all φM, where

M ∈ K. Again we take the disjunction over a finite set up to logical

equivalence. We show that K is the class of models of θ. If M ∈ K
thenM |= φM, whenceM |= θ. On the other hand supposeM |= φN
for some N ∈ K. Now N Vn

D M, for if N |= φ and φ ∈ Fmln∅ , then φ

is logically equivalent with one of the conjuncts of φN , whenceM |= φ.

As K is closed under Vn
D, we haveM∈ K. �

Corollary 89 Suppose K is a model class. Then the following are

equivalent:

(1) K is definable in dependence logic.
3A model class is a class of models, closed under isomorphism, of the same vocabulary.
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(2) There is a natural number n such that K is closed under the

relation Vn
D.

The above corollary also gives a characterization of Σ1
1-definability in

second order logic. No assumptions about cardinalities are involved,

so if we restrict ourselves to finite models we get a characterization of

NP-definability.

Exercise 99 Suppose L = ∅ and M and N are L-structures such

that M = {0, 1, 2} and N = {a, b, c, d}, where a, b, c and d are

distinct. The game EF3(M,N ) is in the position:

X:

x0 x1 x2

0 2 2

1 0 0

2 1 1

, Y:

x0 x1 x2

a c b

b b c

c a a

d d d

Who won the game?

Exercise 100 Suppose L = ∅ and M and N are L-structures such

that M = {0, 1, 2, 3} and N = {a, b, c, d}, where a, b, c and d are

distinct. The game EF3(M,N ) is in the position:

X:

x0 x1

0 2

1 3

2 3

3 2

, Y:

x0 x1

a b

b c

c d

d a

Can you spot a good splitting move for player I?

Exercise 101 Suppose L = {P} and M and N are L-structures

such that M = {0, 1, 2}, PM = {0}, N = {a, b, c}, and PN = ∅,
where a, b, and c are distinct. The game EF3(M,N ) is in the

position:
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X:

x0 x1

0 2

1 1

2 1

, Y:

x0 x1

a b

b b

c a

Can you spot a good supplementing move for player I?

Exercise 102 Let L = ∅. Show that there is no sentence φ of

vocabulary L in Fml20 such that M |= φ if and only if M is infinite.

Exercise 103 Let L = ∅. Show that there is no sentence φ of

vocabulary L in Fml20 such that for finite models M we have: M |=
φ if and only if |M | is even.

Exercise 104 Show that there is a countable model which is not

D-equivalent to any uncountable models.

Exercise 105 Show that (R,N)VD (Q,N).

Exercise 106 Show that (ω + ω∗ + ω,<) 6VD (ω,<).

Exercise 107 Show that ifMVD N and N is a connected graph,

then so is M.

Exercise 108 Give three modelsM,M′ andM′′ such thatMVD
M′ and MVD M

′′, but M′ 6VD M
′′ and M′′ 6VD M

′.

Exercise 109 Give models Mn such that for all n ∈ N we have

Mn+1 VD Mn, but Mn 6VD Mn+1.
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Chapter 5

Complexity

5.1 Decision and Other Problems

The basic problem this chapter considers is how difficult is it to decide

some basic questions concerning the relation M |= φ, when M is a

structure and φ is a D-sentence? Particular questions we study are:

Decision Problem: Is φ valid, i.e. doesM |= φ hold for allM.

Nonvalidity Problem: Is φ nonvalid, i.e. does φ avoid some model,

i.e. doesM |= φ fail for some modelM.

Consistency Problem: Is φ consistent, i.e. does φ have a model,

i.e. doesM |= φ hold for someM.

Inconsistency Problem: Is φ inconsistent, i.e. does φ avoid all

models, i.e. isM |= φ true for no modelM at all.

Obviously such questions depend on the vocabulary. In a unary vo-

cabulary it may be easier to decide some of the above questions. On the

other hand, if at least one binary predicate is allowed, then the questions

are as hard as for any other vocabulary, as there are coding techniques

that allow us to code bigger vocabularies into one binary predicate. We

can ask the same questions about models of particular theories, like

groups, linear orders, fields, graphs, and so on. Furthermore, we can ask

these questions in the framework of finite models.

