

A possible new focus in logic

- Traditional logic is about truth values of sentences:
 - Valid, contingent, independent, possible, necessay, known, publicly announced, believed, etc.
- A possible new focus is on values of variables:
 - Constant value, non-constant value, functionally dependent value, independent from another, publicly announced value, believed value, etc.

A tool for focusing on values of variables

- Team = a set of assignments.
- Multiplicity.
- Collective action.
- Parallel action.
- Co-operation.

Team semantics

- Teams accomplish tasks by
 - Every member doing the same.
 - Dividing into subteams (skills).
 - Supplementing a new feature, (a skill).
 - Duplicating along a feature, (gender).
- Teams manifest dependence by e.g.
 - Having rank determine salary.
- Independence, e.g.
 - Having salary independent of gender.
 - Having time of descent independent of weight.

Case study of the new focus in logic

- Dependence logic
- *Dependence logic*, Cambridge University Press 2007.
- See Wikipedia entry on "dependence logic".

Basic concept: dependence atom

=(x,y,z)

"z depends at most on x and y"

" x and y determine z"

"To know z, it suffices to know x and y"

$$=(x_0,...,x_n,z)$$

Dependence atoms =(x,y,z)

+

First order logic

=

Dependence logic

Teams

- A team is just a set of assignments for a model.
- Special cases:
 - Empty team \emptyset .
 - Database with no rows.
 - The team $\{\emptyset\}$ with the empty assignment.
 - Database with no columns, and hence with at most one row.

Dependence logic **D**

$$t=t'$$
, $Rt_1...t_n$

$$=(t_1,...,t_n)$$

$$\varphi \vee \psi, \neg \varphi, \exists x_n \varphi$$

A team satisfies an identity t=t' if every team member satisfies it.

	\mathbf{x}_{0}	X ₁	X ₂
S ₀	0	0	0
S ₁	0	1	1
S ₂	2	5	5

$$\mathfrak{M} \vDash_X t_1 = t_2 \quad \text{iff} \quad \forall s \in X(t_1^{\mathfrak{M}} \langle s \rangle = t_2^{\mathfrak{M}} \langle s \rangle)$$
$$\mathfrak{M} \vDash_X t_1 \neq t_2 \quad \text{iff} \quad \forall s \in X(t_1^{\mathfrak{M}} \langle s \rangle \neq t_2^{\mathfrak{M}} \langle s \rangle)$$

A team satisfies a relation Rt₁...t_n if every team member does.

A team satisfies a relation $\neg Rt_1...t_n$ if every team member does.

	X ₀	X ₁	X ₂
S ₀	0	0	0
S ₁	0	1	1
S ₂	2	5	5

 A team X satisfies =(x,y,z) if in any two assignments in X, in which x and y have the same values, also z has the same value.

• A team X satisfies $\neg=(x,y,z)$ if it is empty.

	X	у	u	Z
S ₀	0	0	1	0
S ₁	0	1	0	2
S ₂	2	5	0	5
S ₃	0	1	1	2

$$\mathfrak{M} \vDash_X = (t_1, \dots, t_n)$$

$$\forall s, s' \in X(t_1^{\mathfrak{M}}\langle s \rangle \neq t_1^{\mathfrak{M}}\langle s' \rangle \text{ or }$$

$$\dots \text{ or } t_{n-1}^{\mathfrak{M}}\langle s \rangle \neq t_{n-1}^{\mathfrak{M}}\langle s' \rangle \text{ or } t_n^{\mathfrak{M}}\langle s \rangle = t_n^{\mathfrak{M}}\langle s' \rangle)$$

An extreme case

record	A1	A2	A 3	A4	A 5	A 6
100000	8	6	7	3	0	6
100002	7	5	6	3	0	6
100003	4	8	7	3	0	6
100004	6	5	4	3	0	6
100005	6	12	65	3	0	6
100006	5	56	9	3	0	6
100007	6	23	0	4	0	8
408261	77	2	11	1	0	2

$$\mathfrak{M} \vDash_X \phi \lor \psi$$

there are X_0 and X_1 such that $\mathfrak{M} \vDash_{X_0} \phi$, $\mathfrak{M} \vDash_{X_1} \psi$, and $X \subseteq X_0 \cup X_1$

