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1
Introduction

A recurrent theme in this book is the concept of a game. There are essentially
three kinds of games in logic. One is the Semantic Game, also called the Eval-
uation Game, where the truth of a given sentence in a given model is at issue.
Another is the Model Existence Game, where the consistency in the sense of
having a model, or equivalently in the sense of impossibility to derive a con-
tradiction, is at issue. Finally there is the Ehrenfeucht–Fraı̈ssé Game, where
separation of a model from another by finding a property that is true in one
given model but false in another is the goal. The three games are closely linked
to each other and one can even say they are essentially variants of just one basic
game. This basic game arises from our understanding of the quantifiers. The
purpose of this book is to make this strategic aspect of logic perfectly transpar-
ent and to show that it underlies not only first-order logic but infinitary logic
and logic with generalized quantifiers alike.

We call the close link between the three games the Strategic Balance of
Logic (Figure 1.1). This balance is perfectly commutative, in the sense that
winning strategies can be transferred from one game to another. This mere
fact is testimony to the close connection between logic and games, or, thinking
semantically, between games and models. This connection arises from the na-
ture of quantifiers. Introducing infinite disjunctions and conjunctions does not
upset the balance, barring some set-theoretic issues that may surface. In the
last chapter of this book we consider generalized quantifiers and show that the
Strategic Balance of Logic persists even in the presence of generalized quanti-
fiers.

The purpose of this book is to present the Strategic Balance of Logic in all
its glory.
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2 Introduction

Figure 1.1 The Strategic Balance of Logic.
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2
Preliminaries and Notation

We use some elementary set theory in this book, mainly basic properties of
countable and uncountable sets. We will occasionally use the concept of count-
able ordinal when we index some uncountable sets. There are many excellent
books on elementary set theory. (See Section 2.7.) We give below a simplified
account of some basic concepts, the barest outline necessary for this book.

We denote the set {0, 1, 2, . . .} of all natural numbers by N, the set of ra-
tional numbers by Q, and the set of all real numbers by R. The power-set
operation is written

P(A) = {B : B ✓ A}.

We use A \ B to denote the set-theoretical difference of the sets A and B.
If f is a function, f 00X is the set {f(x) : x 2 X} and f�1(X) is the set
{x 2 dom(f) : f(x) 2 X}. Composition of two functions f and g is denoted
g � f and defined by (g � f)(x) = g(f(x)). We often write fa for f(a).
The notation idA is used for the identity function A ! A which maps every
element of A to itself, i.e. idA(a) = a for a 2 A.

2.1 Finite Sequences

The concept of a finite (ordered) sequence

s = (a0, . . . , an�1)

of elements of a given set A plays an important role in this book. Examples of
finite sequences of elements of N are

(8, 3, 9, 67, 200, 0)

(8, 8, 8)
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4 Preliminaries and Notation

(24).

We can identify the sequence s = (a0, . . . , an�1) with the function

s0 : {0, . . . , n� 1}! A,

where

s0(i) = ai.

The main property of finite sequences is: (a0, . . . , an�1) = (b0, . . . , bm�1) if
and only if n = m and ai = bi for all i < n. The number n is called the length
of the sequence s = (a0, . . . , an�1) and is denoted len(s). A special case is
the case len(s) = 0. Then s is called the empty sequence. There is exactly one
empty sequence and it is denoted by ;.

The Cartesian product of two sets A and B is written

A⇥B = {(a, b) : a 2 A, b 2 B}.

More generally

A0 ⇥ . . .⇥An�1 = {(a0, . . . , an�1) : ai 2 Ai for all i < n}.

An = A⇥ . . .⇥A (n times).

According to this definition, A1 6= A. The former consists of sequences of
length 1 of elements of A. Note that A0 = {;}.

Finite Sets

A set A is finite if it is of the form {a0, . . . , an�1} for some natural number n.
This means that the set A has at most n elements. If A has exactly n elements
we write |A| = n and call |A| the cardinality of A. A set which is not finite is
infinite. Finite sets form a so-called ideal, which means that:

1. ; is finite.
2. If A and B are finite, then so is A [B.
3. If A is finite and B ✓ A, then also B is finite.

Further useful properties of finite sets are:

1. If A and B are finite, then so is A⇥B.
2. If A is finite, then so is P(A).

Incomplete version for students of easllc2012 only.



2.2 Equipollence 5

The Axiom of Choice says that for every set A of non-empty sets there is a
function f such that f(a) 2 a for all a 2 A. We shall use the Axiom of Choice
freely without specifically mentioning it. It needs some practice in set theory
to see how the axiom is used. Often an intuitively appealing argument involves
a hidden use of it.

Lemma 2.1 A set A is finite if and only if every injective f : A ! A is a
bijection.

Proof Suppose A is finite and f : A ! B is an injection with B ⇢ A and
a 2 A \ B. Let a0 = a and an+1 = f(an). It is easy to see that an 6= am
whenever n < m, so we contradict the finiteness of A. On the other hand, if A
is infinite, we can (by using the Axiom of Choice) pick a sequence bn, n 2 N,
of distinct elements from A. Then the function g which maps each bn to bn+1

and is the identity elsewhere is an injective mapping from A into A but not a
bijection.

The set of all n-element subsets {a0, . . . , an�1} of A is denoted by [A]n.

2.2 Equipollence

Sets A and B are equipollent

A ⇠ B

if there is a bijection f : A! B. Then f�1 : B ! A is a bijection and

B ⇠ A

follows. The composition of two bijections is a bijection, whence

A ⇠ B ⇠ C =) A ⇠ C.

Thus ⇠ divides sets into equivalence classes. Each equivalence class has a
canonical representative (a cardinal number, see the Subsection “Cardinals”
below) which is called the cardinality of (each of) the sets in the class. The
cardinality of A is denoted by |A| and accordingly A ⇠ B is often written

|A| = |B|.

One of the basic properties of equipollence is that if

A ⇠ C,B ⇠ D and A \B = C \D = ;,

then

A [B ⇠ C [D.
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6 Preliminaries and Notation

Indeed, if f : A ! C is a bijection and g : B ! D is a bijection, then
f [ g : A [B ! C [D is a bijection. If the assumption

A \B = C \D = ;

is dropped, the conclusion fails, of course, as we can have A \ B = ; and
C = D. It is also interesting to note that even if A \ B = C \ D = ;, the
assumption A[B ⇠ C[D does not imply B ⇠ D even if A ⇠ C is assumed:
Let A = N, B = ;, C = {2n : n 2 N}, and D = {2n+1 : n 2 N}. However,
for finite sets this holds: if A [B is finite,

A [B ⇠ C [D, A ⇠ C, A \B = C \D = ;

then

B ⇠ D.

We can interpret this as follows: the cancellation law holds for finite numbers
but does not hold for cardinal numbers of infinite sets.

There are many interesting and non-trivial properties of equipollence that
we cannot enter into here. For example the Schröder–Bernstein Theorem: If
A ⇠ B and B ✓ C ✓ A, then A ⇠ C. Here are some interesting consequences
of the Axiom of Choice:

• For all A and B there is C such that A ⇠ C ✓ B or B ⇠ C ✓ A.
• For all infinite A we have A ⇠ A⇥A.

It is proved in set theory by means of the Axiom of Choice that |A|  |B|
holds in the above sense if and only if the cardinality |A| of the set A is at
most the cardinality |B| of the set B. Thus the notation |A|  |B| is very
appropriate.

2.3 Countable sets

A set A which is empty or of the form {a0, a1, . . .}, i.e. {an : n 2 N}, is called
countable. A set which is not countable is called uncountable. The countable
sets form an ideal just as the finite sets do. We now prove two important results
about countability. Both are due to Georg Cantor:

Theorem 2.2 If A and B are countable, then so is A⇥B.

Proof If either set is empty, the Cartesian product is empty. So let us assume

Incomplete version for students of easllc2012 only.



2.4 Ordinals 7

the sets are both non-empty. Suppose A = {a0, a1, . . .} and B = {b0, b1, . . .}.
Let

cn =

⇢
(ai, bj), if n = 2i3j

(a0, b0), otherwise.

Now A⇥B = {cn : n 2 N}, whence A⇥B is countable.

Theorem 2.3 The union of a countable family of countable sets is countable.

Proof The empty sets do not contribute anything to the union, so let us as-
sume all the sets are non-empty. Suppose An is countable for each n 2 N,
say, An = {anm : m 2 N} (we use here the Axiom of Choice to choose an
enumeration for each An). Let B =

S
n An. We want to represent B in the

form {bn : n 2 N}. If n is given, we consider two cases: If n is 2i3j for some
i and j, we let bn = aij . Otherwise we let bn = a00.

Theorem 2.4 The power-set of an infinite set is uncountable.

Proof Suppose A is infinite and P(A) = {bn : n 2 N}. Since A is infinite,
we can choose distinct elements {an : n 2 N} from A. (This uses the Axiom of
Choice. For an argument which avoids the Axiom of Choice see Exercise 2.14.)
Let

B = {an : an /2 bn}.

Since B ✓ A, there is some n such that B = bn. Is an an element of B
or not? If it is, then an /2 bn which is a contradiction. So it is not. But then
an 2 bn = B, again a contradiction.

2.4 Ordinals

The ordinal numbers introduced by Cantor are a marvelous general theory of
measuring the potentially infinite. They are intimately related to inductive def-
initions and occur therefore widely in logic. It is easiest to understand ordinals
in the context of games, although this was not Cantor’s way. Suppose we have
a game with two players I and II. It does not matter what the game is, but it
could be something like chess. If II can force a win in n moves we say that
the game has rank n. Suppose then II cannot force a win in n moves for any
n, but after she has seen the first move of I, she can fix a number n and say
that she can force a win in n moves. This situation is clearly different from
being able to say in advance what n is. So we invent a symbol ! for the rank
of this game. In a clear sense ! is greater than each n but there does not seem
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8 Preliminaries and Notation

to be any possible rank between all the finite numbers n and !. We can think
of ! as an infinite number. However, there is nothing metaphysical about the
infiniteness of !. It just has infinitely many predecessors. We can think of ! as
a tree T! with a root and a separate branch of length n for each n above the
root as in the tree on the left in Figure 2.1.

Figure 2.1 T! and T!+1.

Suppose then II is not able to declare after the first move how many moves
she needs to beat II, but she knows how to play her first move in such a way
that after I has played his second move, she can declare that she can win in n
moves. We say that the game has rank ! + 1 and agree that this is greater than
! but there is no rank between them. We can think of ! + 1 as the tree which
has a root and then above the root the tree T! , as in the tree on the right in
Figure 2.1. We can go on like this and define the ranks ! + n for all n.

Suppose now the rank of the game is not any of the above ranks ! + n, but
still II can make an interesting declaration: she says that after the first move
of I she can declare a number m so that after m moves she declares another
number n and then in n moves she can force a win. We would say that the rank
of the game is !+!. We can continue in this way defining ranks of games that
are always finite but potentially infinite. These ranks are what set theorists call
ordinals.

We do not give an exact definition of the concept of an ordinal, because it
would take us too far afield and there are excellent textbooks on the topic. Let
us just note that the key properties of ordinals and their total order < are:

1. Natural numbers are ordinals.
2. For every ordinal ↵ there is an immediate successor ↵+ 1.
3. Every non-empty set of ordinals has a smallest element.
4. Every non-empty set of ordinals has a supremum (i.e. a smallest upper

bound).
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2.5 Cardinals 9

The supremum of the set {0, 1, 2, 3, . . .} of ordinals is denoted by !. An
ordinal is said to be countable if it has only countably many predecessors,
otherwise uncountable. The supremum of all countable ordinals is denoted by
!1. Here is a picture of the ordinal number “line”:

0 < 1 < 2 < . . . < ! < ! + 1 < . . . < ↵ < ↵+ 1 < . . . < !1 < . . .

Ordinals that have a last element, i.e. are of the form ↵ + 1, are called suc-
cessor ordinals; the rest are limit ordinals, like ! and ! + !.

Ordinals are often used to index elements of uncountable sets. For example,
{a↵ : ↵ < �} denotes a set whose elements have been indexed by the ordinal
�, called the length of the sequence. The set of all such sequences of length
� of elements of a given set A is denoted by A� . The set of all sequences of
length < � of elements of a given set A is denoted by A<� .

2.5 Cardinals

Historically cardinals (or more exactly cardinal numbers) are just representa-
tives of equivalence classes of equipollence. Thus there is a cardinal number
for countable sets, denoted @0, a cardinal number for the set of all reals, de-
noted c, and so on. There is some question as to what exactly are these cardinal
numbers. The Axiom of Choice offers an easy answer, which is the prevailing
one, as it says that every set can be well-ordered. Then we can let the cardi-
nal number of a set be the order-type of the smallest well-order equipollent
with the set. Equivalently, the cardinal number of a set is the smallest ordinal
equipollent with the set. If we leave aside the Axiom of Choice, some sets need
not have have a cardinal number. However, as is customary in current set the-
ory, let us indeed assume the Axiom of Choice. Then every set has a cardinal
number and the cardinal numbers are ordinals, hence well-ordered. The ↵th in-
finite cardinal number is denoted @↵. Thus @1 is the next in order of magnitude
from @0. The famous Continuum Hypothesis is the statement that @1 = c.

For every set A there exists (by the Axiom of Choice) an ordinal ↵ such
that the elements of A can be listed as {a� : � < ↵}. The smallest such ↵ is
called the cardinal number, or cardinality, of A and denoted by |A|. Thus cer-
tain ordinals are cardinal numbers of sets. Such ordinals are called cardinals.
They are considered as canonical representatives of each equivalence class of
equipollent sets. For example, all finite numbers are cardinals, as are ! and !1.
The smallest cardinal such that the smaller infinite cardinals can be enumer-
ated in increasing order as � , � < ↵, is denoted !↵, or alternatively @↵. If
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10 Preliminaries and Notation

 = @↵, then @↵+1 is denoted + and is called a successor cardinal. Cardinals
that are not successor cardinals are called limit cardinals.

Arithmetic operations + �, · �,� for cardinals are defined as follows:

+ � = | [ �|,  · � = |⇥ �|.

Moreover, exponentiation � of cardinal numbers is defined as the cardinality
of the set � of sequences of elements of  of length �. A certain amount of
knowledge about the arithmetic of cardinal numbers in necessary in this book,
especially in the later chapters, and Chapters 8 and 9 in particular.

The cofinality of an ordinal ↵ is the smallest ordinal � for which there is a
function f : � ! ↵ such that (1) ⇠ < ⇣ < � implies f(⇠) < f(⇣), and (2) for
all ⇠ < ↵ there is some ⇣ < � such that ⇠ < f(⇣). We use cf(↵) to denote the
cofinality of ↵. A cardinal  is said to be regular if cf() = , and singular
if cf() < . Successor cardinals are always regular. The smallest singular
cardinal is @! .

The Continuum Hypothesis (CH) is the hypothesis |P(N)| = @1. Neither it
nor its negation can be derived from the usual Zermelo–Fraenkel axioms of set
theory and therefore it (or its negation), like many other similar hypotheses,
has to be explicitly mentioned as an assumption, when it is used.

2.6 Axiom of Choice

We have already mentioned the Axiom of Choice. There are so many equiv-
alent formulations of this axiom that books have been written about it. The
most notable formulation is the Well-Ordering Principle: every set is equipol-
lent with an ordinal. The Axiom of Choice is sometimes debated because it
brings arbitrariness or abstractness into mathematics, often with examples that
can be justifiably called pathological, like the Banach–Tarski Paradox: The
unit sphere in three-dimensional space can be split into five pieces so that if
the pieces are rigidly moved and rotated they form two spheres, each of the
original size. The trick is that the splitting exists only in the abstract world of
mathematics and can never actually materialize in the physical world. Con-
clusion: infinite abstract objects do not obey the rules we are used to among
finite concrete objects. This is like the situation with sub-atomic elementary
particles, where counter-intuitive phenomena, such as entanglement, occur.

Because of the abstractness brought about by the Axiom of Choice it has
received criticism and some authors always mention explicitly if they use it
in their work. The main problem in working without the Axiom of Choice is
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3
Games

3.1 Introduction

In this first part we march through the mathematical details of zero-sum two-
person games of perfect information in order to be well prepared for the intro-
duction of the three games of the Strategic Balance of Logic (see Figure 1.1)
in the subsequent parts of the book. Games are useful as intuitive guides in
proofs and constructions but it is also important to know how to make the in-
tuitive arguments and concepts mathematically exact.

3.2 Two-Person Games of Perfect Information

Two-person games of perfect information are like chess: two players set their
wits against each other with no role for chance. One wins and the other loses.
Everything is out in the open, and the winner wins simply by having a better
strategy than the loser.

A Preliminary Example: Nim
In the game of Nim, if it is simplified to the extreme, there are two players I
and II and a pile of six identical tokens. During each round of the game player
I first removes one or two tokens from the top of the pile and then player II
does the same, if any tokens are left. Obviously there can be at most three
rounds. The player who removes the last token wins and the other one loses.

The game of Figure 3.1 is an example of a zero-sum two-person game of
perfect information. It is zero-sum because the victory of one player is the loss
of the other. It is of perfect information because both players know what the
other player has played. A moment’s reflection reveals that player II has a way
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cabulary L = {W}, where W is a four-place predicate symbol. Let M be an
L-structure2 with M = {1, 2} and

WM = {(a0, b0, a1, b1) 2M4 : a0 + b0 + a1 + b1 = 6}.

Now we have just proved

M |= 8x09y08x19y1W (x0, y0, x1, y1). (3.1)

Conversely, if M is an arbitrary L-structure, condition (3.1) defines some
game, maybe not a very interesting one but a game nonetheless: Player I picks
an element a0 2 M , then player II picks an element b0 2 M . Then the same
is repeated: player I picks an element a1 2M , then player II picks an element
b1 2 M . After this player II is declared the winner if (a0, b0, a1, b1) 2 WM,
and otherwise player I is the winner. By varying the structure M we can model
in this way various two-person two-round games of perfect information. This
gives a first hint of the connection between games and logic.

Games – a more general formulation

Above we saw an example of a two-person game of perfect information. This
concept is fundamental in this book. In general, the simplest formulation of
such a game is as follows (see Figure 3.4): There are two players3 I and II, a
domain A, and a natural number n representing the length of the game. Player
I starts the game by choosing some element x0 2 A. Then player II chooses
y0 2 A. After xi and yi have been played, and i + 1 < n, player I chooses
xi+1 2 A and then player II chooses yi+1 2 A. After n rounds the game ends.
To decide who wins we fix beforehand a set W ✓ A2n of sequences

(x0, y0, . . . , xn�1, yn�1) (3.2)
2 For the definition of an L-structure see Definition 5.1.
3 There are various names in the literature for player I and II, such as player I and player II,

spoiler and duplicator, Nature and myself, or Abelard and Eloise.
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3.2 Two-Person Games of Perfect Information 17

I II
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Figure 3.4 A game.

and declare that player II wins the game if the sequence formed during the
game is in W ; otherwise player I wins. We denote this game by Gn(A,W ). For
example, if W = ;, player II cannot possibly win, and if W = A2n, player
I cannot possibly win. If W is a set of sequences (x0, y0, . . . , xn�1, yn�1)
where x0 = x1 and if moreover A has at least two elements, then II could not
possibly win, as she cannot prevent player I from playing x0 and x1 differently.
On the other hand, W could be the set of all sequences (3.2) such that y0 = y1.
Then II can always win because all she has to do during the game is make sure
that she chooses y0 and y1 to be the same element.

If player II has a way of playing that guarantees a sure win, i.e. the opponent
I loses whatever moves he makes, we say that player II has a winning strategy
in the game. Likewise, if player I has a way of playing that guarantees a sure
win, i.e. player II loses whatever moves she makes, we say that player I has
a winning strategy in the game. To make intuitive concepts, such as “way of
playing” more exact in the next chapter we define the basic concepts of game
theory in a purely mathematical way.

Example 3.1 The game of Nim presented in the previous chapter is in the
present notation G3({1, 2},W ), where

W =

(
(a0, b0, a1, b1, a2, b2) 2 {1, 2}6 :

nX
i=0

(ai + bi) = 6 for some n  2

)
.

We allow three rounds as theoretically the players could play three rounds even
if player II can force a win in two rounds.

Example 3.2 Consider the following game on a set A of integers:
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20 Games

Example 3.5 The following game has no moves:

I II

If W = {;}, player II is the winner. If W = ;, player I is the winner. So this
is a game with 0 rounds. In practice one of the players would find these games
unfair as he or she loses without even having a chance to make a move. It is
like being invited to play a game of chess starting in a position where you are
already in check-mate.

3.3 The Mathematical Concept of Game

Let A be an arbitrary set and n a natural number. Let W ✓ A2n. We redefine
the game

Gn(A,W )

in a purely mathematical way. Let us fix two players I and II. A play of one of
the players is any sequence x̄ = (x0, . . . , xn�1) of elements of A. A sequence

(x̄; ȳ) = (x0, y0, . . . , xn�1, yn�1),

of elements of A is called a play (of Gn(A,W )). So we have defined the con-
cept of play without any reference to playing the game as an act. The play
(x̄; ȳ) is a win for player II if

(x0, y0, . . . , xn�1, yn�1) 2W

and otherwise a win for player I.

Example 3.6 Let us consider the game of chess in this mathematical frame-
work. We modify the game so that the number of rounds is for simplicity ex-
actly n and Black wins a draw, i.e. if neither player has check-mated the other
player during those up to n rounds. If a check-mate is reached the rest of the
n-round game is of course irrelevant and we can think that the game is finished
with “dummy” moves. Let A be the set of all possible positions, i.e. config-
urations of the pieces on the board. A play x̄ of I (White) is the sequence of
positions where White has just moved. A play ȳ of II is the sequence of posi-
tions where Black has just moved. We let W be the set of plays (x̄; ȳ), where
either White has not obeyed the rules, or Black has obeyed the rules and White
has not check-mated Black. With the said modifications, chess is just the game
Gn(A,W ) with White playing as player I and Black playing as player II.
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A strategy of player I in the game Gn(A,W ) is a sequence

� = (�0, . . . ,�n�1)

of functions �i : Ai ! A. We say that player I has used the strategy � in the
play (x̄; ȳ) if for all 0 < i < n:

xi = �i(y0, . . . , yi�1)

and

x0 = �0.

The strategy � of player I is a winning strategy, if every play where I has used
� is a win for player I. Note that the strategy depends only on the opponent’s
moves. It is tacitly assumed that when the function �i+1 is used to determine
xi+1, the previous functions �0, . . . ,�i were used to determine the previous
moves x0, . . . , xn. Thus a strategy � is a winning strategy because of the con-
certed effect of all the functions �0, . . . ,�n�1.

A strategy of player II in the game Gn(A,W ) is a sequence

⌧ = (⌧0, . . . , ⌧n�1)

of functions ⌧i : Ai+1 ! A. We say that player II has used the strategy ⌧ in
the play (x̄; ȳ) if for all i < n:

yi = ⌧i(x0, . . . , xi).

The strategy ⌧ of player II is a winning strategy, if every play where player
II has used ⌧ is a win for player II. A player who has a winning strategy in
Gn(A,W ) is said to win the game Gn(A,W ).

3.4 Game Positions

A position of the game Gn(A,W ) is any initial segment

p = (x0, y0, . . . , xi�1, yi�1)

of a play (x̄; ȳ), where i  n. Positions have a natural ordering: a position p0

extends a position p, if p is an initial segment of p0. Of course, this extension-
relation is a partial ordering4 of the set of all positions, that is, if p0 extends p
and p00 extends p0, then p00 extends p, and if p and p0 extend each other, then
p = p0. The empty sequence ; is the smallest element, and the plays (x̄; ȳ) are
4 See Example 5.7 for the definition of partial order. Indeed this is a tree-ordering. See

Example 5.8 for the definition of tree-ordering.
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maximal elements of this partial ordering. A common problem of games is that
the set of all positions is huge.

A strategy of player I in position p = (x0, y0, . . . , xi�1, yi�1) in the game
Gn(A,W ) is a sequence

� = (�0, . . . ,�n�1�i)

of functions �j : Aj ! A. We say that player I has used strategy � after
position p in the play (x̄; ȳ), if (x̄; ȳ) extends p and for all j with i < j < n
we have

xj = �j�i(yi, . . . , yj�1)

and

xi = �0.

The strategy � of player I in position p is a winning strategy in position p, if
every play extending p where player I has used � after position p is a win for
player I.

A strategy of player II in position p in the game Gn(A,W ) is a sequence

⌧ = (⌧0, . . . , ⌧n�1�i)

of functions ⌧j : Aj+1 ! A. We say that player II has used strategy ⌧ after
position p in the play (x̄; ȳ) if (x̄; ȳ) extends p and for all j with i  j < n we
have

yj = ⌧j�i(xi, . . . , xj).

The strategy ⌧ of player II in position p is a winning strategy in position p, if
every play extending p where player II has used ⌧ after p is a win for player
II.

The following important lemma shows that if player II has a chance in the
beginning, i.e. player I does not already have a winning strategy, she has a
chance all the way.

Lemma 3.7 (Survival Lemma) Suppose A is a set, n is a natural num-
ber, W ✓ A2n and p = (x0, y0, . . . , xi�1, yi�1) is a position in the game
Gn(A,W ), with i < n. Suppose furthermore that player I does not have a
winning strategy in position p. Then for every xi 2 A there is yi 2 A such that
player I does not have a winning strategy in position p0 = (x0, y0, . . . , xi, yi).

Proof The proof is by contradiction. The intuition is clear: if player I had a
smart move xi so that he has a strategy for winning whatever the response yi of
player II is, then we could argue that, contrary to the hypothesis, player I had
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a winning strategy already in position p, as he wins whatever II moves. Let us
now make this idea more exact. Suppose there were an xi 2 A such that for all
yi 2 A player I has a winning strategy �yi in position p0 = (x0, y0, . . . , xi, yi).
We define a strategy � = (�0, . . . ,�n�1�i) of player I in position p as follows:
�0(;) = xi and

�j�i(yi, . . . , yj�i) = �yi(yi+1, . . . , yj�i).

This is a winning strategy of I in position p, contrary to our assumption that
none exists.

The following concept is of fundamental importance in game theory and in
applications to logic, in particular:

Definition 3.8 A game is called determined if one of the players has a win-
ning strategy. Otherwise the game is non-determined.

Virtually all games that one comes across in logic are determined. The fol-
lowing theorem is the crucial fact behind this phenomenon:

Theorem 3.9 (Zermelo) If A is any set, n is a natural number, and W ✓ A2n,
then the game Gn(A,W ) is determined.

Proof Suppose player I has no winning strategy. Then player II has a win-
ning strategy based on repeated use of Lemma 3.7. Player II notes that in the
beginning of the game, that is, in position ;, player I does not have a winning
strategy. Then by the Survival Lemma 3.7 she can, whatever player I moves,
find a move such that afterwards player I still does not have a winning strategy.
In short, the strategy of player II is to prevent player I from having a winning
strategy. After n rounds the game ends and player I still does not have a win-
ning strategy. That means player I has lost and player II has won. Let us now
make this more precise: We define a strategy

⌧ = (⌧0, . . . , ⌧n�1)

of player II in the game Gn(A,W ) as follows: Let a be some arbitrary element
of A. By Lemma 3.7 we have for each position p = (x0, y0, . . . , xi�1, yi�1)
in the game Gn(A,W ) such that player I does not have a winning strategy in
position p and each xi 2 A some yi 2 A such that player I does not have a
winning strategy in position p0 = (x0, y0, . . . , xi, yi). Let us denote this yi by

yi = f(p, xi).
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If p = (x0, y0, . . . , xi�1, yi�1) is a position in which player I does have a win-
ning strategy, we let f(p, xi) = a. We have defined a function f defined on po-
sitions p and elements xi 2 A. Let ⌧0(x0) = f(;, x0). Assuming ⌧0, . . . , ⌧i�1

have been defined already, let

⌧i(x0, . . . , xi) = f(p, xi),

where

p = (x0, y0, . . . , xi�1, yi�1)

and

y0 = ⌧0(x0)
yi�1 = ⌧i�1(x0, . . . , xi�1).

It is easy to see that in every play in which player II uses this strategy, every
position p is such that player I does not have a winning strategy in position p.
It is also easy to see that this is a winning strategy of player II.

3.5 Infinite Games

The concept of a game is by no means limited to games with just finitely many
rounds. Imagine a chess board which extends the usual board left and right
without end. Then the chess game could go on for infinitely many rounds with-
out the same configuration of pieces coming up twice. A simple infinite game
is one in which two players pick natural numbers each choosing a bigger num-
ber, if he or she can, than the opponent. There is no end to this game, since
there are infinitely many natural numbers. A third kind of infinite game is the
following:

Example 3.10 Suppose A is a set of real numbers on the unit interval. We
describe a game we denote by G(A). During the game the players decide the
decimal expansion of a real number r = 0.d0d1 . . . on the interval [0, 1]. Player
I decides the even digits d2n and player II the odd digits d2n+1. Player II
wins if r 2 A. If A is countable, say A = {bn : n 2 N}, player I has a
winning strategy: during round n he chooses the digit d2n so that r 6= bn.
If the complement of A is countable, player II wins with the same strategy.
What if A and its complement are uncountable? This is a well-known and
much studied hard question. (See e.g. Jech (1997).)
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I II

x0

y0

x1

y1

...
...

Figure 3.5 An infinite game.

If A is any set, we use AN to denote infinite sequences

(x0, x1, . . .)

of elements of A. We can think of such sequences as limits of an increasing
sequence

(x0), (x0, x1), (x0, x1, x2), . . .

of finite sequences.
Let A be an arbitrary set. Let W ✓ AN. We define the game

G!(A,W )

as follows (see Figure 3.5): An infinite sequence

(x̄; ȳ) = (x0, y0, x1, y1, . . .),

of elements of A is called a play (of G!(A,W )). A play of one of the players
is likewise any infinite sequence x̄ = (x0, x1, . . .) of elements of A. The play
(x̄; ȳ) is a win for player II if

(x0, y0, x1, y1, . . .) 2W

and otherwise a win for player I .
A strategy of player I in the game G!(A,W ) is an infinite sequence

� = (�0,�1, . . .)

of functions �i : Ai ! A. We say that player I has used the strategy � in the
play (x̄; ȳ) if for all i 2 N:

xi = �i(y0, . . . , yi�1)

and

x0 = �0.
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The strategy � of player I is a winning strategy, if every play where I has used
� is a win for player I.

A strategy of player II in the game G!(A,W ) is an infinite sequence

⌧ = (⌧0, ⌧1, . . .)

of functions ⌧i : Ai+1 ! A. We say that player II has used the strategy ⌧ in
the play (x̄; ȳ) if for all i < n:

yi = ⌧i(x0, . . . , xi).

The strategy ⌧ of player II is a winning strategy, if every play where player II
has used ⌧ is a win for player II. A player is said to win the game G!(A,W )
if he or she has a winning strategy in it.

A position of the infinite game G!(A,W ) is any initial segment

p = (x0, y0, . . . , xi�1, yi�1)

of a play (x̄; ȳ). We say that player I has used strategy � = (�0,�1, . . .) after
position p in the play (x̄; ȳ), if (x̄; ȳ) extends p and for all j with i < j we
have xj = �j�i(yi, . . . , yj�1) and xi = �0. The strategy � of player I is a
winning strategy in position p, if every play extending p where player I has
used � after position p is a win for player I. We say that player II has used
strategy ⌧ = (⌧0, ⌧1, . . .) after position p in the play (x̄; ȳ) if for all j with
i  j we have yj = ⌧j�i(xi, . . . , xj). The strategy ⌧ of player II is a winning
strategy in position p, if every play extending p where player II has used ⌧
after p is a win for player II.

An important example of a class of infinite games is the class of open or
closed games of length !. A subset W of AN is open,5 if

(x0, y0, x1, y1, . . .) 2W

implies the existence of n 2 N such that

(x0, y0, . . . , xn�1, yn�1, x
0
n, y

0
n, x

0
n+1, y

0
n+1, . . .) 2W

for all x0
n, y

0
n, x

0
n+1, y

0
n+1, . . . 2 A. Respectively, W is closed if AN \ W

is open. Finally, W is clopen if it is both open and closed. We call a game
G!(A,W ) closed (or open or clopen) if the set W is. We are mainly concerned
in this book with closed games. A typical strategy of player II in a closed game
is to “hang in there”, as she knows that if player I ends up winning the play
p = (x0, y0, . . .), that is, p /2 W , there is some n such that player I won the
game already in position (x0, y0, . . . , xn�1, yn�1).

5 The collection of open subsets of AN is a topology, hence the name.
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We can think of infinite games as limits of finite games as follows: Any
finite game Gn(A,W ) can be made infinite by disregarding the moves after
the usual n moves. The resulting infinite game is clopen (see Exercise 3.31).
On the other hand, if G!(A,W ) is an infinite game and n 2 N we can form an
n-round game by simply considering only the first n rounds of G!(A,W ) and
declaring a play of n rounds a win for player II if any infinite play extending
it is in W . Unless W is open or closed, there may be very little connection
between the resulting finite games and the original infinite game (see however
Exercise 3.32).

Lemma 3.11 (Infinite Survival Lemma) Suppose A is a set, W ✓ AN, and
p = (x0, y0, . . . , xi�1, yi�1) is a position in the game G!(A,W ), with i 2 N.
Suppose furthermore that player I does not have a winning strategy in position
p. Then for every xi 2 A there is yi 2 A such that player I does not have a
winning strategy in position p0 = (x0, y0, . . . , xi, yi).

Proof The proof is by contradiction. Suppose there were an xi 2 A such
that for all yi 2 A player I has a winning strategy �yi in position p0 =
(x0, y0, . . . , xi, yi). We define a strategy � = (�0,�1, . . .) of player I in posi-
tion p as follows: �0(;) = xi and for j > i,

�j�i(yi, . . . , yj�1) = �yi(yi+1, . . . , yj�i).

This is a winning strategy of player I in position p, contrary to assumption.

Theorem 3.12 (Gale–Stewart) If A is any set and W ✓ AN is open or closed,
then the game G!(A,W ) is determined.

Proof Suppose first W is closed and player I has no winning strategy. We
define a strategy

⌧ = (⌧0, ⌧1, . . .)

of player II in the game G!(A,W ) as follows: Let a be some arbitrary element
of A. By Lemma 3.11 we have for each position p = (x0, y0, . . . , xi�1, yi�1)
in the game G!(A,W ) such that player I does not have a winning strategy in
position p, and each xi 2 A, some yi 2 A such that player I does not have a
winning strategy in position p0 = (x0, y0, . . . , xi, yi). Let us denote this yi by

yi = f(p, xi).

If p = (x0, y0, . . . , xi�1, yi�1) is a position in which player I does have a
winning strategy, we let f(p, xi) = a. We have defined a function f de-
fined on positions p and elements xi 2 A. Let ⌧0(x0) = f(;, x0). Assuming
⌧0, . . . , ⌧i�1 have been defined already, let ⌧i(x0, . . . , xi) = f(p, xi), where
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p = (x0, y0, . . . , xi�1, yi�1) and y0 = ⌧0(x0), yi�1 = ⌧i�1(x0, . . . , xi�1).
It is easy to see that in every play in which player II uses this strategy, every
position p is such that player I does not have a winning strategy in position p.
It is also easy to see that this is a winning strategy of player II.

The proof is similar if W is open. It follows that G!(A,W ) is determined.

Theorem 3.12 can been vastly generalized, see e.g. (Jech, 1997, Chapter 33).
The Axiom of Determinacy says that the game G!(A,W ) is determined for all
sets A and W . However, this axiom contradicts the Axiom of Choice. By using
the Axiom of Choice one can show that there are sets A of real numbers such
that the game G(A) is not determined (see Exercise 3.37).

3.6 Historical Remarks and References

The mathematical theory of games was started by von Neumann and Morgen-
stern (1944). For the early history of two-person zero-sum games of perfect in-
formation, see Schwalbe and Walker (2001). See Mycielski (1992) for a more
recent survey on games of perfect information. Theorem 3.12 goes back to
Gale and Stewart (1953).

Exercises

3.1 Consider the following game: Player I picks a natural number n. Then
player II picks a natural number m. If 2m = n, then II wins, otherwise
I wins. Express this game in the form G1(A,W ).

3.2 Consider the following game: Player I picks a natural number n. Then
player II picks two natural numbers m and k. If m ·k = n, then II wins,
otherwise I wins. Express this game in the form G2(A,W ).

3.3 Consider G3(A,W ), where A = {0, 1, 2} and
1. W = {(x0, y0, x1, y1, x2, y2) 2 A3 : x0 = y2}.
2. W = {(x0, y0, x1, y1, x2, y2) 2 A3 : y0 6= x2 or y2 6= x0}.
3. W = {(x0, y0, x1, y1, x2, y2) 2 A3 : x0 6= y2 and x1 6= y2 and x2 6=

y2}.
Who has a winning strategy?

3.4 Suppose f : R ! R is a mapping. Express the condition that f is uni-
formly continuous as a game and as the truth of a first-order sentence in
a suitable structure.
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3.10 Examine the game determined by condition (3.1) M = N and WM =
{(a0, b0, a1, b1) 2M4 : a0 < b0 and either a1 does not divide b0 or b1 =
a1 = 1 or b1 = a1 = b0}. Who has a winning strategy?

3.11 Suppose X is a set of positions of the game Gn(A,W ) such that

1. ; 2 X .
2. For all i < n, all (x0, y0, . . . , xi�1, yi�1) 2 X , and all xi 2 A there

is yi 2 A such that (x0, y0, . . . , xi, yi) 2 X .
3. If p = (x0, y0, . . . , xn�1, yn�1) 2 X , then p 2W .

Show that player II has a winning strategy in the game Gn(A,W ). Give
such a set for the game of Example 3.1.

3.12 Suppose that player II has a winning strategy in the game Gn(A,W ).
Show that there is a set X of positions of the game Gn(A,W ) satisfying
conditions 1–3 of the previous exercise.

3.13 Suppose X is a set of positions of the game Gn(A,W ) such that

1. ; 2 X .
2. For all i < n, all (x0, y0, . . . , xi�1, yi�1) 2 X there is xi 2 A such

that for all yi 2 A we have (x0, y0, . . . , xi, yi) 2 X .
3. If p = (x0, y0, . . . , xn�1, yn�1) 2 X , then p /2W .

Show that player I has a winning strategy in the game Gn(A,W ). Give
such a set for the game of Example 3.1 when we start with seven tokens.

3.14 Suppose that player I has a winning strategy in the game Gn(A,W ).
Show that there is a set X of positions of the game Gn(A,W ) satisfying
conditions 1–3 of the previous exercise.

3.15 Suppose A is finite. Describe an algorithm which searches for a winning
strategy for a player in Gn(A,W ), provided the player has one.

3.16 Finish the proof of Lemma 3.7 by showing that the strategy described in
the proof is indeed a winning strategy of player I.

3.17 Finish the proof of Theorem 3.9 by showing that the strategy described
in the proof is indeed a winning strategy of player II.

3.18 Consider G2(A,W ), where A = {0, 1} and

1. W = {(x0, y0, x1, y1) 2 A2 : x0 = y1}.
2. W = {(x0, y0, x1, y1) 2 A2 : y0 6= x1 or y1 6= x0}.
3. W = {(x0, y0, x1, y1) 2 A2 : x0 6= y1 and x1 6= y1}.

In each case give a winning strategy for one of the players.
3.19 Suppose � is a strategy of player I and ⌧ a strategy of player II in

Gn(A,W ). Show that there is exactly one play (x̄; ȳ) of Gn(A,W ) such
that player I has used � and player II has used ⌧ in it.

3.20 Show that at most one player can have a winning strategy in Gn(A,W ).
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3.21 Give the winning strategy of player II in Nim (Example 3.1) in the form
⌧ = (⌧0, ⌧1).

3.22 Consider the game of Example 3.3 when f(x) = 2x + 3, a 2 R, and
b = 2a+ 3. Give some winning strategy of player II.

3.23 Consider the game of Example 3.3 when f(x) = 2x + 3, a = 1 and
b = 4. Give some winning strategy of player I.

3.24 Consider the game of Example 3.3 when f(x) = x2, a 2 R, and b = a2.
Give some winning strategy of player II.

3.25 A more general version of Nim has m tokens rather than six. Decide who
has a winning strategy for each m and give the winning strategy.