By definition, φ is nonvalid if and only if φ is not valid, and φ is inconsistent if and only if φ is not consistent.

So it suffices to concentrate on the Decision Problem and the Consis-
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tency Problem. In first order logic we have the further equivalence

φ is consistent if and only if ¬φ is not valid. So if we crack the decision

problem for first order logic everything else follows. Indeed, the Gödel

Completeness Theorem tells us that a first order sentence is valid if and

only it is provable. Hence the Decision Problem of first order logic is Σ0
1

(i.e. recursively enumerable)

The Consistency Problem for dependence logic can be reduced to that

of first order logic by the equivalence φ is consistent if and only if τ1,φ is consistent.

5.2 Some Set Theory

The complexity of the Decision Problem and of the Nonvalidity Problem

of dependence logic is so great that we have to move from complexity

measures on the integers to complexity measures in set theory. With

this in mind we recall some elementary concepts from set theory:

A set a is transitive if c ∈ b and b ∈ a imply c ∈ a for all a and b. The

transitive closure TC(a) of a set a is the intersection of all transitive

supersets of a, or in other words a∪(∪a)∪(∪∪a).... Intuitively, TC(a)

consists of elements of a, elements of elements of a, elements of elements

of elements of a, etc. Define Hκ = {a : |TC(a)| < κ}.
A priori it is not evident that Hκ is a set. However, this can be easily

proved with another useful concept from set theory, namely the concept

of rank. The rank rk(a) of a set a is defined recursively as follows:

rk(a) = sup{rk(b) + 1 : b ∈ a}. Recall the definition of the cumulative

hierarchy in (2.1). Now Vα = {x : rk(x) < α} and we can prove that

Hκ is indeed a set:

Lemma 90 For all infinite cardinals κ we have Hκ ⊆ Vκ.

Proof. Suppose x ∈ Hκ, i.e. |TC(x)| < κ. We claim that rk(x) < κ,

i.e. | rk(x)| < κ. It suffices to show that | rk(x)| ≤ |TC(x)|. This

follows by the Axiom of Choice, if we show that there is, for all x,

an onto function from TC(x) onto rk(x). This function is in fact the
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function z 7→ rk(z). Suppose the claim that rk �TC(y) maps TC(y)

onto rk(y) holds for all y ∈ x. We show that it holds for x. To this

end, suppose α < rk(x). By definition, α ≤ rk(y) for some y ∈ x. If

α < rk(y), then by the induction hypothesis, there is z ∈ TC(y) such

that rk(z) = α. Now z ∈ TC(x), so we are done. The other case is

that α = rk(y). Since y ∈ TC(x) we are done again. �

The converse of Lemma 90 is certainly not true in general. For exam-

ple, the set Vℵ1 has sets such as P(ω) which cannot be in Hℵ1. However,

let us define the Beth numbers as follows: i0 = ω, iα+1 = 2iα, and

iν = limα<ν iα for limit ν. For any κ there is λ ≥ κ such that λ = iλ,

as can be seen as follows: let κ0 = κ, κn+1 = iκn and λ = limn<ω κn.

Then λ = iλ. It is easy to see by induction on α that |Vω+α| = iα.

Lemma 91 If κ = iκ, then Hκ = Vκ.

Proof. The claim Hκ ⊆ Vκ follows from Lemma 90. On the other

hand, if x ∈ Vκ, say x ∈ Vα, where α = ω + α < κ, then |TC(x)| ≤
|Vα| = iα < iκ = κ, so x ∈ Hκ. �

We now recall an important hierarchy in set theory:

Definition 92 ([20]) The Levy Hierarchy of formulas of set the-

ory is obtained as follows: The Σ0-formulas, which are at the same

time called Π0-formulas, are all formulas in the vocabulary {∈}
obtained from atomic formulas by the operations ¬,∨,∧ and the

bounded quantifiers:∃x0(x0 ∈ x1 ∧ φ) and ∀x0(x0 ∈ x1 → φ). The

Σn+1-formulas are obtained from Πn-formulas by existential quan-

tification. The Πn+1-formulas are obtained from Σn-formulas by

existential quantification.