A team of Chinese or Japanese speakers:

Shorthands

$$\phi \wedge \psi \qquad \neg(\neg \phi \vee \neg \psi)$$

$$(\phi \to \psi) \qquad (\neg \phi \vee \psi)$$

$$(\phi \leftrightarrow \psi) \qquad ((\phi \to \psi) \wedge (\psi \to \phi))$$

$$\forall x_n \phi \qquad \neg \exists x_n \neg \phi$$

$$\mathfrak{M} \vDash_X \phi \wedge \psi$$

 $\mathfrak{M} \vDash_X \phi \land \psi \mid both \quad \mathfrak{M} \vDash_X \phi \quad and \quad \mathfrak{M} \vDash_X \psi$

 $\mathfrak{M} \vDash_X \exists x \phi$

there is Y such that $\mathfrak{M} \vDash_Y \phi$ and for every $s \in X$ we have $s[a \mid x] \in Y$ for some $a \in M$

Team X can be supplemented with values for x so that ϕ becomes true

_	u	X	W
X	Finnish Swedish Norwegian		driver author skier
Y	Finnish Swedish Norwegian	male female female	driver author skier

 $\mathfrak{M} \vDash_X \forall x \phi$

there is Y such that $\mathfrak{M} \vDash_Y \phi$ and for every $s \in X$ we have $s[a \mid x] \in Y$ for every $a \in M$

Team X can be duplicated along x, by giving x all possible values, so that φ becomes true

_	u	X	W
X	Finnish Swedish Norwegian		driver author skier
Y	Finnish Finnish Swedish Swedish Norwegian Norwegian	male female male female male female	driver driver author author skier skier

Logical consequence and equivalence

ψ follows logically from ϕ

$$\phi \Rightarrow \psi$$

$$\mathcal{M} \models_X \phi$$
 implies $\mathcal{M} \models_X \psi$

ψ is logically equivalent with ϕ

$$\phi \equiv \psi$$
, if $\phi \Rightarrow \psi$ and $\psi \Rightarrow \phi$

Armstrong's rules

```
Always =(x,x)
If =(x,y,z), then =(y,x,z).
If =(x,x,y), then =(x,y).
If =(x,z), then =(x,y,z).
If =(x,y) and =(y,z), then =(x,z).
```

Propositional rules

From $\varphi \wedge \psi$ follows $\psi \wedge \varphi$. Commutative From $\varphi \vee \psi$ follows $\psi \vee \varphi$. From $\varphi \wedge (\psi \wedge \theta)$ follows $(\varphi \wedge \psi) \wedge \theta$. **Associative** From $\varphi \vee (\psi \vee \theta)$ follows $(\varphi \vee \psi) \vee \theta$. From $(\varphi \vee \eta) \wedge (\psi \vee \theta)$ follows $(\varphi \wedge \psi) \vee (\varphi \wedge \theta) \vee (\eta \wedge \psi) \vee (\eta \wedge \theta)$. From $(\varphi \wedge \eta) \vee (\psi \wedge \theta)$ follows $(\varphi \vee \psi) \wedge (\varphi \vee \theta) \wedge (\eta \vee \psi) \wedge (\eta \vee \theta)$. From φ and ψ follows $\varphi \wedge \psi$. "Almost" distributive From $\varphi \wedge \psi$ follows φ . From φ follows $\varphi \vee \psi$.

Incorrect rules

No absortion

- From φνφ follows φ. wrong!
- From $(\phi \wedge \psi) \vee (\phi \wedge \theta)$ follows $\phi \wedge (\psi \vee \theta)$. Wrong!
- From $(\phi \lor \psi) \land (\phi \lor \theta)$ follows $\phi \lor (\psi \land \theta)$. Wrong!