3.26 Suppose we have two games Gn(A,W ) and Gn(A0,W 0), where A\A0 =
;. Let A00 = A [A0 and let W 00 be the set of sequences

(x0, y0, . . . , x2n�1, y2n�1),

which satisfy the following condition:

(x0, y0, x2, y2 . . . , x2n�2, yn�2) 2W

and

(x1, y1, x3, y3, . . . , x2n�1, y2n�1) 2W 0.

Show that:

1. If player I has a winning strategy in Gn(A,W ) or in Gn(A0,W 0),
then he has one in G2n(A00,W 00).

2. If player II has a winning strategy in Gn(A,W ) and in Gn(A0,W 0),
then she has one in G2n(A00,W 00).

3.27 Suppose we have two games Gn(A,W ) and Gn(A0,W 0). Let A00 = A⇥
A0 and let W 00 be the set of sequences

(((x0, x
0
0), (y0, y

0
0)), . . . , ((xn�1, x

0
n�1), (yn�1, y

0
n�1))),

where

(x0, y0, . . . , xn�1, yn�1) 2W

and

(x0
0, y

0
0, . . . , x

0
n�1, y

0
n�1) 2W 0.

Show that:

1. If player I has a winning strategy in Gn(A,W ) or in Gn(A0,W 0),
then he has one in Gn(A00,W 00).

2. If player II has a winning strategy in Gn(A,W ) and in Gn(A0,W 0),
then she has one in Gn(A00,W 00).
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5
Models

5.1 Introduction

The concept of a model (or structure) is one of the most fundamental in logic.
In brief, while the meaning of logical symbols ∧,∨,∃, . . . is always fixed,
models give meaning to non-logical symbols such as constant, predicate, and
function symbols. When we have agreed about the meaning of the logical and
non-logical symbols of logic, we can then define the meaning of arbitrary for-
mulas.

Depending on context and preference, models appear in logic in two roles.
They can serve the auxiliary role of clarifying logical derivation. For example,
one quick way to tell what it means for ϕ to be a logical consequence of ψ is
to say that in every model where ψ is true also ϕ is true. It is then an almost
trivial matter to understand why for example ∀x∃yϕ is a logical consequence
of ∃y∀xϕ but ∀y∃xϕ is in general not.

Alternatively models can be the prime objects of investigation and it is the
logical derivation that is in an auxiliary role of throwing light on properties of
models. This is manifestly demonstrated by the Completeness Theorem which
says that any set T of first-order sentences has a model unless a contradiction
can be logically derived from T , which entails that the two alternative perspec-
tives of models are really equivalent. Since derivations are finite, this implies
the important Compactness Theorem: If a set of first-order sentences is such
that each of its finite subsets has a model it itself has a model. The Compact-
ness Theorem has led to an abundance of non-isomorphic models of first-order
theories, and constitutes the origin of the whole subject of Model Theory. In
this chapter models are indeed the prime objects of investigation and we in-
troduce auxiliary concepts such as the Ehrenfeucht–Fraı̈ssé Game that help us
understand models.

We use the words “model” and “structure” as synonyms. We have a slight
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preference for the word “structure” in a context where absolute generality pre-
vails and the structures are not assumed to satisfy any particular axioms. Re-
spectively, our preference is to call a structure that satisfies some given axioms
a model, so a structure satisfying a theory is called a model of the theory.

5.2 Basic Concepts

A vocabulary is any set L of predicate symbols P,Q,R, . . ., function sym-
bols f, g, h, . . ., and constant symbols c, d, e, . . .. Each vocabulary has an arity-
function

#L : L! N

which tells the arity of each symbol. Thus if P 2 L, then P is a #L(P )-ary
predicate symbol. If f 2 L, then f is a #L(f)-ary function symbol. Finally,
#L(c) is assumed to be 0 for constants c 2 L. Predicate or function symbols
of arity 1 are called unary or monadic, and those of arity 2 are called binary.
A vocabulary is called unary (or binary) if it contains only unary (respectively,
binary) symbols. A vocabulary is called relational if it contains no function or
constant symbols.

Definition 5.1 An L-structure (or L-model) is a pair M = (M,ValM),
where M is a non-empty set called the universe (or the domain) of M, and
ValM is a function defined on L with the following properties:

1. If R 2 L is a relation symbol and #L(R) = n, then ValM(R) ✓Mn.
2. If f 2 L is a function symbol and #L(f) = n, then ValM(f) : Mn !M .
3. If c 2 L is a constant symbol, then ValM(c) 2M .

We use Str(L) to denote the class of all L-structures.

We usually shorten ValM(R) to RM, ValM(f) to fM, and ValM(c) to cM.
If no confusion arises, we use the notation

M = (M,RM
1 , . . . , RM

n , fM
1 , . . . , fM

m , cM1 , . . . , cMk )

for an L-structure M, where L = {R1, . . . , Rn, f1, . . . , fm, c1 . . . , ck}.

Example 5.2 Graphs are L-structures for the relational vocabulary L = {E},
where E is a predicate symbol with #L(E) = 2. Groups are L-structures for
L = {�}, where � is a binary function symbol. Fields are L-structures for
L = {+, ·, 0, 1}, where +, · are binary function symbols and 0, 1 are constant
symbols. Ordered sets (i.e. linear orders) are L-structures for the relational
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vocabulary L = {<}, where < is a binary predicate symbol. If L = ;, an
L-structure (M) is a structure with just the universe and no structure in it.

If M is a structure and ⇡ maps M bijectively onto another set M 0, we can
use ⇡ to copy the relations, functions, and constants of M on M 0. In this way
we get a perfect copy M0 of M which differs from M only in the respect that
the underlying elements are different. We then say that M0 is an isomorphic
copy of M. For all practical purposes we consider the structures M and M0

as one and the same structure. However, they are not the same structure, just
isomorphic. This may sound as if isomorphism was a rather trivial matter, but
this is not true. In many cases it is a highly non-trivial enterprise to investigate
whether two structures are isomorphic or not. In the realm of finite structures
the question of deciding whether two given structures are isomorphic or not is
a famous case of a complexity question which is between P (polynomial time)
and NP (non-deterministic polynomial time) and about which we do not know
whether it is NP-complete. In the light of present knowledge it is conceivable
that this question is strictly between P and NP.

Definition 5.3 L-structures M and M0 are isomorphic if there is a bijection

⇡ : M !M 0

such that

1. For all a1, . . . , a#L(R) 2M :

(a1, . . . , a#L(R)) 2 RM () (⇡(a1), . . . ,⇡(a#L(R))) 2 RM0
.

2. For all a1, . . . , a#L(f) 2M :

fM0
(⇡(a1), . . . ,⇡(a#L(f))) = ⇡(fM(a1, . . . , a#L(f))).

3. For all c 2 L: ⇡(cM) = cM
0
.

In this case we say that ⇡ is an isomorphism M!M0, denoted

⇡ : M ⇠= M0.

If also M = M0, we say that ⇡ is an automorphism of M.

Example 5.4 Unary (or monadic) structures, i.e. L-structures for unary L, are
particularly simple and easy to deal with. Figure 5.1 depicts a unary structure.
Suppose L consists of unary predicate symbols R1, . . . , Rn and A is an L-
structure. If X ✓ A and d 2 {0, 1}, let Xd = X if d = 0 and Xd = A \ X
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Figure 5.1 A unary structure.

otherwise. Suppose ✏ : {1, . . . , n}! {0, 1}. The ✏-constituent of A is the set

C✏(A) =
n\

i=1

(RA
i )

✏(i).

A priori, the 2n sets C✏(A) can each have any cardinality whatsoever. It is the
nature of unary structures that the constituents are totally independent of each
other. If A ⇠= B, then

|C✏(A)| = |C✏(B)| (5.1)

for every ✏. Conversely, if two L-structures A and B satisfy Equation (5.1) for
every ✏, then A ⇠= B (see Exercise 5.6). We can say that the function ✏ 7!
|C✏(A)| characterizes completely (i.e. up to isomorphism) the unary structure
A. There is nothing more we can say about A but this function.

Example 5.5 Equivalence relations, i.e. L-structures M for L = {⇠} such
that ⇠M is a symmetric (x ⇠ y ) y ⇠ x), transitive (x ⇠ y ⇠ z ) x ⇠ z),
and reflexive (x ⇠ x) relation on M can be characterized almost as easily
as unary structures. Let for every cardinal number   |M | the number of
equivalence classes of⇠M of cardinality  be denoted by EC(M). If A ⇠= B,
then

EC(A) = EC(B) (5.2)

for every   |A|. Conversely, if two L-structures A and B satisfy Equa-
tion (5.2) for every   |A [B|, then A ⇠= B (see Exercise 5.12). We can say
that the function  7! EC(A) characterizes completely (i.e. up to isomor-
phism) the equivalence relation A. There is nothing more we can say about A
but this function. For equivalence relations on a finite universe of size n this
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Figure 5.4 A successor structure.

If M is a successor structure, let CmpM be the set of components of M and

CCn(M) = |{C 2 CmpM : C is an n-cycle component}|,

CC1(M) = |{C 2 CmpM : C is a Z-component}|.

Two successor structures M and N are isomorphic if and only if CCa(M) =
CCa(N ) for all a 2 N [ {1}.

5.3 Substructures

The concept of a substructure is in principle a very simple one, especially for
relational vocabularies. There are however subtleties which deserve special
attention when function symbols are involved.

Definition 5.10 An L-structure M is a substructure of another L-structure
M0, in symbols M ✓M0, if:

1. M ✓M 0.
2. RM = RM0 \Mn if R 2 L is an n-ary predicate symbol.
3. fM = fM0 � Mn if f 2 L is an n-ary function symbol.
4. cM = cM

0
if c 2 L is a constant symbol.

Substructures are particularly easy to understand in the case that L is re-
lational. Then any subset M of an L-structure M0 determines a substruc-
ture M the universe of which is M . If L is not relational we have to worry
about the question whether M is closed under the functions fM0

, f 2 L,
and whether the interpretations cM

0
of constant symbols c 2 L are in M .

For example, if L = {f} where f is a unary function symbol, then any sub-
structure of an L-structure which contains an element a has to contain also
fM0

(a), fM0
(fM0

(a)), etc. A substructure of a group need not be a subgroup
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even when it is closed under the group operation. For example, (N,+) is a
substructure of (Z,+) but it is not a group. A substructure of a linear order is
again a linear order. Similarly, a substructure of a partial order is again a partial
order. A substructure of a tree is a tree if it has a smallest element.

Lemma 5.11 Suppose L is a vocabulary, M an L-structure, and X ✓ M .
Suppose furthermore that either L contains constant symbols or X 6= ;. There
is a unique L-structure N such that:

1. N ✓M.
2. X ✓ N .
3. If N 0 ✓M and X ✓ N 0, then N ✓ N 0.

Proof Let X0 = X [ {cM : c 2 L} and inductively

Xn+1 = Xn [ {fM(a1, . . . , a#L(f)) : a1, . . . , a#L(f) 2 Xn, f 2 L}.

It is easy to see that the set N =
S

n2N Xn is the universe of the unique
structure N claimed to exist in the lemma.

We call the unique structure N of Lemma 5.11 the substructure of M gen-
erated by X and denote it by [X]M. The following lemma is used repeatedly
in the sequel.

Lemma 5.12 Suppose L is a vocabulary. Suppose M and N are L-structures
and ⇡ : M ! N is a partial mapping. There is at most one isomorphism
⇡⇤ : [dom(⇡)]M ! [rng(⇡)]N extending ⇡.

5.4 Back-and-Forth Sets

One of the main themes of this book is the question: Given two structures M
and N , how do we measure how close they are to being isomorphic? They may
be non-isomorphic for a totally obvious reason, e.g. two graphs one of which
has a triangle while the other does not. They may also be non-isomorphic for
an extremely subtle reason which involves the use of the Axiom of Choice (see
e.g. Lemma 9.9). One of the basic tools in trying to answer this question is the
concept of partial isomorphism.

Definition 5.13 Suppose L is a vocabulary and M,M0 are L-structures.
A partial mapping ⇡ : M ! M 0 is a partial isomorphism M ! M0 if
there is an isomorphism ⇡⇤ : [dom(⇡)]M ! [rng(⇡)]M0 extending ⇡. We
use Part(M,M0) to denote the set of partial isomorphisms M ! M0. If
M = M0 we call ⇡ a partial automorphism.
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Note that the extension ⇡⇤ referred to in Definition 5.13 is by Lemma 5.12
necessarily unique.

The main topic of this section, the back-and-forth sets, are very useful weaker
versions of isomorphisms. To get a picture of this, suppose f : A ⇠= B. Then
f 2 Part(A,B) and we can go back and forth between A and B with f in the
following sense:

8a 2 A9b 2 B(f(a) = b) (5.6)

8b 2 B9a 2 A(f(a) = b). (5.7)

We now generalize this to a situation where we do not quite have an isomor-
phism but only a set P which reflects the back and forth conditions (5.8) and
(5.9) of an isomorphism.

Definition 5.14 Suppose A and B are L-structures. A back-and-forth set for
A and B is any non-empty set P ✓ Part(A,B) such that

8f 2 P8a 2 A9g 2 P (f ✓ g and a 2 dom(g)) (5.8)

8f 2 P8b 2 B9g 2 P (f ✓ g and b 2 rng(g)). (5.9)

The structures A and B are said to be partially isomorphic, in symbols A 'p

B, if there is a back-and-forth set for them.

Lemma 5.15 The relation 'p is an equivalence relation on Str(L).

Proof The relation 'p is reflexive, because {idA} is a back-and-forth set for
A and B. If P is a back-and-forth set for A and B, then {f�1 : f 2 P} is a
back-and-forth set for B and A. Finally, if P1 is a back-and-forth set for A and
B and P2 is a back-and-forth set for B and C, then {f2 � f1 : f1 2 P1, f2 2
P2} is a back-and-forth set for A and C, where we stipulate dom(f2 � f1) =
f�1
1 (dom(f2)).

Proposition 5.16 If A 'p B, where A and B are countable, then A ⇠= B.

Proof Let us enumerate A as (an : n < !) and B as (bn : n < !). Let P
be a back-and-forth set for A and B. Since P 6= ;, there is some f0 2 P . We
define a sequence (fn : n < !) of elements of P as follows: Suppose fn 2 P
is defined. If n is even, say n = 2m, let y 2 B and fn+1 2 P such that
fn [ {(am, y)} ✓ fn+1. If n is odd, say n = 2m+1, let x 2 A and fn+1 2 P
such that fn [ {(x, bm)} ✓ fn+1. Finally, let

f =
1[

n=0

fn.

Clearly, f : A ⇠= B.
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This proposition is not true for uncountable structures. Indeed, let L = ;
and let A and B be any infinite L-structures. Then there is a back-and-forth
set for A and B (Exercise 5.28). Thus A 'p B. But A 6⇠= B if, for example,
A = Q and B = R. The failure of Proposition 5.16 to generalize is a major
topic in the sequel.

Proposition 5.17 Suppose A and B are dense linear orders without end-
points. Then A 'p B.

Proof Let P = {f 2 Part(A,B) : dom(f) is finite}. It turns out that this
straightforward choice works. Clearly, P 6= ;. Suppose then f 2 P and a 2 A.
Let us enumerate f as {(a1, b1), . . . , (an, bn)} where a1 < . . . < an. Since f
is a partial isomorphism, also b1 < . . . < bn. Now we consider different cases.
If a < a1, we choose b < b1 and then f [ {(a, b)} 2 P . If ai < a < ai+1, we
choose b 2 B so that bi < b < bi+1 and then f [ {(a, b)} 2 P . If an < a, we
choose b > bn and again f [{(a, b)} 2 P . Finally, if a = ai, we let b = bi and
then f [ {(a, b)} = f 2 P . We have proved (5.8). Condition (5.9) is proved
similarly.

Putting Proposition 5.16 and Proposition 5.17 together yields the famous
result of Cantor (1895): countable dense linear orders without endpoints are
isomorphic. See Exercise 6.29 for a more general result.

5.5 The Ehrenfeucht–Fraı̈ssé Game

In Section 4.3 we introduced the Ehrenfeucht–Fraı̈ssé Game played on two
graphs. This game was used to measure to what extent two graphs have sim-
ilar properties, especially properties expressible in the first-order language of
graphs limited to a fixed quantifier rank. In this section we extend this game to
the context of arbitrary structures, not just graphs.

Let us recall the basic idea behind the Ehrenfeucht–Fraı̈ssé Game. Suppose
A and B are L-structures for some relational L. We imagine a situation in
which two mathematicians argue about whether A and B are isomorphic or
not. The mathematician that we denote by II claims that they are isomorphic,
while the other mathematician whom we call I claims the models have an
intrinsic structural difference and they cannot possibly be isomorphic.

The matter would be quickly resolved if II was required to show the claimed
isomorphism. But the rules of the game are different. The rules are such that
II is required to show only small pieces of the claimed isomorphism.

More exactly, I asks what is the image of an element a1 of A that he chooses
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Figure 5.5 The Ehrenfeucht–Fraı̈ssé Game.

at will. Then II is required to respond with some element b1 of B so that

{(a1, b1)} 2 Part(A,B). (5.10)

Alternatively, I might have chosen an element b1 of B and then II would have
been required to produce an element a1 of A such that (5.10) holds. The one-
element mapping {(a1, b1)} is called the position in the game after the first
move.

Now the game goes on. Again I asks what is the image of an element a2 of
A (or alternatively he can ask what is the pre-image of an element b2 of B).
Then II produces an element b2 of B (or in the alternative case an element a2
of A). In either case the choice of II has to satisfy

{(a1, b1), (a2, b2)} 2 Part(A,B). (5.11)

Again, {(a1, b1), (a2, b2)} is called the position after the second move.
We continue until the position

{(a1, b1), . . . , (an, bn)} 2 Part(A,B)

after the nth move has been produced. If II has been able to play all the
moves according to the rules she is declared the winner. Let us call this game
EFn(A,B). Figure 5.5 pictures the situation after four moves. If II can win
repeatedly whatever moves I plays, we say that II has a winning strategy.

Example 5.18 Suppose A and B are two L-structures and L = ;. Thus the
structures A and B consist merely of a universe with no structure on it. In
this singular case any one-to-one mapping is a partial isomorphism. The only
thing player II has to worry about, say in (5.11), is that a1 = a2 if and only if
b1 = b2. Thus II has a winning strategy in EFn(A,B) if A and B both have
at least n elements. So II can have a winning strategy even if A and B have
different cardinality and there could be no isomorphism between them for the
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trivial reason that there is no bijection. The intuition here is that by playing a
finite number of elements, or even @0 many, it is not possible to get hold of the
cardinality of the universe if it is infinite.

Example 5.19 Let A be a linear order of length 3 and B a linear order of
length 4. How many moves does I need to beat II? Suppose A = {a1, a2, a3}
in increasing order and B = {b1, b2, b3, b4} in increasing order. Clearly, if I
plays at any point the smallest element, also II has to play the smallest element
or face defeat on the next move. Also, if I plays at any point the smallest but
one element, also II has to play the smallest but one element or face defeat in
two moves. Now in A the smallest but one element is the same as the largest
but one element, while in B they are different. So if I starts with a2, II has to
play b2 or b3, or else she loses in one move. Suppose she plays b2. Now I plays
b3 and II has no good moves left. To obey the rules, she must play a3. That is
how long she can play, for now when I plays b4, II cannot make a legal move
anymore. In fact II has a winning strategy in EF2(A,B) but I has a winning
strategy in EF3(A,B).

We now proceed to a more exact definition of the Ehrenfeucht–Fraı̈ssé Game.

Definition 5.20 Suppose L is a vocabulary and M,M0 are L-structures such
that M \M 0 = ;. The Ehrenfeucht–Fraı̈ssé Game EFn(M,M0) is the game
Gn(M [M 0,Wn(M,M0)), where Wn(M,M0) ✓ (M [M 0)2n is the set of
p = (x0, y0, . . . , xn�1, yn�1) such that:

(G1) For all i < n: xi 2M () yi 2M 0.
(G2) If we denote

vi =

⇢
xi if xi 2M
yi if yi 2M

v0i =

⇢
xi if xi 2M 0

yi if yi 2M 0,

then

fp = {(v0, v00), . . . , (vn�1, v
0
n�1)}

is a partial isomorphism M!M0.

We call vi and v0i corresponding elements. The infinite game EF!(M,M0)
is defined quite similarly, that is, it is the game G!(M [M 0,W!(M,M0)),
where W!(M,M0) is the set of p = (x0, y0, x1, y1, . . .) such that for all
n 2 N we have (x0, y0, . . . , xn�1, yn�1) 2Wn(M,M0).

Note that the game EF! is a closed game.

Proposition 5.21 Suppose L is a vocabulary and A and B are L-structures.
The following are equivalent:
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1. A 'p B.
2. II has a winning strategy in EF!(A,B).

Proof Assume A \ B = ;. Let P be first a back-and-forth set for A and B.
We define a winning strategy ⌧ = (⌧i : i < !) for II. Since P 6= ; we can
fix an element f of P . Condition (5.8) tells us that if a1 2 A, then there are
b1 2 B and g such that

f [ {(a1, b1)} ✓ g 2 P. (5.12)

Let ⌧0(a1) be one such b1. Likewise, if b1 2 B, then there are a1 2 A such that
(5.12) holds and we can let ⌧0(b1) be some such a1. We have defined ⌧0(c1)
whatever c1 is. To define ⌧1(c1, c2), let us assume I played c1 = a1 2 A. Thus
(5.12) holds with b1 = ⌧0(a1). If c2 = a2 2 A we can use (5.8) again to find
b2 = ⌧1(a1, a2) 2 B and h such that

f [ {(a1, b1), (a2, b2)} ✓ h 2 P.

The pattern should now be clear. The back-and-forth set P guides II to always
find a valid move. Let us then write the proof in more detail: Suppose we have
defined ⌧i for i < j and we want to define ⌧j . Suppose player I has played
x0, . . . , xj�1 and player II has followed ⌧i during round i < j. During the
inductive construction of ⌧i we took care to define also a partial isomorphism
fi 2 P such that {v0, . . . , vi�1} ✓ dom(fi�1). Now player I plays xj . By
assumption there is fj 2 P extending fj�1 such that if xj 2 A, then xj 2
dom(fj) and if xj 2 B, then xj 2 rng(fj). We let ⌧j(x0, . . . , xj) = fj(xj)
if xj 2 A and ⌧j(x0, . . . , xj) = f�1

j (xj) otherwise. This ends the construc-
tion of ⌧j . This is a winning strategy because every fp extends to a partial
isomorphism M! N .

For the converse, suppose ⌧ = (⌧n : n < !) is a winning strategy of II.
Let Q consist of all plays of EF!(A,B) in which player II has used ⌧ . Let P
consist of all possible fp where p is a position in the game EF!(A,B) with an
extension in Q. It is clear that P is non-void and has the properties (5.8) and
(5.9).

To prove partial isomorphism of two structures we now have two alternative
methods:

1. Construct a back-and-forth set.
2. Show that player II has a winning strategy in EF! .

By Proposition 5.21 these methods are equivalent. In practice one uses the
game as a guide to intuition and then for a formal proof one usually uses a
back-and-forth set.
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5.6 Back-and-Forth Sequences

Back-and-forth sets and winning strategies of player II in the Ehrenfeucht–
Fraı̈ssé Game EF! correspond to each other. There is a more refined concept,
called a back-and-forth sequence, which corresponds to a winning strategy of
player II in the finite game EFn.

Definition 5.22 A back-and-forth sequence (Pi : i  n) is defined by the
conditions

; 6= Pn ✓ . . . ✓ P0 ✓ Part(A,B). (5.13)

8f 2 Pi+18a 2 A9b 2 B9g 2 Pi(f [ {(a, b)} ✓ g) for i < n. (5.14)

8f 2 Pi+18b 2 B9a 2 A9g 2 Pi(f [ {(a, b)} ✓ g) for i < n. (5.15)

If P is a back-and-forth set, we can get back-and-forth sequences (Pi : i 
n) of any length by choosing Pi = P for all i  n. But the converse is not true:
the sets Pi need by no means be themselves back-and-forth sets. Indeed, pairs
of countable models may have long back-and-forth sequences without having
any back-and-forth sets. Let us write

A 'n
p B

if there is a back-and-forth sequence of length n for A and B.

Lemma 5.23 The relation 'n
p is an equivalence relation on Str(L).

Proof Exactly as Lemma 5.15.

Example 5.24 We use (N + N, <) to denote the linear order obtained by
putting two copies of (N, <) one after the other. (The ordinal of this order is
! + !.) Now (N, <) '2

p (N+ N, <), for we may take

P2 = {;}.
P1 = {{(a, b)} : 0 < a 2 N, 0 < b 2 N+ N} [ {(0, 0)} [ P2.

P0 = {{(a0, b0), (a1, b1)} : a0 < a1 2 N, b0 < b1 2 N+ N} [ P1.

Note that (N, <) 6'3
p (N+ N, <).

Proposition 5.25 Suppose A and B are discrete linear orders (i.e. every el-
ement with a successor has an immediate successor and every element with
a predecessor has an immediate predecessor) with no endpoints, and n 2 N.
Then A 'n

p B.
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Proof Let Pi consist of f 2 Part(A,B) with the following property: f =
{(a0, b0), . . . , (an�i�1, bn�i�1)} where

a0  . . .  an�i�1,

b0  . . .  bn�i�1,

and for all 0  j < n � i � 1 if |(aj , aj+1)| < 2i or |(bj , bj+1)| < 2i, then
|(aj , aj+1)| = |(bj , bj+1)|.

Example 5.26 (Z, <) 'n
p (Z+ Z, <) for all n 2 N, but note that (Z, <) 6'p

(Z+ Z, <).

Proposition 5.27 Suppose L is a vocabulary and A and B are L-structures.
The following are equivalent:

1. A 'n
p B.

2. II has a winning strategy in EFn(A,B).

Proof Let us assume A \ B = ;. Let (Pi : i  n) be a back-and-forth
sequence for A and B. We define a winning strategy ⌧ = (⌧i : i  n) for II.
Since Pn 6= ; we can fix an element f of Pn. Condition (5.14) tells us that if
a1 2 A, then there are b1 2 B and g such that

f [ {(a1, b1)} ✓ g 2 Pn�1. (5.16)

Let ⌧0(a1) be one such b1. Likewise, if b1 2 B, then there are a1 2 A such that
(5.16) holds and we can let ⌧0(b1) be some such a1. We have defined ⌧0(c1)
whatever c1 is. To define ⌧1(c1, c2), let us assume I played c1 = a1 2 A. Thus
(5.16) holds with b1 = ⌧0(a1). If c2 = a2 2 A we can use (5.13) again to find
b2 = ⌧1(a1, a2) 2 B and h such that

f [ {(a1, b1), (a2, b2)} ✓ h 2 Pn�2.

The pattern should be clear now. As before, the back-and-forth sequence guides
II to always find a valid move. Let us then write the proof in more detail: Sup-
pose we have defined ⌧i for i < j and we want to define ⌧j . Suppose player
I has played x0, . . . , xj�1 and player II has followed ⌧i during round i < j.
During the inductive construction of ⌧i we took care to define also a partial
isomorphism fi 2 Pn�i such that {v0, . . . , vi�1} ✓ dom(fi). Now player
I plays xj . By assumption there is fj 2 Pn�j extending fj�1 such that if
xj 2 A, then xj 2 dom(fj) and if xj 2 B, then xj 2 rng(fj). We let
⌧j(x0, . . . , xj) = fj(xj) if xj 2 A and ⌧j(x0, . . . , xj) = f�1

j (xj) otherwise.
This ends the construction of ⌧j . This is a winning strategy because every fp
extends to a partial isomorphism M! N .
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For the converse, suppose ⌧ = (⌧i : i  n) is a winning strategy of II. Let
Q consist of all plays of EFn(A,B) in which player II has used ⌧ . Let Pn�i

consist of all possible fp where p = (x0, y0, . . . , xi�1, yi�1) is a position in
the game EFn(A,B) with an extension in Q. It is clear that (Pi : i  n) has
the properties (5.13) and (5.14). Note that:

Pn = {;}

Pn�1 = {(x0, ⌧0(x0)) : x0 2 A [B}

Pn�2 = {(x0, ⌧0(x0), x1, ⌧1(x0, x1)) : x0, x1 2 A [B}

P0 = {(x0, ⌧0(x0), . . . , xn�1, ⌧n�1(x0, . . . , xn�1)) : x0, . . . , xn�1 2 A[B}.

5.7 Historical Remarks and References

Back-and-forth sets are due to Fraı̈ssé (1955). The Ehrenfeucht–Fraı̈ssé Game
was introduced in Ehrenfeucht (1957) and Ehrenfeucht (1960/1961). Back-
and-forth sequences were introduced in Karp (1965). Exercise 5.40 is from
Ellentuck (1976). Exercise 5.40 is from Ellentuck (1976). Exercise 5.54 is from
Barwise (1975). Exercise 5.71 is from Rosenstein (1982).

Exercises

5.1 Show that isomorphism of structures is an equivalence relation in the
sense that it is reflexive, symmetric, and transitive.

5.2 Suppose L is a finite vocabulary, B is a countable L-model, and {bn :
n < !} is an enumeration of the domain B of B. Suppose A is a count-
able L-model. Show that the following are equivalent:

(1) A ⇠= B.
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(2) There is an enumeration {an : n < !} of the domain of A so that
for all atomic L-formulas ✓(x0, . . . , xn) and all n < ! we have

A |= ✓(a0, . . . , an) () B |= ✓(b0, . . . , bn).

5.3 Suppose L is a vocabulary and M is an L-structure. Show that the set
Aut(M) of automorphisms of M forms a group under the operation of
composition of functions.

5.4 Give an example of M such that Aut(M) (see the previous exercise) is:

1. The trivial one-element group.
2. A non-trivial abelian group (e.g. the additive group of the integers).
3. A non-abelian group (e.g. the symmetric group S3).

5.5 How many automorphisms do the following structures have.

1. A linear order of n elements.
2. (N, <).

3. (Z, <).

4. (Q, <).

5.6 Show that if A and B are unary structures, then A ⇠= B if and only if for
all ✏ : {1, . . . , n}! {0, 1} we have |C✏(A)| = |C✏(B)|. Easier version:
Show that if A and B are unary structures with a finite universe of size
n, then A ⇠= B if and only if for all ✏ : {1, . . . , n} ! {0, 1} we have
|C✏(A)| = |C✏(B)|.

5.7 Suppose M is a unary structure in which every ✏-constituent has exactly
three elements. How many elements does M have? How many automor-
phisms does M have?

5.8 L = {P1, . . . , Pm}, where each Pi is unary. Show that the number of
non-isomorphic L-structures on the universe {1, . . . , n} is

�
n+2m�1
2m�1

�
.

5.9 Describe the group of automorphisms of a finite unary structure.
5.10 Suppose M is an equivalence relation with a finite universe such that

ECn(M) = 2 for each n = 1, . . . , 5 and ECn(M) = 0 for other n.
How many elements are there in the universe of M? How many auto-
morphisms does M have?

5.11 Show that for any m 2 N there is m⇤ 2 N such that if n � m⇤ then there
are more than nm non-isomorphic equivalence relations on the universe
{1, . . . , n}. Conclude that for any m 2 N there is m⇤ 2 N such that if
n � m⇤ then there are more non-isomorphic equivalence relations on
the universe {1, . . . , n} than non-isomorphic {P1, . . . , Pm}-structures,
where each Pi is unary.
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5.12 Show that if A and B are equivalence relations, then A ⇠= B if and only if
for all   |A[B| we have EC(A) = EC(B). Easier version: Show
that if A and B are equivalence relations with a finite universe of size n,
then A ⇠= B if and only if for all m  n we have ECm(A) = ECm(B).

5.13 Describe the group of automorphisms of a finite equivalence relation.
5.14 Show that if M and N are countable dense linear orders, then M ⇠= N

if and only if SG(M) = SG(N ). Demonstrate that this is not true for
non-dense countable linear orders or for uncountable dense linear orders.

5.15 Show that two well-orders M and N are isomorphic if and only if
o(M) = o(N ).

5.16 Prove that two well-founded trees M and N are isomorphic if and only
if stpM = stpN .

5.17 Prove that two successor structures M and N are isomorphic if and only
if CCa(M) = CCa(N ) for all a 2 N [ {1}. Easier version: Prove
that two successor structures M and N both of which have only finitely
many components are isomorphic if and only if CCa(M) = CCa(N )
for all a 2 N [ {1}.

5.18 Show that any uncountable collection of countable non-isomorphic suc-
cessor structures has to contain a successor structure with infinitely many
cycle components.

5.19 Describe the group of automorphisms of a successor structure with n
Z-components and mi i-cycle components for i = 1, . . . , k.

5.20 Give an example of an infinite structure M with no substructures N 6=
M.

5.21 Consider M = (Z,+). What is [X]M, if X is

1. {0},
2. {1},
3. {2,�2}.

5.22 Consider M = (Z,+,�). What is [X]M, if X is {13, 17}?
5.23 Suppose M is a successor structure consisting of the standard compo-

nent and two five-cycles. Show that there are exactly four possibilities
for the set [X]M.

5.24 Show that the universe of [X]M is the intersection of all universes of
substructures N of M such that X ✓ N .

5.25 Prove Lemma 5.12.
5.26 Show that every Boolean algebra M is isomorphic to a substructure of

(P(A),✓), where A is the set of all ultrafilters of M. (This is the so-
called Stone’s Representation Theorem.)
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5.27 Show that every tree every element of which has height < ! is isomor-
phic to a substructure of the tree (A<!,) for some set A.

5.28 Suppose L = ;. Show that any two infinite L-structures are partially
isomorphic.

5.29 Suppose L = {P1, . . . , Pn} is a unary vocabulary. Suppose we have
two L-structures M and N satisfying the following condition: For all
✏ : {1, . . . , n}! {0, 1} and all m 2 N it holds that

|C✏(M)| = m () |C✏(N )| = m.

Show that this is a necessary and sufficient condition for the two struc-
tures to be partially isomorphic.

5.30 Suppose that two equivalence relations M and N satisfy the following
conditions for all n,m < !:

1. ECn(M) = m () ECn(N ) = m.
2. If one has exactly m infinite classes, then so does the other. In sym-

bols: X
@0|M |

EC(M) = m ()
X

@0|N |

EC(N ) = m.

Show that these are a necessary and sufficient condition for the two struc-
tures to be partially isomorphic.

5.31 For elements t of a well-founded tree M we can define

dom(stp0M,t) = {stp0M,s : s 2 ImSuc(t)}

stp0M,t(stp
0
M,s) = min(@0, |{s0 2 ImSuc(t) : stp0M,s = stp0M,s0}|).

Suppose M and N are well-founded trees such that stp0M = stp0N .
Show that M and N are partially isomorphic. Give an example of two
well-founded partially isomorphic trees that are not isomorphic.

5.32 Suppose that M and N are successor structures, f 2 Part(M,N ).
Show:

1. f maps elements of the standard component of M to elements of the
standard component of N .

2. f maps elements of a cycle component of M of size n to elements of
a cycle component of N of size n.

3. f maps elements of a Z-component of M to elements of a Z-compo-
nent of N .

5.33 Suppose that two successor structures M and N satisfy the following
conditions for all n,m < !:
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1. CCn(M) = m () CCn(N ) = m.
2. CC1(M) = m () CC1(N ) = m.

Show that the successor structures are partially isomorphic.
5.34 Show that Part(M,N ) is closed under unions of chains, i.e. if f0 ✓

f1 ✓ f2 ✓ . . . are in Part(M,N ), then so is
S1

n=0 fn.
5.35 Suppose (R, <, f) 'p (R, <, g)), where f : R ! R is continuous.

Show that g is also continuous.
5.36 If (M,d), d : M⇥M ! R, is a metric space, we can think of (M,d) as a

an L-structure M = (M,d,R, <R), where L contains a binary function
symbol, a unary predicate symbol, and a binary relation symbol. Show
that there are a separable metric space M = (M,d,R, <R) and a non-
separable metric space M0 = (M 0, d0,R, <R) such that M 'p M0.

5.37 Show that there is a complete separable metric space (Polish space)
M = (M,d,R, <R) and a non-complete separable metric space M0 =
(M 0, d0,R, <R) such that M 'p M0.

5.38 Suppose A and B are structures of the same relational vocabulary L and
A \B = ;. The disjoint sum of A and B is the L-structure

(A [B, (RA [RB)R2L).

Show that partial isomorphism is preserved by disjoint sums of models.
5.39 Suppose A and B are structures of the same vocabulary L. The direct

product of A and B is the L-structure

(A⇥B, (RA ⇥RB)R2L,

(((a0, b0) . . . , (an, bn)) 7! (fA(a0, . . . , an), f
B(b0, . . . , bn)))f2L,

((cA, cB))c2L).

Show that partial isomorphism is preserved by direct products of models.
5.40 Show that if two structures are partially isomorphic, then they are po-

tentially isomorphic,2 i.e. there is a forcing extension in which they are
isomorphic. Conversely, show that if two structures are potentially iso-
morphic, then they are partially isomorphic.

5.41 Consider EF2(M,N ), where M = (R ⇥ {0}, f), f(x, 0) = (x2, 0)
and N = (R⇥ {1}, g), g(x, 1) = (x3, 1). Player I can win even without
looking at the moves of II. How?

5.42 Consider EF!(M,N ), where M = (R ⇥ {0}, f), f(x, 0) = (x3, 0)
and N = (R ⇥ {1}, g), g(x, 1) = (x5, 1). After a few moves player I
resigns. Can you explain why?

2 Some authors use the term potential isomorphism for partial isomorphism.
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5.43 Consider EF2(M,N ), where M = (Z, {(a, b) : a�b = 10}) and N =
(Q, {(a, b) : a� b = 2/3}). Suppose we are in position (�8,�1/4) (i.e.
x0 = �8 and y0 = �1/4). Then I plays x1 = 11/12. What would be a
good move for II?

5.44 Consider EF!(M,N ), where M and N are as in the previous exercise.
Player I resigns before the game even starts. Can you explain why?

5.45 Suppose M and N are disjoint sets with 10 elements each. Let c 2 M
and d 2 N . Who has a winning strategy in EF!(M,N ) in the following
cases:

1. M = (M, {(a, b, c) : a = b}),N = (N, {(a, b, d) : a = b}),
2. M = (M, {(a, b, e) : a = b}),N = (N, {(a, b, e) : b = e}).

5.46 Who has a winning strategy in EF!(M,N ) in the following cases:

1. M = (Q, <, 1855),N = (R, <, 1854),
2. M = (N, <, 1855),N = (N, <, 1854).

5.47 Show that (P(X),✓) 'p (P(Y ),✓), if X and Y are disjoint infi-
nite sets. (Hint: Consider the set of finite partial isomorphisms of the
form {(A0, B0), . . . , (Ai�1, Bi�1)}, such that (X,A0, . . . , Ai�1) and
(Y,B0, . . . , Bi�1) are partially isomorphic, and then use Exercise 5.29
of Section 5.4.)

5.48 Show that player II has a winning strategy in the game EF!(M,N ) for
any two atomless (i.e. if 0 < x then there is y with 0 < y < x) Boolean
algebras M and N .

5.49 Show that player I has a winning strategy in EF2((Q,+,�), (R,+,�)).
5.50 Consider EF!((R,+,�), (R⇥R,+,�)), where addition and substrac-

tion in R ⇥ R are defined componentwise. Show that player II has a
winning strategy.

5.51 Show that partially isomorphic linear orders are isomorphic, if one is a
well-order.

5.52 Show that infinite partially isomorphic structures have countably infinite
isomorphic substructures.

5.53 Show that if one of two partially isomorphic trees is well-founded, then
both are and the trees have the same rank. (Hint: For the second claim,
prove first that if M is a well-founded tree, t 2 M and ↵ < rkM(t),
then there is t0 2M such that ↵ = rkM(t0) and t <M t0.)