A basic property of the Σ1-formulas is captured by the following

lemma:

Lemma 93 For any uncountable cardinal κ, a1, ..., an ∈ Hκ, and

Σ1-formula φ(x1, ..., xn): (Hκ, ε) |= φ(a1, ..., an), if and only if φ(a1, ..., an).
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Proof. The “only if” part is very easy (see Exercise 110). For the more

difficult direction suppose φ(x1, ..., xn) is of the form ∃x0ψ(x0, x1, ..., xn),

where ψ(x0, x1, ..., xn) is Σ0, and there is an a0 such that φ(a0, a1, ..., an).

Let α be large enough that a0, ...an ∈ Vα. Then (Vα, ε) |= ψ(a0, ..., an)

by Exercise 110. Thus (Vα, ε) |= φ(a1, ..., an). LetM be an elementary

submodel of the model (Vα, ε) such that TC({a1, ..., an}) ⊆ M and

|M | < κ. By Mostowski’s Collapsing Lemma (see Exercise 111) there is

a transitive model (N, ε) and an isomorphism π : (N, ε) ∼=M such that

a1, ..., an ∈ N and π(ai) = ai for each i. Thus (N, ε) |= φ(a1, ..., an).

Since x ∈ N implies TC(x) ⊆ N , and |N | < κ, we have N ⊆ Hκ, and

hence again by absoluteness, (Hκ, ε) |= φ(a1, ..., an). �

An intuitive picture of a Σ1 statement ∃x0φ(a, x0), where φ is Σ0,

is that we search through the universe for an element b such that the

relatively simple statement φ(a, b) becomes true. By Lemma 93 we need

only look near where a1, ..., an are. This means that satisfying a Σ1-

sentence is from a set-theoretic point of view not very complex, although

it may still be at least as difficult as checking whether a recursive binary

relation on N is well-founded (which is a Π1
1-complete problem).

In contrast, to check whether a Σ2 sentence ∃x0∀x1φ(a, x0, x1) is

true one has to search through the whole universe for a b such that

∀x1φ(a, b, x1) is true. Now we cannot limit ourselves to search close to

a as we may have to look close to b, too. So in the end we have to go

through the whole universe in search of b. This means that checking

the truth of a Σ2-sentence is of extremely high complexity. Any of the

following statements can be expressed as the truth of a Σ2-sentence:

1. The Continuum Hypothesis, i.e. 2ℵ0 = ℵ1

2. The failure of the Continuum Hypothesis, i.e. 2ℵ0 6= ℵ1

3. V 6= L

4. There is an inaccessible cardinal
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5. There is a measurable cardinal

We now have the notions at hand for filling in the complexity table

for dependence logic, even if we have not proved anything yet:

Dependence logic

Problem Complexity

Decision problem Π2

Nonvalidity problem Σ2

Consistency problem Π0
1

Inconsistency problem Σ0
1

The proof is given in the next section.

Exercise 110 [Absoluteness of Σ0] For any transitive M , a1, ..., an ∈
M , and Σ0-formula φ(x1, ..., xn): (M, ε) |= φ(a1, ..., an), if and only

if φ(a1, ..., an).

Exercise 111 [Mostowski’s Collapsing Lemma] Suppose (M,E) is

a well-founded model of the Axiom of Extensionality: ∀x0∀x1(∀x2(x2 ∈
x0 ↔ x2 ∈ x1) → x0 = x1). Show that the equation π(x) = {π(y) :

yEx} defines an isomorphism between (M,E) and (N,∈), where N

is a transitive set. Show also that π(x) = x for every x ∈M which

is E-transitive (i.e. zEy and yEx imply zEx).

5.3 Σ2-completeness in set theory

Let us now go a little deeper into details. We identify problems with

sets X ⊆ N. The problem X in such a case is really the problem

of deciding whether a given n is in X or not. A problem P ⊆ N is

called Σn-definable if there is a Σn-formula φ(x0) of set theory such that

n ∈ P ⇐⇒ φ(n). A problem P ⊆ N is called Σn-complete if the

problem itself is Σn-definable and, moreover, for every Σn-definable set
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X ⊆ N there is a recursive function f : N→ N such that n ∈ X ⇐⇒
f (n) ∈ P. The concepts of a Πn-definable set and a Πn-complete set are

defined analogously.