Non-distributive

Example

• If $\varphi \rightarrow \psi$ is valid then φ logically implies ψ .

Example

• If $\varphi \rightarrow \psi$ is valid then φ logically implies ψ .

Example

• If $\varphi \rightarrow \psi$ is valid then φ logically implies ψ .

Quantifier rules

- From $\forall x \varphi \wedge \forall x \psi$ follows $\forall x (\varphi \wedge \psi)$, and vice versa.
- From $\exists x \varphi \lor \exists x \psi$ follows $\exists x (\varphi \lor \psi)$, and vice versa.
- From $\varphi \vee \forall x \psi$ follows $\forall x (\varphi \vee \psi)$, and vice versa, provided that x is not free in φ .
- From $\phi \wedge \exists x \psi$ follows $\exists x (\phi \wedge \psi)$, and vice versa, provided that x is not free in ϕ .
- From $\forall x \forall y \varphi$ follows $\forall y \forall x \varphi$.
- From $\exists x \exists y \varphi$ follows $\exists y \exists x \varphi$.
- From φ follows $\exists x \varphi$.
- From $\forall x \varphi$ follows φ .

Universal generalization

If $\phi \rightarrow \psi$ is valid and x is not free in ϕ , then $\phi \rightarrow \forall x \psi$ is valid.

Proof

• If $\varphi \rightarrow \psi$ is valid and x is not free in φ then $\varphi \rightarrow \forall x \psi$ is valid.

Proof

• If $\varphi \rightarrow \psi$ is valid and x is not free in φ then $\varphi \rightarrow \forall x \psi$ is valid.

A special axiom schema

Comprehension Axioms:

$$\forall x(\phi \lor \neg \phi),$$

if ϕ contains no dependence atoms.

Conservative over FO

Corollary 22 Let ϕ be a first order L-formula of dependence logic. Then:

- 1. $\mathcal{M} \models_{\{s\}} \phi \text{ if and only if } \mathcal{M} \models_s \phi.$
- 2. $\mathcal{M} \models_X \phi \text{ if and only if } \mathcal{M} \models_s \phi \text{ for all } s \in X.$

Examples

Example: even cardinality

$$\land \land \land \land \land \land \land \land \land$$

$$\forall x_0 \exists x_1 \forall x_2 \exists x_3 (=(x_2, x_3) \land \neg (x_0 = x_1)$$

 $\land (x_0 = x_2 \to x_1 = x_3)$
 $\land (x_1 = x_2 \to x_3 = x_0))$

Example: infinity

$$\exists x_4 \forall x_0 \exists x_1 \forall x_2 \exists x_3 (=(x_2, x_3) \land \neg (x_1 = x_4) \\ \land (x_0 = x_2 \leftrightarrow x_1 = x_3))$$

"There is a bijection to a proper subset."

Game theoretical semantics

Semantic game of D

Beginning of the game

As for first order logic

 (φ, s)

Conjunction move: "other"

Disjunction move: "self"

As for first order logic

 $(\phi v \psi, s)$

 $(\phi v \psi, s)$

(ψ,s)

 (φ,s)

Negation move

As for first order logic

$$(\neg \varphi,s)$$
 (φ,s)

$$(\varphi,s)$$
 $(\neg \varphi,s)$

Existential quantifier move: "me"

As for first order logic

 $(2, \varphi x E)$

 $(3x\varphi,s)$

Universal quantifier move: "other"

Non-dependence atomic formula

As for first order logic

Dependence atom

New!

(φ,s)

(φ,s)

Uniform strategy

- A strategy of II is uniform if whenever the game ends in $(=(t_1,...,t_n),s)$ with the same $=(t_1,...,t_n)$ and the same values of $t_1,...,t_{n-1}$, then also the value of t_n is the same.
- Imperfect information game!