5.54 Suppose T is an axiomatization of set theory, at least as strong as the
Kripke–Platek set theory KP (see Barwise (1975)). We say that a formula
'(x1, . . . , xn) of the language of set theory is absolute relative to T if
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for all transitive models M and N of T and for all a1, . . . , an 2 M we
have

M |= '(a1, . . . , an) () M 0 |= '(a1, . . . , an).

Show that “x is a vocabulary, y and z are x-structures, and y 'p z” can
be defined with a formula '(x, y, z) which is absolute relative to T .

5.55 Suppose A is a linear order of length three and B a linear order of length
four. Give a back-and-forth sequence of length two for A and B.

5.56 Suppose A is a cycle of four vertices and B a cycle of five vertices. Give
a back-and-forth sequence of length two for A and B.

5.57 Suppose A is an equivalence relation of four classes each of size 3 and B
an equivalence relation of three classes each of size 4. Give a back-and-
forth sequence of length three for A and B.

5.58 Suppose A is an equivalence relation of four classes each of size 2 and B
an equivalence relation of three classes each of size 2. Give a back-and-
forth sequence of length three for A and B.

5.59 Suppose A is an equivalence relation of four classes each of size 2 plus
one class of size 3, and B an equivalence relation of three classes each of
size 2 plus one class of size 4. Give a back-and-forth sequence of length
three for A and B.

5.60 Suppose A and B are successor structures, both consisting of the stan-
dard component plus some cycle components. Suppose A has three five-
cycles and B has four five-cycles. Give a back-and-forth sequence of
length three for A and B.

5.61 Show that (7, <) '3
p (8, <).

5.62 Show that (Z, <) 6'3
p (Q, <).

5.63 Show that (N, <) 6'3
p (N+ N, <).

5.64 Show that (Z, <) 6'p (Z+ Z, <).
5.65 Show that (N+ N, <) '3

p (N+ N+ N, <)

5.66 Finish the proof of Proposition 5.25.
5.67 Prove the claim of Example 5.26.
5.68 Let the game EF⇤

!(A,B) be like the game EF!(A,B) except that I has
to play x2n 2 A and x2n+1 2 B for all n 2 N. Show that player II has a
winning strategy in EF⇤

!(A,B) if and only if she has a winning strategy
in EF!(A,B).

5.69 Suppose B = {bn : n 2 N}. Let the game EF⇤⇤
! (A,B) be like the game

EF!(A,B) except that I has to play x2n 2 A and x2n+1 = bn for all
n 2 N. Show that player II has a winning strategy in EF⇤⇤

! (A,B) if and
only if she has a winning strategy in EF!(A,B).
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5.70 Suppose A0 = (A0, <0) and A1 = (A1, <1) are linearly ordered sets.
Show that if player II has a winning strategy both in EFn(A0,B0) and
in EFn(A1,B1), then she has one in EFn(A0 +A1,B0 + B1).

5.71 If A = (A,<) is a linearly ordered set and a 2 A, then A<a is the
substructure of A generated by the set {x 2 A : x < a}. Thus A<a is the
initial segment of A determined by a. Likewise, A>a is the substructure
of A generated by the set {x 2 A : x > a}. Thus A>a is the final
segment of A determined by a. Show that if A and B are ordered sets,
then player II has a winning strategy in EFn+1(A,B) if and only if

1. For every a 2 A there is b 2 B such that player II has a winning
strategy in EFn(A<a,B<b) and in EFn(A>a,B>b).

2. For every b 2 B there is a 2 A such that player II has a winning
strategy in EFn(A<a,B<b) and in EFn(A>a,B>b).

5.72 Suppose n > 0. Show that player II has a winning strategy in EFn(A,B),
where A and B are linear orders with at least 2n � 1 elements.

5.73 Suppose n > 0. Show that player I has a winning strategy in EFn(A,B),
where A and B are linear orders such that A has at least 2n� 1 elements
and B has fewer than 2n � 1 elements.

5.74 Show that player II has a winning strategy in EFn((N, <), (N+ Z, <))
for every n 2 N.

5.75 An ordered set is scattered if it contains no substructure isomorphic to
(Q, <). Show that if M 'p N , where N is scattered, then M is scat-
tered.

5.76 Suppose T is the tree of finite increasing sequences of rationals, and T 0

is the tree of finite increasing sequences of reals. Prove T 'p T 0.
5.77 Suppose T is the tree of finite sequences of rationals, and T 0 is the tree

of finite sequences of reals. Prove T 'p T 0.
5.78 Suppose T is the tree of increasing sequences of length n of rationals,

and T 0 is the tree of increasing sequences of length  n of reals. Prove
T 'p T 0.

5.79 Suppose T is the tree of sequences of length  n of rationals, and T 0 is
the tree of sequences of length  n of reals. Prove T 'p T 0.

5.80 Suppose T is the tree of sequences of length  n of elements of the set
{1, . . . ,m}, and T 0 is the tree of sequences of length  n of elements
of {1, . . . ,m+ 1}. Prove T 'm

p T 0.
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6
First-Order Logic

6.1 Introduction

We have already discussed the first-order language of graphs. We now de-
fine the basic concepts of a more general first-order language, denoted FO,
one which applies to any vocabulary, not just the vocabulary of graphs. First-
order logic fits the Strategic Balance of Logic better than any other logic. It is
arguably the most important of all logics. It has enough power to express inter-
esting and important concept and facts, and still it is weak and flexible enough
to permit powerful constructions as demonstrated, e.g. by the Model Existence
Theorem below.

6.2 Basic Concepts

Suppose L is a vocabulary. The logical symbols of the first-order language (or
logic) of the vocabulary L are ⇡,¬,^,_, 8, 9, (, ), x0, x1, . . .. Terms are de-
fined as follows: Constant symbols c 2 L are L-terms. Variables x0, x1, . . . are
L-terms. If f 2 L, #(f) = n, and t1, . . . , tn are L-terms, then so is ft1 . . . tn.
L-equations are of the form ⇡tt0 where t and t0 are L-terms. L-atomic formu-
las are either L-equations or of the form Rt1 . . . tn, where R 2 L, #(R) = n
and t1, . . . , tn are L-terms. A basic formula is an atomic formula or the nega-
tion of an atomic formula. L-formulas are of the form

⇡tt0
Rt1 . . . tn
¬'
(' ^  ), (' _  )
8xn', 9xn'

Incomplete version for students of easllc2012 only.



80 First-Order Logic

where t, t0, t1, . . . , tn are L-terms, R 2 L with #(R) = n, and ' and  are
L-formulas.

Definition 6.1 An assignment for a set M is any function s with dom(s) a set
of variables and rng(s) ✓M. The value tM(s) of an L-term t in M under the
assignment s is defined as follows: cM(s) = ValM(c), xM

n (s) = s(xn) and
(ft1 . . . tn)M(s) = ValM(f)(tM1 (s), . . . , tMn (s)). The truth of L-formulas in
M under s is defined as follows:

M ✏s Rt1 . . . tn iff (tM1 (s), . . . , tMn (s)) 2 ValM(R)
M ✏s ⇡t1t2 iff tM1 (s) = tM2 (s)
M ✏s ¬' iff M 2s '
M ✏s (' ^  ) iff M ✏s ' and M ✏s  
M ✏s (' _  ) iff M ✏s ' or M ✏s  
M ✏s 8xn' iff M ✏s[a/xn] ' for all a 2M
M ✏s 9xn' iff M ✏s[a/xn] ' for some a 2M,

where s[a/xn](y) =

⇢
a if y = xn

s(y) otherwise.

We assume the reader is familiar with such basic concepts as free variable,
sentence, substitution of terms for variables, etc. A standard property of first-
order (or any other) logic is that M |=s ' depends only on M and the values
of s on the variables that are free in '. A sentence is a formula ' without free
variables. Then M |= ' means M |=; '. In this case we say that ' is true in
M.

Convention: If ' is an L-formula with the free variables x1, . . . , xn, we in-
dicate this by writing ' as '(x1, . . . , xn). If M is an L-structure and s is an
assignment for M such that M |=s ', we write M |= '(a1, . . . , an), where
ai = s(xi) for i = 1, . . . , n.

Definition 6.2 The quantifier rank of a formula ', denoted QR('), is defined
as follows: QR(⇡tt0) = QR(Rt1 . . . tn) = 0, QR(¬') = QR('), QR((' ^
 )) = QR((' _  )) = max{QR('),QR( )}, QR(9x') = QR(8x') =
QR(') + 1. A formula ' is quantifier free if QR(') = 0.

The quantifier rank is a measure of the longest sequence of “nested” quan-
tifiers. In the first three of the following formulas the quantifiers 8xn and 9xn

are nested but in the last unnested:

8x0(P (x0) _ 9x1R(x0, x1)) (6.1)

9x0(P (x0) ^ 8x1R(x0, x1)) (6.2)

8x0(P (x0) _ 9x1Q(x1)) (6.3)
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(8x0P (x0) _ 9x1Q(x1)). (6.4)

Note that formula (6.3) of quantifier rank 2 is logically equivalent to the for-
mula (6.4) which has quantifier rank 1. So the nesting can sometimes be elim-
inated. In formulas (6.1) and (6.2) nesting cannot be so eliminated.

Proposition 6.3 Suppose L is a finite vocabulary without function symbols.
For every n and for every set {x1, . . . , xn} of variables, there are only finitely
many logically non-equivalent first-order L-formulas of quantifier rank < n
with the free variables {x1, . . . , xn}.

Proof The proof is exactly like that of Proposition 4.15.

Note that Proposition 6.3 is not true for infinite vocabularies, as there would
be infinitely many logically non-equivalent atomic formulas, and also not true
for vocabularies with function symbols, as there would be infinitely many log-
ically non-equivalent equations obtained by iterating the function symbols.

6.3 Characterizing Elementary Equivalence

We now show that the concept of a back-and-forth sequence provides an alter-
native characterization of elementary equivalence

A ⌘ B i.e. 8' 2 FO(A |= ' () B |= ').

This is the original motivation for the concepts of a back-and-forth set, back-
and-forth sequence, and Ehrenfeucht–Fraı̈ssé Game. To this end, let

A ⌘n B

mean that A and B satisfy the same sentences of FO of quantifier rank  n.
We now prove an important leg of the Strategic Balance of Logic, namely

the marriage of truth and separation:

Proposition 6.4 Suppose L is an arbitrary vocabulary. Suppose A and B are
L-structures and n 2 N. Consider the conditions:

(i) A ⌘n B.
(ii) A�L0 'n

p B�L0 for all finite L0 ✓ L.

We have always (ii)! (i) and if L has no function symbols, then (ii)$ (i).

Proof (ii)!(i). If A 6⌘n B, then there is a sentence ' of quantifier rank  n
such that A |= ' and B 6|= '. Since ' has only finitely many symbols, there
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is a finite L0 ✓ L such that A�L0 6⌘n B�L0 . Suppose (Pi : i  n) is a back-
and-forth sequence for A�L0 and B�L0 . We use induction on i  n to prove the
following

Claim If f 2 Pi and a1, . . . , ak 2 dom(f), then

(A�L0 , a1, . . . , ak) ⌘i (B�L0 , fa1, . . . , fak).

If i = 0, the claim follows from P0 ✓ Part(A�L0 ,B�L0). Suppose then
f 2 Pi+1 and a1, . . . , ak 2 dom(f). Let '(x0, x1, . . . , xk) be an L0-formula
of FO of quantifier rank  i such that

A�L0 |= 9x0'(x0, a1, . . . , ak).

Let a 2 A so that A�L0 |= '(a, a1, . . . , ak) and g 2 Pi such that a 2 dom(g)
and f ✓ g. By the induction hypothesis, B�L0 |= '(ga, ga1, . . . , gak). Hence

B�L0 |= 9x0'(x0, fa1, . . . , fak).

The claim is proved. Putting i = n and using the assumption Pn 6= ;, gives a
contradiction with A�L0 6⌘n B�L0 .

(i)! (ii). Assume L has no function symbols. Fix L0 ✓ L finite. Let Pi

consist of f : A! B such that dom(f) = {a0, . . . , an�i�1} and

(A�L0 , a0, . . . , an�i�1) ⌘i (B�L0 , fa0, . . . , fan�i�1).

We show that (Pi : i  n) is a back-and-forth sequence for A�L0 and B�L0 .
By (i), ; 2 Pn so Pn 6= ;. Suppose f 2 Pi, i > 0, as above, and a 2 A.
By Proposition 6.3 there are only finitely many pairwise non-equivalent L0-
formulas of quantifier rank i� 1 of the form '(x, x0, . . . , xn�i�1) in FO. Let
them be 'j(x, x0, . . . , xn�i�1), j 2 J . Let

J0 = {j 2 J : A�L0 |= 'j(a, a0, . . . , an�i�1)}.

Let

 (x, x0, . . . , xn�i�1) =
^
j2J0

'j(x, x0, . . . , xn�i�1) ^^
j2J\J0

¬'j(x, x0, . . . , xn�i�1).

Now A�L0 |= 9x (x, a0, . . . , an�i�1), so as we have assumed f 2 Pi, we
have B�L0 |= 9x (x, fa0, . . . , fan�i�1). Thus there is some b 2 B with
B�L0 |=  (b, fa0, . . . , fan�i�1). Now f [ {(a, b)} 2 Pi�1. The other condi-
tion (5.15) is proved similarly.
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The above proposition is the standard method for proving models elemen-
tary equivalent in FO. For example, Proposition 6.4 and Example 5.26 together
give (Z,<) ⌘ (Z + Z,<). The exercises give more examples of partially iso-
morphic pairs – and hence elementary equivalent – structures. The restriction
on function symbols can be circumvented by first using quantifiers to elim-
inate nesting of function symbols and then replacing the unnested equations
f(x1, . . . , xn�1) = xn by new predicate symbols R(x1, . . . , xn).

Let Str(L) denote the class of all L-structures. We can draw the following
important conclusion from Proposition 6.4 (see Figure 6.1):

Corollary Suppose L is a vocabulary without function symbols. Then for all
n 2 N the equivalence relation

A ⌘n B

divides Str(L) into finitely many equivalence classes Cn
i , i = 1, . . . ,mn, such

that for each Cn
i there is a sentence 'n

i of FO with the properties:

1. For all L-structures A: A 2 Cn
i () A |= 'n

i .

2. If ' is an L-sentence of quantifier rank  n, then there are i1, . . . , ik such
that |= '$ ('n

i1
_ . . . _ 'n

ik
).

Proof Let 'n
i be the conjunction of all the finitely many L-sentences of quan-

tifier rank  n that are true in some (every) model in Cn
i (to make the con-

junction finite we do not repeat logically equivalent formulas). For the second
claim, let 'n

i1
, . . . ,'n

ik
be the finite set of all L-sentences of quantifier rank

 n that are consistent with '. If now A |= ', and A 2 Cn
i , then A |= 'n

i .
On the other hand, if A |= 'n

i and there is B |= 'n
i such that B |= ', then

A ⌘n B, whence A |= '.

We can actually read from the proof of Proposition 6.4 a more accurate
description for the sentences 'i. This leads to the theory of so-called Scott
formulas (see Section 7.4).

Theorem 6.5 Suppose K is a class of L-structures. Then the following are
equivalent (see Figure 6.2):

1. K is FO-definable, i.e. there is an L-sentence ' of FO such that for all
L-structures M we have M 2 K () M |= '.

2. There is n 2 N such that K is closed under 'n
p .

As in the case of graphs, Theorem 6.5 can be used to demonstrate that certain
properties of models are not definable in FO:
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Figure 6.1 First-order definable model class K.

Figure 6.2 Not first-order definable model class K.

Example 6.6 Let L = ;. The following properties of L-structures M are not
expressible in FO:

1. M is infinite.
2. M is finite and even.

In both cases it is easy to find, for each n 2 N, two models Mn and Nn such
that Mn 'n

p Nn, M has the property, but N does not.

Example 6.7 Let L = {P} be a unary vocabulary. The following properties
of L-structures (M,A) are not expressible in FO:

1. |A| = |M |.
2. |A| = |M \A|.
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3. |A|  |M \A|.

This is demonstrated by the models (N, {1, . . . , n}), (N,N \ {1, . . . , n}), and
({1, . . . , 2n}, {1, . . . , n}).

Example 6.8 Let L = {<} be a binary vocabulary. The following properties
of L-structures M = (M,<) are not expressible in FO:

1. M ⇠= (Z, <).
2. All closed intervals of M are finite.
3. Every bounded subset of M has a supremum.

This is demonstrated in the first two cases by the models Mn = (Z, <) and
Nn = (Z + Z, <) (see Example 5.26), and in the third case by the partially
isomorphic models: M = (R, <) and N = (R \ {0}, <).

6.4 The Löwenheim–Skolem Theorem

In this section we show that if a first-order sentence ' is true in a structure M,
it is true in a countable substructure of M, and even more, there are count-
able substructures of M in a sense “everywhere” satisfying '. To make this
statement precise we introduce a new game from Kueker (1977) called the Cub
Game.

Definition 6.9 Suppose A is an arbitrary set. P!(A) is defined as the set of
all countable subsets of A.

The set P!(A) is an auxiliary concept useful for the general investigation of
countable substructures of a model with universe A. One should note that if A
is infinite, the set P!(A) is uncountable.1 For example, |P!(N)| = |R|. The set
P!(A) is closed under intersections and countable unions but not necessarily
under complements, so it is a (distributive) lattice under the partial order ✓,
but not a Boolean algebra. The sets in P!(A) cover the set A entirely, but so
do many proper subsets of P!(A) such as the set of all singletons in P!(A)
and the set of all finite sets in P!(A).

Definition 6.10 Suppose A is an arbitrary set and C a subset of P!(A). The
Cub Game of C is the game Gcub(C) = G!(A,W ), where W consists of se-
quences (a1, a2, . . .) with the property that {a1, a2, . . .} 2 C.

1 Its cardinality is |A|! .
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In particular, for every countable X ✓M there is a countable submodel N of
M such that X ✓ N and N |= T .

Proof Let T = {'0,'1, . . .}. By Proposition 6.22 player II has a winning
strategy in Gcub(C'n). By Lemma 6.14, player II has a winning strategy in
Gcub(

T1
n=0 C'n). If X 2

T1
n=0 C'n , then [X]M |= T .

6.5 The Semantic Game

The truth of a first-order sentence in a structure can be defined by means of a
simple game called the Semantic Game. We examine this game in detail and
give some applications of it.

Definition 6.24 Suppose L is a vocabulary, M is an L-structure, '⇤ is an
L-formula, and s⇤ is an assignment for M . The game SGsym(M,'⇤) is defined
as follows. In the beginning player II holds ('⇤, s⇤). The rules of the game are
as follows:

1. If ' is atomic, and s satisfies it in M, then the player who holds (', s) wins
the game, otherwise the other player wins.

2. If' = ¬ , then the player who holds (', s), gives ( , s) to the other player.
3. If ' =  ^ ✓, then the player who holds (', s), switches to hold ( , s) or

(✓, s), and the other player decides which.
4. If ' =  _ ✓, then the player who holds (', s), switches to hold ( , s) or

(✓, s), and can himself or herself decide which.
5. If ' = 8x , then the player who holds (', s), switches to hold ( , s[a/x])

for some a, and the other player decides for which.
6. If ' = 9x , then the player who holds (', s), switches to hold ( , s[a/x])

for some a, and can himself or herself decide for which.

As was pointed out in Section 4.2, M |=s ' if and only if player II has a
winning strategy in the above game, starting with (', s). Why? If M |=s ',
then the winning strategy of player II is to play so that if she holds ('0, s0),
then M |=s0 '0, and if player I holds ('0, s0), then M 6|=s0 '0.

For practical purposes it is useful to consider a simpler game which pre-
supposes that the formula is in negation normal form. In this game, as in the
Ehrenfeucht–Fraı̈ssé Game, player I assumes the role of a doubter and player
II the role of confirmer. This makes the game easier to use than the full game
SGsym(M,').
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I II
x0

y0
x1

y1

...
...

Figure 6.11 The game G!(W ).

xn yn Explanation Rule

(', ;) I enquires about ' 2 T .

(', ;) II confirms. Axiom rule

('i, s) I tests a played ('0 ^ '1, s)

by choosing i 2 {0, 1}.

('i, s) II confirms. ^-rule

('0 _ '1, s) I enquires about
a played disjunction.

('i, s) II makes a choice of i 2 {0, 1}. _-rule

(', s[a/x]) I tests a played (8x', s)
by choosing a 2 M .

(', s[a/x]) II confirms. 8-rule

(9x', s) I enquires about
a played existential statement.

(', s[a/x]) II makes a choice of a 2 M . 9-rule

Figure 6.12 The game SG(M, T ).

Definition 6.25 The Semantic Game SG(M, T ) of the set T of L-sentences
in NNF is the game (see Figure 6.11) G!(W ), where W consists of sequences
(x0, y0, x1, y1, . . .) where player II has followed the rules of Figure 6.12 and
if player II plays the pair (', s), where ' is a basic formula, then M |=s '.

In the game SG(M, T ) player II claims that every sentence of T is true in
M. Player I doubts this and challenges player II. He may doubt whether a
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certain ' 2 T is true in M, so he plays x0 = (', ;). In this round, as in some
other rounds too, player II just confirms and plays the same pair as player I.
This may seem odd and unnecessary, but it is for book-keeping purposes only.
Player I in a sense gathers a finite set of formulas confirmed by player II and
tries to end up with a basic formula which cannot be true.

Theorem 6.26 Suppose L is a vocabulary, T is a set of L-sentences, and M
is an L-structure. Then the following are equivalent:

1. M |= T .
2. Player II has a winning strategy in SG(M, T ).

Proof Suppose M |= T . The winning strategy of player II in SG(M, T ) is
to maintain the condition M |=si  i for all yi = ( i, si), i 2 N, played by
her. It is easy to see that this is possible. On the other hand, suppose M 6|= T ,
say M 6|= ', where ' 2 T . The winning strategy of player I in SG(M, T ) is
to start with x0 = (', ;), and then maintain the condition M 6|=si  i for all
yi = ( i, si), i 2 N, played by II:

1. If yi = ( i, si), where  i is basic, then player I has won the game, because
M 6|=si  i.

2. If yi = ( i, si), where  i = ✓0 ^ ✓1, then player I can use the assumption
M 6|=si  i to find k < 2 such that M 6|=si ✓k. Then he plays xi+1 =
(✓k, si).

3. If yi = ( i, si), where  i = ✓0 _ ✓1, then player I knows from the as-
sumption M 6|=si  i that whether II plays (✓k, si) for k = 0 or k = 1, the
condition M 6|=si ✓k still holds. So player I can play xi+1 = ( i, si) and
keep his winning criterion in force.

4. If yi = ( i, si), where  i = 8x', then player I can use the assumption
M 6|=si  i to find a 2 M such that M 6|=si[a/x] '. Then he plays xi+1 =
(', si[a/x]).

5. If yi = ( i, si), where  i = 9x', then player I knows from the assumption
M 6|=si  i that whatever (', si[a/x]) player II chooses to play, the condi-
tion M 6|=si[a/x] ' still holds. So player I can play (9x', si) and keep his
winning criterion in force.

Example 6.27 Let L = {f} and M = (N, fM), where f(n) = n+ 1. Let

' = 8x9y⇡fxy.

Clearly, M |= '. Thus player II has, by Theorem 6.26, a winning strategy in
the game SG(M, {'}). Figure 6.13 shows how the game might proceed. On
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I II Rule

(8x9y⇡fxy, ;)
(8x9y⇡fxy, ;) Axiom rule

(9y⇡fxy, {(x, 25)})
(9y⇡fxy, {(x, 25)}) 8-rule

(9y⇡fxy, {(x, 25)})
(⇡fxy, {(x, 25), (y, 26)}) 9-rule

...
...

Figure 6.13 Player II has a winning strategy in SG(M, {'}).

I II Rule

(8x9y⇡fyx, ;)
(8x9y⇡fyx, ;) Axiom rule

(9y⇡fyx, {(x, 0)})
(9y⇡fyx, {(x, 0)}) 8-rule

(9y⇡fyx, {(x, 0)})
(⇡fyx, {(x, 0), (y, 2)}) 9-rule
(II has no good move)

Figure 6.14 Player I wins the game SG(M, { }).

the other hand, suppose

 = 8x9y⇡fyx.

Clearly, M 6|= '. Thus player I has, by Theorem 6.26 and Theorem 3.12, a
winning strategy in the game SG(M, {'}). Figure 6.14 shows how the game
might proceed.

Example 6.28 Let M be the graph of Figure 6.15.
and

' = 8x(9y¬xEy ^ 9yxEy).

Clearly, M |= '. Thus player II has, by Theorem 6.26, a winning strategy in
the game SG(M, {'}). Figure 6.16 shows how the game might proceed. On
the other hand, suppose

 = 9x(8y¬xEy _ 8yxEy).

Clearly, M 6|= '. Thus player I has, by Theorem 6.26 and Theorem 3.12, a
winning strategy in the game SG(M, {'}). Figure 6.17 shows how the game
might proceed.
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Figure 6.15 The graph M.

I II Rule

(8x(9y¬xEy ^ 9yxEy), ;)
(8x(9y¬xEy ^ 9yxEy), ;) Axiom rule

(9y¬xEy ^ 9yxEy, {(x, d)})
(9y¬xEy ^ 9yxEy, {(x, d)}) 8-rule

(9yxEy, {(x, d)})
(9yxEy, {(x, d)}) ^-rule

(9yxEy, {(x, d)})
(xEy, {(x, d), (y, c)}) 9-rule

...
...

Figure 6.16 Player II has a winning strategy in SG(M, {'}).

I II Rule

(9x(8y¬xEy _ 8yxEy), ;)
(9x(8y¬xEy _ 8yxEy), ;) Axiom rule

(9x(8y¬xEy _ 8yxEy), ;)
(8y¬xEy _ 8yxEy), {(x, a)}) 9-rule

(8y¬xEy _ 8yxEy, {(x, a)})
(8y¬xEy, {(x, a)}) _-rule

(¬xEy, {(x, a), (y, d)})
(¬xEy, {(x, a), (y, d)}) 8-rule

Figure 6.17 Player I wins the game SG(M, { }).

Incomplete version for students of easllc2012 only.



98 First-Order Logic

6.6 The Model Existence Game

In this section we learn a new game associated with trying to construct a model
for a sentence or a set of sentences. This is of fundamental importance in the
sequel.

Let us first recall the game SG(M, T ): The winning condition for II in the
game SG(M, T ) is the only place where the model M (rather than the set
M ) appears. If we do not start with a model M we can replace the winning
condition with a slightly weaker one and get a very useful criterion for the
existence of some M such that M |= T :

Definition 6.29 The Model Existence Game MEG(T, L) of the set T of L-
sentences in NNF is defined as follows. Let C be a countably infinite set of new
constant symbols. MEG(T, L) is the game G!(W ) (see Figure 6.11), where
W consists of sequences (x0, y0, x1, y1, . . .) where player II has followed the
rules of Figure 6.18 and for no atomic L[C-sentence ' both ' and ¬' are in
{y0, y1, . . .}.

The idea of the game MEG(T, L) is that player I does not doubt the truth
of T (as there is no model around) but rather the mere consistency of T . So
he picks those ' 2 T that he thinks constitute a contradiction and offers them
to player II for confirmation. Then he runs through the subformulas of these
sentences as if there was a model around in which they cannot all be true. He
wins if he has made player II play contradictory basic sentences. It turns out
it did not matter that we had no model around, as two contradictory sentences
cannot hold in any model anyway.

Definition 6.30 Let L be a vocabulary with at least one constant symbol. A
Hintikka set (for first-order logic) is a set H of L-sentences in NNF such that:

1. ⇡tt 2 H for every constant L-term t.
2. If '(x) is basic, '(c) 2 H and ⇡tc 2 H , then '(t) 2 H .
3. If ' ^  2 H , then ' 2 H and  2 H .
4. If ' _  2 H , then ' 2 H or  2 H .
5. If 8x'(x) 2 H , then '(c) 2 H for all c 2 L

6. If 9x'(x) 2 H , then '(c) 2 H for some c 2 L.
7. For every constant L-term t there is c 2 L such that ⇡ct 2 H .
8. There is no atomic sentence ' such that ' 2 H and ¬' 2 H .

Lemma 6.31 Suppose L is a vocabulary and T is a set of L-sentences. If T
has a model, then T can be extended to a Hintikka set.
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xn yn Explanation

' I enquires about ' 2 T .

' II confirms.

⇡tt I enquires about an equation.

⇡tt II confirms.

'(t

0
) I chooses played '(t) and ⇡tt

0 with ' basic
and enquires about substituting t

0 for t in '.

'(t

0
) II confirms.

'i I tests a played '0 ^ '1 by choosing i 2 {0, 1}.

'i II confirms.

'0 _ '1 I enquires about a played disjunction.

'i II makes a choice of i 2 {0, 1}

'(c) I tests a played 8x'(x) by choosing c 2 C.

'(c) II confirms.

9x'(x) I enquires about a played existential statement.

'(c) II makes a choice of c 2 C

t I enquires about a constant L [ C-term t.

⇡ct II makes a choice of c 2 C

Figure 6.18 The game MEG(T, L).

Proof Let us assume M |= T . Let L0 ◆ L such that L0 has a constant
symbol ca /2 L for each a 2 M . Let M⇤ be an expansion of M obtained by
interpreting ca by a for each a 2 M . Let H be the set of all L0-sentences true
in M. It is easy to verify that H is a Hintikka set.
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Lemma 6.32 Suppose L is a countable vocabulary and T is a set of L-
sentences. If player II has a winning strategy in MEG(T, L), then the set T
can be extended to a Hintikka set in a countable vocabulary extending L by
constant symbols.

Proof Suppose player II has a winning strategy in MEG(T, L). We first run
through one carefully planned play of MEG(T, L). This will give rise to a
model M. Then we play again, this time providing a proof that M |= T . To
this end, let Trm be the set of all constant L [ C-terms. Let

T = {'n : n 2 N},
C = {cn : n 2 N},

T rm = {tn : n 2 N}.

Let (x0, y0, x1, y1, . . .) be a play in which player II has used her winning
strategy and player I has maintained the following conditions:

1. If n = 3i, then xn = 'i.
2. If n = 2 · 3i, then xn is ⇡cici.
3. If n = 4 · 3i · 5j · 7k · 11l, yi is ⇡tjtk, and yl is '(tj), then xn is '(tk).
4. If n = 8 · 3i · 5j , yi is ✓0 ^ ✓1, and j < 2, then xn is ✓j .
5. If n = 16 · 3i, and yi is ✓0 _ ✓1, then xn is ✓0 _ ✓1.
6. If n = 32 · 3i · 5j , yi is 8x'(x), then xn is '(cj).
7. If n = 64 · 3i, and yi is 9x'(x), then xn is 9x'(x).
8. If n = 128 · 3i, then xn is ti.

The idea of these conditions is that player I challenges player II in a maximal
way. To guarantee this he makes a plan. The plan is, for example, that on round
3i he always plays 'i from the set T . Thus in an infinite game every element
of T will be played. Also the plan involves the rule that if player II happens
to play a conjunction ✓0 ^ ✓1 on round i, then player I will necessarily play
✓0 on round 8 · 3i and ✓1 on round 8 · 3i · 5, etc. It is all just book-keeping –
making sure that all possibilities will be scanned. This strategy of I is called
the enumeration strategy. It is now routine to show that H = {y0, y1, . . .} is a
Hintikka set.

Lemma 6.33 Every Hintikka set has a model in which every element is the
interpretation of a constant symbol.

Proof Let c ⇠ c0 if ⇡c0c 2 H . The relation ⇠ is an equivalence relation
on C (see Exercise 6.77). Let us define an L [ C-structure M as follows.
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We let M = {[c] : c 2 C}. For c 2 C we let cM = [c]. If f 2 L and
#(f) = n we let fM([ci1 ], . . . , [cin ]) = [c] for some (any – see Exercise 6.78)
c 2 C such that ⇡cfci1 . . . cin 2 H . For any constant term t there is a c 2 C
such that ⇡ct 2 H . It is easy to see that tM = [c]. For the atomic sentence
' = Rt1 . . . tn we let M |= ' if and only if ' is in H . An easy induction
on ' shows that if '(x1, . . . , xn) is an L-formula and '(d1, . . . , dn) 2 H for
some d1 . . . , dn, then M |= '(d1, . . . , dn) (see Exercise 6.79). In particular,
M |= T .

Lemma 6.34 Suppose L is a countable vocabulary and T is a set of L-
sentences. If T can be extended to a Hintikka set in a countable vocabulary
extending L, then player II has a winning strategy in MEG(T, L)

Proof Suppose L⇤ is a countable vocabulary extending L such that some
Hintikka set H in the vocabulary L⇤ extends T . Let C = {cn : n 2 N} be
a new countable set of constant symbols to be used in MEG(T, L). Suppose
D = {tn : n 2 N} is the set of constant terms of the vocabulary L⇤. The
winning strategy of player II in MEG(T, L) is to maintain the condition that
if yi is '(c1, . . . , cn), then '(t1, . . . , tn) 2 H .

We can now prove the basic element of the Strategic Balance of Logic,
namely the following equivalence between the Semantic Game and the Model
Existence Game:

Theorem 6.35 (Model Existence Theorem) Suppose L is a countable vocab-
ulary and T is a set of L-sentences. The following are equivalent:

1. There is an L-structure M such that M |= T .
2. Player II has a winning strategy in MEG(T, L).

Proof If there is an L-structure M such that M |= T , then by Lemma 6.31
there is a Hintikka set H ◆ T . Then by Lemma 6.34 player II has a winning
strategy in MEG(T, L). Suppose conversely that player II has a winning strat-
egy in MEG(T, L). By Lemma 6.32 there is a Hintikka set H ◆ T . Finally,
this implies by Lemma 6.33 that T has a model.

Corollary Suppose L is a countable vocabulary, T a set of L-sentences and
' an L-sentence. Then the following conditions are equivalent:

1. T |= '.
2. Player I has a winning strategy in MEG(T [ {¬'}, L).

Proof By Theorem 3.12 the game MEG(T [ {¬'}, L) is determined. So
by Theorem 6.35, condition 2 is equivalent to T [ {¬'} not having a model,
which is exactly what condition 1 says.
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Condition 1 of the above Corollary is equivalent to ' having a formal proof
from T . (See Enderton (2001), or any standard textbook in logic for a definition
of formal proof.) We can think of a winning strategy of player I in MEG(T [
{¬'}, L) as a semantic proof. In the literature this concept occurs under the
names semantic tree or Beth tableaux.

6.7 Applications

The Model Existence Theorem is extremely useful in logic. Our first applica-
tion – The Compactness Theorem – is a kind of model existence theorem itself
and very useful throughout model theory.

Theorem 6.36 (Compactness Theorem) Suppose L is a countable vocabu-
lary and T is a set of L-sentences such that every finite subset of T has a
model. Then T has a model.

Proof Let C be a countably infinite set of new constant symbols as needed in
MEG(T, L). The winning strategy of player II in MEG(T, L) is the follow-
ing. Suppose

(x0, y0, . . . , xn�1, yn�1)

has been played up to now, and then player I plays xn. Player II has made
sure that T [ {y0, . . . , yn�1} is finitely consistent, i.e. each of its finite sub-
sets has a model. Now she makes such a move yn that T [ {y0, . . . , yn} is still
finitely consistent. Suppose this is the case and player I asks a confirmation for
', where ' 2 T . Now T [ {y0, . . . , yn�1,'} is finitely consistent as it is the
same set as T [ {y0, . . . , yn�1}. Suppose then player I asks a confirmation for
✓0, where ✓0^✓1 = yi for some i < n. If T0[{y0, . . . , yn�1, ✓0} has no model,
where T0 is a finite subset of T , then surely T0[{y0, . . . , yn�1} has no models
either, a contradiction. Suppose then player I asks for a decision about ✓0_ ✓1,
where ✓0 _ ✓1 = yi for some i < n. If T0 [ {y0, . . . , yn�1, ✓0} has no models,
where T0 is a finite subset of T , and also T1 [ {y0, . . . , yn�1, ✓1} has no mod-
els, where T1 is another finite subset of T , then T0[T1[{y0, . . . , yn�1} has no
models, a contradiction. Suppose then player I asks for a confirmation for'(c),
where 8x'(x) = yi for some i < n and c 2 C. If T0 [ {y0, . . . , yn�1,'(c)}
has no models, where T0 is a finite subset of T , then T0 [ {y0, . . . , yn�1} has
no models either, a contradiction. Suppose then player I asks a decision about
9x'(x), where 9x'(x) = yi for some i < n. Let c 2 C so that c does not
occur in {y0, . . . , yn�1}. We claim that T [ {y0, . . . , yn�1,'(c)} is finitely
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consistent. Suppose the contrary. Then there is a finite conjunction  of sen-
tences in T such that

{y0, . . . , yn�1, } |= ¬'(c).

Hence

{y0, . . . , yn�1, } |= 8x¬'(x).

But this contradicts the fact that {y0, . . . , yn�1, } has a model in which 9x'(x)
is true. Finally, if t is a constant term, it follows as above that there is a constant
c 2 C such that T [ {y0, . . . , yn�1,⇡ct} is finitely consistent.

It is a consequence of the Compactness Theorem that a theory in a countable
vocabulary is consistent in the sense that every finite subset has a model if and
only if it is consistent in the sense that T itself has a model. Therefore the word
“consistent” is used in both meanings.

As an application of the Compactness Theorem consider the vocabulary L =
{+, · , 0, 1} of number theory. An example of an L-structure is the so-called
standard model of number theory N = (N,+, · , 0, 1). L-structures may be
elementary equivalent to N and still be non-standard in the sense that they are
not isomorphic to N . Let c be a new constant symbol. It is easy to see that the
theory

{' : N |= '} [ {1 < c,+11 < c,++ 111 < c, . . .}

is finitely consistent. By the Compactness Theorem it has a model M. Clearly
M ⌘ N and M 6⇠= N .

Example 6.37 Suppose T is a theory in a countable vocabulary L, and T has
for each n > 0 a model Mn such that (Mn, EMn) is a graph with a cycle of
length � n. We show that T has a model N such that (N,EN ) is a graph with
an infinite cycle (i.e. an infinite connected subgraph in which every node has
degree 2). To this end, let cz, z 2 Z, be new constant symbols. Let T 0 be the
theory

T [ {czEcz+1 : z 2 Z}.

Any finite subset of T 0 mentions only finitely constants cz , so it can be satisfied
in the model Mn for a sufficiently large n. By the Compactness Theorem T 0

has a model M. Now M � L |= T and the elements cMz , z 2 Z, constitute an
infinite cycle in M.

As another application of the Model Existence Game we prove the so-called
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Thus

(N,+, · , 0, 1, A) ⌘M0 ⌘M.

2

In general, the significance of the Omitting Types Theorem is the fact that it
can be used – as above – to get “standard” models.

6.8 Interpolation

The Craig Interpolation Theorem says the following: Suppose |= ' !  ,
where ' is an L1-sentence and  is an L2-sentence. Then there is an L1 \L2-
sentence ✓ such that |= '! ✓ and |= ✓ !  . Here is an example:

Example 6.39 L1 = {P,Q,R}, L2 = {P,Q, S}. Let

' = 8x(Px! Rx) ^ 8x(Rx! Qx)

and

 = 8x(Sx! Px)! 8x(Sx! Qx).

Now

|= '!  ,

and indeed, if

✓ = 8x(Px! Qx),

then ✓ is an L1 \ L2-sentence such that

|= '! ✓ and |= ✓ !  .

The Craig Interpolation Theorem is a consequence of the following remark-
able subformula property of the Model Existence Game MEG(T, L): Player
II never has to play anything but subformulas of sentences of T up to a substi-
tution of terms for free variables.

Theorem 6.40 (Craig Interpolation Theorem) Suppose |= ' !  , where '
is an L1-sentence and  is an L2-sentence. Then there is an L1 \L2-sentence
✓ such that |= '! ✓ and |= ✓ !  .