Theorem 94 The Decision Problem of dependence logic is Π2-complete

in set theory.

Proof. Without loss of generality, we consider the decision problem

in the context of a vocabulary consisting of just one binary predicate.

Let us first observe that the predicate x = P(y) is Π1-definable:

x = P(y) ⇐⇒ ∀z(z ∈ x↔ ∀u ∈ z(u ∈ y)).

Let On(x) be the Σ0-predicate “x is an ordinal,” i.e. x is a transitive

set of transitive sets. We can Π1-define the property R(x) of x of being

equal to some Vα, where α is a limit ordinal. Let Str(x) be the first-order

formula in the language of set theory which says that x is a structure

of the vocabulary containing just one binary predicate symbol. If φ is

a sentence of D, let Satφ(x) be the first-order formula in the language

of set theory which says “Str(x) and φ is true in the structure x.” Let

Relsatφ(x, y) be the first-order formula in the language of set theory

which says “x ∈ y and if Str(x), then Satφ(x) is true when relativized

to the set y.” Thus |= φ if and only if ∀x(Str(x)→ Satφ(x)). Note that

for limit α and a ∈ Vα:

Satφ(a) ⇐⇒ (Vα |= Satφ(a)).

Thus a sentence φ of D is valid if and only if

∀x(R(x)→ ∀y ∈ xRelsatφ(y, x)).

We have proved that the decision problem of D is Π2-definable. Suppose

then A is an arbitrary Π2-definable set of integers. Let ∀x∃yψ(n, x, y)

be the Π2-definition. Let φn be the first-order sentence ∀x∃yψ(n, x, y),

where n is a defined term. We claim

n ∈ A ⇐⇒ |= θ ∨ φn,
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where θ is a sentence of D which is true in every model except the

models (Vκ,∈), κ = iκ. Suppose first n ∈ A, i.e. ∀x∃yψ(n, x, y).

Suppose (Vκ,∈) is a given model in which θ is not true. We prove

Vκ |= ∀x∃yψ(n, x, y). Suppose a ∈ Vκ. By the above Lemmas, there

is b ∈ Vκ such that ψ(n, a, b). We have proved |= θ ∨ φn. Conversely,

suppose |= θ∨φn. To prove ∀x∃yψ(n, x, y), let a be given. Let κ be an

infinite cardinal such that κ = iκ and a ∈ Hκ. Then there is b ∈ Hκ

with Hκ |= ψ(n, a, b). Now ψ(n, a, b) follows. �

Corollary 95 The decision problem of dependence logic is not Σ2-

definable in set theory.

The fact that the decision problem of dependence logic is not Σm
n

for any m,n < ω follows easily from this. Moreover, it follows that

we cannot in general express “φ is valid,” for φ ∈ D, even by search-

ing through the whole set-theoretical universe for a set x such that a

universal quantification over the subsets of x would guarantee the va-

lidity of φ. In contrast, to check validity of a first-order sentence, one

needs only search through all natural numbers and then perform a finite

polynomial calculation on that number.

Exercise 112 Give a Σ2-definition of the property of x being equal

to some Vκ, where κ = iκ.

Exercise 113 Show that for limit α and a ∈ Vα: Satφ(a) ⇐⇒
(Vα |= Satφ(a)).

Exercise 114 Give a sentence of D which is true in every model

except (mod ∼=) the models (Vκ,∈), κ = iκ.

Exercise 115 Use Theorem 94 to prove that the decision problem

of D is not arithmetical, i.e. not first order definable definable in

(N,+, ·, <, 0, 1). (In fact the same proof shows that it is not Σm
n -

definable for any m,n < ω).
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Exercise 116 Show that the problem: Does M |= φ hold for all

countable M? is not arithmetical, and the problem: Does M |= φ

hold for some countable M? is a Π0
1 property of φ ∈ D.

Exercise 117 Show that there is a sentence φ of D such that φ

avoids some model if and only if there is an inaccessible cardinal.