Game theoretical semantics of D

 ϕ is true in $\boldsymbol{\mathcal{A}}$ if and only if II has a uniform winning strategy

The power-strategy

- Winning strategy of II: keep holding an auxiliary team X and make sure that if you hold a pair (φ,s) , then $s \in X$ and X is of type φ , and if he holds (φ,s) , then $s \in X$ and X is of type $\neg \varphi$.
- This is uniform: Suppose game is played twice and it ends first in $(=(t_1,...,t_n),s)$ and then in $(=(t_1,...,t_n),s')$. In both cases II held a team. W.l.o.g. the team is both times the same team X. Now $s,s' \in X$ and X is of type $=(t_1,...,t_n)$. So if the values of $t_1,...,t_{n-1}$ are the same, then also the value of t_n is the same.

The right team from winning

- Suppose II has a uniform winning strategy τ starting from (φ,\emptyset) .
- Idea: Let X_{ψ} be the set of assignments s such that (ψ,s) is a position in the game, II playing τ .
- By induction on ψ : If II holds (ψ ,s), then X_{ψ} is of type ψ . If I holds (ψ ,s), then X_{ψ} is of type $\neg \psi$.

Model theory of dependence logic

Basic reduction:

New predicate Σ_1^1 -sentence $\tau_{d,\phi}(S)$

Equivalent

1.
$$(\phi, X, d) \in \mathcal{T}$$

1.
$$(\phi, X, d) \in \mathcal{T}$$

2. $(\mathcal{M}, X) \models \tau_{d,\phi}(S)$

Team becomes predicate

$$\varphi$$
 is $=(t_1(x_{i_1},...,x_{i_n}),...,t_m(x_{i_1},...,x_{i_n}))$

$$\begin{array}{cccc}
 & \tau_{1,\phi}(S) & = \\
\forall x_{i_1} ... \forall x_{i_n} \forall x_{i_{n+1}} ... \forall x_{i_{n+n}} ((Sx_{i_1} ... x_{i_n} \land Sx_{i_{n+1}} ... x_{i_{n+n}} \land \\
 & t_1(x_{i_1}, ..., x_{i_n}) = t_1(x_{i_{n+1}}, ..., x_{i_{n+n}}) \land \\
 & ... \\
 & t_{m-1}(x_{i_1}, ..., x_{i_n}) = t_{m-1}(x_{i_{n+1}}, ..., x_{i_{n+n}})) \\
 & \rightarrow t_m(x_{i_1}, ..., x_{i_n}) = t_m(x_{i_{n+1}}, ..., x_{i_{n+n}}))
\end{array}$$

$$\tau_{0,\phi}(S) =$$

$$\forall x_{i_1} ... \forall x_{i_n} \neg S x_{i_1} ... x_{i_n}$$

$$\varphi$$
 is $(\psi(x_{j_1},...,x_{j_p}) \vee \theta(x_{k_1},...,x_{k_q}))$

$$\tau_{1,\phi}(S) =$$

$$\exists R \exists T (\tau_{1,\psi}(R) \land \tau_{1,\theta}(T) \land \forall x_{i_1} ... \forall x_{i_n} (S x_{i_1} ... x_{i_n} \rightarrow (R x_{j_1} ... x_{j_p} \lor T x_{k_1} ... x_{k_q})))$$

$$\tau_{0,\phi}(S) =$$

$$\exists R \exists T (\tau_{0,\psi}(R) \land \tau_{0,\theta}(T) \land \forall x_{i_1} ... \forall x_{i_n} (S x_{i_1} ... x_{i_n} \rightarrow (R x_{j_1} ... x_{j_p} \land T x_{k_1} ... x_{k_q})))$$

Negation

 ϕ is $\neg \psi$. $\tau_{d,\phi}(S)$ is the formula $\tau_{1-d,\psi}(S)$.