Proof We assume, for simplicity, that L1 and L2 are relational. This re-
striction can be avoided (see Exercise 6.97). Let us assume that the claim
of the theorem is false and derive a contradiction. Since |= ' !  , player
I has a winning strategy in MEG({',¬ }, L1 [ L2). Therefore to reach
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a contradiction it suffices to construct a winning strategy for player II in
MEG({',¬ }, L1 [ L2). If ' alone is inconsistent, we can take any incon-
sistent L-sentence as ✓. Likewise if ¬ alone is inconsistent, we can take any
valid L-sentence as ✓. Let L = L1\L2. Let us consider the following strategy
of player II. Suppose C = {cn : n 2 N} is a set of new constant symbols.
We denote L [C-sentences by ✓(c0, . . . , cm�1) where ✓(z0, . . . , zm�1) is as-
sumed to be an L-formula. Suppose player II has played Y = {y0, . . . , yn�1}
so far. While she plays, she maintains two subsets Sn

1 and Sn
2 of Y such that

Sn
1 [ Sn

2 = Y . The set Sn
1 consists of all L1 [ C-sentences in Y , and Sn

2

consists of all L2 [ C-sentences in Y . Let us say that an L [ C-sentence ✓
separates Sn

1 and Sn
2 if Sn

1 |= ✓ and Sn
2 |= ¬✓. Player II plays so that the

following condition holds at all times:

(?) There is no L [ C-sentence ✓ that separates Sn
1 and Sn

2 .

Let us check that she can maintain this strategy: (There is no harm in assuming
that player I plays ' and ¬ first.)

Case 1. Player I plays '. We let S0
1 = {'} and S0

2 = ;. Condition (?) holds,
as Sn

1 is consistent.

Case 2. Player I plays ¬ having already played '. We let S1
1 = {'} and

S1
2 = {¬ }. Suppose ✓(c0, . . . , cm�1) separates S1

1 and S1
2 . Then |= ' !

8z0 . . . 8zm�1✓(z0, . . . , zm�1) and |= 8z0 . . . 8zm�1✓(z0, . . . , zm�1) !  
contrary to assumption.

Case 3. Player I plays ⇡cc, where, for example, c 2 L1 [ C. We let Sn+1
1 =

Sn
0 [ {⇡cc} and Sn+1

2 = Sn
1 [ {⇡cc}. Suppose ✓(c0, . . . , cm�1) separates

Sn+1
1 and Sn+1

2 . Then clearly also ✓(c0, . . . , cm�1) separates Sn
1 and Sn

2 , a
contradiction.
Case 4. Player I plays '0(c1), where, for example, '0(c0),⇡c0c1 2 Sn

1 . We
let Sn+1

1 = Sn
1 [ {'0(c1)} and Sn+1

2 = Sn
2 . Suppose ✓(c0, . . . , cm) separates

Sn+1
1 and Sn+1

2 . Then as Sn
1 |= '0(c1) clearly ✓(c0, . . . , cm�1) separates Sn

1

and Sn
2 , a contradiction.

Case 5. Player I plays 'i, where, for example, '1 ^ '1 2 Sn
1 . We let Sn+1

1 =
Sn
1 [ {'i} and Sn+1

2 = Sn
2 . Suppose ✓(c0, . . . , cm�1) separates Sn+1

1 and
Sn+1
2 . Then, as Sn

1 |= 'i, clearly ✓(c0, . . . , cm�1) separates Sn
1 and Sn

2 , a
contradiction.
Case 6. Player I plays '0 _ '1, where, for example, '0 _ '1 2 Sn

1 . We claim
that for one of i 2 {0, 1} the sets Sn

1 [ {'i} and Sn
2 satisfy (?). Otherwise

there is for both i 2 {0, 1} some ✓i(c0, . . . , cm�1) that separates Sn
1 [ {'i}
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and Sn
2 . Let

✓(c0, . . . , cm�1) = ✓0(c0, . . . , cm�1) _ ✓1(c0, . . . , cm�1).

Then, as Sn
1 |= '0 _ '1, clearly ✓(c0, . . . , cm�1) separates Sn

1 and Sn
2 , a

contradiction.
Case 7. Player I plays '(c0), where, for example, 8x'(x) 2 Sn

1 . We claim that
the sets Sn

1 [ {'(c0)} and Sn
2 satisfy (?). Otherwise there is ✓(c0, . . . , cm�1)

that separates Sn
1 [ {'(c0)} and Sn

2 . Let

✓0(c1, . . . , cm�1) = 8x✓(x, c1, . . . , cm�1).

Then, as Sn
1 |= 8x'(x), we have Sn

1 |= '(c0), and hence ✓0(c0, c1, . . . , cm�1)
separates Sn

1 and Sn
2 , a contradiction.

Case 8. Player I plays 9x'(x), where, for example, 9x'(x) 2 Sn
1 . Let c 2 C

be such that c does not occur in Y yet. We claim that the sets Sn
1 [ {'(c)}

and Sn
2 satisfy (?). Otherwise there is some ✓(c, c0, . . . , cm�1) that separates

Sn
1 [ {'(c)} and Sn

2 . Let

✓0(c1, . . . , cm�1) = 9x✓(x, c0, . . . , cm�1).

Then, as Sn
1 |= 9x'(x) and Sn

1 |= '(c)! ✓(c, c0, . . . , cm�1) we clearly have
that ✓0(c1, . . . , cm�1) separates Sn

1 and Sn
2 , a contradiction.

Example 6.41 The Craig Interpolation Theorem is false in finite models. To
see this, let L1 = {R} and L2 = {P} where R and P are distinct binary
predicates. Let ' say that R is an equivalence relation with all classes of size 2
and let  say P is not an equivalence relation with all classes of size 2 except
one of size 1. Then M |= '!  holds for finite M. If there were a sentence
✓ of the empty vocabulary such that M |= ' ! ✓ and M |= ✓ !  for all
finite M, then ✓ would characterize even cardinality in finite models. It is easy
to see with Ehrenfeucht–Fraı̈ssé Games that this is impossible.

Theorem 6.42 (Beth Definability Theorem) Suppose L is a vocabulary and
P is a predicate symbol not in L. Let ' be an L [ {P}-sentence. Then the
following are equivalent:

1. If (M, A) |= ' and (M, B) |= ', where M is an L-structure, then A = B.
2. There is an L-formula ✓ such that

' |= 8x0 . . . xn�1(✓(x0, . . . , xn�1)$ P (x0, . . . , xn�1)).

If condition 1 holds we say that ' defines P implicitly. If condition 2 holds,
we say that ✓ defines P explicitly relative to '.
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Proof Let '0 be obtained from ' by replacing everywhere P by P 0 (another
new predicate symbol). Then condition 1 implies

|= (' ^ Pc0 . . . cn�1)! ('0 ! P 0c0 . . . cn�1).

By the Craig Interpolation Theorem there is an L-formula ✓(x0, . . . , xn�1)
such that

|= (' ^ Pc0 . . . cn�1)! ✓(c0, . . . , cn�1)

and

|= ✓(c0, . . . , cn�1)! ('0 ! P 0c0 . . . cn�1).

It follows easily that ✓ is the formula we are looking for.

Example 6.43 The Beth Definability Theorem is false in finite models. Let
' be the conjunction of

1. “< is a linear order”.
2. 9x(Px ^ 8y(⇡xy _ x < y)).
3. 8x8y(“y immediate successor of x”! (Px$ ¬Py)).

Every finite linear order has a unique P with ', but there is no {<}-formula
✓(x) which defines P in models of '. For then the sentence

9x(✓(x) ^ 8y(⇡xy _ y < x))

would characterize ordered sets of odd length among finite ordered sets, and
it is easy to see with Ehrenfeucht–Fraı̈ssé Games that no such sentence can
exist. There are infinite linear orders (e.g. (N+ Z, <)) where several different
P satisfy '.

Recall that the reduct of an L-structure M to a smaller vocabulary K is the
structure N = M � K which has M as its universe and the same interpreta-
tions of all symbols of K as M. In such a case we call M an expansion of N
from vocabulary K to vocabulary L. Another useful operation on structures is
the following. The relativization of an L-structure M to a set N is the structure
N = M(N) which has N as its universe, RM\N#(R) as the interpretation of
any predicate symbol R 2 L, fM � N#(f) as the interpretation of any func-
tion symbol f 2 L, and cM as the interpretation of any constant symbol c 2 L.
Relativization is only possible when the result actually is an L-structure. There
is a corresponding operation on formulas: The relativization of an L-formula
' to a predicate P 2 L is defined by replacing every quantifier 8y . . . in ' by
8y(Py ! . . .) and every quantifier 9y . . . in ' by 9y(Py ^ . . .). We denote
the relativization by  (P ).
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Lemma 6.44 Suppose L is a relational vocabulary and P 2 L is a unary
predicate symbol. The following are equivalent for all L-formulas ' and all
L-structures M such that PM 6= ;:

1. M |= '(P ).
2. M(PM) |= '.

Proof Exercise 6.101.

Definition 6.45 Suppose L is a vocabulary. A class K of L-structures is an
EC-class if there is an L-sentence ' such that

K = {M 2 Str(L) : M |= '}

and a PC-class if there is an L0-sentence ' for some L0 ◆ L such that

K = {M � L : M 2 Str(L0) and M |= '}.

Example 6.46 Let L = ;. The class of infinite L-structures is a PC-class
which is not an EC class. (Exercise 6.102.)

Example 6.47 Let L = ;. The class of finite L-structures is not a PC-class.
(Exercise 6.103.)

Example 6.48 Let L = {<}. The class of non-well-ordered L-structures is
a PC-class which is not an EC-class. (Exercise 6.104.)

Suppose |= '!  , where ' is an L1-sentence and  is an L2-sentence. Let

K1 = {M � (L1 \ L2) : M |= '}

and

K2 = {M � (L1 \ L2) : M |= ¬ }.

Now K1 and K2 are disjoint PC-classes. If there is an L1 \ L2-sentence ✓
such that |= '! ✓ and |= ✓ !  , then the EC-class

K = {M : M |= ✓}

separates K1 and K2 in the sense that K1 ✓ K and K2 \ K = ;. On the
other hand, if an EC-class K separates in this sense K1 and K2, then there
is an L1 \ L2-sentence ✓ such that |= ' ! ✓ and |= ✓ !  . Thus the Craig
Interpolation Theorem can be stated as: disjoint PC-classes can always be
separated by an EC-class.

Theorem 6.49 (Separation Theorem) Suppose K1 and K2 are disjoint PC-
classes of models. Then there is an EC-class K that separates K1 and K2, i.e.
K1 ✓ K and K2 \K = ;.
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Proof The claim has already been proved in Theorem 6.40, but we give here a
different – model-theoretic – proof. This proof is of independent interest, being
as it is, in effect, the proof of the so-called Lindström’s Theorem (Lindström
(1973)), which gives a model theoretic characterization of first order logic.

Case 1: There is an n 2 N such that some union K of 'n
p -equivalence classes

of models separates K1 and K2. By Theorem 6.5 the model class K is an
EC-class, so the claim is proved.

Case 2: There are, for any n 2 N, L1 \ L2-models Mn and Nn such that
Mn 2 K1, Nn 2 K2, and there is a back-and-forth sequence (Ii : i  n)
for Mn and Nn. Suppose K1 is the class of reducts of models of ', and K2

respectively the class of reducts of models of  . Let T be the following set of
sentences:

1. '(P1).
2.  (P2).
3. (R,<) is a non-empty linear order in which every element with a predeces-

sor has an immediate predecessor.
4. 8z(Rz ! Q0z).
5. 8z8u1 . . . 8um8v1 . . . 8vm((Rz ^Qnzu1 . . . umv1 . . . vm)!

(✓(u1, . . . , um)$ ✓(v1, . . . , vm))) for all atomic L1 \ L2-formulas ✓.
6. 8z8u1 . . . 8un8v1 . . . 8vm((Rz^Qnzu1 . . . umv1 . . . vm)! 8z08x((Rz0^

z0 < z ^ 8w(w < z ! (w < z0 _ w = z0)) ^ P1x) ! 9y(P2y ^
Qn+1z0u1 . . . umxv1 . . . vmy))).

7. 8z8u1 . . . 8um8v1 . . . 8vm((Rz^Qnzu1 . . . umv1 . . . vm)! 8z08y((Rz0^
z0 < z ^ 8w(w < z ! (w < z0 _ w = z0)) ^ P2y) ! 9x(P1x ^
Qn+1z0u1 . . . umxv1 . . . vmy))).

For all n 2 N there is a model An of T with (R,<) of length n. The model
An is obtained as follows. The universe An is the (disjoint) union of Mn, Nn,
and {1, . . . , n}. The L1-structure (An � L1)P

An
1 is chosen to be a copy of the

model Mn of '. The L2-structure (An � L2)P
An
2 is chosen to be a copy of

the model Nn of  . The 2i+1-ary predicate Qi is interpreted in An as the set

{(n� i, u1, . . . , ui, v1, . . . , vi) : {(u1, v1), . . . , (ui, vi)} 2 In�i}.

By the Compactness Theorem, there is a countable model M of T with (R,<)
non-well-founded (see Exercise 6.107). That is, there are an, n 2 N, in M such
that an+1 is an immediate predecessor of an in M for all n 2 N. Let M1 be
the L1\L2-structure (M � (L1\L2))(P

M
1 ). Let M2 be the L1\L2-structure

(M � (L1 \L2))(P
M
2 ). Now M1 'p M2, for we have the back-and-forth set:

P = {{(u1, v1), . . . , (un, vn)} : M |= Qnanu1 . . . unv1 . . . vn, n 2 N}.
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Since M1 and M2 are countable, they are isomorphic. But M1 2 K1 and
M2 2 K2, a contradiction.

6.9 Uncountable Vocabularies

So far we have concentrated on methods based on the assumption that vocab-
ularies are countable. Several key methods work also for uncountable vocabu-
laries. A typical application of uncountable vocabularies is the task of finding
an elementary extension of an uncountable structure. In this case a new con-
stant symbol is added to the vocabulary for each element of the model, and the
vocabulary may become uncountable.

Strictly speaking, handling uncountable vocabularies does not require deal-
ing with ordinals, but since we use the Axiom of Choice anyway, it is more
natural to assume our vocabularies are well-ordered as in

L = {R↵ : ↵ < �} [ {f↵ : ↵ < �} [ {c↵ : ↵ < �}.

We then allow also variable symbols x↵,↵ < ✏.
An important method throughout logic is the method of Skolem functions.

Definition 6.50 Suppose L is a vocabulary, M is an L-structure, and we
have an L-formula '(x0, . . . , xn) of first-order logic. A Skolem function for
'(x0, . . . , xn) in M is any function f' : Mn !M such that for all elements
a0, . . . , an�1 of M :

M |= 9xn'(a0, . . . , an�1, xn)! '(a0, . . . , an�1, f'(a0, . . . , an�1)).

The following simple but fundamental fact is very helpful in the applications
of Skolem functions:

Proposition 6.51 (Tarski–Vaught criterion) Suppose L is a vocabulary, M
an L-structure, and N ✓ M such that for all L-formulas '(x0, . . . , xn) the
following holds:

If a0, . . . , an�1 2 N and M |= '(a0, . . . , an�1, an) for some
an 2M , then M |= '(a0, . . . , an�1, a0n) for some a0n 2 N .

(6.7)

Then N �M.

Proof Exercise 6.110.

Proposition 6.52 Suppose L is a vocabulary, M an L-structure, and F a
family of functions such that every L-formula has a Skolem function 2 F in
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formula of the vocabulary Lm. By definition,

J = {i 2 I Mi |= '(a0(i), . . . , an�1(i))} 2 D.

Suppose i 2 J \ Em. Again, ni � m. Now

Mi |= '(a0(i), . . . , an�1(i))

and (6.21) is a position in the game EFni(Mi�Lni ,Ni�Lni) while II uses ⌧i.
Since ⌧i is a winning strategy of II and '(x0, . . . , xn�1) is a formula of the
vocabulary Lni ,

Ni |= '(b0(i), . . . , bn�1(i)).

Thus

{i 2 I Ni |= '(b0(i), . . . , bn�1(i))} ◆ J \ Em 2 D,

whence N |= '(b0, . . . , bn�1).

Theorem 6.68 is by no means the best in this direction (see Benda (1969)).
A particularly beautiful stronger result is the following result of Shelah (1971):
M ⌘ N if and only if there are I and an ultrafilter D on I such that

Q
i M/D ⇠=Q

i N/D.

6.11 Historical Remarks and References

Basic texts in model theory are Chang and Keisler (1990) and Hodges (1993).
For the history of model theory, see Vaught (1974). Characterization of ele-
mentary equivalence in terms of back-and-forth sequences (Theorem 6.5 and
its Corollary) is due to Fraı̈ssé (1955).

The concepts and results of Section 6.4 are due to Kueker (1972, 1977).
Theorem 6.23 goes back to Löwenheim (1915) and Skolem (1923, 1970).

The idea of interpreting the quantifiers in terms of moves in a game, as in
the Semantic Game, is due to Henkin (1961). Hintikka (1968) extended this
from quantifiers to propositional connectives and emphasized its role in se-
mantics in general. The roots of interpreting logic as a game go back, arguably,
to Wittgenstein’s language games. Lorenzen (1961) used a similar game in
proof theory. For the close general connection between inductive definitions
and games see Aczel (1977).

Our Model Existence Game is a game-theoretic rendering of the method
of semantic tableaux of Beth (1955a,b), model sets of Hintikka (1955), and
consistency properties of Smullyan (1963, 1968). Its roots are in the proof-
theoretic method of natural deduction of Gentzen (1934, 1969). A good source
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for more advanced applications of the Model Existence Game is Hodges (1985).
Theorem 6.42 is due to Beth (1953) and the stronger but related Theorem 6.40
to Craig (1957a). For the background of Theorem 6.40 see Craig (2008), and
for its early applications Craig (1957b). The failure of Graig Interpolation in fi-
nite models was observed in Hájek (1976), see also Gurevich (1984), which has
this and Example 6.43. The proof of Theorem 6.49 is modeled according to the
proof in Barwise and Feferman (1985) of the main result of Lindström (1973),
the so-called Lindström’s Theorem, which characterizes first-order logic as a
maximal logic which satisfies the Compactness Theorem and the Löwenheim–
Skolem Theorem in the form: every sentence of the logic which has an infinite
model has a countable model. The connection to Theorem 6.49 is the follow-
ing: Suppose L⇤ were such a logic and ' 2 L⇤. We could treat the class of
models of ' and the class of models of ¬' as we treat the disjoint PC-classes
K1 and K2 in Theorem 6.49. The proof then shows that a first-order sentence
✓ can separate the class of models of ' and the class of models of ¬'. This
would clearly mean that ' would be logically equivalent to ✓, hence first-order
definable. Theorem 6.62 is from Keisler and Morley (1968).

Ultraproducts were introduced by Łoś (1955). For a survey of the use of
them in model theory see Bell and Slomson (1969). Theorem 6.68 is from
Benda (1969).

Exercise 6.9 is from Brown and Hoshino (2007), where more information
about Ehrenfeucht-Fraı̈ssé games for paths and cycles can be found. See also
Bissell-Siders (2007). Exercise 6.114 is from Morley (1968).

Exercises

6.1 A finite connected graph is a cycle if every vertex has degree 2. Write
a sentence of quantifier rank 2 which holds in a cycle if and only if the
cycle has length 3. Show that no such sentence of quantifier rank 1 exists.

6.2 Write a sentence of quantifier rank 3 which holds in a cycle if and only
if the cycle has length 4. Show that no such sentence of quantifier rank 2
exists. Do the same for the cycle of length 5.

6.3 Do the previous Exercise for the cycle of length 6.
6.4 Write a sentence of quantifier rank 4 which holds in a graph if and only

if the cycle has length 7. Show that no such sentence of quantifier rank 3
exists. Do the same for the cycle of length 8.

6.5 Write a sentence of quantifier rank 4 which holds in a graph if and only
if the cycle has length 9. Show that no such sentence of quantifier rank 3
exists.
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6.6 Construct a sentence of quantifier rank 2 which is true in an ordered set
M if and only if M has length 2.

6.7 Construct a sentence 'n of quantifier rank 3 which is true in an ordered
set M if and only if M has length n, where n is 3, 4, 5, or 6.

6.8 Show that there is a sentence of quantifier rank 4 which is true in a graph
if and only if the graph is a cycle, but no such sentence of quantifier rank
3 exists.

6.9 Show that if n � 3 and M and N are cycles of length � 2n�1 + 3, then
M 'n

p N .
6.10 Suppose L = ; and n 2 N. Into how many classes does ⌘n divide

Str(L)?
6.11 Suppose L = {c} and n 2 N. Into how many classes does ⌘n divide

Str(L)?
6.12 Suppose L = {P},#(P ) = 1, and n 2 N. Into how many classes does

⌘n divide Str(L)?
6.13 Suppose L = {R},#(R) = 2. Into how many classes does ⌘1 divide

Str(L)?
6.14 Suppose L = {R},#(R) = 2. Show that⌘2 divides Str(L) into at least

11 classes.
6.15 Construct for each n > 0 trees T and T 0 of height 2 such that T 'n

p T 0

but T 6'n+1
p T 0.

6.16 Consider EF3(T , T 0) where T and T 0 are the trees below. Show that

player I has a winning strategy. Then write a sentence of quantifier rank
3 which is true in T but false in T 0.

6.17 Suppose M is an equivalence relation with n classes of size 1 and n+1
classes of size 2. Suppose, on the other hand, that N is an equivalence
relation with n+1 classes of size 1 and n classes of size 2. Show that II
has a winning strategy in EFn+1(M,M0) but I has a winning strategy
in EFn+2(M,M0).

6.18 Suppose M is an equivalence relation with n classes of size k and n+1
classes of size k+1. Suppose, on the other hand, that N is an equivalence
relation with n + 1 classes of size k and n classes of size k + 1. Show
that II has a winning strategy in EFn+k(M,M0) but I has a winning
strategy in EFn+k+1(M,M0).
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6.19 Suppose L = {c, d}. Which of the following properties of L-structures
M can be expressed in FO with a sentence of quantifier rank  1:

(a) M 6= {cM, dM}.
(b) |M | � 2.
(c) |M \ {cM}| � 1.
(d) |M | = 2.

6.20 Like Exercise 6.19 but L = {R},#(R) = 2, and the cases are:

(a) There is a 2M such that (b, a) 2 RM for all b 2M \ {a}.
(b) RM is symmetric.
(c) RM is reflexive.

6.21 Suppose L = {R},#(R) = 2. Which of the following properties of L-
structures M can be expressed in FO with a sentence of quantifier rank
 2.

(a) M is an ordered set.
(b) M is a partially ordered set.
(c) M is an equivalence relation.
(d) M is a graph.

6.22 Suppose L = {<},#(<) = 2. Which of the following properties of L-
structures M can be expressed in FO with a sentence of quantifier rank
 3:

(a) M is a dense linear order.
(b) M is an ordered set with at least eight elements.
(c) M is a linear order with at least two limit points. (a is a limit point

if a has predecessors but no immediate predecessor.)

6.23 Which of the following sentences are logically equivalent to a sentence
of quantifier rank  1:

(a) 8x09x1(¬Rx0 _ Px1).
(b) 9x09x1(Rx1 ^Rx0).
(c) 9x09x1(¬⇡x0x1 ^ Px0).
(d) 8x09x1¬⇡x0x1.

6.24 Which of the following sentences are logically equivalent to a sentence
of quantifier rank  2:

(a) 8x09x18x2(Rx0x2 _ Sx0x1).
(b) 9x09x18x2(Rx0x2 _ Sx1x2).

6.25 Suppose we are told of an ordered set M that M ⌘2 (N, <). Can we
conclude that
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(a) M is infinite?
(b) M has a smallest element?
(c) Every element has finitely many predecessors?

6.26 Show that if M ⌘3 (Q, <), then M ⌘ (Q, <).
6.27 Show that if M ⌘3 (Z, <), then M ⌘ (Z, <).
6.28 Show that for all n there are M and N such that M ⌘n N but M 6⌘n+1

N .
6.29 Suppose L is a vocabulary and A an L-structure. A is !-saturated if

every type of the expanded structure (A, a0, . . . , an�1), where the ele-
ments a0, . . . , an�1 are from A, is realized in (A, a0, . . . , an�1). Sup-
pose A and B are !-saturated structures such that A ⌘ B. Show that
A 'p B.

6.30 Let C = {X 2 P!(R) : sup(X) = 1000}. What is a good starting move
for player I in Gcub(C)? Let C0 = {X 2 P!(R) : inf(X)  1000}.
What is a good starting move for player II in Gcub(C0)?

6.31 Let C = {X 2 P!(R) : X is dense (meets every non-empty open set) in
R}. What is a good strategy for player II in Gcub(C)?

6.32 Let C = {X 2 P!(R) : every point in X is a limit point of X}. What is
a good strategy for player II in Gcub(C)?

6.33 Let C = {X ✓ N : 8m 2 N9n 2 N(X \ [n, n +m] = ;)}. What is a
good strategy for player I in Gcub(C)?

6.34 Decide which player has a winning strategy in the Cub Game of the
following sets:

1. {X 2 P!(A) : a 2 X}, where a 2 A.
2. {X 2 P!(A) : B \X is finite}, where B 2 P(A).
3. {X 2 P!(A) : B \X is countable}, where B 2 P(A).
4. {X 2 P!(R) : X is bounded}.
5. {X 2 P!(R) : X is closed}.

6.35 Compute4a2ACa if Ca = {X 2 P!(A) : a 2 A}.
6.36 Let f : A ! A. Let Ca = {X 2 P!(A) : f(a) 2 X} and C0

a = {X 2
P!(A) : f(a) 62 X}. Compute4a2ACa and5a2AC0

a.
6.37 Suppose M is an ordered set. For a 2 M let Ca be the set of X ✓ M

which have an element above a in M and let C0
a be the set of X ✓ M

which are bounded by a in M. Describe the sets4a2MCa and5a2MCa.
6.38 Let L be a relational vocabulary. Suppose f : M ⇠= N , where M and

N and L-structures such that M = N . If A ✓ M , there is a unique
submodel M � A of M with domain A. Show that player II has a
winning strategy in Gcub({X 2 P!(M) : M � A ⇠= N � A}).
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6.39 Suppose G is a connected graph. Describe a winning strategy for player
II in Gcub(C), where C = {X 2 P!(G) : [X]G is connected}.

6.40 Suppose (A,<) is an ordered set and X has a last element for a station-
ary set of countable X ✓ A. Show that (A,<) itself has a last element.

6.41 Show that the set CUBA of sets C ✓ P!(A) which contain a cub is a
countably closed filter (i.e. (1) If C 2 CUBA and C ✓ D ✓ P!(A), then
D 2 CUBA. (2) If Cn 2 CUBA for all n 2 N, then

T
n2N Cn 2 CUBA).

In fact, CUBA is a normal filter (i.e. if Ca 2 CUBA for all a 2 A, then
4a2ACa 2 CUBA).

6.42 Show that if D is stationary and C cub, then D \ C is stationary.
6.43 Show that if D =

S
n2N Dn is stationary, then there is n 2 N such that

Dn is stationary.
6.44 Show that if D = 5a2ADa is stationary, then there is a 2 A such that

Da is stationary.
6.45 (Fodor’s Lemma) Suppose D is stationary and f(X) 2 X for every

X 2 C. Show that there is a stationary D ✓ C such that f is constant on
D. (Hint: Let Ca = {X : f(X) = a}. Assume no Ca is stationary and
use Lemma 6.15 to derive a contradiction.)

6.46 Show that if A is an uncountable set, then there is a stationary set C ✓
P!(A) such that also P!(A) \ C is stationary. Such sets are called bis-
tationary. Note that then C /2 CUBA. (Hint: Write X = {aXn : n 2 N}
whenever X 2 P!(A). Apply the above Fodor’s Lemma to the func-
tions fn(X) = aXn to find for each n a stationary Dn on which fn is
constant. If each P!(A) \ Dn is non-stationary, there is for each n a cub
set Cn ✓ Dn. Let C =

T
Cn and show that C can have only one element,

which contradicts the fact that C is cub.)
6.47 Use the previous exercise to conclude that CUBA is not an ultrafilter (i.e.

a maximal filter) if A is infinite.
6.48 Show that the set NSA of sets C ✓ P!(A) which are non-stationary is a

�-ideal (i.e. (1) If D 2 NSA and C ✓ D ✓ P!(A), then C 2 NSA. (2)
If Dn 2 NSA for all n 2 N, then

S
n2N Dn 2 NSA). In fact, NSA is a

normal ideal (i.e. if Da 2 NSA for all a 2 A, then5a2ADa 2 NSA).
6.49 Show that if a sentence is true in a stationary set of countable submodels

of a model then it is true in the model itself. More exactly: Let L be a
countable vocabulary, M an L-model, and ' an L-sentence. Suppose
{X 2 P!(M) : [X]M |= '} is stationary. Show that M |= '.

6.50 In this and the following exercises we develop the theory of cub and
stationary subsets of a regular cardinal  > !. A set C ✓  is closed if it
contains every non-zero limit ordinal � <  such that C\� is unbounded
in �, and unbounded if it is unbounded as a subset of . We call C ✓ 
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a closed unbounded (cub) set if C is both closed and unbounded. Show
that the following sets are cub

(i) .
(ii) {↵ <  : ↵ is a limit ordinal}.
(iii) {↵ <  : ↵ = !� for some �}.
(iv) {↵ <  : if � < ↵ and � < ↵, then � + � < ↵}.
(v) {↵ <  : if ↵ = � · �, then ↵ = � or ↵ = �}.

6.51 Show that the following sets are not cub:

(i) ;.
(ii) {↵ < !1 : ↵ = � + 1 for some �}.
(iii) {↵ < !1 : ↵ = !� + ! for some �}.
(iv) {↵ < !2 : cf(↵) = !}.

6.52 Show that a set C contains a cub subset of !1 if and only if player II
wins the game G!(WC), where

WC = {(x0, x1, x2, . . .) : sup
n

xn 2 C}.

6.53 A filter F on M is �-closed if A↵ 2 F for ↵ < �, where � < �, impliesT
↵A↵ 2 F . A filter F on  is normal if A↵ 2 F for ↵ <  implies
4↵A↵ 2 F , where

4↵A↵ = {↵ <  : ↵ 2 A� for all � < ↵}.

Note that normality implies -closure. Show that if  > ! is regular,
then the set F of subsets of  that contain a cub set is a proper normal
filter on . The filter F is called the cub-filter on .

6.54 A subset of  which meets every cub set is called stationary. Equiva-
lently, a subset S of  is stationary if its complement is not in the cub-
filter. A set which is not stationary, is non-stationary. Show that all sets
in the cub-filter are stationary. Show that

{↵ < !2 : cof(↵) = !}

is a stationary set which is not in the cub-filter on !2.
6.55 (Fodor’s Lemma, second formulation) Suppose  > ! is a regular car-

dinal. If S ✓  is stationary and f : S !  satisfies f(↵) < ↵ for all
↵ 2 S, then there is a stationary S0 ✓ S such that f is constant on S0.
(Hint: For each ↵ <  let S↵ = {� <  : f(�) = ↵}. Show that one of
the sets S↵ has to be stationary. )
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6.56 Suppose  is a regular cardinal > !. Show that there is a bistationary
set S ✓  (i.e. both S and  \ S are stationary). (Hint: Note that S =
{↵ <  : cf(↵) = !} is always stationary. For ↵ 2 S let �↵ : ! ! ↵ be
strictly increasing with supn �↵(n) = ↵. By the previous exercise there
is for each n < ! a stationary An ✓ S such that the regressive function
fn(↵) = �↵(n) is constant �n on An. Argue that some  \ An must be
stationary.)

6.57 Suppose  is a regular cardinal > !. Show that  =
S
↵< S↵ where the

sets S↵ are disjoint stationary sets. (Hint: Proceed as in Exercise 6.56.
Find n < ! such that for all � <  the set S� = {↵ <  : �↵(n) � �}
is stationary. Find stationary S0

� ✓ S� such that �↵(n) is constant for
↵ 2 S0

� . Argue that there are  different sets S0
� .)

6.58 Show that S ✓ !1 is bistationary if and only if the game G!(WS) is
non-determined.

6.59 Suppose  is regular > !. Show that S ✓  is stationary if and only if
every regressive f : S !  is constant on an unbounded set.

6.60 Prove that C ✓ !1 is in the cub filter if and only if almost all countable
subsets of !1 have their sup in C.

6.61 Suppose S ✓ !1 is stationary. Show that for all ↵ < !1 there is a closed
subset of S of order-type� ↵. (Hint: Prove a stronger claim by induction
on ↵.)

6.62 Decide first which of the following are true and then show how the win-
ner should play the game SG(M, T ):

1. (R, <, 0) |= 9x8y(y < x _ 0 < y).
2. (N, <) |= 8x8y(¬y < x _ 8z(z < y _ ¬z < x)).

6.63 Prove directly that if II has a winning strategy in SG(M, T ) and M 'p

N , then II has a winning strategy in SG(N , T ).
6.64 The Existential Semantic Game SG9(M, T ) differs from SG(M, T )

only in that the 8-rule is omitted. Show that if II has a winning strat-
egy in SG9(M, T ) and M ✓ N , then II has a winning strategy in
SG9(N , T ).

6.65 A formula in NNF is existential if it contains no universal quantifiers.
(Then it is logically equivalent to one of the form 9x1 . . . 9xn', where '
is quantifier free.) Show that if L is countable and T is a set of existential
L-sentences, then M |= T if and only if player II has a winning strategy
in the game SG9(M, T ).

6.66 The Universal-Existential Semantic Game SG89(M, T ) differs from the
game SG(M, T ) only in that player I has to make all applications of the
8-rule before all applications of the 9-rule. Show that if M0 ✓M1 ✓
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I II

¬Pc _ Pfc

Pfc

Figure 6.22

. . . and II has a winning strategy in each SG89(Mn, T ), then II has a
winning strategy in SG89([1n=0Mn, T ).

6.67 A formula in NNF is universal-existential if it is of the form

8y1 . . . 8yn9x1 . . . 9xm',

where ' is quantifier free. Show that if L is countable and T is a set of
universal-existential L-sentences, then M |= T if and only if player II
has a winning strategy in the game SG89(M, T ).

6.68 The Positive Semantic Game SGpos(M, T ) differs from SG(M, T ) only
in that the winning condition “If player II plays the pair (', s), where
' is basic, then M |=s '” is weakened to “If player II plays the pair
(', s), where ' is atomic, then M |=s '”. Suppose M and N are L-
structures. A surjection h : M ! N is a homomorphism M ! N
if

M |= '(a1, . . . , an)) N |= '(f(a1), . . . , f(an))

for all atomic L-formulas ' and all a1, . . . , an 2 M . Show that if II
has a winning strategy in SGpos(M, T ) and h : M ! N is a surjective
homomorphism, then II has a winning strategy in SGpos(N , T ).

6.69 A formula in NNF is positive if it contains no negations. Show that if L
is countable and T is a set of positive L-sentences, then M |= T if and
only if player II has a winning strategy in the game SGpos(M, T ).

6.70 The game MEG(T, L) is played with

T = {Pc,¬Qfc, 8x0(¬Px0 _Qx0), 8x0(¬Px0 _ Pfx0)}.

The game starts as in Figure 6.22. How does I play now and win?
6.71 Consider T = {9x08x1Rx0x1, 9x18x0¬Rx0x1}. Now we start the

game MEG(T, L) as in Figure 6.23. How does I play now and win?
6.72 Consider T = {8x0(¬Px0 _ Qx0), 9x0(Qx0 ^ ¬Px0)}. The game

MEG(T, L) is played. Player I immediately resigns. Why?
6.73 The game MEG(T, L) is played with

T = {8x0¬x0Ex0, 8x08x1(¬x0Ex1 _ x1Ex0),
8x09x1x0Ex1, 8x09x1¬x0Ex1}.
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I II

9x08x1Rx0x1

8x1Rc0x1

9x18x0¬Rx0x1

8x0¬Rx0c1

Figure 6.23

Player I immediately resigns. Why?
6.74 Use the game MEG(T, L) to decide whether the following sets T have

a model:

1. {9xPx,8y(¬Py _Ry)}.
2. {8xPxx, 9y8x¬Pxy}.

6.75 Prove the following by giving a winning strategy of player I in the ap-
propriate game MEG(T [ {¬'}, L):
1. {8x(Px! Qx), 9xPx} |= 9xQx.
2. {8xRxfx} |= 8x9yRxy.

6.76 Suppose T is the following theory

8x0¬x0 < x0

8x08x18x2(¬(x0 < x1 ^ x1 < x2) _ x0 < x2)
8x08x1(x0 < x1 _ x1 < x0 _ x0⇡x1)
9x0(Px0 ^ 8x1(¬Px1 _ x0⇡x1 _ x1 < x0)
9x0(¬Px0 ^ 8x1(Px1 _ x0⇡x1 _ x1 < x0).

Give a winning strategy for player I in MEG(T, L).
6.77 Prove that the relation ⇠ is an equivalence relation on C in the proof of

Lemma 6.33.
6.78 Prove that the relation ⇠ in the proof of Lemma 6.33 has the properties:

(1) If ci ⇠ c0i for 1  i  n and f 2 L, then fc1 . . . cn ⇠ fc01 . . . c
0
n.

(2) If ci ⇠ c0i for 1  i  n and R 2 L such that Rc1 . . . cn 2 H , then
Rc01 . . . c

0
n 2 H .

6.79 Show in the proof of Lemma 6.33, that if '(x1, . . . , xn) is an L-formula
and '(d1, . . . , dn) 2 H for some d1 . . . , dn, then M |= '(d1, . . . , dn).

6.80 Suppose L is a vocabulary and M an L-structure. Let C = {ca : a 2
M} be a new set of constants, one for each element of M . There is a
canonical expansion M⇤ of M to an L[C-structure where each constant
ca is interpreted as a. The diagram of M is the set D(M) of basic
L [ C-sentences ' such that M |= '. Show that an L-structure N has
a substructure isomorphic to M if and only if N can be expanded (by
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adding interpretations to the new constants) to a model of D(M). You
may assume M is countable although the claim is true for all M .

6.81 Show that a sentence ' is logically equivalent to an existential sentence
if and only if for all M ✓ N : If M |= ', then N |= '. (Hint: Let
T be the set of existential sentences that logically imply '. Show that a
finite disjunction of sentences in T is logically equivalent to '. Use the
Compactness Theorem and the previous exercise.)

6.82 Show that a sentence ' is logically equivalent to a positive sentence if
and only if for all M and N : If M |= ' and N is a homomorphic image
of M, then N |= '.

6.83 Show that if M ⌘ N , then there are M⇤ and N ⇤ such that M �M⇤,
N � N ⇤ and N ⇤ ⇠= M⇤. (You may assume N and M are countable
although the claim is true without this assumption.)

6.84 Suppose M is a structure in which <M is a linear order of M without a
last element. Show that there is N such that M � N and some element
a of N satisfies b <N a for all b 2M . (You may assume M is countable
although the claim is true for all M .)

6.85 Suppose (M,R) is a partially ordered set. Prove that there is an ordered
set (M,R0) such that R ✓ R0. (You may assume M is countable al-
though the claim is true for all M .)

6.86 Prove using the Compactness Theorem that for every set M there is a
relation <✓M ⇥M such that (M,<) is an ordered set. Hint: Consider
a vocabulary which has a constant symbol for each element of M . (You
may assume M is countable although the claim is true for all M .)

6.87 Suppose T is a theory with an infinite model M in which <M is a linear
order. Show that T has a model N in which <N is not well-ordered.

6.88 Suppose T is a theory which has for each n > 0 a model Mn such that
(Mn, EMn) is a graph in which there are two elements which are not
connected by a path of length n. Show that T has a model N in which
(N,EN ) is a disconnected graph.

6.89 Show that the function used in the proof of Theorem 6.38 really exists.
6.90 Suppose p is a type of T . Show that p is included in the type of some

element of some model of T .
6.91 Let T be the theory of dense linear order without endpoints plus the

axioms cn < cm for natural numbers n < m. Show that the type p =
{c0 < x, c1 < x, c2 < x, . . .} of T is non-principal.