111

Cambridge University Press 2007



Chapter 6

Team Logic

The negation ¬ of dependence logic does not satisfy the Law of Excluded

Middle and is therefore not the classical Boolean negation. This is clearly

manifested by the existence of non-determined sentences φ inD. In such

cases the failure of M |= φ does not imply M |= ¬φ. Hintikka [10]

introduced extended independence friendly logic by taking the Boolean

closure of his independence friendly logic. We take the further action of

making classical negation ∼ one of the logical operations on a par with

other propositional operations and quantifiers. This yields an extension

TL of the Boolean closure of D. We call the new logic team logic.

The basic concept of both team logic TL and dependence logic D
is the concept of dependence =(t1, ..., tn). In very simple terms, what

happens is that, while we can say “x1 is a function of x0” with =(x0, x1)

inD, we will be able to say “x1 is not a function of x0” with∼=(x0, x1)

in team logic.

While we define team logic we have to restrict ¬ to atomic formulas.

The game-theoretic intuition behind ¬φ is that it says something about

“the other player.” The introduction of ∼ unfortunately ruins the basic

game-theoretic intuition, and there is no “other player” anymore. If φ is

in D, then ∼φ has the meaning “II does not have a winning strategy,”

but it is not clear what the meaning of ¬∼φ would be. We also change

notation by using φ ⊗ ψ (“tensor”) for what was φ ∨ ψ in D. The

reason for this is that by means of ∼ and ∧ we can actually define the

classical Boolean disjunction φ∨ψ, which really says the team is of type
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φ or of type ψ. Likewise, we adopt the notation !xnφ (“shriek”) for the

quantifier that in D was denoted by ∀xnφ. For motivation of the new

symbols, see Remark 99.

6.1 Formulas of Team Logic

In this section we give the syntax and semantics of team logic and

indicate some basic principles.

Definition 96 Suppose L is a vocabulary. The formulas of team

logic TL are:

Atomic Name

t1 = tn equation

¬t1 = tn dual equation

Rt1...tn relation

¬Rt1...tn dual relation

=(t1, ..., tn) dependence

¬=(t1, ..., tn) dual dependence

Complex Name

φ ⊗ ψ tensor

φ ∧ ψ conjunction

∼φ negation

∃xnφ existential

!xnφ shriek

Definition 97 The semantics of team logic is defined as follows:

TL1M |=X t1 = t2 iff for all s ∈ X we have tM1 〈s〉 = tM2 〈s〉.
TL2M |=X ¬t1 = t2 iff for all s ∈ X we have tM1 〈s〉 6= tM2 〈s〉.
TL3M |=X =(t1, ..., tn) iff for all s, s′ ∈ X such that tM1 〈s〉 =

tM1 〈s′〉, ..., tMn−1〈s〉 = tMn−1〈s′〉, we have tMn 〈s〉 = tMn 〈s′〉.
TL4M |=X ¬=(t1, ..., tn) iff X = ∅.
TL5M |=X Rt1...tn iff for all s ∈ X we have (tM1 〈s〉, ..., tMn 〈s〉) ∈

RM.

TL6M |=X ¬Rt1...tn iff for all s ∈ X we have (tM1 〈s〉, ..., tMn 〈s〉) /∈
RM.
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TL7M |=X φ⊗ψ iff X = Y ∪ Z such that dom(Y ) = dom(Z),

M |=Y φ and M |=Z ψ.

TL8M |=X φ ∧ ψ iff M |=X φ and M |=X ψ.

TL9M |=X ∃xnφ iff M |=X(F/xn) φ for some F : X →M .

TL10M |=X !xnφ iff M |=X(M/xn) φ

TL11M |=X ∼φ iff M 6|=X φ.