Existential quantifier

Suppose $\phi(x_{i_1}, ..., x_{i_n})$ is the formula $\exists x_{i_{n+1}} \psi(x_{i_1}, ..., x_{i_{n+1}})$. $\tau_{1,\phi}(S)$ is the formula

$$\exists R(\tau_{1,\psi}(R) \land \forall x_{i_1} ... \forall x_{i_n} (Sx_{i_1} ... x_{i_n} \rightarrow \exists x_{i_{n+1}} Rx_{i_1} ... x_{i_{n+1}}))$$

and $\tau_{0,\phi}(S)$ is the formula

$$\exists R(\tau_{0,\psi}(R) \land \forall x_{i_1} ... \forall x_{i_n} (Sx_{i_1} ... x_{i_n} \rightarrow \forall x_{i_{n+1}} Rx_{i_1} ... x_{i_{n+1}})).$$

Corollary

 $\mathcal{M} \models \phi \ \textit{if and only if} \ \mathcal{M} \models \tau_{1,\phi}.$ Both are ESO! $\mathcal{M} \models \neg \phi \ \textit{if and only if} \ \mathcal{M} \models \tau_{0,\phi}.$

Theorem 58 (Compactness Theorem of \mathcal{D}) Suppose Γ is an arbitrary set of sentences of dependence logic such that every finite subset of Γ has a model. Then Γ itself has a model.

In countable vocabulary

Theorem 59 (Löwenheim-Skolem Theorem of \mathcal{D}) Suppose ϕ is a sentence of dependence logic such that ϕ either has an infinite model or has arbitrarily large finite models. Then ϕ has models of all infinite cardinalities, in particular, ϕ has a countable model and an uncountable model.

Theorem 61 (Separation Theorem) Suppose ϕ and ψ are sentences of dependence logic such that ϕ and ψ have no models in common. Let the vocabulary of ϕ be L and the vocabulary of ψ be L'. Then there is a sentence θ of \mathcal{D} in the vocabulary $L \cap L'$ such that every model of ϕ is a model of θ , but θ and ψ have no models in common. In fact, θ can be chosen to be first order.

Theorem 62 (Failure of the Law of Excluded Middle) Suppose ϕ and ψ are sentences of dependence logic such that for all models \mathcal{M} we have $\mathcal{M} \models \phi$ if and only if $\mathcal{M} \not\models \psi$. Then ϕ is logically equivalent to a first order sentence θ such that ψ is logically equivalent to $\neg \theta$.

Non-determinacy

Definition 63 A sentence ϕ of dependence logic is called determined in \mathcal{M} if $\mathcal{M} \models \phi$ or $\mathcal{M} \models \neg \phi$. Otherwise ϕ is called non-determined in \mathcal{M} . We say that ϕ is determined if ϕ is determined in every structure.

Corollary 64 Every determined sentence of dependence logic is strongly logically equivalent to a first order sentence.

Skolem Normal Form

Theorem 66 (Skolem Normal Form Theorem) Every Σ_1^1 formula ϕ is logically equivalent to an existential second order formula

$$\exists f_1 \dots \exists f_n \forall x_1 \dots \forall x_m \psi, \tag{4.1}$$

where ψ is quantifier free and f_1, \ldots, f_n are function symbols. The formula (4.1) is called a Skolem Normal Form of ϕ .

From ESO to D

Theorem 68 ([4],[30]) For every Σ_1^1 -sentence ϕ there is a sentence ϕ^* in dependence logic such that for all \mathcal{M} : $\mathcal{M} \models \phi \iff \mathcal{M} \models \phi^*$.

Sketch of proof

$$\exists f \forall x \forall y \phi(x, y, f(x, y), f(y, x))$$

$$\forall x \forall y \exists z \forall x' \forall y' \exists z' (=(x', y', z') \land ((x = x' \land y = y') \rightarrow z = z') \land ((x = y' \land x' = y) \rightarrow \phi(x, y, z, z'))$$

Current developments

- Also independence atoms.
- See Doctoral Thesis of Pietro Galliani: <u>www.illc.uva.nl/Research/Dissertations/DS-2012-07.text.pdf</u>
- See paper by Kontinen-Väänänen: http://arxiv.org/abs/1208.0176
- See paper by Grädel-Väänänen: http://logic.helsinki.fi/people/ jouko.vaananen/graedel vaananen.pdf