6.92 Suppose p and p0 are types of the theory T . Does there have to be a model
of T in which p is included in the type of some element and also p0 is
included in the type of some element? Does it make a difference if T is
complete?
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6.93 Suppose p and p0 are types of the theory T . Under which conditions
does T have a model which realizes p but omits p0? (Hint: Consider
the condition: For every '(x, y) there is  (x) 2 p0 such that for no
�1(y), . . . , �n(y) 2 p do we have both

T ` ('(x, y) ^ �1(y) ^ . . . ^ �n(y))!  (x)

and

T [ {9x9y('(x, y) ^ �1(y) ^ . . . ^ �n(y))} is consistent.)

6.94 Let T be the theory of dense linear order without endpoints plus the
axioms ci < cj for positive and negative integers i < j. Let p = {c0 <
x, c1 < x, c2 < x, . . .} and p0 = {y < c0, y < c�1, y < c�2, . . .}.
Show that T has a model which realizes p but omits p0.

6.95 Show that if p0, p1, . . . are non-principal types of a countable theory T ,
then there is a model of T which omits each pn.

6.96 Show that the predicate P is not explicitly definable relative to

1. ¬8xPx ^ ¬8x¬Px.
2. 9x8y((Py ^Qy)! ⇡xy).

6.97 Deduce the Craig Interpolation Theorem for arbitrary vocabularies from
the assumption that it holds for relational vocabularies.

6.98 A predicate symbol occurs positively in a formula if the formula is in
NNF and there is a non-negated occurrence of the predicate symbol in
the formula. A predicate symbol occurs negatively in a formula if the
formula is in NNF and there is a negated occurrence of the predicate
symbol in the formula. Show that the Craig Interpolation Theorem holds
in the following form, known as the Lyndon Interpolation Theorem: If L
is a relational vocabulary, ' and  are L-sentences and |= ' !  , then
there is ✓ such that |= ' ! ✓, |= ✓ !  , every predicate symbol oc-
curring positively in ✓ occurs positively in ' and  , and every predicate
symbol symbol occurring negatively in ✓ occurs negatively in ' and  .

6.99 Assume in the previous Exercise that the sentences ' and  have no
occurrences of the identity symbol. Assume also 6|= ¬' and 6|=  . Show
that ✓ can be chosen such that it does not contain identity.

6.100 Suppose L1 and L2 are vocabularies which contain no function sym-
bols. Let ' be an L1-sentence and  an L2-sentence such that  is uni-
versal and |= '!  . Show that there is a universal L1 \ L2-sentence ✓
such that |= '! ✓ and |= ✓ !  .

6.101 Prove Lemma 6.44.
6.102 Prove Example 6.46.

Incomplete version for students of easllc2012 only.



Exercises 137

6.103 Prove Example 6.47.
6.104 Prove Example 6.48.
6.105 Suppose L is a finite vocabulary, P1 and P2 are unary predicate symbols

in L. Show that the class of L-structures M such that

M(PM
1 ) and M(PM

2 ) are well-defined and M(PM
1 ) ⇠= M(PM

2 )

is a PC-class.
6.106 Suppose L is a finite vocabulary, P1 and P2 are unary predicate symbols

in L. Show that for all n 2 N the class of L-structures M such that

M(PM
1 ) and M(PM

2 ) are well-defined and M(PM
1 ) 'n

p M(PM
2 )

is a PC-class.
6.107 Suppose L is a countable vocabulary containing the binary predicate

symbol <. Suppose T is a set of L-sentences. Prove that if T has for
each n 2 N a model M in which <M is infinite or finite of length at
least n, then T has a model M in which <M in non-well-ordered.

6.108 Show that every PC-class is closed under isomorphisms.
6.109 Show that the intersection and union of any two PC-classes is again a

PC-class.
6.110 Prove Proposition 6.51, the Tarski–Vaught Criterion.
6.111 Prove Lemma 6.55.
6.112 Prove Lemma 6.56.
6.113 Show that the Omitting Types Theorem of first-order logic fails (in its

original form) for uncountable vocabularies. (Hint: Let L be a vocabu-
lary consisting of uncountably many constants c↵ and countably many
constants dn. Let T say all the constants c↵ denote different elements,
and all the constants dn likewise denote different elements. Let p be the
type of an element different from each dn. Then p is non-principal in the
original sense of Theorem 6.38.)

6.114 Suppose L is a vocabulary (not necessarily countable). Show that if T
has a countable model, then T has a model of cardinality 2@0 .

6.115 Prove that equivalence (6.16) is independent of the choice of f1, . . . , fm.
6.116 Prove that Equation (6.17) is independent of the choice of f1, . . . , fm.
6.117 Prove

Q
n(N,+, ·, 0, 1)/F 6⇠= (N,+, ·, 0, 1), where F is a non-principal

ultrafilter on N.
6.118 Show that the ordered field

Q
n(R, <,+, ·, 0, 1)/F , where F is a non-

principal ultrafilter on N, has “infinitely small” elements, i.e. elements
that are greater than zero but smaller than 1/n for all n 2 N.

6.119 Let Gn be the graph consisting of a cycle of n + 3 elements, and G =Q
n Gn/F . Show that G is disconnected.
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7
Infinitary Logic

7.1 Introduction

As the name indicates, infinitary logic has infinite formulas. The oldest use of
infinitary formulas is the elimination of quantifiers in number theory:

9x'(x)$
_
n2N

'(n)

8x'(x)$
^
n2N

'(n).

Here we leave behind logic as a study of sentences humans can write down
on paper. Infinitary formulas are merely mathematical objects used to study
properties of structures and proofs. It turns out that games are particularly suit-
able for the study of infinitary logic. In a sense games replace the use of the
Compactness Theorem which fails badly in infinitary logic.

7.2 Preliminary Examples

The games we have encountered so far have had a fixed length, which has
been either a natural number or ! (an infinite game). Now we introduce a
game which is “dynamic” in the sense that it is possible for player I to change
the length of the game during the game. He may first claim he can win in five
moves, but seeing what the first move of II is, he may decide he needs ten
moves. In these games player I is not allowed to declare he will need infinitely
many moves, although we shall study such games, too, later.

Before giving a rigorous definition of the Dynamic Ehrenfeucht–Fraı̈ssé
Game we discuss some simple versions of it.
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Definition 7.1 (Preliminary) Suppose M,M0 are L-structures such that L is
a relational vocabulary and M \M 0 = ;. The Dynamic Ehrenfeucht–Fraı̈ssé
Game, denoted EFD!(M,M0) is defined as follows: First player I chooses a
natural number n and then the game EFn(M,M0) is played.

Note that EFD!(M,M0) is not a game of length !. Player II has a winning
strategy in EFD!(M,M0) if she has one in each EFn(M,M0). On the other
hand, player I has a winning strategy in EFD!(M,M0) if he can envisage a
number n so that he has a winning strategy in EFn(M,M0).

Example 7.2 If M and M0 are L-structures such that M is finite and M 0

is infinite, then player I has a winning strategy in EFD!(M,M0). Suppose
|M | = n. Player I has a winning strategy in EFn+1(M,M0). He first plays
all n elements of M and then any unplayed element of M 0. Player II is out of
good moves, and loses the game.

Example 7.3 If M and M0 are equivalence relations such that M has finitely
many equivalence classes and M0 infinitely many, then player I has a win-
ning strategy in EFD!(M,M0). Suppose the equivalence classes of M are
[a1], . . . , [an]. The strategy of I is to play first the elements a1, . . . , an. Then
he plays an element from M 0 which is not equivalent to any element played so
far. Player II is at a loss. She has to play an element of M equivalent to one of
a1, . . . , an. She loses.

Definition 7.4 (Preliminary) Suppose n 2 N. The game EFD!+n(M,M0)
is played as follows. First the game EF!(M,M0) is played for n moves. Then
player I declares a natural number m and the game EF!(M,M0) is continued
for m more moves. If II has not lost yet, she has won EFD!+n(M,M0).
Otherwise player I has won.

Example 7.5 Suppose G and G0 are graphs so that in G every vertex has a
finite degree while in G0 some vertex has infinite degree. Then player I has
a winning strategy in EFD!+1(G,G0). Suppose a 2 G 0 has infinite degree.
Player I plays first the element a. Let b 2 G be the response of player II. We
know that every element of G has finite degree. Let the degree of b be n. Player
I declares that we play n+1 more moves. Accordingly, he plays n+1 different
neighbors of a. Player II cannot play n+1 different neighbors of b since b has
degree n. She loses.

Example 7.6 Suppose G is a connected graph and G0 a disconnected graph.
Then player I has a winning strategy in EFD!+2(G,G0). Suppose a and b are
elements of G 0 that are not connected by a path. Player I plays first elements
a and b. Suppose the responses of player II are c and d. Since G is connected,
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there is a connected path c = c0, c1, . . . , cn, cn+1 = d connecting c and d in
G.

Now player I declares that he needs n more moves. He plays the elements
c1, . . . , cn one by one. Player II has to play a connected path a1, . . . , an in
G0. Now d is a neighbor of cn in G but b is not a neighbor of an in G0 (see
Figure 7.1).

Example 7.7 An abelian group is a structure G = (G ,+) with +G : G ⇥
G ! G satisfying the conditions

(1) x+G (y +G z) = (x+G y) +G z for x, y, z.
(2) there is an element 0G such that x+G 0G = 0G +G x = x for all x.
(3) for all x there is �x such that x+G (�x) = 0G .
(4) for all x and y : x+G y = y +G x.

Examples of abelian groups are

Figure 7.1
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142 Infinitary Logic

(Z,+) integers with addition.
(Z(n),+) integers modulo n with modular adddition:

x+Z(n) y = (x+Z y) mod n.
(Q,+) rationals with addition.
(R,+) reals with addition.
(R+, ·) positive reals with multiplication.

Example 7.8 Consider the abelian groups Z = (Z,+) and Z2 = (Z⇥Z,+)
with

(m,n) + (p, q) = (m+ p, n+ q).

It is trivial that II has a winning strategy in EFD1(Z,Z2). But I has a winning
strategy already in EFD2(Z,Z2): First he plays x0 = (1, 0) and ↵0 = 1.
Suppose II responds with y0 2 Z. Then I plays x1 = (0, 1) and ↵1 = 0.
Player II responds with y1 2 Z. Now

y1X
i=1

y0 =
y0X
i=1

y1

but
y1X
i=1

x0 = (y1, 0) 6= (0, y0) =
y0X
i=1

x1

unless y1 = y0 = 0, in which case II has lost anyway.

Example 7.9 Consider the structures (Z,+, 0) and (Z,+, 1). Player II can-
not guarantee victory even in a zero-move game, as 0 + 0 = 0, but 1 + 1 6= 1.
If instead we have the structures (Z,+, 0) and (Z, ·, 1), then II wins the zero-
move game, but if I has even just one move, he can play x0 = 0 in (Z, ·, 1)
and he wins. Namely, if II plays y0 2 Z with y0 6= 0, we have x0 · x0 = x0

but y0 + y0 6= y0.

An element a of an abelian group G is a torsion element if there is an n 2 N
such that a+ . . .+ a| {z }

n

= 0. In Z(n) every element is a torsion element because

if a < n, then a+ . . .+ a| {z }
n

= na = 0 mod n. A group in which every element

is a torsion element is a torsion group. If no element is a torsion element, the
group is torsion-free. Torsion-freeness can be axomatized with

8x(x+ . . .+ x| {z }
n

= 0! x = 0), n = 1, 2, . . .

Torsion groups cannot be axiomatized:
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Proposition 7.10 If T is a first-order theory in the vocabulary {+} and
Z(n) |= T for arbitrarily large n 2 N, then T has a model which is not a
torsion group.

Proof Let T 0 consist of axioms of abelian groups, T and the axioms

c+ . . .+ c| {z }
n

6= 0

for all n 2 N, n > 0. Any finite subtheory of T 0 is satisfied by Z(n) for large
enough n, if we interpret c as 1. By the Compactness Theorem T 0 has a model
G. Let cG = a. Now in G we have a+ . . .+ a| {z }

n

6= 0 for all n 2 N. Thus a is not

a torsion element of G.

Lemma 7.11 If G is an abelian torsion group and G0 is a non-torsion abelian
group, then I has a winning strategy in EFD1(G,G0).

Proof We let I play x0 as a non-torsion element of G0. Suppose II plays
y0 2 G. Now there is n 2 N such that

y0 + . . .+ y0| {z }
n

= 0

but

x0 + . . .+ x0| {z }
n

6= 0

so I wins.

We can construe abelian groups also as relational structures. Thus instead of
a binary function + : G⇥G ! G we have a ternary relation R+ ✓ G⇥G⇥G .
Then the axioms of abelian groups are

(1) 8x8y9zR+xyz.
(2) 8x8y8z8u((R+xyz ^ R+xyu)! z = u).
(3) 8x8y8z8u8v8w((R+xyu ^ R+uzv ^ R+yzw)! R+xwv).
(4) 9x8y(R+xyy ^ R+yxy ^ 8z9u(R+zux ^ R+uzx)).

In Ehrenfeucht–Fraı̈ssé Games abelian groups behave quite differently de-
pending on whether they are construed as relational structures or as algebraic
structures.

Lemma 7.12 If G = (G ,R+) is an abelian torsion group and G0 = (G 0,R+)
is a non-torsion abelian group, then I has a winning strategy in the game
EFD!+1(G,G0).
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Figure 7.2

Proof Let I play first x0 2 G0 which is not a torsion element. The response
yo 2 G of II is a torsion element, so if we use algebraic notation, we have
z1, . . . , zn such that

y0 + y0 = z1.
z1 + y0 = z2.

...
zn + y0 = 0.

Now I declares there are n+2 moves left, and plays xi = zi for i = 1, . . . , n.
Let the responses of II be y1, . . . , yn. Next I plays xn+1 = 0G , and II plays
yn+1 2 G0. Since x0 2 G0 is not a torsion element, II cannot have played
yn+1 = 0G0 or else she loses. So there is xn+2 in G0 with xn+2+yn+1 6= xn+2.
Now finally I plays this xn+2, and II plays yn+2. As yn+2 + xn+1 = yn+2,
II has now lost.

7.3 The Dynamic Ehrenfeucht–Fraı̈ssé Game

From EFD!+n(M,M0) we could go on to define a game EFD!+!(M,M0)
in which player I starts by choosing a natural number n and declaring that we
are going to play the game EFD!+n(M,M0). But what is the general form of
such games? We can have a situation where player I wants to decide that after
n0 moves he decides how many moves are left. At that point he decides that
after n1 moves he will decide how many moves now are left. At that point he
decides that after n2 moves he . . . until finally he decides that the game lasts nk

more moves. A natural way of making this decision process of player I exact
is to say that player I moves down an ordinal. For example, if he moves down
the ordinal ! + ! + 1, he can move as in Figure 7.2.

So first he wants n0 moves and after they have been played he decides on
n1. If he moves down on the ordinal ! · ! + 1, he first chooses k and wants
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Figure 7.3

n0 moves and after they have been played he can still make k changes of mind
about the length of the rest of the game (see Figure 7.3).

Definition 7.13 Let L be a relational vocabulary and M,M0 L-structures
such that M \M0 = ;. Let ↵ be an ordinal. The Dynamic Ehrenfeucht–
Fraı̈ssé Game EFD↵(M,M0) is the game G!(M [M 0[↵,W!,↵(M,M0)),
where W!,↵(M,M0) is the set of

p = (x0,↵0, y0, . . . , xn�1,↵n�1, yn�1)

such that

(D1) For all i < n : xi 2 M $ yi 2 M 0.
(D2) ↵ > ↵0 > . . . > ↵n�1 = 0.
(D3) If we denote

vi =

⇢
xi if xi 2 M
yi if yi 2 M

and v0i =

⇢
xi if xi 2 M 0

yi if yi 2 M 0

then

fp = {(v0, v00), · · · , (vn�1, v
0
n�1)}

is a partial isomorphism M!M0.

Note that EFD↵(M,M0) is not a game of length ↵. Every play in the game
EFD↵(M,M0) is finite, it is just how the length of the game is determined
during the game where the ordinal ↵ is used. Compared to EF!(M,M0), the
only new feature in EFD↵(M,M0) is condition (D2). Thus EFD↵(M,M0)
is more difficult for I to play than EF!(M,M0), but – if ↵ � ! – easier than
any EFn(M,M0).

Lemma 7.14 (1) If II has a winning strategy in EFD↵(M,M0) and �  ↵,
then II has a winning strategy in EFD�(M,M0).

(2) If I has a winning strategy in EFD↵(M,M0) and ↵  �, then I has a
winning strategy in EFD�(M,M0).
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Proof (1) Any move of I in EFD�(M,M0) is as it is a legal move of I in
EFD↵(M,M0). Thus if II can beat I in EFD↵ she can beat him in EFD� .

(2) If I knows how to beat II in EFD↵, he can use the very same moves to
beat II in EFD� .

Lemma 7.15 If ↵ is a limit ordinal 6= 0 and II has a winning strategy in the
game EFD�(M,M0) for each � < ↵, then II has a winning strategy in the
game EFD↵(M,M0).

Proof In his opening move I plays ↵0 < ↵. Now II can pretend we are
actually playing the game EFD↵0+1(M,M0). And she has a winning strategy
for that game!

Back-and-forth sequences are a way of representing a winning strategy of
player II in the game EFD↵.

Definition 7.16 A back-and-forth sequence (P� : �  ↵) is defined by the
conditions

; 6= P↵ ✓ . . . ✓ P0 ✓ Part(A,B) (7.1)

8f 2 P�+18a 2 A9b 2 B9g 2 P�(f [ {(a, b)} ✓ g) for � < ↵ (7.2)

8f 2 P�+18b 2 B9a 2 A9g 2 P�(f [ {(a, b)} ✓ g) for � < ↵. (7.3)

We write

A '↵p B

if there is a back-and-forth sequence of length ↵ for A and B.

The following proposition shows that back-and-forth sequences indeed cap-
ture the winning strategies of player II in EFD↵(A,B):

Proposition 7.17 Suppose L is a vocabulary and A and B are two L-structures.
The following are equivalent:

1. A ⇠=↵p B.
2. II has a winning strategy in EFD↵(A,B).

Proof Let us assume A \ B = ;. Let (Pi : i  ↵) be a back-and-forth
sequence for A and B. We define a winning strategy ⌧ = (⌧i : i 2 N) for
II. Suppose we have defined ⌧i for i < j and we want to define ⌧j . Suppose
player I has played x0,↵0, . . . , xj�1,↵j�1 and player II has followed ⌧i dur-
ing round i < j. During the inductive construction of ⌧i we took care to define
also a partial isomorphism fi 2 P↵i such that {v0, . . . , vi�1} ✓ dom(fi).
Now player I plays xj and ↵j < ↵j�1. Note that fj�1 2 P↵j+1. By assump-
tion there is fj 2 P↵j extending fj�1 such that if xj 2 A, then xj 2 dom(fj)
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and if xj 2 B, then xj 2 rng(fj). We let ⌧j(x0, . . . , xj) = fj(xj) if xj 2 A,
and ⌧j(x0, . . . , xj) = f�1

j (xj) otherwise. This ends the construction of ⌧j .
This is a winning strategy because every fp extends to a partial isomorphism
M! N .

For the converse, suppose ⌧ = (⌧n : n 2 N) is a winning strategy of II.
Let Q consist of all plays of EFD↵(A,B) in which player II has used ⌧ . Let
P� consist of all possible fp where p = (x0,↵0, y0, . . . , xi�1,↵i�1, yi�1) is a
position in the game EFD↵(A,B) with an extension in Q and ↵i�1 � �. It is
clear that (P� : �  ↵) has the properties (7.1) and (7.2).

We have already learnt in Lemma 7.14 that the bigger the ordinal ↵ in
EFD↵(M,M0) is, the harder it is for player II to win and eventually, in a
typical case, her luck turns and player I starts to win. From that point on it is
easier for I to win the bigger ↵ is. Lemma 7.15, combined with the fact that
the game is determined, tells us that there is a first ordinal where player I starts
to win. So all the excitement concentrates around just one ordinal up to which
player II has a winning strategy and starting from which player I has a win-
ning strategy. It is clear that this ordinal tells us something important about the
two models. This motivates the following:

Definition 7.18 An ordinal ↵ such that player II has a winning strategy in
EFD↵(M,M0) and player I has a winning strategy in EFD↵+1(M,M0) is
called the Scott watershed of M and M0.

By Lemma 7.14 the Scott watershed is uniquely determined, if it exists. In
two extreme cases the Scott watershed does not exist. First, maybe I has a
winning strategy even in EF0(M,M0). Here Part(M,M0) = ;. Secondly,
player II may have a winning strategy even in EF!(M,M0), so I has no
chance in any EFD↵(M,M0), and there is no Scott watershed. In any other
case the Scott watershed exists. The bigger it is, the closer M and M0 are
to being isomorphic. Respectively, the smaller it is, the farther M and M0

are from being isomorphic. If the watershed is so small that it is finite, the
structures M and M0 are not even elementary equivalent.

General problem: Given M and M0, find the Scott watershed!

How far afield do we have to go to find the Scott watershed? It is very natural
to try first some small ordinals. But if we try big ordinals, it would be nice to
know how high we have to go. There is a simple answer given by the next
proposition: If the models have infinite cardinality , and the Scott watershed
exists, then it is < +. Thus for countable models we only need to check
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Figure 7.4

countable ordinals. For finite models this is not very interesting: if the models
have at most n elements, and there is a watershed, then it is at most n.

Proposition 7.19 If II has a winning strategy in EFD↵(M,M0) for all ↵ <
(|M |+ |M 0|)+ then II has a winning strategy in EF!(M,M0).

Proof Let  = |M |+ |M 0|. The idea of II is to make sure that

(?) If the game EF!(M,M0) has reached a position

p = (x0, y0, . . . , xn�1, yn�1) with fp = {(v0, v00), . . . , (vn�1, v
0
n�1)}

then II has a winning strategy in

EFD↵+1((M, v0, . . . , vn�1), (M0, v00, . . . , v
0
n�1)) (7.4)

for all ↵ < +.

In the beginning n = 0 and condition (?) holds. Let us suppose II has been
able to maintain (?) and then I plays xn in EF!(M,M0). Let us look at the
possibilities of II: She has to play some yn and there are   possibilities. Let
 be the set of them. Assume none of them works. Then for each legal move
yn there is ↵yn < + such that

Incomplete version for students of easllc2012 only.



7.3 The Dynamic Ehrenfeucht–Fraı̈ssé Game 149

(1) II does not have a winning strategy in

EFD↵yn
((M, v0, . . . , vn), (M0, v00, . . . , v

0
n))

where

vn =

⇢
xn if xn 2 M
yn if xn 2 M 0 and v0n =

⇢
yn if yn 2 M 0

xn if yn 2 M .

Let ↵ = supyn2 ↵yn . As | |  , we have ↵ < +. By the induction
hypothesis, II has a winning strategy in the game (7.4). So, let us play this
game. We let I play xn and ↵. The winning strategy of II gives yn 2  . Let
vn and v0n be determined as above. Now

(2) II has a winning strategy in EFD↵((M, v0, . . . , vn), (M0, v00, . . . , v
0
n)).

We have a contradiction between (1), (2), ↵yn < ↵ and Lemma 7.14.

The above theorem is particularly important for countable models since
countable partially isomorphic structures are isomorphic. Thus the countable
ordinals provide a complete hierarchy of thresholds all the way from not be-
ing even elementary equivalent to being actually isomorphic. For uncountable
models the hierarchy of thresholds reaches only to partial isomorphism which
may be far from actual isomorphism.

We list here two structural properties of '↵p , which are very easy to prove.
There are many others and we will meet them later.

Lemma 7.20 (Transitivity) If M '↵p M0 and M0 '↵p M00, then M '↵p
M00.

Proof Exercise 7.14.

Lemma 7.21 (Projection) If M '↵p M0, then M � L '↵p M0 � L.

Proof Exercise 7.15.

We shall now introduce one of the most important concepts in infinitary
logic, namely that of a Scott height of a structure. It is an invariant which
sheds light on numerous aspects of the model.

Definition 7.22 The Scott height SH(M) of a model M is the supremum of
all ordinals ↵+ 1, where ↵ is the Scott watershed of a pair

(M, a1, . . . , an) 6'p (M, b1, . . . , bn)

and a1, . . . , an, b1, . . . , bn 2 M .
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Lemma 7.23 SH(M) is the least ↵ such that if a1, . . . , an, b1, . . . , bn 2 M
and

(M, a1, . . . , an) '↵p (M, b1, . . . , bn)

then

(M, a1, . . . , an) '↵+1
p (M, b1, . . . , bn).

Proof Exercise 7.16.

Theorem 7.24 If M 'SH(M)+!
p M0, then M 'p M0.

Proof Let SH(M) = ↵. The strategy of II in EF!(M,M0) is to make sure
that if the position is

(1) p = (x0, y0, . . . , xn�1, yn�1)

then

(2) (M, v0, . . . , vn�1) '↵p (M0, v00, . . . , v
0
n�1).

In the beginning of the game (2) holds by assumption. Let us then assume
we are in the middle of the game EF!(M,M0), say in position p, and (2)
holds. Now player I moves xn, say xn = vn 2 M . We want to find a move
yn = v0n 2M 0 of II which would yield

(3) (M, v0, . . . , vn) '↵p (M0, v00, . . . , v
0
n).

Now we use the assumption M '↵+!p M0. We play a sequence of rounds of
an auxiliary game G = EFD↵+n+1(M,M0) in which player II has a winning
strategy ⌧ . First player I moves the elements v00, . . . , v0n�1. Let the responses
of player II according to ⌧ be u0, . . . , un�1. We get

(4) (M0, v00, . . . , v
0
n�1) '↵+1

p (M, u0, . . . , un�1).

By transitivity,

(M, v0, . . . , vn�1) '↵p (M, u0, . . . , un�1).

See Figure 7.5.
By Lemma 7.23,

(M, v0, . . . , vn�1) '↵+1
p (M, u0, . . . , un�1).

Now we apply the definition of '↵+1
p and find a 2 M such that

(5) (M, v0, . . . , vn�1, vn) '↵p (M, u0, . . . , un�1, a).

Finally we play one more round of the auxiliary game G using (4) so that
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Figure 7.5

player I moves a 2 M and II moves according to ⌧ an element yn = v0n 2 M 0.
Again

(M0, v00, . . . , v
0
n�1, v

0
n) '↵p (M, u0, . . . , un�1, a),

which together with (5) gives (3).

Note, that for countable models we obtain the interesting corollary:

Corollary If M is countable, then for any other countable M0 we have

M 'SH(M)+!
p M0 () M ⇠= M0.

The Scott spectrum ss(T ) of a first-order theory is the class of Scott heights
of its models:

ss(T ) = {SH(M) : M |= T}.

It is in general quite difficult to determine what the Scott spectrum of a given
theory is. For some theories the Scott spectrum is bounded from above. An
extreme case is the case of the empty vocabulary, where the Scott height of
any model is zero. It follows from Example 7.29 below that the Scott spectrum
of the theory of linear order is unbounded in the class of all ordinals. A gap in
a Scott spectrum ss(T ) is an ordinal which is missing from ss(T ).

Vaught’s Conjecture: If T is a countable first-order theory, then T has, up
to isomorphism, either  @0 or exactly 2@0 countable models.
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It can be proved that any first-order theory can have only @0 or exactly 2@0

countable models of a fixed Scott height Morley (1970). Thus, since there are
@1 Scott heights of countable models, any first-order theory can have  @1 or
exactly 2@0 countable models, up to isomorphism, all in all. To prove Vaught’s
Conjecture it would suffice to prove that for every first-order theory T there is
an upper bound ↵ < !1 for the Scott heights of its countable models or else
there are 2@0 countable models of some fixed Scott height. This leads to the
following concept: a first-order theory is scattered if it has at most @0 countable
models of any fixed Scott height. Vaught’s Conjecture now has the following
equivalent form: If T is scattered, then the Scott heights of its countable models
have a countable upper bound.

We now prove that there are for arbitrarily large ↵ models with Scott height
↵. First we prove that for any ↵ there are non-isomorphic models M and M0

such that M '↵p M0. For this we need the following useful concept:

Definition 7.25 If M = (M , <) and M0 = (M 0, <0) are ordered sets, their
product M⇥M0 is the ordered set (M ⇥M 0, <⇤) where

(x, x0) <⇤ (y, y0)() x0 <0 y0 or (x0 = y0 and x < y).

Every ordinal ↵ determines canonically a well-ordered set (↵, <) which we
denote also by ↵.

Theorem 7.26 Suppose � satisfies the condition

↵ < � =) !↵ < �

and M is any linear order with a first element. Then � '�p � ⇥M.

Proof An !✓-interval of � is any set of the form

I✓⇠ = {↵ : !✓ · ⇠  ↵ < !✓ · (⇠ + 1)}.

An !✓-interval of � ⇥M is any set of the form I✓⇠ ⇥ {a}, where a 2 M .
We shall define a back-and-forth sequence P� ✓ . . . ✓ P0 as follows: A

partial isomorphism f is put into P✓ if f is a finite subfunction of a partial
isomorphism g from � to � ⇥M such that
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Figure 7.6

(1) dom(g) is a union of finitely many !✓-intervals I0, . . . , In of �.
(2) rng(g) is a union of finitely many !✓-intervals I 00, . . . , I 0n of � ⇥M.
(3) g(0) = (0,min(M)).
(4) g � Ij : Ij ⇠= I 0j .

The empty function is in P� . If ⌘ < ✓, then P✓ ✓ P⌘ for every !✓-interval
is a union of !⌘-intervals. To prove the back-and-forth property, suppose f 2
P�+1, where � < � and (⇠, a) 2 � ⇥M. Suppose f is a finite subfunction of
g satisfying (1)–(4). If (⇠, a) happens to be in the range of g, it is clear how to
proceed: we simply extend f inside g. Let us assume that (⇠, a) is not in the
range of g. Let I0, . . . , In be the !�+1-intervals in increasing order containing
elements of the domain of f . Let the corresponding !�+1-intervals in � ⇥M
be I 00, . . . , I

0
n. Let m be the largest m such that (⇠, a) is above the interval I 0m.

If m = n, we have Figure 7.6.
Let k be an isomorphism between an !�+1-interval above I 0n and an !�+1-

interval of � ⇥M above I 0n. Then g [ k satisfies (1)–(4) and the restriction
of g [ k to dom(f) [ {k�1(⇠, a)} is the extension of f in P� we are looking
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Figure 7.7

for. If on the other hand m < n (Figure 7.7), we argue differently. We may
not have a whole new !�+1-interval, but we only need !�-intervals. So we
break Im into ! copies of !�-intervals Ji(i 2 N) and find a Ji which is above
the finitely many elements of dom(f). Now we just have to choose an !�-
interval J 0 containing (⇠, a) and choose an isomorphism k : Ji ! J 0. Clearly,
the restriction of g [ k to dom(f) [ k�1(⇠, a) is in P� .

The other half of the back-and-forth condition is symmetric.

Before drawing conclusions from the above important theorem we need to
introduce some operations on linear orders.

The sum M +M0 of two linear orders M and M0 is defined as the linear
order consisting of M and M0 one after the other, M first then M0. More
technically:

Definition 7.27 Suppose M = (M , <) and M0 = (M 0, <0) are linear or-
ders. Their sum M+M0 is the linear order (M 00, <00) where

(1) M 00 = M ⇥ {0} [M 0 ⇥ {1}.
(2) (x, i) <00 (y, j) () i < j or (i = j = 0 and x < y) or (i = j = 1 and

x <0 y).

The inverse of a linear order M = (M , <) is the linear order M⇤ = (M , >).
Note that if M is an infinite well-order, then M⇤ is necessarily non-well-
ordered.

Example 7.28

(Z, <) ⇠= !⇤ + ! 6⇠= (Z, <) + 1 + (Z, <)
(Q, <) ⇠= (Q, <) + (Q, <) ⇠= (Q, <) + 1 + (Q, <)
(R, <) ⇠= (R, <) + 1 + (R, <) 6⇠= (R, <) + (R, <).
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Example 7.29 Let ↵0 = !,↵n+1 = !↵n , and ✏0 = supn<! ↵n. Then

✏0 '✏0p ✏0 ⇥ (1 + !⇤).

More generally, if ↵ = sup�<↵ !
� , then ↵ '↵p ↵⇥ (1 + !⇤).

The above example shows that there is no ordinal ↵ such that

8M((M well-order & M '↵p M0)!M0 well-order).

This should be compared with the fact

8M((M well-order & M 'p M0)!M0 ⇠= M0).

The above example also shows that Scott heights can be arbitrarily large and
the Scott spectra of first-order theories can be unbounded in the class of all
ordinals.

We now prove a result of D. Kueker about the number of automorphisms of
countable models.

Lemma 7.30 Suppose M 'p M0 where |M | < |M 0|. Then there are a 6= a0

in M and b 2 M 0 such that (M, a) 'p (M, a0) 'p (M0, b).

Proof For any b 2 M 0 there is a 2 M such that (M, a) 'p (M0, b). Since
there are |M 0| many different b but only |M | many different a, there has to be
one a0 2 M such that (M, a0) 'p (M0, b0) and (M, a0) 'p (M0, b1) for
some b0 6= b1. Let a1 2 M such that

(M, a0, a1) 'p (M0, b0, b1).

Thus

(M, a0) 'p (M0, b1) 'p (M, a1).

Clearly a0 6= a1.

Theorem 7.31 If M 'p M0 where M is countable and M0 is uncountable,
then M has 2@0 automorphisms.

Proof We construct an automorphism ⇡s of M for each s : N! 2 such that
if s 6= s0, then ⇡s 6= ⇡s0 . To this end let M = {bn : n 2 N}. We define ⇡s
as the union of finite partial mappings ⇡s�n, n 2 N. Let ⇡; = ;. Suppose ⇡s�n
has been defined and we want to define ⇡s�n+1. As an induction hypothesis we
assume that if

⇡s�n = {(xi, yi) : i < m}

Incomplete version for students of easllc2012 only.



156 Infinitary Logic

then
(M, x0, . . . , xm�1) 'p (M, y0, . . . , ym�1)

'p (M0, z0, . . . , zm�1).

By Lemma 7.30 there are a 6= a0 2 M and b 2 M 0 such that

(M, x0, . . . , xm�1, a) 'p (M, x0, . . . , xm�1, a0)
'p (M0, z0, . . . , zm�1, b).

Let c 6= c0 2 M such that

(M, x0, . . . , xm�1, a) 'p (M, y0, . . . , ym�1, c)

and

(M, x0, . . . , xm�1, a, a
0) 'p (M, y0, . . . , ym�1, c, c

0).

Then
(M, x0, . . . , xm�1, a) 'p (M, x0, . . . , xm�1, a0)

'p (M, y0, . . . , ym�1, c0).

Let xm = a and

ym =

⇢
c if s(n) = 0
c0 if s(n) = 1.

Let cn, dn 2 M such that

(M, x0, . . . , xm, bn, cn) 'p (M, y0, . . . , ym, dn, bn)

and

⇡s�n+1 = {(xi, yi) : i  m} [ {(bn, dn), (cn, bn)}.

Two more applications of the back-and-forth property of'p guarantee that the
induction condition remains valid. Let

⇡s =
1[

n=0

⇡s�n.

If s 6= s0, say s(n) 6= s0(n), then ⇡s�n+1 6= ⇡s0�n+1, so ⇡s 6= ⇡s0 . Clearly each
⇡s is an automorphism of M.

Corollary If M is a countable model with only countably many automor-
phisms, then for all M0

M 'SH(M)+!
p M0 ()M ⇠= M0.

Proof If M 'p M0, then M0 must be countable by the previous theorem.
Then M ⇠= M0 by Proposition 5.16.
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Example 7.32 The following structures have only countably many automor-
phisms:

(N, <, ·, 0, 1), (↵, <), (Z, <), (Z,+), (Q,+).

7.4 Syntax and Semantics of Infinitary Logic

The syntax and semantics of the infinitary logic L1! that we now introduce
are very much like the syntax and semantics of first-order logic. The logical
symbols are ⇡,¬,

V
,
W
, 8, 9, (, ), x0, x1, . . .. Terms and atomic formulas are

defined as usual. Formulas of L1! are of the form

⇡tt0

Rt1 . . . tn

¬'V
i2I 'i,

W
i2I 'i

8xn', 9xn'

where t, t0, t1, . . . , tn are L-terms, R 2 L with #l(R) = n, and ' and all 'i,
i 2 I , where I is an arbitrary set, are formulas of L1! , and the formulas 'i

have altogether only finitely many free variables.1 We regard ' ^  , ' _  ,
('!  ) and ('$  ) as abbreviations.

In first-order logic we can think of formulas as finite strings of symbols. In
infinitary logic it is customary to consider formulas as sets. Then we have the
following more exact albeit more cumbersome definition:

Definition 7.33 Suppose L is a vocabulary. The class of L-formulas of L1!

is defined as follows:

(1) If t and t0 are L-terms, then (0, t, t0) is an L-formula denoted by ⇡tt0.
(2) If t1, . . . , tn are L-terms, then (1, R, t1, . . . , tn) is an L-formula denoted

by Rt1 . . . tn.
(3) If ' is an L-formula, so is (2,'), and we denote it by ¬'.
(4) If � is a set of L-formulas with a fixed finite set of free variables, then

(3,�) is an L-formula and we denote it by
V
'2� '.

(5) If � is a set of L-formulas with a fixed finite set of free variables, then
(4,�) is an L-formula and we denote it by

W
'2� '.

(6) If ' is an L-formula and n 2 N, then (5,', n) is an L-formula and we
denote it by 8xn'.

1 This restriction makes it possible to quantify all free variables in a formula.
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(7) If ' is an L-formula and n 2 N, then (6,', n) is an L-formula and we
denote it by 9xn'.

Every formula of L1! is now a finite sequence of sets and the first element
of the sequence is one of {0, 1, 2, 3, 4, 5, 6}. With this definition it is easy to
write exact inductive definitions for various concepts related to infinitary logic.

A formula of L1! can be thought of as a tree, too. In this tree the formula
itself is the root and the set ISub(') of immediate successors of a node ' of
the tree are:

(1) ISub((0, t, t0)) = ;.
(2) ISub((1, t1, . . . , tn)) = ;.
(3) ISub((2,')) = {'}.
(4) ISub((3,�)) = �.
(5) ISub((4,�)) = �.
(6) ISub((5,', n)) = {'}.
(7) ISub((6,', n)) = {'}.

The tree thus consists of the elements of

Sub(') =
1[

n=0

Subn(')

where

Sub0(') = {'}
Subn+1(') = [{ISub( ) :  2 Subn(')},

and the order is

 <Sub ✓ () ✓ 2 Subn( ) for some n > 0.

The tree (Sub('), <Sub) is a well-founded tree.
The quantifier rank of a formula of L1! is defined by induction as follows:

(1) QR(⇡tt0) = 0.
(2) QR(Rt1 . . . tn) = 0.
(3) QR(¬') = QR(').
(4) QR(

V
�) = sup{QR( ) :  2 �}.

(5) QR(
W
�) = sup{QR( ) :  2 �}.

(6) QR(8xn') = QR(') + 1.
(7) QR(9xn') = QR(') + 1.
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Example 7.34

QR(9x0 . . . 9xn(
^

0i<jn

¬⇡xixj)) = QR(
^

0i<jn

¬⇡xixj)+n+1 = n+1.

Example 7.35 Let

✓0 = ¬9x1(x1 < x0)

✓↵ = 8x1

0@x1 < x0 $ 9x0

0@⇡x0x1 ^

0@_
�<↵

✓�

1A1A1A
All formulas ✓↵ are built up from two variables x0 and x1, and have just x0

free. With appropriate agreements about the exchange of bound variables in
substitution, these formulas could be written more succinctly as

✓↵(x0) = 8x1

0@x1 < x0 $

0@_
�<↵

✓�(x1)

1A1A .

Note that

QR

0@8x1

0@x1 < x0 $

0@_
�<↵

✓�(x1)

1A1A1A = (sup
�<↵

QR(✓�(x1))) + 1.