We can easily define a translation φ 7→ φ∗ of dependence logic into

team logic, but we have to assume the formula φ of dependence logic is

in negation normal form:

(t = t′)∗ = t = t′

(¬t = t′)∗ = ¬t = t′

(Rt1...tn)∗ = Rt1...tn
(¬Rt1...tn)∗ = ¬Rt1...tn
(=(t1, ..., tn))∗ = =(t1, ..., tn)

(¬=(t1, ..., tn))∗ = ¬=(t1, ..., tn)

(φ ∨ ψ)∗ = φ∗ ⊗ ψ∗
(φ ∧ ψ)∗ = φ∗ ∧ ψ∗
(∃xnφ)∗ = ∃xnφ∗
(∀xnφ)∗ = !xnφ

∗

It is an immediate consequence of the definitions that for all M, all

formulas φ ofD, and allX we haveM |=X φ in D if and only ifM |=X

φ∗ in TL. So we may consider D a fragment of TL, and TL an extension

of D obtained by adding classical negation.

Logical consequence φ⇒ ψ and logical equivalence φ⇔ ψ are defined

similarly as for dependence logic. The following lemma demonstrates

that even though ! xnφ for φ ∈ D acts like what is denoted by ∀xnφ in

dependence logic, it is in the presence of ∼ not at all like our familiar

universal quantifier, as it commutes with negation:

Lemma 98 ∼ !xnφ⇔ !xn∼φ.
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Proof. M |=X ∼ !xnφ iffM 6|=X !xnφ iffM 6|=X(M/xn) φ iffM |=X(M/xn)

∼φ, iffM |=X !xn∼φ. �

We adopt the following abbreviations:

φ ∨ ψ = ∼(∼φ ∧ ∼ψ) disjunction

φ⊕ ψ = ∼(∼φ⊗ ∼ψ) sum

φ→ ψ = ∼φ ∨ ψ implication

φ−◦ ψ = ∼φ⊕ ψ linear implication

∀xnφ = ∼∃xn∼φ universal quantifier

ThusM |=X φ∨ψ iffM |=X φ orM |=X ψ.Note: M |=X φ⊕ψ iff whenever X = Y ∪ Z, thenM |=Y φ orM |=Z ψ.

Thus a team of type φ ⊕ ψ has in a sense φ or ψ everywhere. We have

φ⊕ψ ⇔ ψ⊕φ
φ⊕(ψ⊕θ) ⇔ (φ⊕ψ)⊕θ

but φ⊕φ < φ. Note also thatM |=X ∀xnφ iffM |=X(F/xn) φ holds for every F : X →M.

Thus a team of type ∀xnφ has type φ what ever we put as values of xn.

Remark 99 The introduction of the new operation ⊗ for the oper-

ation which in dependence logic used to be denoted ∨, and the use

of ∨ in team logic for the new Boolean disjunction, may seem con-

fusing. The same can be said about the use of ! for the operation

which in dependence logic used to be denoted ∀, while now in team

logic ∀ has a different meaning. Isn’t this quite a mess? However,

everything fits into place nicely: The main idea is that ordinary

first order formulas, built up from atomic formulas by means of ∼,

∨, ∧, ∃ and ∀ have their classical meaning also in team logic: for

teams of the form X = {s} we have M |=X φ in team logic if and

only if M |=s φ in first order logic. This fact is quite robust. We

can replace ∼ by ¬, and ∨ by ⊗.

We have
∀xn(φ ∧ ψ) ⇔ (∀xnφ ∧ ∀xnψ)

∀xn∀xmφ ⇔ ∀xm∀xnφ
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φ ∨ ψ the team is either of type φ or of type ψ (or both)

φ ∧ ψ the team is both of type φ and of type ψ

φ⊗ψ the team divides between type φ and type ψ

φ⊕ψ every division of the team yields type φ or type ψ

∼φ the team is not of type φ

> any team

⊥ no team

1 any non-empty team

0 only the empty team

Figure 6.1: The intuition behind the logical operations.

but in general (see Lemma 98) ∀xnφ < ! xnφ.

Definition 100 The dependence values are the following special sen-

tences of team logic:
> = =()

⊥ = ∼=()

0 = ¬=()

1 = ∼¬=()

What about ¬∼=()? This is not a sentence of team logic at all!

Example 101 Here are some trivial relations between the depen-

dence values:

1. ⊥ ⇒ 0⇒ >

2. ⊥ ⇒ 1⇒ >

3. 1 = ∼0,⊥ = ∼>

4. 0⇔ ∼1,> ⇔ ∼⊥

5. 0 = ¬>

The equation X = X ∪ X gives (φ ∧ ψ) ⇒ (φ ⊗ ψ), (φ ⊕ ψ) ⇒
(φ∨ψ). The equation X = X ∪∅ gives φ⇒ (φ ⊗ 0), (φ ⊕ ⊥)⇒ ∼φ.