Thus QR(✓↵) = ↵+ 1.

The truth-definition of L1! is standard:

Definition 7.36 The concept of an assignment s : N ! M satisfying a
formula ' in a model M, M |=s ' is defined as follows:

M |=s ⇡t1t2 iff tM1 (s) = tM2 (s)
M |=s Rt1 . . . tn iff (tM1 (s), . . . , tMn (s)) 2 ValM(R)
M |=s ¬' iff M 6|=s '
M |=s

V
i2I 'i iff M |=s 'i for all i 2 I

M |=s

W
i2I 'i iff M |=s 'i for some i 2 I

M |=s 8xn' iff M |=s[a/xn] ' for all a 2 M
M |=s 9xn' iff M |=s[a/xn] ' for some a 2 M .

An alternative definition can be given in terms of games:

Definition 7.37 Suppose L is a vocabulary, M is an L-structure, '⇤ is an
L-formula, and s⇤ is an assignment for M . The game SGsym(M,'⇤) is defined
as follows. In the beginning player II holds ('⇤, s⇤). The rules of the game are
as follows:
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I II
x0

y0
x1

y1

...
...

Figure 7.8 The game G!(W ).

1. If ' is atomic, and s satisfies it in M, then the player who holds (', s) wins
the game, otherwise the other player wins.

2. If' = ¬ , then the player who holds (', s), gives ( , s) to the other player.
3. If ' =

V
i2I 'i, then the player who holds (', s) switches to hold some

('i, s) and the other player decides which.
4. If ' =

W
i2I 'i, then the player who holds (', s) switches to hold some

('i, s) and can himself or herself decide which.
5. If ' = 8xn , then the player who holds (', s) switches to hold some

( , s[a/xn]) and the other player chooses a 2M .
6. If ' = 9xn , then the player who holds (', s) switches to hold some

( , s[a/xn]) and can himself or herself choose a 2M .

As was pointed out in Section 6.5, M |=s ' if and only if player II has a
winning strategy in the above game, starting with (', s). Why? If M |=s ',
then the winning strategy of player II is to play so that if she holds ('0, s0),
then M |=s0 '0, and if player I holds ('0, s0), then M 6|=s0 '0.

The negation normal form NNF is defined for L1! exactly as for first-order
logic by requiring that negations occur in front of atomic formulas only.

Definition 7.38 The Semantic Game SG(M, T, s) of the set T of L-sentences
of L1! in NNF is the game G!(W )(see Figure 7.8), where W consists of se-
quences (x0, y0, x1, y1, . . .) such that player II has followed the rules of Fig-
ure 7.9, and moreover, if  i is a basic formula and player II plays the pair
( i, s) then M |=s  i.

Proposition 7.39 M |=s T iff II has a winning strategy in SG(M, T, s).

Proof Exercise 7.37.

Example 7.40 Let n be the sentence 9x0 . . . 9xn(
V

0i<jn ¬⇡xixj). Then
M |= (

W
n2N ¬ n) iff M is finite. Thus

M |= (
^
n2N

 n) iff |M | � @0.
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xn yn Explanation Rule

(', ;) I enquires about
' 2 T .

(', ;) II confirms. Axiom rule

('i, s) I tests a played (

V
i2I 'i, s)

by choosing i 2 I .

('i, s) II confirms. ^-rule

(

W
i2I 'i, s) I enquires about

a played disjunction.

('i, s) II makes a choice of i 2 I . _-rule

(', s[a/x]) I tests a played (8x', s)
by choosing a 2 M .

(', s[a/x]) II confirms. 8-rule

(9x', s) I enquires about a played
existential statement.

(', s[a/x]) II makes a choice of a 2 M . 9-rule

Figure 7.9 The game SG(M, T, s).

Example 7.41 Let

 0 = ⇡x0x1

 n+1 = 9x2(x0Ex2 ^ 9x0(⇡x0x2 ^  n)).

Then for graphs G we have

G |= 8x08x1(
_
n2N

 n) iff G is connected.

Note that the sentence 8x08x1(
W

n2N  n) uses just the variables x0, x1, and
x2.

Example 7.42 Consider the vocabulary {+, 0} of abelian groups. Let us in-
troduce the notation

xi · 0 = 0

xi · (n+ 1) = xi · n+ xi.
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Thus

xi · n = xi + · · ·+ xi| {z }
n

.

A group G is torsion-free iff

G |= 8x0(⇡0x0 _
^
n>0

¬⇡0x0 · n)

and G is torsion if

G |= 8x0(
_
n�0

⇡0x0 · n).

Example 7.43 Consider the vocabulary {+, ·, 0, 1} of arithmetic. Let xi · n
be defined as above. Then for models M of Peano’s axioms we have

M ⇠= (N,+, ·, 0, 1) iff M |= 8x0

0@_
n�0

⇡x01 · n

1A .

Example 7.44 Suppose (M,d) is a metric space. For each positive rational r
let Dr = {(x, y) 2 M ⇥M : d(x, y) < r} and M = (M, (Dr)r>0). We can
now actually define the original metric:

d(s(n), s(m)) = z () M |=s

^
r>z>r0

(Drxnxm ^ ¬Dr0xnxm).

We can express the continuity of a function f : M !M with

(M, f) |=s 8x0

 ^
✏

_
�

8x1(D�x0x1 ! D✏fx0fx1)

!
.

Example 7.45 Consider the formulas ✓↵ of Example 7.35. Then

M |=s ✓↵ iff ( , s(0))M ⇠= ↵

where ( , x)M = ({y 2 M : y <M x}, <M). We prove this by induc-
tion on ↵. Suppose first f : ( , s(0))M ⇠= ↵. The winning strategy of II in
SG(( , s(0))M, ✓↵, s) is: if I chooses a 2 ( , s(0))M and enquires about
� < ↵, II chooses � = f(a) and plays (✓� , s[0/a]). By the induction hy-
pothesis, as ( , a)M ⇠= �, she has a winning strategy in the new position.
Conversely, suppose M |=s ✓↵. We show that ( , s(0))M 'p ↵, from which
( , s(0))M ⇠= ↵ follows. The back-and-forth set for ( , s(0))M and ↵ is the
set P of finite partial isomorphisms

f = {(x0,↵0), . . . , (xn�1,↵n�1)}

such that for all i < n : M |=s[0/xi] ✓↵i . By the induction hypothesis ( 
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, xi)M ⇠= ↵i. Note that isomorphisms between well-ordered sets are unique.
To prove the back-and-forth property for P , suppose first f 2 P and a 2 ( 
, s(0))M. We play SG(( , s(0))M, ✓↵, s) such that player I enquires about
(
W
�<↵ ✓� , s[0/a]). The winning strategy of II yields � < ↵ such that she

plays (✓� , s[0/a]). By the induction hypothesis ( , a)M ⇠= �. So f[{(a,�)} 2
P . The other half of back-and-forth is proved similarly.

Example 7.46 Let ✓↵ be as above. Then

M |=

0@8x0

_
�<↵

✓�

1A ^
0@^
�<↵

9x0✓�

1A iff M ⇠= ↵.

The proof is just as above (see Exercise 7.52).

We write M ⌘1! M0 if M and M0 satisfy the same L1!-sentences and
M ⌘↵ M0 if they satisfy the same L1!-sentences of quantifier rank  ↵.

We now extend an important leg of the Strategic Balance of Logic, namely
the equivalence of the Semantic Game and the Ehrenfeucht–Fraı̈ssé Game,
from first-order logic to infinitary logic:

Theorem 7.47 The following are equivalent:

(i) A ⌘↵ B.
(ii) A '↵p B.

Proof (ii) ! (i) Suppose (P� : �  ↵) is a back-and-forth sequence for A
and B. We use induction on �  ↵ to prove:

Claim: If f 2 P� and a1, . . . , ak 2 dom(f), then

(A, a1, . . . , ak) ⌘� (B, fa1, . . . , fak).

We use induction on ' of quantifier rank  � to prove the claim

(A, a1, . . . , ak) |= ') (B, fa1, . . . , fak) |= '.

The only non-trivial case is that ' = 9xn (xn) and � = QR( ) < �. By
assumption, f 2 P�+1. Since (A, a1, . . . , ak) |= ', there is a 2 A such that
(A, a1, . . . , ak, a) |=  (c), where c is a new constant symbol, a name for a.
Since f 2 P�+1, there is b 2 B such that f [ {(a, b)} 2 P� . By the induction
hypothesis (B, fa1, . . . , fak, b) |=  (c). Thus (B, fa1, . . . , fak) |= '.

(i) ! (ii) Let P� consist of such finite f 2 Part(A,B) that if dom(f) =
{a0, . . . , an�1}, then

(A, a0, . . . , an�1) ⌘� (B, fa0, . . . , fan�1).
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By assumption (i), ; 2 P↵, so P↵ 6= ;. Certainly � < � implies P� ✓ P� . To
prove the back-and-forth criterion, suppose f 2 P�+1, a 2 A and there is no
b 2 B with

(A, a0, . . . , an�1, a) ⌘� (B, fa0, . . . , fan�1, b). (7.5)

Then for each b 2 B there is some 'b of quantifier rank  � such that

(A, a0, . . . , an�1, a) |= 'b(c)

and

(B, fa0, . . . , fan�1, b) |= ¬'b(c)

where c is a name for a in A and b in B. Thus

(A, a0, . . . , an�1) |= 9x0

^
b2B

'b(x0).

Since QR(9x0
V

b2B 'b(x0))  � + 1 and f 2 P�+1 we may conclude

(B, fa0, . . . , fan�1) |= 9x0

^
b2B

'b(x0).

Let z 2 B with (B, fa0, . . . , fan�1, z) |=
V

b2B 'b(c). We get the contradic-
tion

(B, fa0, . . . , fan�1, z) |= ¬'z(c) ^ 'z(c).

Thus a, b 2 B with (7.5) must exist. The other half of the back-and-forth
criterion is similar.

By combining the above theorem with our previous results about the relation
'↵p , we obtain many interesting facts about L1!:

Proposition 7.48 The following are equivalent for all A and B:

1. A ⌘1! B.
2. A 'p B i.e. there is a back-and-forth set for A and B.
3. II has a winning strategy in EF!(A,B).

Example 7.49 (1) There is no L1!-sentence  in the empty vocabulary such
that for all M:

M |=  iff |M|  @0,

because all infinite models in this vocabulary are partially isomorphic.
(2) There is no L1!-sentence  in the vocabulary {⇠} of equivalence rela-

tions such that any equivalence relation satisfies

M |=  iff M has only countably many equivalence classes.
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(3) There is no L1!-sentence  of the vocabulary {E} of graph theory such
that for all graphs G:

G |=  iff G has an uncountable clique.

The following consequence of Karp’s Theorem (Theorem 7.26) is of funda-
mental importance for understanding L1!:

Corollary There is no L1!-sentence of the vocabulary {<} such that for all
linear orders M:

M |=  iff M is a well-order.

This should be contrasted with the fact that for all ↵ and all M

M |= ✓↵ iff M is a well-order of type ↵.

If we could take the disjunction of all ✓↵, ↵ 2 On, we could characterize
well-order, but On is a proper class, so the disjunction cannot be formed in
L1! .

Definition 7.50 Let L be a vocabulary, M an L-structure, and a0, . . . , an�1 2
M . Then we define

�0
M,a0,...,an�1

=
^

{'(x0, . . . , xn�1) : '(x0, . . . , xn�1)

is a basic L-formula and M |= '(a0, . . . , an�1)}

�↵+1
M,a0,...,an�1

=

 
8xn

_
an2M

�↵M,a0,...,an

!
^
 ^

an2M

9xn�
↵
M,a0,...,an

!
�⌫M,a0,...,an�1

=
^
↵<⌫

�↵M,a0,...,an�1
, for limit ⌫

�↵M = �↵M,;.

Lemma 7.51 1. M |= �↵M,a0,...,an�1
(a0, . . . , an�1).

2. �↵M,a0,...,ak
(x0, . . . , xk) |= �↵M,a0,...,an�1

(x0, . . . , xn�1) for n  k + 1.
3. If ↵ < �, then

��M,a0,...,an�1
(x0, . . . , xn�1) |= �↵M,a0,...,an�1

(x0, . . . , xn�1).

Proof Exercise 7.44.

Proposition 7.52 The following are equivalent:

(1) M0 |= �↵M,a0,...,an�1
(b0, . . . , bn�1).

(2) (M, a0, . . . , an�1) '↵p (M0, b0, . . . , bn�1).
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Proof Note that the quantifier rank of the formula �↵M,a0,...,an�1
is ↵. Since

M |= �↵M,a0,...,an�1
(a0, . . . , an�1) by Lemma 7.51, the implication (2) !

(1) follows from Proposition 7.47. Next we prove (1) ! (2). Intuitively, the
winning strategy of II in EFD↵ on (M, a0, . . . , an�1) and (M0, b0, . . . , bn�1)
is written into the structure of �↵M,a0,...,an�1

. More exactly, we can define a
back-and-forth sequence (P� : �  ↵) by letting P� consist of finite map-
pings

f = {(a0, b0), . . . , (an�1, bn�1), . . . , (am, bm)}

such that

M0 |= ��M,a0,...,an�1,...,am
(b0, . . . , bn�1, . . . , bm)}.

By the definition of the formulas ��M,a0,...,an�1
, the sequence (P� : � 

↵) is indeed a back-and-forth sequence. Note that (1) implies P↵ 6= ;, as
{(a0, b0), . . . , (an�1, bn�1)} 2 P↵.

Definition 7.53 The Scott sentence of a structure M is the L1!-sentence

�M = �SH(M)
M,; ^

^
a0,...,an�12M

n 2 N

8x0 . . . 8xn�1(�
SH(M)
M,a0,...,an�1

! �SH(M)+1
M,a0,...,an�1

).

Proposition 7.54 The following are equivalent:

(1) M0 |= �M.
(2) M0 'p M.

Proof (2) ! (1): Lemma 7.51 gives M |= �M. The implication follows
now from Proposition 7.48. (1)! (2): Suppose M0 |= �M. We prove M0 'p

M by giving a winning strategy for player II in the game EFDSH(M)(M,M0).
The strategy of II is to make sure that if the position is

p = (x0, y0, . . . , xn�1, yn�1)

then

(?) M0 |= �SH(M)
v0,...,vn�1

(v00, . . . , v
0
n�1).

In the beginning of the game (?) holds by assumption. Let us then assume we
are in the middle of the game EF!(M,M0), say in position p, and (?) holds.
Now player I moves xn, say xn = vn 2 M . Now we use the assumption
M0 |= �M. It gives

M0 |= �SH(M)+1
M,v0,...,vn�1

(v00, . . . , v
0
n�1)),
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whence

M0 |=
^
a2M

9y�↵M,v0,...,vn�1,a(v
0
0, . . . , v

0
n�1, y).

By choosing a = vn we find a move yn = v0n 2M 0 of II which yields

M0 |= �SH(M)
v0,...,vn(v

0
0, . . . , v

0
n).

Note that if M is a well-ordered set then by the above result it is, up to
isomorphism, the only model of �M.

Corollary (Scott Isomorphism Theorem) Suppose M is a countable model.
Then for all countable M0

M0 |= �M () M0 ⇠= M.

This is a remarkable result. It puts countable models on levels of a well-
ordered hierarchy according to their Scott height. On each level there is an
invariant, the Scott sentence of the model, that characterizes the model up to
isomorphism. These invariants need not, of course, be simple in any way, but
they have a uniform tree-structure, the differences occurring only at the leaves
of the tree. The invariants provide a way to systematize and classify countable
models according to the syntactic properties of the Scott sentence.

For the next result we have to compute an upper bound for the number
of non-equivalent infinitary formulas of a given quantifier rank. As in the fi-
nite case (see Propositions 6.3 and 4.15), the upper bound is an exponential
tower, only this time we deal with infinite cardinals rather than natural num-
bers. These cardinal numbers look very big, but at this point the only relevant
thing is that they exist. We want to be sure that there is not a proper class of
non-equivalent formulas of a fixed quantifier rank. Note that if we do not limit
the quantifier rank, there is a proper class of non-equivalent formulas, namely
the Scott sentences of different ordinals. Recall that8<:

i0(�) = �
i↵+1(�) = 2i↵(�)

i⌫(�) = sup↵<⌫ i↵(�).

Lemma 7.55 Suppose L is a vocabulary of size µ and ↵ = ⌫ + n where ⌫ is
a limit ordinal. There are at most i⌫+2n+2(µ + @0) non-equivalent formulas
of L1! of quantifier rank  ↵.

Incomplete version for students of easllc2012 only.



168 Infinitary Logic

Proof There are at most µ+@0 atomic formulas and therefore at most i2(µ+
@0) non-equivalent formulas of quantifier rank 0. Suppose then ↵ = ⌫+n+1
where ⌫ is a limit ordinal. Formulas of quantifier rank  ↵ are of the form
8xn' or of the form 9xn', where QR(') < ↵, and what can be built from
them by means of ¬,

V
i2I and

W
i2I . Thus their number (up to logical equiv-

alence) is at most i2(i⌫+2n+2(µ + @0)) = i⌫+2(n+1)+2(µ + @0)). If ⌫ is a
limit ordinal, the number of non-equivalent formulas of quantifier rank < ⌫
is  sup↵<⌫ i↵(µ + @0) = i⌫(µ + @0). Therefore, the number of non-
equivalent formulas of quantifier rank  ⌫ is at most i2(i⌫(µ + @0)) =
i⌫+2(µ+ @0).

Thus, for example, for any ↵ there is only a set of non-equivalent sentences
�↵M, while there is a proper class of non-equivalent sentences �M.

Corollary Suppose L is a vocabulary. Then for all ordinals ↵ the equivalence
relation

A ⌘↵ B

divides the class Str(L) of all L-structures into a set of equivalence classes
C↵

i , i 2 I , such that if we choose any representatives Mi 2 C↵
i , then:

1. For all L-structures M: M 2 C↵
i () M |= �↵Mi

.
2. If ' is an L-sentence of L1! of quantifier rank  ↵, then there is a set

I0 ✓ I such that |= '$
W

i2I0
�↵Mi

.

Proof For any L-structure M let Th↵(M) be the set of L1!-sentences of
quantifier rank  ↵ (up to logical equivalence) which are true in M. Thus

M ⌘↵ M0 () Th↵(M) = Th↵(M0).

Let Th↵(Mi), i 2 I , be a complete list of all Th↵(M). The claim follows.
For the second claim let I0 consist of such i 2 I that Mi |= '. If M |= '
and Th↵(M) = Th↵(Mi), then i 2 I0 and M |= �↵Mi

. Conversely, if
M |= �↵M+i, i 2 I0, then M ⌘↵ Mi and M |= ' follows.

Note again that if we tried to prove the above corollary for the finer relation
'p, we would run into the difficulty that there is a proper class of equivalence
classes.

Corollary Suppose L is an arbitrary vocabulary and K is a class of L-
structures. Then the following are equivalent:

(i) K is definable in L1! .
(ii) K is closed under '↵p for some ↵.
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Figure 7.10 Model class K definable in L1! .

Figure 7.11 Model class K not definable in L1! .

These equivalent conditions are strictly stronger than

(iii) K is closed under 'p.

The above theorem gives a kind of normal form for sentences of L1!: every
sentence is a disjunction of sentences �↵M, which in turn have a very canonical
form. For finite ↵ and finite relational vocabulary the formulas �↵M are first-
order.

Definition 7.56 Suppose  is a regular cardinal. L! is the fragment of L1!

which obtains if in the definition of the syntax of L1! we modify condition
(4) and (5) by requiring that |I| < .

First-order logic is in this notation L!! . The most important non-first-order
case is L!1! , the extension of first-order logic obtained by allowing countable
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disjunctions and conjunctions. Note that in a countable vocabulary the Scott
sentence of a countable model is in L!1! .

Proposition 7.57 Suppose M is a countable model in a countable vocabu-
lary and P ✓Mn. Then the following are equivalent:

(i) P is closed under automorphisms of M.
(ii) There is a formula '(x0, . . . , xn) in L!1! such that for all a0, . . . , an 2

M

(a0, . . . , an) 2 P () M |= '(a0, . . . , an).

Proof (ii) ! (i) is trivial because automorphisms preserve truth. To prove
(i)! (ii) consider

'(x0, . . . , xn) =
_

{�(M,a0,...,an)(x0, . . . , xn) : (a0, . . . , an) 2 P},

where �(M,a0,...,an)(x0, . . . , xn) denotes the formula obtained from the sen-
tence �(M,a0,...,an) by replacing the name of ai by the variable symbol xi.
Since M (and hence P ) is countable, '(x0, . . . , xn) 2 L!1! . If we now
have (a0, . . . , an) 2 P , then M |= �(M,a0,...,an)(a0, . . . , an). Thus M |=
'(a0, . . . , an). Conversely, suppose

M |= �(M,a0,...,an)(b0, . . . , bn) and (a0, . . . , an) 2 P.

Then (M, b0, . . . , bn) 'p (M, a0, . . . , an). Thus there is an automorphism ⇡
of M such that ⇡(bi) = ai for i  n. Since P is closed under automorphisms,
(b0, . . . , bn) 2 P .

If we want to show that a relation on a countable structure is not definable in
L!1! , a natural approach is to show that the relation is not preserved by auto-
morphisms of the structure. The above theorem demonstrates that this natural
approach is as good as any other.

Example 7.58 Let M = (Z, <). The only subsets of Z that are closed un-
der automorphisms of M are ; and Z. Thus they are the only subsets of M
definable in L!1! .

Corollary If M is a rigid countable model in a countable vocabulary, then
every relation on M is L!1!-definable on M.

7.5 Historical Remarks and References

Infinitary languages were introduced in propositional calculus in Scott and
Tarski (1958) and in predicate logic in Tarski (1958). An early book on infinitary
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languages is Karp (1964). More recent books are Keisler (1971), Dickmann
(1975), and Barwise (1975). A good source is the survey article Makkai (1977).

The back-and-forth sets, and thereby in effect the Ehrenfeucht–Fraı̈ssé Game
was introduced to infinitary logic in Karp (1965), where Proposition 7.48 and
Proposition 7.26 appear. A good survey article on back-and-forth sets is Kueker
(1975). Propositions 7.54 and 7.57 and their corollaries are from Scott (1965).
Definition 7.16 is from Karp (1965). Theorem 7.31 is from Kueker (1968).

Exercises

7.1 Show that if II has a winning strategy in EFD!(M,M0) and M is finite,
then M ⇠= M0.

7.2 Let M = (Z, <) and M0 = (Z + Z, <) (i.e. two copies of M one
after the other). For which n does I have a winning strategy in the game
EFD!+n(M,M0), and for which does II?

7.3 Suppose G and G0 are graphs such that player II has a winning strategy
in EFD!(G,G0). Show that if G has a cycle path, then so does G0.

7.4 Suppose G and G0 are graphs and player II has a winning strategy in
EFD!(G,G0). Show that if G has infinitely many edges, also G0 has.

7.5 Suppose M ⌘ N where N = (N,+, ·, 0, 1) but M 6⇠= N . Show that I
has a winning strategy in EFD1(M,N ).

7.6 Player I wants to play EFD↵(M,M0) but cannot decide which ↵ to
choose. He wants to play as follows:

1. First I wants to play 10 moves.
2. Then, depending on how II has played, I wants to play 2n moves for

some n that he chooses.
3. Then I wants to play five additional moves.
4. Then, depending on how II has played, I wants to play 5n+1 moves

for some n that he chooses.
5. Finally I wants to play 15 additional moves, whereupon the game

should end.

Can you help him choose ↵?
7.7 Show that player I (II) has a winning strategy in EFn(M,M0) iff he

(she) has a winning strategy in EFDn(M,M0).
7.8 Let the game EFD⇤

↵(A,B) be like the game EFD↵(A,B) except that I
has to play x2n 2 A and x2n+1 2 B for all n 2 N. Show that if ⌫ is a
limit ordinal, then player II has a winning strategy in EFD⇤

⌫+2n(A,B)
if and only if she has a winning strategy in EF⌫+n(A,B).
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7.9 Suppose B = {bn : n 2 N}. Let the game EFD⇤⇤
↵ (A,B) be like the

game EFD↵(A,B) except that I has to play x2n 2 A and x2n+1 = bn
for all n 2 N. Show that if ⌫ is a limit ordinal, then player II has a
winning strategy in EFD⇤⇤

⌫+2n(A,B) if and only if she has a winning
strategy in EFD⌫+n(A,B).

7.10 Find the Scott watershed for

(a) (N,+, ·, 0, 1) and (Q,+, ·, 0, 1).
(b) (Z+ Z, <) and (Z+ Z+ Z, <).

7.11 What is the Scott watershed of (Z2,+) and (Z3,+)?
7.12 What is the Scott watershed of (Q,+) and (R,+)?
7.13 Prove Z(15) ⇠= Z(3)⇥ Z(5).
7.14 Prove Lemma 7.20.
7.15 Prove Lemma 7.21.
7.16 Prove Lemma 7.23.
7.17 Show that if (M, v0, . . . , vn�1) 'SH(M)

p (M, v00, . . . , v
0
n�1), then

(M, v0, . . . , vn�1) 'p (M, v00, . . . , v
0
n�1).

7.18 A model M is @0-homogeneous if the following holds for all v0, . . . , vn
and v00, . . . , v

0
n�1 in M : If (M, v0, . . . , vn�1) ⌘ (M, v00, . . . , v

0
n�1)

then there is v0n in M such that (M, v0, . . . , vn) ⌘ (M, v00, . . . , v
0
n).

Show that the Scott height of an @0-homogeneous model is  !. Show
that if M is a countable @0-homogeneous model and

(M, v0, . . . , vn�1) ⌘ (M, v00, . . . , v
0
n�1),

then there is an automorphism of M which maps each vi to v0i.
7.19 Show that there are, up to isomorphism, exactly three countable @0-

homogeneous models M such that M '!p (!, <).
7.20 Show that if M and M0 are well-orderings, then so is M⇥M0.
7.21 Prove ↵ · � ⇠= ↵⇥ � starting from the inductive definition of multiplica-

tion in Exercise 2.22.
7.22 Prove ↵ <  =) !↵ <  for uncountable cardinals . Recall the

inductive definition of exponentiation in Exercise 2.26.
7.23 Prove M⇥ (M0⇥M00) ⇠= (M⇥M0)⇥M00 for linear orders M,M0

and M00. Show also that it is possible that M⇥M0 � M0 ⇥M.
7.24 Show that !1 '!1

p !1 · 2, and (Q, <)⇥ !1 '!1
p (R, <)⇥ (!1 · 2).

7.25 Show that ✏0 ⇥ (R�0, <) '✏0p !1 ⇥ (Q�0, <).
7.26 Find for all ↵ a scattered M and a non-scattered M0 such that M '↵p

M0.
7.27 Prove the claims of Example 7.28.
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7.28 Suppose M = (M,<) is a linear order and M0 is the set of initial
segments of M ordered by proper inclusion. Show that M 6⇠= M0.

7.29 Show that there is a countable model M such that M has 2@0 automor-
phisms but there is no uncountable M0 such that M 'p M0. (Hint:
Let M = (M,!, <,R) where < is the usual ordering of !, M = ! [
{(n, i) : n 2 N, i 2 {0, 1}} and R = {(n, (n, i)) : n 2 N, i 2 {0, 1}}.)

7.30 Write a sentence of L1! , as simple as possible, which holds in a finite
graph iff

(a) the number of vertices is even.
(b) the number of edges is even.
(c) the graph has a cycle path.

7.31 Write a sentence of L1! , as simple as possible, which holds in a finite
graph iff the graph is 3-colorable. Use this to prove that there is a sen-
tence of L1! which holds in a graph iff the graph is 3-colorable. (Hint:
use the Compactness Theorem of propositional logic to reduce the sec-
ond part to the finite case.)

7.32 An ordered field (K,+, ·, 0, 1, <) is Archimedian if for all r1 > 0 and r2
in K there is a natural number n so that r1 + · · ·+ r1| {z }

n

> r2. Show that

the Archimedian property can be expressed in L1! .
7.33 Let Ln

1! denote the fragment of L1! consisting of formulas in which
only variables x0, . . . , xn�1 occur. Show that if G and G0 are graphs
so that player II has a winning strategy in the n-Pebble Game, then
they satisfy the same sentences of Ln

1! . Hence, if G and G0 satisfy the
extension axiom En, then they satisfy the same sentences of Ln

1! . (See
Exercise 4.17 for the definition of the n-Pebble Game.)

7.34 Use Exercise 7.33 to conclude that if two graphs satisfy En for all n 2
N, then the graphs are partially isomorphic. (See Exercise 4.16 for the
definition of En.) Conclude also that if ' is a first-order sentence, then
En |= ' for some n 2 N, or else En |= ¬' for some n 2 N.

7.35 Show that there is no L1!-sentence  of the vocabulary of linear order
such that for all linear orders M: M |=  iff M has cofinality ! (i.e.
has a countable unbounded subset.)

7.36 Show that there is no L1!-sentence  of the vocabulary {P,Q} of two
unary predicates such that

(M,PM, QM) |=  iff |PM| = |QM|.

7.37 Prove Proposition 7.39.
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7.38 Show that there is no L1!-sentence  of the vocabulary {<} such that
for all linear orders M:

M |=  iff |M | is countable.

Show that such a  exists if “linear order” is replaced by “well-order”.
7.39 Let (M,d) be a metric space and M = (M, (Dr)r>0) as in Exam-

ple 7.44. Write a sentence ' of L1! such that

(1) (M, p0, p1, . . .) |= ' iff the sequence p0, p1, . . . converges in (M,d).
(Expand the vocabulary to include names for the points pn.)

(2) (M, f0, f1, . . . , f) |= ' iff the sequence f0, f1, . . . of functions f :
M ! M converges uniformly to f . (Expand the vocabulary to
include names for the functions fn and for the function f .)

(3) (M, A) |= ' iff the set A is closed. (Expand the vocabulary to in-
clude a name for A.)

7.40 Let (M,d) and M be as above. Is there a sentence ' of L1! such that
M |= ' iff (M,d) is compact?

7.41 Let V be a Q-vector space. Let MV = (V,+V , 0V , (fr)r�0), where for
each non-negative rational r,

fr(v) = r ·V v.

Write a sentence ' of L1! such that

(1) MV |= ' iff dim(V ) = n.
(2) MV |= ' iff dim(V ) is infinite.
(3) (MV , f) |= ' iff f : V ⇥ V ! V is a linear mapping. (Expand the

vocabulary to include a name for f .)

7.42 Let V be an R-vector space with a norm || · ||V : V ! R. Let NV =
(V,+V , 0V , DV , (fr)r�0) where DV = {v 2 V : ||v|| < 1} and for
non-negative rational r, fr is as above. Write a sentence ' of L1! such
that

(1) (NV , f) |= ' iff f : V ! V is continuous.
(2) (NV , f) |= ' iff f : V ! V is differentiable.

(In both (1) and (2), expand the vocabulary to include a name for f .)
7.43 Let M = (R,+, ·, 0, 1, <) and L a vocabulary which extends the vocab-

ulary of M by a name for a function f : M ! M . Write a sentence '
of L1! such that (M, f) |= ' iff

(1) f � [0, 1] has bounded variation, i.e. there exists an M such thatPn
i=0 |f(xi+1) � f(xi)|  M for all 0 = x0 < x1 < · · · <

xn = 1.
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(2) f is homogeneous, i.e. there is n 2 N such that f(ax) = anf(x) for
all a 2 R.

(3) f � [0, 1] is Riemann integrable, i.e. for each ✏ > 0 there are 0 =
x0 < x1 < · · · < xn = 1 such that

nX
i=0

(xi+1 � xi)

 
sup

xi<xxi+1

f(x)� inf
xi<xxi+1

f(x)

!
< ✏.

7.44 Prove Lemma 7.51.
7.45 Prove that if M is a well-ordered set, then M is, up to isomorphism, the

only model of �M.
7.46 Suppose M is a countable model in a countable vocabulary. Suppose

a 2 M is fixed by all automorphisms of M. Show that a is definable in
M by a formula of L!1! .

7.47 Suppose M is a countable model in a countable vocabulary. Show that
M is rigid if and only if every element of M is definable in M by a
formula of L!1! .

7.48 Suppose M is a countable model in a countable vocabulary. Suppose
there are a0, . . . , an�1 2M such that (M, a0, . . . , an�1) is rigid. Show
that M can have at most countably many automorphisms.

7.49 Suppose M is a countable model in a countable vocabulary. Suppose M
has < 2! many automorphisms. Show that there are a0, . . . , an�1 2 M
such that (M, a0, . . . , an�1) is rigid.

7.50 Let us write M <⇣1! N if M ✓ N and if a0, . . . , an�1 2 M , then
(M, a0, . . . , an�1) '⇣p (N , a0, . . . , an�1). Suppose

!
M= (M⇠ : ⇠ <

�) is a <⇣1!-chain, i.e. M⇠ <⇣1! M⌘ for ⇠ < ⌘ < �. Let M be the
union of

!
M, i.e.

M =
[
⇠<�

M⇠, R
M =

[
⇠<�

RM⇠ , fM =
[
⇠<�

fM⇠ , cM = cM0 .

Show that M⇠ <⇣1! M for all ⇠ < �.
7.51 Suppose M is a countable model for a countable vocabulary. Suppose

there are formulas 'n and  n
m of L1! such that M satisfies the sen-

tence:
8x0(

W
n<! 'n(x0)) ^V

n<! 9x3 . . . 9xkn8x1('n(x1)!W
m<! 8x2(⇡x1x2 $  n

m(x2, x3, . . . , xkn))).

Show that M is, up to isomorphism, the only model of �M.
7.52 Prove the claim made in Example 7.46.
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8
Model Theory of Infinitary Logic

8.1 Introduction

The model theory of L!1! is dominated by the Model Existence Theorem. It
more or less takes the role of the Compactness Theorem which can be right-
fully called the cornerstone of model theory of first-order logic. The Model
Existence Theorem is used to prove the Craig Interpolation Theorem and the
important undefinability of the concept of well-order. When we move to the
stronger logics L+! ,  > !, the Model Existence Theorem in general fails.
However, we use a union of chains argument to prove the undefinability of
well-order. In the final section we introduce game quantifiers. Here we cross
the line to logics in which well-order is definable. Game quantifiers permit an
approximation process which leads to the Covering Theorem, a kind of Inter-
polation Theorem.

8.2 Löwenheim–Skolem Theorem for L1!

In Section 6.4 we saw that if a first-order sentence is true in a model it is true in
“almost” every countable approximation of that model. We now extend this to
L1! but of course with some modification because L1! has consistent sen-
tences without any countable models. We show that if a sentence ' of L1! is
true in a structure M, a countable ”approximation” of ' is true in a countable
”approximation” of M, and even more, there are this kind of approximations
of ' and M in a sense “everywhere”. To make this statement precise we em-
ploy the Cub Game introduced in Definition 6.10. We say

. . . X . . . for almost all X 2 P!(A)
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8.2 Löwenheim–Skolem Theorem for L1! 177

if

player II has a winning strategy in Gcub(P!(A)).

Recall the following facts:

1. If X0 2 P!(A), then X0 ✓ X for almost all X 2 P!(A).
2. If X 2 C for almost all X 2 P!(A) and C ✓ C0, then X 2 C0 for almost

all X 2 P!(A).
3. If for all n 2 N we have X 2 Cn for almost all X 2 P!(A), then X 2T

n2N Cn for almost all X 2 P!(A).
4. If for all a 2 A we have X 2 Ca for almost all X 2 P!(A), then X 2
4a2ACa for almost all X 2 P!(A).

In other words, the set of subsets of P!(A) which contain almost all X 2
P!(A) is a countably complete filter.

Now that approximations extend not only to models but also to formulas
we assume that models and formulas have a common universe V , which is
supposed to be a transitive1 set. As the following lemma demonstrates, the
exact choice of this set V is not relevant:

Lemma 8.1 Suppose ; 6= A ✓ V and C ✓ P!(A). Then the following are
equivalent:

1. X 2 C for almost all X 2 P!(A).
2. X \A 2 C for almost all X 2 P!(V ).

Proof (1) implies (2): Let a 2 A. Player II applies her winning strategy in
Gcub(C) in the game Gcub({X 2 P!(V ) : X \ A 2 C}) as follows: If I plays
his element in A, player II interprets it as a move in Gcub(C), where she has a
winning strategy. If I plays xn outside A, player II plays yn = a. (2) implies
(1): player II interprets all moves of I in A as his moves in V and then uses
her winning strategy in Gcub({X 2 P!(V ) : X \A 2 C}).

Definition 8.2 Suppose ' 2 L1! and X is a countable set. The approxima-
tion 'X of ' is defined by induction as follows:

(1) (⇡tt0)X = ⇡tt0.
(2) (Rt1 . . . tn)X = Rt1 . . . tn.
(3) (¬')X = ¬'X .
(4) (

V
�)X =

V
{'X : ' 2 � \X}.

(5) (
W
�)X =

W
{'X : ' 2 � \X}.

(6) (8xn')X = 8xn('X).
1 A set A is transitive if y 2 x 2 A implies y 2 A for all x and y.
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178 Model Theory of Infinitary Logic

(7) (9xn')X = 9xn('X).

Note that 'X is always in L!1! , whatever countable set X is.

Example 8.3 Suppose X \ {'↵ : ↵ < !1} = {'↵0 ,'↵1 , . . .}. Then 
8x0

_
↵<!1

'↵(x0)

!X

= 8x0

_
n

'X
↵n

(x0)

Example 8.4 Suppose X,M, ✓� 2 V , V transitive, and � is the order type
of X \On. Then for all ↵ � � we have M |= 8x0(✓X↵ $ ✓�) (Exercise 8.4).

Lemma 8.5 If ' 2 L!1! , then player II has a winning strategy in the game
Gcub({X 2 P!(V ) : 'X = '}). That is, almost all approximations of ' 2
L!1! are equal to '.

Proof We use induction on '. If' is atomic, the claim is trivial since'X = '
holds for all X . Also negation and the cases of 8xn' and 9xn' are immediate.
Let us then assume ' =

V
n2N 'n and the claim holds for each 'n, that is,

player II has a winning strategy in Gcub({X 2 P!(V ) : 'X
n = 'n}) for each

n. By Lemma 6.14 player II has a winning strategy in the Cub Game for the
set \

n2N
{X : 'X

n = 'n} \ {X : 'n 2 X for all n 2 N}.

Definition 8.6 Suppose L is a vocabulary and M an L-structure. Suppose '
is a first-order formula in NNF and s an assignment for the set M the domain
of which includes the free variables of '. We define the set D',s of countable
subsets of M as follows: If ' is basic, D',s contains as an element any count-
able X ✓ V such that X \M is the domain of a countable submodel A of M
such that rng(s) ✓ A and:

• If ' is ⇡tt0, then tA(s) = t0A(t).
• If ' is ¬⇡tt0, then tA(s) 6= t0A(t).
• If ' is Rt1 . . . tn, then (tA1 (s), . . . , tn

A(t)) 2 RA.
• If ' is ¬Rt1 . . . tn, then (tA1 (s), . . . , tn

A(t)) /2 RA.

For non-basic ' we define

• DV
�,s = 4'2�D',s.

• DW
�,s = 5'2�D',s

• D8x',s = 4a2MD',s[a/x].
• D9x',s = 5a2MD',s(a/x).
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8.3 Model Theory of L!1! 179

If ' is a sentence, we denote D',s by D'. If ' is not in NNF, we define D',s
and D' by first translating ' into a logically equivalent NNF formula.

Intuitively, D' is the collection of countable sets X , which simultaneously
give an L!1!-approximation 'X of ' and a countable approximation MX of
M such that MX |= 'X .

Proposition 8.7 Suppose A is an L-structure and X 2 D',s. Then [X \
A]A |=t 'X .

Proof This is trivial for basic '. For the induction step for
V
� suppose X 2

DV
�,s. Suppose ' 2 X \ �. Then X 2 D',s. By the induction hypothesis

[X \A]A |=t 'X . Thus [X]A |=t (
V
�)X . The other cases are as in the proof

of Proposition 6.21.