The logic TL is much stronger than D. Let us immediately note the

failure of compactness:
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Sentence Teams of that type

> ∅, {∅}
⊥ (none)

1 {∅}
0 ∅

Figure 6.2: Dependence values in D.

Proposition 102 The logic TL does not satisfy the Compactness

Theorem.

Proof. Let φn be the sentence ∀x0...∀xn∃xn+1(¬x0 = xn+1 ∧ ... ∧
¬xn = xn+1). Then any finite subset of T = {φn : n ∈ N} ∪ {∼Φ∞}
has a model but T itself does not have a model. �

Proposition 103 The logic TL does not satisfy the Löwenheim-

Skolem Theorem. There is a sentence φ of team logic such that

φ has an infinite model model, but φ has no uncountable models.

There is also a sentence ψ of team logic such that ψ has an un-

countable model, but no countable models.

Proof. Recall Lemma 35. Let φ be the conjunction of P− and

∼∃x5∃x4 ! x0∃x1 ! x2∃x3(=(x2, x3) ∧ x4 < x5

∧ (((x0 = x2 ∧ x0 < x5) ∧
(x1 = x3 ∧ x1 < x4)) ∨
((¬x0 = x2 ∨ ¬x0 < x5) ∧
(¬x1 = x3 ∨ ¬x1 < x4)))).

Then φ has the infinite model (N,+, ·, 0, 1, <). But since every model

of φ is isomorphic to (N,+, ·, 0, 1, <), it cannot have any uncountable

models. For ψ recall the sentence Φcmpl from Section 2.3. Let ψ be the

conjunction of the axioms of dense linear order and ∼Φcmpl. Now ψ

has models, e.g. (R, <), but every model is a dense complete order and

therefore uncountable. �
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It follows that there cannot be any translation of team logic into Σ1
1, as

such a translation would yield both the Compactness Theorem and the

Löwenheim-Skolem Theorem as a consequence. With a translation to

Σ1
1 ruled out it is difficult to imagine what a game theoretical semantics

of team logic would look like.

Note that there cannot be a truth-definition for TL in TL: Suppose

τ ∗(x0) is in TL andM |= φ is equivalent toM |= τ ∗(pφq) in all Peano

models M. By using the formula ∼ τ ∗(x0) we can reprove Tarski’s

Undefinability of Truth theorem (Theorem 73).

Despite apparent similarities, team logic and linear logic ([6]) have

very little to do with each other. In linear logic resources are split into

“consumable” parts. In team logic resources are split into “coherent”

parts.

Exercise 118 Show that every formula of TL in which ∼ does not

occur is logically equivalent with a sentence of D.

Exercise 119 Prove Example 101.

Exercise 120 Prove the following equivalences:

φ ∧ > ⇔ φ

φ ∨ > ⇔ >
> ⊗ > ⇔ >
φ ⊕ > ⇔ >

Exercise 121 Prove the following equivalences:

φ ∧ ⊥ ⇔ ⊥
φ ∨ ⊥ ⇔ φ

φ ⊗ ⊥ ⇔ ⊥
⊥ ⊕ ⊥ ⇔ ⊥

Exercise 122 Prove the following equivalences:
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φ ∧ 0 ⇔ φ if φ ∈ D
φ ∨ 0 ⇔ φ if φ ∈ D
φ ⊗ 0 ⇔ φ

0 ⊕ 0 ⇔ 0

Exercise 123 Prove the following equivalences:

1 ⊗ 1 ⇔ 1

1 ⊕ 1 ⇔ 1

Exercise 124 Give an example which demonstrates ∀xnφ< ! xnφ.

Exercise 125 Suppose φ is a formula. Give a formula ψ with the

property that a team X is of type ψ if and only if every subset of

X is of type φ.

Exercise 126 Suppose φ is a formula. Give a formula ψ with the

property that a team X is of type ψ if and only if every subset of

X has a subset which is of type φ.

Exercise 127 Give a formula φ with the property that a team X

is of type φ if and only if every subset of X has a subset which is

of type φ, but it is not true that a team X is of type φ if and only

if every subset of X is of type φ.

Exercise 128 Show that ∼ is not definable from the other symbols

in team logic, that is, show that the sentence ∼P , where P is a

0-ary predicate symbol, is not logically equivalent to any sentence

of team logic of vocabulary {P} without ∼.

Exercise 129 Show that =(x1, ..., xn) is definable from the other

symbols in team logic and formulas of the form =(t). That is,

show that there is a formula φ(x1, ..., xn) in team logic such that

=(x1, ..., xn) and φ(x1, ..., xn) are logically equivalent and φ(x1, ..., xn)

has no occurrences of atomic formulas of the form =(t1, ..., tm),

where m ≥ 2.
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Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem

Theoreme über dichte Mengen. Skrifter utgit av Videnskappssel-

skapet i Kristiania, 1920.

[25] Thoralf Skolem. Selected works in logic. Edited by Jens Erik

Fenstad. Universitetsforlaget, Oslo, 1970.

[26] Alfred Tarski. The semantic conception of truth and the foundations

of semantics. Philos. and Phenomenol. Res., 4:341–376, 1944.

[27] Jouko Väänänen. On the semantics of informational independence.

Log. J. IGPL, 10(3):339–352, 2002.

[28] Jouko Väänänen. A remark on nondeterminacy in IF logic. Acta

Philosophica Fennica, vol. 78:71–77, 2006.

[29] John von Neumann and Oskar Morgenstern. Theory of Games

and Economic Behavior. Princeton University Press, Princeton,

New Jersey, 1944.

[30] Wilbur John Walkoe, Jr. Finite partially-ordered quantification. J.

Symbolic Logic, 35:535–555, 1970.

122

Cambridge University Press 2007



Index

Φ=, 18

ΦN , 22

Φ∼=, 18

Φ∞, 18

Φ≤, 18

ΦN, 21

ΦR,N, 22

ΦR, 21

Φcml, 19

Φext, 22

Φnr, 19

Φset, 23

Φwf , 20

Φeven, 17

α∗, 24

D, 4

D-equivalence, 46

D-semiequivalence, 46

α, 24

Abelard, 24

abelian, 19

absoluteness, 53

agent, 4

anti-symmetric, 20

arithmetical, 44

atomic formula, 5

automorphism, 18

avoiding, 51

axiom of extensionality, 22

backslashed quantifier, 15

Beth Definability Theorem, 41

Beth numbers, 52

binary tree, 20

bounded quantifiers, 52

chain, 20

Chinese Remainder Theorem, 43

codomain, 4

cofinality, 21

compactness theorem, 36

complete, 19

compositionality, 9

consistency problem, 51

consistent, 51

Continuum Hypothesis, 52

cumulative hierarchy, 22

decision problem, 51

defines, 41

degree, 18

dependence friendly logic, 15

dependence logic, 2, 4

dependence values, 57

123

Cambridge University Press 2007



determined, 24, 37

DF, 15

domain, 4

duplicate, 5

Eloise, 24

equicardinality, 18

extended IF logic, 55

false, 6

feature, 4

first order, 5

flatness test, 12

flattening, 13

free variable, 5
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Löwenheim-Skolem Theorem, 37

Law of Excluded Middle, 41

Levy hierarchy, 52

Liar Paradox, 41, 45

measurable cardinal, 52

model class, 49

Mostowski’s Collapsing Lemma, 53

non-determined, 37

nonvalid, 51

nonvalidity problem, 51

normal form, 39

opponent, 24

Padoa Principle, 41

partial play, 25

partially ordered, 20

Peano’s axioms, 42

perfect information, 24

play, 25

prenex normal form, 14

rank, 51

reflexive, 20

right orderable, 19

rigid, 18

root, 20

124

Cambridge University Press 2007



sentence, 5

separation Theorem, 37

shriek, 55

signal, 16

Skolem Normal Form, 38

slashed quantifier, 15

standard, 44

strategy, 25, 27, 32
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