Proposition 8.8 Suppose L is a countable vocabulary and M an L-structure
such that M |= '. Then player II has a winning strategy in Gcub(D').

Proof We use induction on ' to prove that if M |=s ', then II has a winning
strategy in Gcub(D',s). Most steps are as in the proof of Proposition 6.22. Let
us look at the induction step for

V
�. We assume M |=s

V
'. It suffices to

prove that II has a winning strategy in Gcub(D',s) for each ' 2 �. But this
follows from the induction hypothesis.

Theorem 8.9 (Löwenheim–Skolem Theorem) Suppose L is a countable vo-
cabulary, M an arbitrary L-structure, and ' an L1!-sentence of vocabulary
L, and V a transitive set containing M and ' such that M \ TC(') = ;.
Suppose M |= '. Let

C = {X 2 P!(V ) : [X \M ]M |= 'X}.

Then player II has a winning strategy in the game Gcub(C).

Proof The claim follows from Propositions 8.7 and 8.8.

Theorem 8.10 1. M ⌘1! N if and only if MX ⇠= NX for almost all X .
2. M 6⌘1! N if and only if MX 6⇠= NX for almost all X .

8.3 Model Theory of L
!1!

The Model Existence Game MEG(T, L) of first-order logic (Definition 6.35)
can be easily modified to L!1! .
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xn yn Explanation

' I enquires about '.

' II confirms.

⇡tt I enquires about an equation.

⇡tt II confirms.

'(t) I chooses played '(c) and ⇡ct with ' basic
and enquires about substituting t for c in '.

'(t) II confirms.

'i I tests a played
V

i2I 'i by choosing i 2 I .

'i II confirms.

W
i2I 'i I enquires about a played disjunction.

'i II makes a choice of i 2 I .

'(c) I tests a played 8x'(x) by choosing c 2 C.

'(c) II confirms.

9x'(x) I enquires about a played existential statement.

'(c) II makes a choice of c 2 C.

t I enquires about a constant L [ C-term t.

⇡ct II makes a choice of c 2 C.

Figure 8.1 The game MEG(T, L).

Definition 8.11 The Model Existence Game MEG(', L) for a countable vo-
cabulary L and a sentence ' of L!1! is the game G!(W ) where W consists of
sequences (x0, y0, x1, y1, . . .) where player II has followed the rules of Fig-
ure 8.1 and for no atomic L[C-sentence  both  and ¬ are in {y0, y1, . . .}.

We now extend the first leg of the Strategic Balance of Logic, the equiva-
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8.3 Model Theory of L!1! 181

lence between the Semantic Game and the Model Existence Game, from first-
order logic to infinitary logic:

Theorem 8.12 (Model Existence Theorem for L!1!) Suppose L is a count-
able vocabulary and ' is an L-sentence of L!1! . The following are equivalent:

(1) There is an L-structure M such that M |= '.
(2) Player II has a winning strategy in MEG(', L).

Proof The implication (1) ! (2) is clear as II can keep playing sentences
that are true in M. For the other implication we proceed as in the proof of
Theorem 6.35. Let C = {cn : n 2 N} and Trm = {tn : n 2 N}. Let
(x0, y0, x1, y1, . . .) be a play in which player II has used her winning strategy
and player I has maintained the following conditions:

1. If n = 0, then xn = '.
2. If n = 2 · 3i, then xn is ⇡cici.
3. If n = 4 · 3i · 5j · 7k · 11l, yi is ⇡cjtk, and yl is '(cj), then xn is '(ci).
4. If n = 8 · 3i · 5j and yi is

V
m2N 'm, then xn is 'j .

5. If n = 16 · 3i and yi is
W

m2N 'm, then xn is
W

m2N 'm.
6. If n = 32 · 3i · 5j , yi is 8x'(x), then xn is '(cj).
7. etc.

The rest of the proof is exactly as in the proof of Theorem 6.35.

Our success in the above proof is based on the fact that even if we deal
with infinitary formulas we can still manage to let player I list all possible
formulas that are relevant for the consistency of the starting formula. If even
one uncountable conjunction popped up, we would be in trouble.

It suffices to consider in MEG(', L) such constant terms t that are either
constants or contain no other constants than those of C. Moreover, we may
assume that if player I enquires about ⇡tt, then t = cn for some n 2 N.

Corollary Let L be a countable vocabulary. Suppose ' and  are sentences
of L!1! . The following are equivalent:

(1) ' |=  .
(2) Player I has a winning strategy in MEG(' ^ ¬ , L).

The proof of the Compactness Theorem does not go through, and should
not, because there are obvious counter-examples to compactness in L!1! . In
many proofs where one would like to use the Compactness Theorem one can
instead use the Model Existence Theorem. The non-definability of well-order
in L1! was proved already in Theorem 7.26 but we will now prove a stronger
version for L!1!:

Incomplete version for students of easllc2012 only.



182 Model Theory of Infinitary Logic

Theorem 8.13 (Undefinability of Well-Order) Suppose L is a countable vo-
cabulary containing a unary predicate symbol U and a binary predicate sym-
bol <, and ' 2 L!1! . Suppose that for all ↵ < !1 there is a model M of '
such that (↵, <) ✓ (UM, <M). Then ' has a model N such that (Q, <) ✓
(UN , <N ).

Proof Let D = {dr : r 2 Q} be a set of new constant symbols. Let us call
them d-constants. Let ✓ =

V
r<s(dr < ds). We show that player II has a

winning strategy in

MEG(' ^ ✓, L [D).

This clearly suffices. The strategy of II is the following: Suppose she has
played {y0, . . . , yn�1} so far and yi = ✓ or

yi = 'i(c0, . . . , cm, dr1 , . . . , drl),

where dr1 , . . . , drl are the d-constants appearing in {y0, . . . , yn�1} except in
✓. She maintains the following condition:

(?) For all ↵ < !1 there is a model M of ' and b1, . . . , bl 2 UM ✓ !1 such
that

M |= 9x0 . . . 9xm

^
i<n

'i(x0, . . . , xm, b1, . . . , bl)

and

↵  b1, b1 + ↵  b2, . . . , bl�1 + ↵  bl.

We show that player II can indeed maintain this condition.
For most moves of player I the move of II is predetermined and we just have

to check that (?) remains valid. For a start, if I plays ', condition (?) holds by
assumption. If I enquires about substitution or plays a conjunct of a played
conjunction, no new constants are introduced, so (?) remains true. Also, if I
tests a played 8x'(x) or enquires about a played 9x'(x), no new constants of
D are introduced, so (?) remains true. We may assume that I enquires about
⇡tt only if t = cn and so (?) holds by the induction hypothesis. Let us then
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Figure 8.2

assume (?) holds and I enquires about a played disjunction
W

i2I  i. For each
↵ < !1 we have a model M↵ as in (?) and some i↵ 2 I such that M↵ |=  i↵ .
Since I is countable, there is a fixed i 2 I such that for uncountably many
↵ < !1: M↵ |=  i. If II plays this  i, condition (?) is still true.

The remaining case is that I enquires about a constant term t. We may as-
sume t = dr as otherwise there is nothing to prove. The constants of D oc-
curring so far in the game are dr1 , . . . , drl . Let us assume ri < r < ri+1. To
prove (?), assume ↵ < !1 and let � = ↵ · 2. By the induction hypothesis there
is M as in (?) such that bi + �  bi+1. Let dr be interpreted in M as bi + ↵.
Now M satisfies the condition (?) (see Figure 8.3).

The following corollary is due to Lopez-Escobar (1966b).

Corollary If ' is a sentence of L!1! in a vocabulary which contains the
unary predicate U and the binary predicate <, and (UM, <M) is well-ordered
in every model of ', then there is ↵ < !1 such that the order type of the
structure (UM, <M) is < ↵ for every model M of '.

Corollary The class of well-orderings is not a PC-class of L!1! .

The undefinability of well-ordering as a PC-class of L1! will be estab-
lished later. We now prove the Craig Interpolation Theorem for L!1! . There
are several different proofs of this theorem, some of which employ the above
corollary directly. Our proof is like the original proof by Lopez-Escobar, ex-
cept that we operate with Model Existence Games instead of Gentzen systems.

Theorem 8.14 (Separation Theorem) Suppose L1 and L2 are vocabularies.
Suppose ' is an L1-sentence of L!1! and  is an L2-sentence of L!1! such
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that |= '!  . Then there is an L1\L2-sentence ✓ of L!1! such that |= '!
✓ and |= ✓ !  .

Proof This is similar to the proof of Theorem 6.40. We assume, w.l.o.g., that
L1 and L2 are relational. Let L = L1 \ L2. We describe, assuming that no
such ✓ exists, a winning strategy of II in MEG(' ^ ¬ , L1 [ L2). We now
follow closely the proof of Theorem 6.40, where the strategy of II was to
divide the set  of her moves into two parts Sn

1 and Sn
2 such that Sn

1 consists
of the L1 [ C-sentences of  and Sn

2 consists of the L2 [ C-sentences of  .
In addition it is assumed that

(*) There is no L [ C-sentence ✓ that separates Sn
1 and Sn

2 .

There are two new cases over and above those of Theorem 6.40:
Case 50. Player I plays 'i where for example

V
i2I 'i 2 Sn

1 . Let Sn+1
1 =

Sn
1 [ {'i} and Sn+1

2 = Sn
2 . If ✓ separates Sn+1

1 and Sn+1
2 , then clearly ✓ also

separates Sn
1 and Sn

2 .
Case 60. Player I plays

W
i2I 'i, where for example

W
i2I 'i 2 Sn

1 . We claim
that for some i 2 I the sets Sn

1 [ {'i} and Sn
2 satisfy (*). Otherwise there is

for each i 2 I some ✓i that separates Sn
1 [ {'i} and Sn

2 . Let ✓ =
W

i2I ✓i.
Then ✓ separates Sn

1 and Sn
2 contrary to assumption.

8.4 Large Models

Suppose � is an L-fragment of L+! of size  and M is an L-structure of size
> . If we define on M

a ⇠ b () for every '(x) 2 � : M |= '(a) () M |= '(b)

then by the Pigeonhole Principle there is a subset I of M of size >  such that
for a, b 2 I and '(x) 2 � :

M |= '(a) () M |= '(b).

We say that the set I is indiscernible in M with respect to �. If we want
indiscernibility relative to formulas with more than one free variable, we have
to use Ramsey theory.

Definition 8.15 Suppose L is a vocabulary, M is an L-structure, and � is an
L-fragment. A linear order (I,<), where I ✓ M , is �-indiscernible in M if
for all a1 < . . . < an, b1 < . . . < bn in I and any '(x1, . . . , xn) in �:

M |= '(a1, . . . , an) () M |= '(b1, . . . , bn).
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Figure 8.9 Strategy ⇢.

Although elementary equivalence relative to L1G coincides with elemen-
tary equivalence relative to L1! , there are properties expressible in L1G

which are not expressible even in L11, as we shall prove in Proposition 9.38.

8.7 Historical Remarks and References

Good sources for the model theory of infinitary logic are Keisler (1971) and
Makkai (1977). Theorem 8.10 is from Kueker (1972, 1977). Theorem 8.12
is from Keisler (1971), where the method of consistency properties is first
presented in the context of infinitary logic. Subsequently it was extensively
used in infinitary logic in Makkai (1969b,a), Harnik and Makkai (1976), and
Green (1975). Theorem 8.13 and its two vorollaries are from Lopez-Escobar
(1966b,a). The strong formulation of Theorem 8.13 is from Keisler (1971).
Theorem 8.14 is from Lopez-Escobar (1965).

By means of the Model Existence Game (or consistency properties) many
variations of the Craig Interpolation Theorem can be proved for L!1! , as
demonstrated convincingly in Keisler (1971). We have collected some of them
in Exercises 8.10–8.17.

Theorem 8.22 is from Morley (1968). Theorem 8.31 goes back to Morley
(1968), but the present proof is due to Shelah. Proposition 8.32 is from Lopez-
Escobar (1966b,a). Proposition 8.41 is essentially due to Keisler (1965). A
useful source for game quantifiers is Burgess (1977). Approximations of game
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formulas were first considered in set theory in Kuratowski (1966). For more on
Souslin–formulas, see Burgess (1978) and Green (1978).

Exercises 8.10–8.12 and 8.16 are from Lopez-Escobar (1965). Exercises
8.13-8.14 are from Malitz (1969). Exercise 8.15 is from Barwise (1969). Ex-
ercise 8.17 is from Makkai (1969b), which is a good source for all the Exer-
cises 8.10–8.17. Exercise 8.30 is from Sierpiński (1933). Exercise 8.46 is from
Burgess (1978), where also related results are proved. Exercise 8.47 is from
Green (1979).

Exercises

8.1 Find an uncountable model M such that there is no countable N with
N ⌘1! M.

8.2 Let L be the vocabulary {E}[{cn : n 2 N}, where each cn is a constant
symbol and E is a binary relation symbol. Let for A ✓ N the sentence
'A be ^

n<m<!

¬⇡cncm

!
^ 9x08x1

 
x1Ex0 $

_
n2A

⇡cnx1

!
.

Let � = {'A : A ✓ N}. Show that the sentence
V
{' : ' 2 �\X} has

a model whatever X is, but it has a countable model if and only if X is
countable.

8.3 Suppose M = (↵ + ↵, <). Show that MX ⇠= (�X + �X , <) for some
�X for almost all X .

8.4 Prove the claim of Example 8.4.
8.5 A class K of models is closed if M 2 K if and only if MX 2 K for

almost all X . Suppose a closed class contains, up to isomorphism, only
countably many countable models. Show that it is definable in L!1! .

8.6 Show that the class of models (M, P ), where P is L1!-definable on
M, is a closed class.

8.7 Show that the class of countable well-orders is the union of two disjoint
closed classes.

8.8 Suppose (A,<) is an uncountable linear order. Show that (A,<) con-
tains a copy of !1, a copy of !⇤

1 , or a copy of the rationals. (Hint: As-
sume not. Prove first that there is a 2 A such that both ( , a] and [a,!)
are uncountable in (A,<).)

8.9 Show that if ' is a sentence of L!1! in a vocabulary which contains the
unary predicate U and the binary predicate < and ' has a model M with
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(UM, <M) an uncountable linear order, then ' has a model N such that
(UN , <N ) contains a copy of the rationals.

8.10 (Lyndon Interpolation Theorem) Suppose ' and  are sentences in L!1!

and |= ' !  . Show that there is ✓ in L!1! such that |= ' ! ✓,
|= ✓ !  , every relation symbol occurring positively (negatively) in ✓
occurs positively (negatively) in ' and  .

8.11 Assume in Exercise 8.10 the sentences ' and  have no function or
constant symbols, and no identity. Assume also 6|= ¬' and 6|=  . Show
that ✓ can be chosen so that it does not contain identity.

8.12 Suppose' and are sentences of L!1! such that if M and N are models
of ', N is a homomorphic image of M, and M |=  , then N |=  .
Show that there is a positive L!1!- sentence ✓ such that ' |=  $ ✓.

8.13 Suppose L1 and L2 are vocabularies which contain no function symbols.
Let ' be an L1-sentence and  an L2-sentence of L!1! such that  is
universal and |= '!  . Show that there is a universal L1\L2-sentence
✓ of L!1! such that |= '! ✓ and |= ✓ !  .

8.14 Suppose' and are sentences of L!1! such that if M and N are models
of ', N is a submodel of M, and M |=  , then N |=  . Show that there
is a universal sentence ✓ of L!1! such that ' |=  $ ✓.

8.15 Suppose ' and  are sentences of L!1! . Show that every countable
model of ' can be embedded in some countable model of  if and only
if every universal logical consequence of  in L!1! is a logical conse-
quence of '.

8.16 Suppose ' and  are sentences of L!1! . Show that every homomorphic
image of a model of ' is a model of  if and only if there is a positive
sentence ✓ in L!1! such that |= '! ✓ and |= ✓ !  .

8.17 The class K of countable structures B such that B is isomorphic to a
substructure of some model A of ' 2 L!1! is identical to the class of all
countable models of the set of universal sentences ✓ 2 L!1! such that
' |=  .

8.18 Consider the following game G
cub(C) where C is a set of subsets of M

of cardinality . Players I and II play as in Gcub(C) but the game goes
on for  rounds producing a set X = {x↵ : ↵ < } [ {y↵ : ↵ < }.
Player II wins if X 2 C. Show that if II has a winning strategy in
Gcub(C) and G

cub(D), then she has a winning strategy in G
cub(C \D).

8.19 Show that if F is a set of finitary functions on M , |F| = , and C is the
set of X ✓ M of cardinality  closed under each function in F , then II
has a winning strategy in Gcub(C). Use this to conclude that if M is an
L-structure, |L|  , ' 2 L+! , M |= ' and C is the set of domains of
M0 ✓M with M0 |= ', then II has a winning strategy in G

cub(C).
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8.20 Show that we can extend each vocabulary L to L⇤, translate each L+!-
sentence ' in the vocabulary L to an L+!-sentence '⇤ in the vocabu-
lary L⇤, expand each L-structure M to an L⇤-structure M⇤, and extend
any L-fragment T to a set T ⇤ of cardinality  of L+!-sentences in
the vocabulary L⇤ such that for all L-structures M, L⇤- structures N ,
L-fragments T and L+!-sentences ' 2 T in the vocabulary L:

(1) M |= ' =) M⇤ |= T ⇤ [ {'⇤}.
(2) N |= T ⇤ [ {'⇤} =) N � L |= '.
(3) '⇤ is quantifier-free.
(4) T ⇤ is a set of universal sentences.

8.21 Suppose L is a vocabulary of cardinality , ' is a sentence of L+! in
the vocabulary L, M is an L-structure such that M |= ', and   µ 
|M |. Show that there is M0 ✓M such that M0 |= ' and |M0| = µ.

8.22 Find a counter-example to the following claim: Suppose L is a vocabu-
lary of cardinality  , ↵ < +, and M is an L-structure. Then there is
M0 ✓M such that M0 '↵p M and |M0|  .

8.23 Prove that the class of models (M,A,B), where A,B ✓ M and |A| <
|B| is not RPC in L1! . In fact, prove the following statement: If ' 2
L+! has a model M such that   |UM| < |V M|, then ' has a model
N such that |UN | = |V N |.

8.24 Show that the class of linear orders with uncountable cofinality is not PC-
definable in L1! . In fact, prove the following statement: If ' 2 L+!

has a model M such that (UM, <M) has cofinality +, then ' has a
model N such that (UN , <N ) has cofinality @0. (A linear order (M,<)
has cofinality  (or is -cofinal) if  is the smallest cardinal for which
there is A ✓M such that |A| =  and A has no upper bound in (M,<).)

8.25 Prove that the class of graphs (G,E) which have no countable cover
(i.e. there is no countable subset C such that for every a 2 G there is
some y 2 C with xEy) is not RPC in L1! . In fact, prove the following
statement: If ' 2 L+! has, for every graph (G,E) of cardinality +

without a countable cover, a model M such that (UM, RM) ⇠= (G,E),
then ' has a model N such that (UM, RM) has a countable cover.

8.26 Show that there is a sentence in L+! which has a model of size + but
none of size > +.

8.27 Show that there is a sentence in L+! which has a model of size ++

but none of size > ++.
8.28 Show that there is a sentence in L+! which has a model of size 2 but

none of size > 2.
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8.29 Show that there is a sentence in L+! which has a model of size 22


but
none of size > 22


.

8.30 Show 2! 6! (!1)22. (Hint: Take a well-ordering � of R. Then define
a coloring of pairs {x, y} of reals by reference to � and the standard
ordering of R.)

8.31 Show that if ! ()22, then  is regular.
8.32 Prove directly 6! (3)22.
8.33 Show 15 6! (4)22 (it is probably just as easy to show 17 6! (4)22.)
8.34 Deduce the undefinability of well-order in L!1! directly from Theo-

rem 8.22. (Hint: Assume well-order could be defined in L!1! . Show
that then there is a sentence in L!1! with a model of size i!1 but none
bigger.)

8.35 Show that for every vocabulary L, every L-fragment � of L1! and every
L-structure M there is L0 ◆ L, an L0-fragment �0 such that �0 ◆ �, and
an expansion M0 of M to an L0-structure such that |L0| = |L| + @0,
|�0| = |�|+ @0 and M0 has Skolem functions for all ' 2 �0.

8.36 Construct for each infinite  a linear order with 2 automorphisms.
8.37 An element a of a Boolean algebra M is an atom if for all b 2M : 0 

b  a implies 0 = b or b = a. Show that if M is a Boolean algebra and
(I,<) is a linear order such that I is a set of atoms of M, then (I,<) is
�-indiscernible in M for any fragment � of L1! .

8.38 Suppose M is an equivalence relation and (I,<) is a linear order such
that I is included in one of the equivalence classes of M. Show that
(I,<) is �-indiscernible in M for all fragments � of L1! . Is the same
true if I is a set of non-M-equivalent elements of M?

8.39 Suppose L is a vocabulary, M and M0 L-structures, � an L-fragment
of L1! , (I,<I) �-indiscernible in M, (J,<J) �-indiscernible in N ,
and M |= '(a1, . . . , an) () N |= '(b1, . . . , bn) for all atomic
', a1 <I · · · <I an and b1 <J · · · <J bn. Suppose (I,<I) 'p (J,<J).
Show that [I]M 'p [J ]N .

8.40 Suppose ' 2 L!1! has for each ↵ < !1 a model of size i↵. Show that '
has arbitrarily large models all of which are partially isomorphic. (Hint:
Use the previous exercise.)

8.41 Show that the Scott rank of (↵, <) is always ↵.
8.42 Show that the Scott rank of (Q, <) is !.
8.43 Show that the two truth definitions of game logic are equivalent.
8.44 Show that the conjunction and disjunction of two formulas of the form

(8.18) is again of the form (8.18), up to logical equivalence.
8.45 Use Theorem 8.47 to give a quick proof of the Craig Interpolation The-

orem.
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Proof Suppose T is a bottleneck. Let ↵ < + such that T 2 V [G↵]. Let
A↵ be the Cohen subset of  added at stage ↵. Note that A↵ is a bistationary
subset of . We first show that � T 6 T (A↵). Suppose

p � f̂ : T (A↵)! T is strictly increasing.

When we force with A↵, calling the forcing notion P 0, an uncountable branch
appears in T (A↵), hence also in T . The product forcing P↵ ? P 0 contains a
-closed dense set (Exercise 9.45). Hence it cannot add a branch of length
 to T . We have shown that T (A↵) 6 T in V [G]. Since T is a bottleneck,
T  T (A↵). By repeating the same with �A↵ we get T  T (�A↵). In
sum, T  T (A↵) ⌦ T (�A↵) (see Exercise 9.44 for the definition of ⌦). But
T (A↵)⌦ T (�A↵)  Tp (Exercise 9.46). Hence T  Tp .

It is also known (Todorčević and Väänänen (1999)) that if V = L, then there
are no bottlenecks in the class T@1,@1 above T@1

p .

9.5 The Transfinite Dynamic Ehrenfeucht–Fraı̈ssé Game

In this section we introduce a more general form of the Ehrenfeucht–Fraı̈ssé
Game. The new game generalizes both the usual Ehrenfeucht–Fraı̈ssé Game
and the dynamic version of it. In this game player I makes moves not only
in the models in question but also moves up a po-set, move by move. The
game goes on as long as I can move. This game generalizes at the same time
the games EF↵(A0,A1) and EFD�(A0,A1). Therefore we denote it by EFP
rather than by EFDP .

If P is a po-set, let b(P) denote the least ordinal � so that P does not have
an ascending chain of length �.

Definition 9.66 Suppose A0 and A1 are L-structures and P is a po-set.
The Transfinite Dynamic Ehrenfeucht–Fraı̈ssé Game EFP(A0,A1) is like the
game EF�(A0,A1) except that on each round I chooses an element c↵ 2
{0, 1}, an element x↵ 2 Ac↵ , and an element p↵ 2 P . It is required that

p0 <P . . . <P p↵ <P . . . .

Finally I cannot play a new p↵ anymore because P is a set. Suppose I has
played z̄ = h(c� , x�) : � < ↵i and II has played ȳ = hy� : � < ↵i. If pz̄,ȳ is
a partial isomorphism between A0 and A1, II has won the game, otherwise I
has won.
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9.5 The Transfinite Dynamic Ehrenfeucht–Fraı̈ssé Game 259

Thus a winning strategy of I in EFP(A0,A1) is a sequence ⇢ = h⇢↵ : ↵ <
b(P)i and a strategy of II is a sequence ⌧ = h⌧↵ : ↵ < b(P)i. Note that

EF↵(A0,A1) is the same game as EF(↵,<)(A0,A1),

and

EFD↵(A0,A1) is the same game as EF(↵,>)(A0,A1).

Naturally, if ↵ is finite, the games EF(↵,<)(A0,A1) and EF(↵,>)(A0,A1)
are one and the same game. But if ↵ happens to be infinite, there is a big
difference: The first is a transfinite game while the second can only go on for
a finite number of moves.

The ordering P  P 0 of po-sets has a close connection to the question who
wins the game EFP(A0,A1), as the following two results manifest:

Lemma 9.67 If II wins the game EFP0(A0,A1) and P  P 0, then II wins
the game EFP(A0,A1). If I wins the game EFP(A0,A1) and P  P 0, then
I wins the game EFP0(A0,A1).

Proof Exercise 9.50.

Proposition 9.68 Suppose II wins EFP(A0,A1) and I wins EFP0(A0,A1).
Then �P  P 0.

Proof Suppose II wins EFP(A0,A1) with ⌧ and I wins EFP0(A0,A1) with
⇢. We describe a winning strategy of I in G(P 0,P), and then the claim follows
from Lemma 9.60. Suppose ⇢0(;) = (c0, x0, p00). The element p00 is the first
move of I in G(P 0,P). Suppose II plays p0 2 P . Let

y0 = ⌧0(((c0, x0, p0))),

(c1, x1, p
0
1) = ⇢1((y0)).

The element p01 is the second move of I in G(P 0,P). More generally the equa-
tions

y� = ⌧�(h(c� , x� , p�) : �  �i)
(c↵, x↵, p

0
↵) = ⇢↵(hy� : � < ↵i)

define the move p0↵ of I in G(P 0,P) after II has played hp� : � < ↵i. The
game can only end if II cannot move p↵ at some point, so I wins.

Suppose A0 6⇠= A1. Then there is a least ordinal

�  Card(A0) + Card(A1)

such that II does not win EF�(A0,A1). Thus for all ↵ + 1 < � there is a
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winning strategy for II in EF↵+1(A0,A1). Let K(= K(A0,A1)) be the set
of all winning strategies of II in EF↵+1(A0,A1) for ↵+1 < �. We can make
K a tree by letting

h⌧⇠ : ⇠  ↵i  h⌧ 0⇠ : ⇠  ↵0i

if and only if ↵  ↵0 and 8⇠  ↵(⌧⇠ = ⌧ 0⇠).

Definition 9.69 We call K, as defined above, the canonical Karp tree of the
pair (A0,A1).

Note that even when � is a limit ordinal K does not have a branch of length
�, for otherwise II would win EF�(A0,A1).

Lemma 9.70 Suppose P is a po-set. Then

9 wins EFP(A0,A1) () �0P  K.

Proof ) Suppose II wins EFP(A0,A1) with ⌧ . If s = hs⇠ : ⇠  ↵i 2 �0P ,
we can define a strategy ⌧ 0 of II in EF↵+1(A0,A1) as follows

⌧ 0⇠(h(c⌘, x⌘) : ⌘  ⇠i) = ⌧⇠(h(c⌘, x⌘, s⌘) : ⌘  ⇠i).

Since K does not have a branch of length �, ↵ < �, and hence ⌧ 0 2 K. The
mapping s 7! ⌧ 0 is an order-preserving mapping �0P ! K.
( Suppose f : �0P ! K is order-preserving. We can define a winning

strategy of II in EFP(A0,A1) by the equation

⌧↵(h(c⇠, x⇠, s⇠) : ⌘  ⇠i) = f(hs⇠ : ⇠  ↵i)(h(c⇠, x⇠, s⌘) : ⇠  ↵i).

Proposition 9.71 Suppose � is a limit ordinal and II wins EF↵(A0,A1) for
all ↵ < �. The following are equivalent:

(i) II wins EF�(A0,A1).
(ii) II wins EFP(A0,A1) for every po-set P with no branches of length �.

Proof To prove (ii)!(i), suppose II does not win EF�(A0,A1). Let P =
K(A0,A1). Then �P does not have branches of length �, hence by (ii) II
wins EF�P(A0,A1) and we get �P  P from Lemma 9.70, a contradiction
with Lemma 9.55. The other direction (i)!(ii) is trivial.

Note Suppose  = Card(A0)+Card(A1). Then we can compute Card(K) 
sup↵<�(

↵)↵ = sup↵<� 
↵ . If GCH and  is regular, then Card(K)  +.

Furthermore, if we assume GCH, we can assume Card(P)   in (ii) above
(Hyttinen). For � = ! this does not depend on GCH. II wins EFP(A0,A1) if
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and only if II wins EF�0P(A0,A1). So from the point of view of the existence
of a winning strategy for II we could always assume that P is a tree.

Corollary II never wins EF�K(A0,A1).

Definition 9.72 A po-set P is a Karp po-set of the pair (A0,A1) if II wins
EFP(A0,A1) but not EF�P(A0,A1). If a Karp po-set is a tree, we call it a
Karp tree.

By Lemma 9.70 and the above corollary, there are always Karp trees for
every pair of non-isomorphic structures.

Suppose I wins EFP(A0,A1) with the strategy ⇢. Let S⇢ be the set of se-
quences ȳ = hy⇠ : ⇠  ↵i 2 dom(⇢) such that

p⇢�↵+1,y 2 Part(A0,A1).

Thus S⇢ is the set of sequences of moves of II before she loses EFP(A0,A1),
when I plays ⇢. We can make S⇢ a tree by ordering it as follows

hy⇠ : ⇠  ↵i  hy0⇠ : ⇠  ↵0i

if and only if ↵  ↵0 and 8⇠  ↵(y⇠ = y0⇠).

Lemma 9.73 I wins EF�S⇢(A0,A1).

Proof The following equation defines a winning strategy ⇢0 of I in the game
EF�S⇢(A0,A1):

⇢0↵hy⇠ : ⇠ < ↵i) = hc↵, x↵, h(y⇠ : ⇠  �i : � < ↵i,

where

⇢↵(hy⇠ : ⇠ < ↵i) = (c↵, x↵, p↵).

Lemma 9.74 �S⇢  P .

Proof Suppose s = hhy⇠ : ⇠  �i : � < ↵i 2 �S⇢, where

�0 < �1 < . . . < �⌘ < . . . (⌘ < ↵).

Let � = sup⌘<↵ �⌘ and

⇢�(hy⇠ : ⇠ < �i) = (c�, x�, p�).

We define f(s) = p� . Then f : �S⇢ ! P is order-preserving.
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Note that Lemma 9.74 implies P 6 S⇢. In particular, if I wins EF�(A0,A1)
with ⇢, then S⇢ is a tree with no branches of length �.

Suppose P0 is such that �P0  P and I wins EF�P0 . So P0 could be
S⇢. Suppose furthermore that there is no P1 such that �P1  P0 and I wins
EF�P1 . Lemma 9.57 implies that this assumption can always be satisfied.

Lemma 9.75 I does not win EFP0(A0,A1).

Proof Suppose I wins EFP0(A0,A1) with ⇢0. Then I wins EF�S⇢0 (A0,A1)
and �S⇢0  P0, contrary to the choice of P0.

Definition 9.76 A po-set P is a Scott po-set of (A0,A1) if I wins the game
EF�P(A0,A1) but not the game EFP(A0,A1). If a Scott po-set is a tree,
we call is a Scott tree. If P is both a Scott and a Karp po-set, it is called a
determined Scott po-set.

By Lemma 9.73 and Lemma 9.75, S⇢ is always a Scott tree of (A0,A1), so
Scott trees always exist. Note that

Card(S⇢)  sup
↵<b(P)

(Card(A0) + Card(A1))
↵.

Lemma 9.77 Suppose I wins EFP(A0,A1) with ⇢ and K = K(A0,A1).
Then K  S⇢.

Proof Suppose ⌧ 2 K. Let II play ⌧ against ⇢ in EFP(A0,A1). The result-
ing sequence ȳ of moves of II is an element of S⇢. The mapping ⌧ 7! ȳ is
order-preserving.

Suppose II wins EFP0(A0,A1) and I wins EFP1(A0,A1) with ⇢. Fig-
ure 9.7 shows the resulting picture.

In summary, we have proved:

Theorem 9.78 Suppose II wins EFP0(A0,A1) and I wins EFP1(A0,A1).
Then there are trees T0 and T1 such that

(i) �0P0  T0  T1  P1.
(ii) II wins EFT0(A0,A1) but not EF�T0(A0,A1).
(iii) I wins EF�T1(A0,A1) but not EFT1(A0,A1).

Example 9.79 Suppose I wins EF!(A0,A1). By Proposition 7.19 there
is a unique � = �(A0,A1) such that II wins EF(�,>)(A0,A1) and I wins
EF(�+1,>)(A0,A1). Then (�, >) is both a Karp and a Scott po-set for A0 and
A1.
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Figure 9.7 The boundary between II winning and I winning.

Example 9.80 Suppose II wins EF↵(A0,A1) but not EF↵+1(A0,A1). Then
(↵, <) is a Karp tree (in fact a Karp well-order) of A0 and A1. This follows
from the fact that �(↵, <) ⌘ (↵+ 1, <).

Example 9.81 Suppose I wins EF↵+1(A0,A1) but not EF↵(A0,A1). Then
(↵, <) is a Scott tree (in fact a Scott well-order) of A0 and A1.

If T is a tree, T + 1 is the tree which is obtained from T by adding a new
element at the end of every maximal branch of T . Note that T + 1 may be
uncountable even if T is countable.

Lemma 9.82 Suppose S ✓ !1 is bistationary, A0 = �(S), A1 = �(;), and
P = T (!1 \ S) + 1. Then I wins EF�P(A0,A1).

Proof Suppose I has already played (c� , x� , p�) and II has played y� for
� < ↵. Suppose I now has to decide how to play (c↵, x↵, p↵) in EFP(A0,A1).
We assume that I has played in such a way that

1. p� = hh�� : �  �i : � < �i (2 �(T (!1 \ S) + 1).

2. x⌫+2n < y⌫+2n+1 in A0.
3. x⌫+2n+1 < y⌫+2n+2 in A1.
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9.6 Topology of Uncountable Models

Countable models with countable vocabulary can be thought of as points in
the Baire space !! . Likewise, models M of cardinality  with vocabulary of
cardinality  can be thought of as points fM in the set . We can make  a
topological space by letting the sets

N(f,↵) = {g 2 ! : f � ↵ = g � ↵},

where ↵ < , form the basis of the topology. Let us denote this general-
ized Baire space  by N. Now properties of models of size  correspond
to subsets of N. In particular, modulo coding, isomorphism of structures of
cardinality  becomes an “analytic” property in this space.

One of the basic questions about models of size  that we can try to attack
with methods of logic is the question which of those models can be identified
up to isomorphism by means of a set of invariants. Shelah’s Main Gap Theorem
gives one answer: If M is any structure of cardinality  � !1 in a countable
vocabulary, then the first-order theory of M is either of the two types:

Structure Case All uncountable models elementary equivalent to M can be
characterized in terms of dimension-like invariants.

Non-structure Case In every uncountable cardinality there are non-isomorphic
models elementary equivalent to M that are extremely difficult to dis-
tinguish from each other by means of invariants.

The game-theoretic methods we have developed in this book help us to an-
alyze further the non-structure case. For this we need to develop some basic
topology of N. A set A ✓ N is dense if A meets every non-empty open set.
The space N has a dense subset of size < consisting of all eventually con-
stant functions. If the Generalized Continuum Hypothesis GCH is assumed,
then < =  for all regular  and < = + for singular .

Theorem 9.87 (Baire Category Theorem) Suppose A↵, ↵ < , are dense
open subsets of N. Then

T
↵A↵ is dense.

Proof Let f0 2 N and ↵0 <  be arbitrary. If f⇠ and ↵⇠ for ⇠ < � have
been defined so that

↵⇣ < ↵⇠ and f⇠ 2 N(f⇣ ,↵⇣)

for ⇣ < ⇠ < �, then we define f� and ↵� as follows: Choose some g 2 N

such that g 2 N(f⇠,↵⇠) for all ⇠ < � and let ↵� = sup⇠<� ↵⇠. Since A�
is dense, there is f� 2 A� \ N(g,↵�). When all f⇠ and ↵⇠ for ⇠ <  have
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been defined, we let f be such that f 2 N(f⇠,↵⇠) for all ⇠ < . Then f 2T
↵A↵ \N(f0,↵0).

Definition 9.88 A subset A of N is said to be ⌃1
1 (or analytic) if it is a

projection of a closed subset of N ⇥ N. A set is ⇧1
1 (or co-analytic) if its

complement is analytic. Finally, a set is �1
1 if it is both ⌃1

1 and ⇧1
1.

Example 9.89 Examples of analytic sets relevant if  is a regular cardinal
> !, are

CUB = {f 2 N : {↵ <  : f(↵) = 0} contains a club}

and

NS = {f 2 N : {↵ <  : f(↵) 6= 0} contains a club}.

The set of ↵-sequences of elements of  for various ↵ <  form a tree N<

under the subsequence relation. Any subset T of N< which is closed under
subsequences is called a tree in this section. A -branch of such a tree is any
linear subtree (branch) of height . Let us denote hg(�) : � < ↵i by ḡ(↵).

Lemma 9.90 A set A ✓ N is analytic iff there is a tree T ✓ N< ⇥ N<

such that for all f :

f 2 A () T (f) has a -branch, (9.7)

where T (f) = {ḡ(↵) : (ḡ(↵), f̄(↵)) 2 T}. Such a tree is called a tree repre-
sentation of A.

Proof Suppose first A is analytic and B ✓  ⇥  is a closed set such that

f 2 A () 9g((f, g) 2 B).

Let

T = {(f̄(↵), ḡ(↵)) : (f, g) 2 B,↵ < }.

Clearly now f 2 A if and only if T (f) has a -branch. Conversely, suppose
such a T exists. Let B be the set of (f, g) such that (f̄(↵), ḡ(↵)) 2 T for all
↵ < . The set B is closed and its projection is A.

Respectively, a set is co-analytic if and only if there is a tree T ✓ N< ⇥
N< such that for all f :

f 2 A () T (f) has no -branches. (9.8)

Let T denote the class of all trees without -branches. Let T�, denote the
set of subtrees of �< of cardinality  � without any -branches.
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Proposition 9.91 Suppose B is a co-analytic subset of N and T is as in
(9.8). For any tree S 2 T let

BS = {f 2 B : T (f)  S}.

Then

B =
[

S2T�,

BS ,

where � = <.

Proof Clearly BS ✓ B if S 2 T. Conversely, suppose f 2 B. Then of
course f 2 BT (f). It remains to observe that |T (f)|  <.

Suppose A ✓ B is analytic and S is a tree as in (9.7). Let

T 0 = {(f̄(↵), ḡ(↵), h̄(↵)) : ḡ(↵) 2 T (f), h̄(↵) 2 S(f)}. (9.9)

Note that |T 0|  < and T 0 has no -branches, for such a branch would give
rise to a triple (f, g, h) which would satisfy f 2 A\B. Note also that if f 2 A,
then there is a -branch {h̄(↵) : ↵ < } in S(f), and hence the mapping

ḡ(↵) 7! (f̄(↵), ḡ(↵), h̄(↵))

witnesses

T (f)  T 0.

We have proved:

Proposition 9.92 (Covering Theorem for N) Suppose B is a co-analytic
subset of N and S is as in (9.8). Suppose A ✓ B is analytic. Then

A ✓ BT

for some T 2 T�,, where � = <.

The idea is that the sets BT , T 2 T�,, cover the co-analytic set B com-
pletely, and moreover any analytic subset of B can be already covered by a
single BT . Especially if B happens to be �1

1, then there is T 2 T�, such that
B = BT .

Corollary (Souslin–Kleene Theorem for N) Suppose B is a �1
1 subset of

N. Then

B = BT

for some T 2 T�,, where � = <.
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Corollary (Luzin Separation Theorem for N) Suppose A and B are disjoint
analytic subsets of N. Then there is a set of the form CT for some co-analytic
set C and some T 2 T�,, where � = <, that separates A and B, i.e. A ✓ C
and C \B = ;.

In the case of classical descriptive set theory, which corresponds to assuming
 = !, the sets BT are Borel sets. If we assume CH, then CUB and NS cannot
be separated by a Borel set.

Proposition 9.93 If < = , then the sets BT are analytic. If in addition T
is a strong bottleneck, then BT is �1

1.

Let us call a family B of elements of T�, universal if for every T 2 T there
is some S 2 B such that T  S. If T�, has a universal family of size µ, and
< = , then by the above results every co-analytic set in N is the union
of µ analytic sets. By results in Mekler and Väänänen (1993) it is consistent
relative to the consistency of ZFC that T+ , 2 = +, has a universal family
of size ++ while 2

+
= +++.

Definition 9.94 The class of Borel subsets of N is the smallest class con-
taining the open sets and the closed sets which is closed under unions and
intersections of length .

Note that every closed set in N is the union of < open sets (Exer-
cise 9.57). So if < = , then the definition of Borelness can be simplified.

Theorem 9.95 Assume < =  > !. Then N has two disjoint analytic
sets that cannot be separated by Borel sets.

Proof Note that  is a regular cardinal. Every Borel set A has a “Borel code”
c such that A = Bc. Let us suppose A = Bc separates the disjoint analytic
sets CUB and NS defined in Example 9.89. For example, CUB ✓ A and
A \ NS = ;. Let P = (2<,) be the Cohen forcing for adding a generic
subset for . Let G be P-generic and g =

S
P . Now either g 2 A or g /2 A.

Let us assume, w.l.o.g., that g 2 A. Let p � ǧ 2 Bč. Let M � (H(µ),2, <⇤)
for a large µ such that , p,P, TC(c) 2 M , M< ✓ M , and <⇤ is a well-
order of H(µ). Since < =  > !, we may also assume |M | = . Since P
is < -closed, it is easy to construct a P-generic G0 over M in V such that

{↵ <  : M |= “(ǧ)G0(↵) 6= 0”} contains a club. (9.10)

It is easy to show that Bc = (Bč)G0 . Since

M |= “p � ǧ 2 Bč”,

whence (ǧ)G0 2 Bc and therefore (ǧ)G0 /2 NS. This contradicts (9.10).
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Example 9.96 Suppose M is a structure with M = . We call the analytic
set

{N : N =  and N ⇠= M}

the orbit of M. Let N 6⇠= M. Now player I has an obvious winning strategy
⇢ in EF(M,N ): he simply makes sure that all elements of both models are
played. Obviously there are many ways to play all the elements but any of
them will do. Let us consider the co-anaytic set B = {fN : N =  and N 6⇠=
M}. Let S(N ) be the Scott tree S⇢ of the pair (M,N ). Let us choose a tree
representation T of B in such a way that for all N with N = , T (fN ) =
S(N ). If now fN 2 BT 0 , then player I wins EFT 0(M,N ).

Recall that if M is a countable structure and ↵ is the Scott height of M, then
I wins EFD↵+!(M,N ) whenever M 6⇠= N and N is countable. Equivalently,
using the notation of Example 9.54, player I wins EFB↵+! (M,N ) whenever
M 6⇠= N and N is countable. We now generalize this property of B↵+! to
uncountable structures.

Definition 9.97 Suppose  is an infinite cardinal and M is a structure of
cardinality . A tree T is a universal Scott tree of a structure M if T has no
branches of length  and player I wins EF�T (M,N ) whenever M 6⇠= N and
|N | = |M |.

The idea of the universal Scott tree is that the tree T alone suffices as a clock
for player I to win all the 2 different games EFT (M,N ) where M 6⇠= N and
|N | = |M |. Universal Scott trees exist: there is always a universal Scott tree
of cardinality  2 as we can put the various Scott trees of the pairs (M,N ),
M 6⇠= N , |M | = |N |, each of them of the size  <, together into one tree.
So the question is: How small universal Scott trees does a given structure have?

If < = � and T�, has a universal family of size µ, then every structure
of size  has a universal Scott tree of size µ.

If we allowed T to have a branch of length , any such tree would be a
universal Scott tree of any structure of cardinality .

We ask whether I wins EF�T (M,N ) rather than in EFT (M,N ) in order
to preserve the analogy with the concept of a Scott tree. A universal Scott tree
T in our sense would give rise to a universal Scott tree �T in the latter sense.
Note that |�T | = |T |<, so this is the order of magnitude of a difference in the
size of universal Scott trees in the two possible definitions.

Proposition 9.98 Suppose < =  and M is a structure with M = . The
following are equivalent:

(1) The orbit of M is �1
1.

Incomplete version for students of easllc2012 only.



9.7 Historical Remarks and References 275

(2) M has a universal Scott tree of cardinality .

Proof Suppose first (2) is true. Then

M 6⇠= N () player I wins EF�T (M,N ).

The existence of a winning strategy of I can be written in ⇧1
1 form since we as-

sume < = . Assume then (1). Let ⇢ be a strategy of player I in EF(M,N )
in which he simply enumerates the universes. Note that this is independent of
N . Let S(N ) be the Scott tree S⇢ of the pair (M,N ). Let us consider the
co-anaytic set B = {fN : N =  and N 6⇠= M}. Let us choose a tree rep-
resentation T of B as in Example 9.96. If now fN 2 BT 0 , then player I wins
EFT 0(M,N ). By the above Souslin–Kleene Theorem, (1) implies the exis-
tence of a tree T 0 such that B = B0

T . Thus for any N with N = , M 6⇠= N
implies that player I wins EFT 0(M,N ). Thus T 0 is a universal Scott tree of
M. Moreover, |T 0| = < = .

The question whether the orbit of M is �1
1 is actually highly connected to

stability-theoretic properties of the first-order theory of M, see Hyttinen and
Tuuri (1991) for more on this.

9.7 Historical Remarks and References

Excellent sources for stronger infinitary languages are the textbook Dickmann
(1975), the handbook chapter Dickmann (1985), and the book chapter Kueker
(1975). The Ehrenfucht-Fraı̈ssé Game for the logics L1� appeared in Benda
(1969) and Calais (1972). Proposition 9.32, Proposition 9.45, and the corollary
of Proposition 9.45 are due to Chang (1968). The concept of Definition 9.40
and its basic properties were isolated independently by Dickmann (1975) and
Kueker (1975). Theorem 9.31 is from Shelah (1990).

Looking at the origins of the transfinite Ehrenfeucht–Fraı̈ssé Game, one can
observe that the game plays a role in Shelah (1990), and is then systematically
studied, first in the framework of back-and-forth sets in Karttunen (1984), and
then explicitly as a game in Hyttinen (1987), Hyttinen (1990), Hyttinen and
Väänänen (1990) and Oikkonen (1990).

The importance of trees in the study of the transfinite Ehrenfeucht–Fraı̈ssé
Game was first recognized in Karttunen (1984) and Hyttinen (1987). The cru-
cial property of trees, or more generally partial orders, is Lemma 9.55 part (ii),
which goes back to Kurepa (1956). A more systematic study of the quasi-
order P  P 0 of partial orders, with applications to games in mind, was
started in Hyttinen and Väänänen (1990), where Lemma 9.57, Definition 9.58,

Incomplete version for students of easllc2012 only.



276 Stronger Infinitary Logics

Lemma 9.59, and Lemma 9.60 originate. The important role of the concept
of persistency (Definition 9.63) gradually emerged and was explicitly isolated
and exploited in Huuskonen (1995). Once it became clear that trees may be
incomparable by , the concept of bottleneck arose quite naturally. Defini-
tion 9.64 is from Todorčević and Väänänen (1999). The relative consistency
of the non-existence of non-trivial bottlenecks (Theorem 9.65) was proved in
Mekler and Väänänen (1993). For more on the structure of trees see Todorčević
and Väänänen (1999) and Džamonja and Väänänen (2004).

The point of studying trees in connection with the transfinite Ehrenfeucht–
Fraı̈ssé Game is that there are two very natural tree structures behind the game.
The first tree that arises from the game is the tree of sequences of moves, as
in Lemma 9.73. This tree originates in Karttunen (1984). The second, and in
a sense more powerful tree is the tree of strategies of a player, as in Defini-
tion 9.69 and the subsequent Proposition 9.71. This idea originates from Hyt-
tinen (1987).

The “transfinite” analogues of Scott ranks are the Scott and Karp trees, in-
troduced in Hyttinen and Väänänen (1990). Because of problems of incom-
parability of some trees, the picture of the “Scott watershed” is much more
complicated than in the case of games of length !, as one can see by compar-
ing Figure 7.4 and Figure 9.7. Proposition 9.85 and Theorem 9.86 are from
Tuuri (1990).

There is a form of infinitary logic the elementary equivalence of which cor-
responds exactly to the existence of a winning strategy for II in EF↵, in the
spirit of the Strategic Balance of Logic. These infinitary logics are called in-
finitely deep languages. Their formulas are like formulas of L� but there are
infinite descending chains of subformulas. Thus, if we think of the syntax of
a formula as a tree, the tree may have transfinite rank. These languages were
introduced in Hintikka and Rantala (1976) and studied in Karttunen (1979),
Rantala (1981), Karttunen (1984), Hyttinen (1990), and Tuuri (1992). See
Väänänen (1995) for a survey on the topic.

There is also a transfinite version of the Model Existence Game, the other leg
of the Strategic Balance of Logic, with applications to undefinability of (gen-
eralized) well-order and Separation Theorems, see Tuuri (1992) and Oikkonen
(1997).

It was recognized already in Shelah (1990) that the roots of the problem of
extending the Scott Isomorphism Theorem to uncountable cardinalities lie in
stability theoretic properties of the models in question. This was made explicit
in the context of transfinite Ehrenfeucht–Fraı̈ssé Games in Hyttinen and Tuuri
(1991). It turns out that there is indeed a close connection between the structure
of Scott and Karp trees of elementary equivalent uncountable models and the
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stability theoretic properties such as superstability, DOP, and OTOP, of the
(common) first-order theory. For more on this, see Hyttinen (1992), Hyttinen
et al. (1993), and Hyttinen and Shelah (1999).

A good testing field for the power of long Ehrenfeucht–Fraı̈ssé Games turned
out to be the area of almost free groups, where it seemed that the applica-
bility of the infinitary languages L� had been exhausted. For results in this
direction, see Mekler and Oikkonen (1993), Eklof et al. (1995), Shelah and
Väisänen (2002), and Väisänen (2003).

An alternative to considering transfinite Ehrenfeucht–Fraı̈ssé Games is to
study isomorphism in a forcing extension. Isomorphism in a forcing extension
is called potential isomorphism. The basic reference is Nadel and Stavi (1978).
See also Huuskonen et al. (2004).

Early on it was recognized that the trees T (S) (see Example 9.61) are very
useful and in some sense fundamental in the area of transfinite Ehrenfeucht–
Fraı̈ssé Games. The question arose, whether there is a largest such tree for
S ✓ !1 bistationary. Quite unexpectedly the existence of a largest such tree
turned out to be consistent relative to the consistency of ZF. The name “Ca-
nary trees” was coined for them, because such a tree would indicate whether
some stationary set was killed. See Mekler and Shelah (1993) and Hyttinen
and Rautila (2001) for results on the Canary tree.

While the Ehrenfeucht–Fraı̈ssé Game of length ! is almost trivially deter-
mined, the Ehrenfeucht–Fraı̈ssé Game of length !1 (and also of length ! + 1)
can be non-determined, see Hyttinen (1992), Mekler et al. (1993), and Hytti-
nen et al. (2002). This has devastating consequences for attempts to use trans-
finite Ehrenfeucht–Fraı̈ssé Games to classify uncountable models. It is a phe-
nomenon closely related to the incomparability of non-well-founded trees by
the relation . This non-determinism is ultimately also the reason why the
simple picture in Figure 7.4 becomes Figure 9.7.

Some of the complexities of uncountable models can be located already on
the topological level, as is revealed by the study of the spaces N. These spaces
were studied under the name of -metric spaces in Sikorski (1950), Juhász and
Weiss (1978), and Todorčević (1981b). Their role as spaces of models, in the
spirit of Vaught (1973), was emphasized in Mekler and Väänänen (1993). For
more on the topology of uncountable models, see Väänänen (1991), Väänänen
(1995), and Shelah and Väänänen (2000). See Väänänen (2008) for an informal
exposition of some basic ideas. Theorem 9.95 is from Shelah and Väänänen
(2000).

Exercise 9.22 is from Nadel and Stavi (1978). Exercises 9.29 and 9.30 are
from Hyttinen (1987). Exercise 9.35 is from Hyttinen and Väänänen (1990).
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Exercise 9.40 is from Kurepa (1956). Exercise 9.41 is from Huuskonen (1995).
Exercise 9.47 is from Todorčević (1981a). Exercise 9.56 is due to Lauri Hella.

Exercises

9.1 Show that player II wins EF@0
! (M,M0) if and only if she has a winning

strategy in EF!(M,M0).
9.2 Show that I wins EFD!1

2 (M,N ) if M = (Q, <) and N = (R, <).
9.3 Show that in Example 9.2 player I has a winning strategy already in

EFD!1
2 (M,M0).

9.4 Show that M 'p N , where M and N are as in Example 9.4.
9.5 Prove the claim of Example 9.5.
9.6 Prove the claim of Example 9.19.
9.7 Give necessary and sufficient conditions for player I to have a winning

strategy in EFD↵(M,M0), when M and M0 are L-structures for a
unary vocabulary L.

9.8 Show that if M = (M,d,R, <R) and M0 = (M 0, d0,R, <R) are separa-
ble metric spaces so that II has a winning strategy in EFD!1

3 (M,M0),
then M is complete if and only if M0 is.

9.9 Prove that any model class which is closed under isomorphisms and has
only models of cardinality  � for some � is definable in L11.

9.10 Fix � and a vocabulary L. Prove that for every ↵ there is only a set of
logically non-equivalent formulas of L1� of the vocabulary L and of
quantifier rank  ↵.

9.11 Prove that '� is an equivalence relation on Str(L) for any vocabulary
L.

9.12 Suppose cf() = ! (i.e.  = supn n, where 0 < 1 < · · ·). Show
that A ' B implies A ⇠= B if |A| = |B| = .

9.13 Suppose {Ai : i 2 I} is a family of L-structures for a relational vocab-
ulary L. Suppose furthermore Ai \ Aj = ; for i 6= j. The disjoint sum
of the family {Ai : i 2 I} is the L-structure:

]
i2I

Ai =

0@[
i2I

Ai,

 [
i2I

RAi

!
R2L

1A .

Show that if {Ai : i 2 I} and {Bi : i 2 I} are families of L-structures
for a relational vocabulary L and for each i

Ai '� Bi,
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then ]
i2I

Ai '�
]
i2I

Bi.

9.14 Suppose {Ai : i 2 I} is a family of L-structures. The direct product of
the family {Ai : i 2 I} is the L-structure

Y

i2I

Ai =

0

@
Y

i2I

Ai,

 
Y

i2I

R

Ai

!

R2L

, (prodi2If
Ai

)f2L, ((c : i 2 I))c2L

1

A

where

(prodi2If
Ai)((a : i 2 I)) = (fAi

i (ai) : i 2 I).

Show that if {Ai : i 2 I} and {Bi : i 2 I} are families of L-structures
and for each i 2 I

Ai '� Bi,

then Y
i2I

Ai '�
Y
i2I

Bi.

9.15 Suppose {Ai : i 2 I} is a family of L-structures in a vocabulary L
containing a distinguished constant symbol 0L. The direct sum

L
i2I Ai

of the family {Ai : i 2 I} is the substructure of
Q

i2I Ai consisting of
(ai : i 2 I) such that ai = 0Ai

L for all but finitely many i 2 I . Show that
if {Ai : i 2 I} and {Bi : i 2 I} are such families and for all i 2 I

Ai '� Bi,

then M
i2I

Ai '�
M
i2I

Bi.

9.16 Suppose M is an L-structure for a relational vocabulary L. Let I ✓ J
be sets of size � �. Show thatM

i2I

M '�
M
i2J

M.

9.17 Consider Z as an abelian group. Show that for any set I:M
i2I

Z 'p

Y
i2I

Z.

9.18 Show that “has a clique of size �” is not definable in L1�.
9.19 Prove Exercise 9.13 for ⌘↵1! .
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9.20 Prove Theorem 9.29.
9.21 Prove Proposition 9.32.
9.22 Let us write M(� � PI)N if there is a forcing notion which does not

add new sets of cardinality < � (such forcing is called < �-distributive)
which forces M and N to be isomorphic. This is a form of “poten-
tial isomorphism”, i.e. isomorphism in a forcing extension. Show that
M(� � PI)N is not a transitive relation among structures and thereby
does not correspond to elementary equivalence relative to any logic.
(Hint: Use the models �(A) of Definition 9.8.)

9.23 Show that if M is �-homogeneous, then for any sequences ~a and ~b of
the same length from M :

(M,~a) ⌘ (M,~b)) (M,~a) 's
� (M,~b).

9.24 Let H↵ be the lexicographically ordered set of sequences s 2 !↵{0, 1}
(i.e. s <H↵ s0 if s(⇠) < s0(⇠) for the least ⇠ such that s(⇠) 6= s0(⇠))
for which there is a � < !↵ such that s(�) = 1 and s(�) = 0 for
�  � < !↵. Show that H↵+1 is an ⌘↵+1-set.

9.25 Show that H↵ is an ⌘↵-set if and only if @↵ is regular.
9.26 Show that any ⌘↵-set for singular @↵ is also an ⌘↵+1-set.
9.27 Prove that if A and B are ⌘↵-sets, then A '@↵ B, and if moreover @↵ is

regular, then A 's
@↵ B.

9.28 Suppose M and M0 are real-closed fields whose underlying orders are
⌘↵ sets. Show that M '@↵ M0 and if moreover @↵ is regular, then
M 's

@↵ M0.
9.29 Suppose S ✓ !1. Show that S contains a cub if and only if I wins

the game EF!+2(�(S),�(;)). (Hint: It is a good idea to consider for a
given strategy the set of ordinals < !1 which are in some appropriate
sense ”closed under the first ! moves of the strategy”.)

9.30 Show that S ✓ !1 is disjoint from a cub if and only if II wins the
game EF!+2(�(S),�(;)). (Hint: It is a good idea to consider for a given
strategy the set of ordinals < !1 which are in some appropriate sense
”closed under the first ! moves of the strategy”.)

9.31 Show that if M 's
@1

N , then II wins the game EF!1(M,N ).
9.32 Show that II wins the game EF!1(M,N ) if and only if M and N

are potentially isomorphic in the following sense: there is a countably
closed5 forcing notion P such that P forces M ⇠= N . (Hint: Note that
the forcing which collapses |M [N | to @1 is countably closed.)

5 I.e. every countable descending chain of conditions has a lower bound.
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9.33 Show that (!1, <) and (R, <) are incomparable by the quasi-order  of
po-sets.

9.34 Prove �P  �P 0 () �0P  P 0.
9.35 Suppose S ✓ !1. Let T (S) be the tree of closed ascending sequences

of elements of S. Choose disjoint bistationary sets S1 and S2. Then
T (S1) 6 T (S2) and T (S2) 6 T (S1) (see Example 9.61).

9.36 Prove the claims of Example 9.54.
9.37 Suppose T is a tree. Show that T has no infinite branches if and only if

there is an ordinal ↵ so that T ⌘ (↵, >).
9.38 Prove that if a po-set P is a union of countably many antichains, it satis-

fies P  (Q, <).
9.39 Show that F@1 and T@1

p are special trees.
9.40 Prove the claim in Example 9.56 that �0Q is special but �Q non-special.
9.41 Show that Tp is the -smallest persistent tree in T.
9.42 Prove that Tp is a strong bottleneck in the class T
9.43 If Ti, i 2 I , is a family of trees, let

L
i2I Ti be the tree which consists

of a union of disjoint copies of Ti, i 2 I , identified at the root. Show thatL
i2I Ti is the supremum of {Ti : i 2 I} in the sense that Ti 

L
i2I Ti

for all i 2 I and if Ti  T for all i 2 I , then
L

i2I Ti  T .
9.44 If Ti, i 2 I , is a family of trees, let

Q
i2I Ti be the product treeY

i2I

Ti = {s : dom(s) = I, 8i 2 I(s(i) 2 Ti)}.

s  s0 () 8i 2 I(s(i) Ti s
0(i)).

Let
N

i2I Ti be the subtree

O
i2I

Ti =

(
s 2

Y
i2I

Ti : 8i 2 I8j 2 I(htTi(s(i)) = htTj (s(j))

)
.

We denote
N

i2{0,1} Ti by T0 ⌦ T1. Prove that
N

i2I Ti is the infimum
of {T 0

i : i 2 I}, that is,
N

i2I Ti  Ti for each i 2 I , and if T  Ti for
all i 2 I , then T 

N
i2I Ti.

9.45 Show that P↵?P 0 in the proof of Theorem 9.65 contains a -closed dense
set. (Hint: Suppose (s, s0) 2 P↵ ? P 0. Thus s : ! {0, 1}, |s| < , and
s forces that s0 is a closed sequence of length <  in A↵. Consider the
sets of (s, s0) for which sup{� : s(�) = 1} = max(s0).)

9.46 Suppose A and B are disjoint stationary subsets of a regular cardinal
. Show that T (A) ⌦ T (B)  Tp . (Hint: Show that II has a winning
strategy in the game G(T (A)⌦ T (B), Tp ).)

9.47 Suppose S ✓ !1. Prove that T (S)  Q if and only if S is non-stationary.
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9.48 Suppose S ✓ !1 is bistationary and T is Aronszajn. Show that T (S) 6
T and T 6 T (S).

9.49 Prove b((Q, <)) = b((R, <)) = !1.
9.50 Prove Lemma 9.67.
9.51 Prove Lemma 9.83.
9.52 Show that if I wins EFTi(A0,A1) for all i 2 I , then II does not win

EFN
i2I Ti

(A0,A1).
9.53 Show that the family of Scott trees of (A0,A1) is closed under suprema.
9.54 Show that the family of Karp trees of (A0,A1) is closed under suprema.
9.55 Suppose P is a Scott po-set of (A0,A1), where Card(A0),Card(A1) 

2@0 . Show that there is a Scott tree of (A0,A1) such that T  P and
Card(T )  2@0 .

9.56 Show that if 2 = 2
+

, then T+,+ has an upper bound in T2,+ .
9.57 Show that every closed set in N is the union of < open sets.
9.58 Show that if cf()!, then the intersection of countably many open sets

in N is again open. Topological spaces with this property are called
�-additive.

9.59 Show N has a basis consisting of clopen sets. Topological spaces with
this property are called zero-dimensional.
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Fraı̈ssé, R. 1955. Sur quelques classifications des relations, basées sur des iso-
morphismes restreints. II. Application aux relations d’ordre, et construction
d’exemples montrant que ces classifications sont distinctes. Publ. Sci. Univ. Alger.
Sér. A., 2, 273–295 (1957). Cited on pages 71 and 125.

Fuhrken, G. 1964. Skolem-type normal forms for first-order languages with a general-
ized quantifier. Fundamenta Mathematicae, 54, 291–302. Cited on page 343.

Gaifman, H. 1964. Concerning measures in first order calculi. Israel Journal for Math-
ematics, 2, 1–18. Cited on page 48.

Gale, David, and Stewart, F. M. 1953. Infinite games with perfect information. Pages
245–266 of: Contributions to the Theory of Games, vol. 2. Annals of Mathematics
Studies, no. 28. Princeton, N. J.: Princeton University Press. Cited on page 28.

Gentzen, G. 1934. Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift, 39, 176–210. Cited on page 125.

Gentzen, G. 1969. The Collected Papers of Gerhard Gentzen. Edited by M. E. Sz-
abo. Studies in Logic and the Foundations of Mathematics. Amsterdam: North-
Holland Publishing Co. Cited on page 125.
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of Mathematical Logic, 11(1), 57–103. Cited on pages 85, 125, and 222.

Kuratowski, K. 1966. Topology. Vol. I. New edition, revised and augmented. Translated
from the French by J. Jaworowski. New York: Academic Press. Cited on page
223.

Kurepa, G. 1956. Ensembles ordonnés et leurs sous-ensembles bien ordonnés. Les
Comptes Rendus de l’Académie des sciences, 242, 2202–2203. Cited on pages
255, 275, and 278.

Lindström, P. 1966. First order predicate logic with generalized quantifiers. Theoria,
32, 186–195. Cited on page 342.

Lindström, P. 1973. A characterization of elementary logic. Pages 189–191 of: Modal-
ity, Morality and Other Problems of Sense and Nonsense. Lund: CWK Gleerup
Bokförlag. Cited on pages 112 and 126.

Lopez-Escobar, E. G. K. 1965. An interpolation theorem for denumerably long formu-
las. Fundamenta Mathematicae, 57, 253–272. Cited on pages 222 and 223.

Lopez-Escobar, E. G. K. 1966a. An addition to: “On defining well-orderings”. Funda-
menta Mathematicae, 59, 299–300. Cited on page 222.

Lopez-Escobar, E. G. K. 1966b. On defining well-orderings. Fundamenta Mathemati-
cae, 59, 13–21. Cited on pages 183 and 222.

Lorenzen, P. 1961. Ein dialogisches Konstruktivitätskriterium. Pages 193–200 of: In-
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Todorčević, S. 1981b. Trees, subtrees and order types. Annals of Mathematical Logic,
20(3), 233–268. Cited on page 277.
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A⇥B, 4
A

<� , 9
A

<! , 60
A

� , 9
A0 ⇥ . . .⇥An�1, 4
[A]n, 5
|A|, 9
{a↵ : ↵ < �}, 9
@1-like, 231
i↵, 167
cf , 10
�1

1, see set
EC, 111
EF

!(M,M0), 229
EF�(A0,A1), 250
EF!(M,M0), 67
EFn(G,G0), 40
EFn(M,M0), 67
EFQ

n (M,M0), 296
EFP (A0,A1), 258
EFD

↵, 230
;, 4
⌘↵-set, 246
9, 285
9�

1
2 , 286

9�r , 287
9most, 287
9<! , 285
9�! , 285
�(A), 232
FO, 79
8, 285
G(A), 24
G!(A,W ), 25
Gn(A,W ), 17, 20
idA, 3
-branch, 271
�-Scott height, 240
�-Scott watershed, 240

�-back-and-forth sequence, see back-and-forth
sequence

�-back-and-forth set, see back-and-forth set
�-homogeneous, see structure
�-saturated, see structure
L1V , 217
L1�, 233
L1! , 157
L�, 234
L!! , 169
L!1V , 218
L!1! , 169
MQ, 292
MEG(T, L), 98
MEG(', L), 180
MEGQ(T, L), 317
MEGQ

cf(T, L), 336
M⇥M0, 152
N, 3
!, 9
!1, 9
PC, 111
PC-class, 111
PC(L!1!), 212
PC(L!1!)-class, 212
Part(M,M0), 63
Part(A,B), 229
⇧1

1, see set
�Q, 287
Q�, 288
Q

�f , 295
Q

cf
>! , 334

Q

even, 286
Q

cf
! , 333

QLO, 333
Q, 3
R, 3
�-additive, 282
�-ideal, 130
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⌃1
1, see set

Str(L), 54
!-saturated, see structure
absolute, see formula
all-but finite, see generalized quantifier
almost all, 176
almost free groups, 277
analytic, see set
anti-isolated, 36
anti-symmetric, see relation
antichain, 61, 290
Aronszajn tree, see tree
assignment, 35, 80
at-least-one-half, see generalized quantifier
atom, see generalized quantifier
atomic, see formula
atomless, see Boolean algebra
automorphism, 55
axiom

KA, 328
Keisler’s axiom, 328
SA, 335
Shelah’s axiom, 335

Axiom of Choice, 5
Axiom of Determinacy, 28
back-and-forth sequence, 69, 146

�-back-and-forth sequence, 238
back-and-forth set, 64, 275

�-back-and-forth set, 237
strong �-back-and-forth set, 245

basic, see formula
basis, see generalized quantifier
Beth Definability Theorem, 109
BI-PLU, see generalized quantifier
bijection closed, see generalized quantifier
bijective, see game
binary, see vocabulary
bistationary, see set
Boolean algebra

atomless, 76
Borel, see set
bottleneck, 257
bounded, see generalized quantifier
branch, see tree
Canary tree, see tree
canonical Karp tree, see tree
Cantor Normal Form, 13
Cantor ternary set, 33
cardinal, see number
cardinality, 9
Cartesian product, 4
categorical, 248
CH, 10
chain, see graph, see tree
chess, see game
clique, see graph

closed, see set
closed class, 223
co-analytic, see set
CO-PLU, see generalized quantifier
cofinal, 333
cofinality, 10, 225, 333
cofinality model, 333
cofinality quantifier, see generalized quantifier
Compactness Theorem, 102, 116, 123, 322,

332, 342
complement, see generalized quantifier
Completeness Theorem, 331, 341
component, 61

cycle component, 61
standard component, 61

composition, 3
confirmer, 93
connected, see graph
consistent, 103
constituent, 56
context

countable, 286
finite, 286

Continuum Hypothesis, 10
corresponding vertex, 40
countable, see set
countable context, see context
countable ordinal, see number
countable-like, see formula
countably complete, see filter
countably incomplete, see filter
counting quantifier, see generalized quantifier
cover, 225
covering theorem, 272
Craig Interpolation Theorem, 107, 209, 214,

226
cub, see set
Cub Game, see game
cycle, 50, see graph
cycle component, see component

definable, 50, 83, 199, 310
degree, 36
dense, see linear order, see set
dependence logic, 205
descriptive set theory, 209
determined, see game, see Scott po-set
diagonal intersection, 88
diagonal union, 89
diagram, 134
direct product, 75
discrete, 69
disjoint sum, 75, 278
distance, 43
distributive, 280
Distributive Normal Form, 52
doubter, 93
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Downward Löwenheim–Skolem Theorem,
114

dual, see generalized quantifier
duality, 288
Dynamic, see game
EC class, 111
edge, see graph
Ehrenfeucht–Fraı̈ssé Game, see game
elementary chain, 325
elementary equivalent, 325
elementary extension, 324
elementary submodel, 324
empty sequence, 4
enumeration strategy, 100
equipollent, 5
equivalence relation, see relation
even-cardinality, see generalized quantifier
eventually counting, see generalized quantifier
existential formula, see formula
existential quantifier, see generalized

quantifier
Existential Semantic Game, see game
expansion, see structure
explicitly definable, 109
expressible, 50
extension axiom, 50
fan, see tree
FIL, see generalized quantifier
filter, 59, 177

countably complete, 177
countably incomplete, 124
generator, 59
normal, 130
principal, 59
regular, 238
ultrafilter, 59, 130

finite, see set
finite context, see context
finite sequence, 3
finitely consistent, 102
first-order, see logic
first-order axiomatization, 205
first-order language, 79
Fodor’s Lemma, 130, 131
forcing, 75, 257, 273, 277, 280
formula

absolute, 76
atomic, 35
basic, 79
countable like, 327
existential, 132
Henkin formula, 204, 206
positive formula, 133
quantifier free, 80, 309
relativization, 110
sentence, 80

Souslin-formula, 210
true, 80
universal-existential, 133

fully compact, 342
Gale–Stewart Theorem, 27
game, 16

bijective, 350
chess, 20
clopen, 26
closed, 26
Cub, 85
determined, 23, 277
Dynamic, 145, 258
dynamic, 230
Ehrenfeucht–Fraı̈ssé, 40, 67, 229, 250, 258,

275–277, 296
Existential Semantic, 132
Model Existence, 98, 180, 276, 336
Monotone Model Existence, 317
Nim, 14
non-determined, 23
open, 26
Pebble, 50
perfect information, 14
play, 20, 25
position, 21, 26, 66
Positive Semantic, 133
Semantic, 36, 94, 160
Transfinite Dynamic, 258
Universal-Existential Semantic, 132
zero-sum, 14

game logic, see logic
game quantifier, see generalized quantifier
GCH, 270
generalized Baire space, 270
Generalized Continuum Hypothesis, 270
generalized quantifier, 291

all-but finite, 288
at-least-one-half, 286
atom, 290
basis of, 289
BI-PLU, 317
bi-plural, 317
bijection closed, 291
bounded, 295
CO-PLU, 317
co-plural, 317
cofinality, 333, 343
complement, 288
counting, 285
dual, 288
even-cardinality, 286
eventually counting, 295
existential, 285
FIL, 315
finiteness, 285
game, 201
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Härtig, 351
Henkin, 204
IDE, 315
infinite failure, 289
infinity, 285
MON, 314
monotone, 289
most, 287
NON-TRI, 317
non-trivial, 317
permutation closed, 291
PLU, 317
plural, 317
postcomplement, 288
self-dual, 294
smooth, 343, 345
unbounded, 295
universal, 285
weak, 284

generalized quantifier logic, see logic
generated, see structure
generator, see filter
graph, 35

chain, 43
clique, 50
connected, 43
cycle, 126
edge, 35
vertex, 35

Härtig quantifier, see generalized quantifier
Hamiltonian, 50
height, 59
Henkin formula, see formula
Henkin quantifier, see generalized quantifier
Hintikka set, 98, 319
homomorphism, 133
IDE, see generalized quantifier
ideal, 4
identity function, 3
immediate predecessor, 58
immediate successor, 58
implicitly definable, 109
infinitary logic, see logic
infinite, see set
infinite failure, see generalized quantifier
infinite quantifier logic, see logic
Infinite Survival Lemma, 27
infinitely deep language, 276
infinity quantifier, see generalized quantifier
inverse, see linear order
involution, 205
isomorphic, 55, 324
isomorphism, 55
KA, see axiom
Karp po-set, 261
Karp tree, see tree

Keisler’s axiom, see axiom
Kripke–Platek, 76
lattice, 58
length, 4
level, 59
lexicographic order, see linear order
limit cardinal, see number
limit ordinal, see number
Lindström’s Theorem, 112, 126
linear order, 57

dense, 57
inverse, 154
lexicographic, 280
sum, 58
well-order, 57

LO, 333
Loś Lemma, 122
logic

first-order, 79
game logic, 201
generalized quantifier, 307
infinitary, 139
infinite quantifier, 228

Luzin Separation Theorem, 273
Lyndon Interpolation, 136
metric space, 75
model, 54, see also structure

non-standard, 103, 106
standard, 103

Model Existence Game, see game
Model Existence Theorem, 101, 115, 181,

318, 336
MON, see generalized quantifier
monadic structure, see structure
Monotone Model Existence Game, see game
monotone quantifier, see generalized quantifier
most, see generalized quantifier
natural number, see number
negation normal form, 91
negative occurrence, 136
Nim, see game
NLE, 334
NNF, 91
non-decreasing, 345
non-determined, see game
non-standard, see model
NON-TRI, see generalized quantifier
normal, 130, see filter
number

cardinal, 9
limit cardinal, 10
limit ordinal, 9
successor cardinal, 10
successor ordinal, 9
cardinal number, 9
countable ordinal, 9
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natural number, 3
ordinal, 8
rational number, 3
real number, 3
regular cardinal, 10
singular cardinal, 10
uncountable ordinal, 9

number of variables, 37
number triangle, 292
omits, 104
Omitting Types Theorem, 104, 118, 323
orbit, 274
ordered, 57
ordinal, see number, 58
ordinal addition, 12
ordinal exponentiation, 13
ordinal multiplication, 12
partial isomorphism, 63
partially isomorphic, 64
partially ordered, see set
path, 49
Pebble Game, see game
perfect, see set
perfect information , see game
permutation closed, see generalized quantifier
persistent, see tree
play, see game
PLU, see generalized quantifier
position, see game
positive formula, see formula
positive occurrence, 136
Positive Semantic Game, see game
postcomplement, see generalized quantifier
potential isomorphism, 75, 277, 280
power set, see set
precise extension, 330, 341
predecessor, 58
principal, see filter, 104
product, 152
quantifier free, see formula
quantifier rank, 37, 80, 309
rank, 60
rational number, see number
real number, see number
realizes, 104
recursively saturated, see structure
reduced product, see structure
reduct, see structure
reflexive, see relation
regular, see number, see filter
relation

anti-symmetric, 58
equivalence relation, 56
reflexive, 56, 58
symmetric, 56
transitive, 56, 58

relational, see structure
relativization, see formula, see structure
root, see tree
SA, see axiom
scattered, 152
Scott height, 149
Scott Isomorphism Theorem, 167, 276
Scott po-set, 262

determined, 262
Scott sentence, 166
Scott spectrum, 151
Scott tree, see tree
Scott watershed, 147, 276
self-dual, see generalized quantifier
Semantic Game, see game
semantic proof, 102
sentence, see formula
Separation Theorem, 111, 183, 276
set

�1
1, 271

⇧1
1, 271

⌃1
1, 271

analytic, 271
bistationary, 130, 277
Borel, 273
closed, 90, 130
co-analytic, 271
countable, 6
cub, 90, 131
dense, 270
finite, 4
infinite, 4
partially ordered, 58
perfect, 34
power set, 3
stationary, 91, 131
transitive, 177
unbounded, 90, 130
uncountable, 6

Shelah’s axiom, see axiom
singular, see number
Skolem expansion, 114
Skolem function, 113
Skolem Hull, 114
Skolem Normal Form, 207
smooth, see generalized quantifier
Souslin–Kleene Theorem, 272
Souslin-formula, see formula
special, see tree
stability theory, 242, 275–277
standard component, see component
standard model, see model
stationary, see set
stationary logic, 343
Strategic Balance of Logic, 1, 2, 14, 79, 81,

101, 163, 180, 238, 276, 309
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strategy
in a position, 22
of player I, 21, 25, 251
of player II, 21, 26, 251
used, 21, 25, 26
used after a position, 22
winning, 15, 21, 26, 66, 251
winning in a position, 22

strong �-back-and-forth set, see
back-and-forth set

strong bottleneck, 257
structure, 54

�-homogeneous, 246
�-saturated, 247
!-saturated, 129
expansion, 110
generated, 63
monadic, 55
recursively saturated, 203
reduced product, 122
reduct, 110
relational, 54
relativization, 110
substructure, 62
ultraproduct, 122
unary, 55
vector space, 174, 185, 231

subformula property, 107
substructure, see structure
successor, 58
successor cardinal, see number
successor ordinal, see number
successor structure, 61
successor type, 60
sum, see linear order
Survival Lemma, 22
symmetric, see relation
Tarski–Vaught criterion, 113
threshold function, 294
Transfinite Dynamic, see game
transitive, see relation, see set
tree, 59, 271, 275

Aronszajn, 61
Canary, 277
universal Scott, 274
branch, 60
canonical Karp, 260
chain, 60
fan, 257
Karp, 261, 276
persistent, 257, 276
root, 59
Scott, 262, 276
special, 61
well-founded, 60

tree represenation, 271
true, see formula

type, 104
ultrafilter, see filter
ultraproduct, see structure
unary, see vocabulary, see structure
unbounded, see set, see generalized quantifier
uncountable, see set
uncountable ordinal, see number
Union Lemma, 325, 338
union of a chain, 325, 338
universal, 273
universal quantifier, see generalized quantifier
universal Scott tree, see tree
universal-existential formula, see formula
Universal-Existential Semantic Game, see

game
Upward Löwenheim–Skolem Theorem, 117
Vaught’s Conjecture, 151
vector space, see structure
vertex, see graph
vocabulary, 54

binary, 54
unary, 54

Weak Compactness Theorem, 338
Weak Omitting Types Theorem, 338
weak quantifier, see generalized quantifier
well-founded, see tree
well-order, see linear order
win, 20, 21, 25, 26, 251
winning strategy, see strategy
Zermelo–Fraenkel axioms, 10
zero-dimensional, 282
zero-sum, see game
Zorn’s Lemma, 12
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