

Questions we can address

- Does φ have a model?
- Does T have a model in which φ holds?
- Is φ true in every model of T?
- Is φ true in every model?

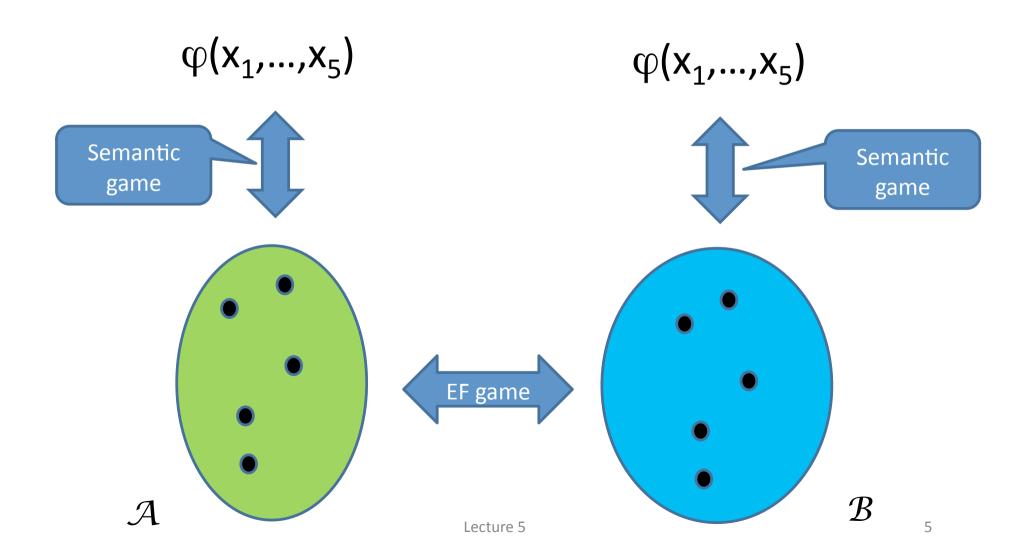
Model Existence Game

- MEG(T,L), where T is an L-theory.
- Player I (``Max") claims T has no models, rather it is contradictory.
- Player II (``Susan") claims T has a model, and she knows one (but she can bluff).
- Player II tries to play only sentences supposedly true in the supposed model.
- Player I tries to challenge this.

Lecture 5

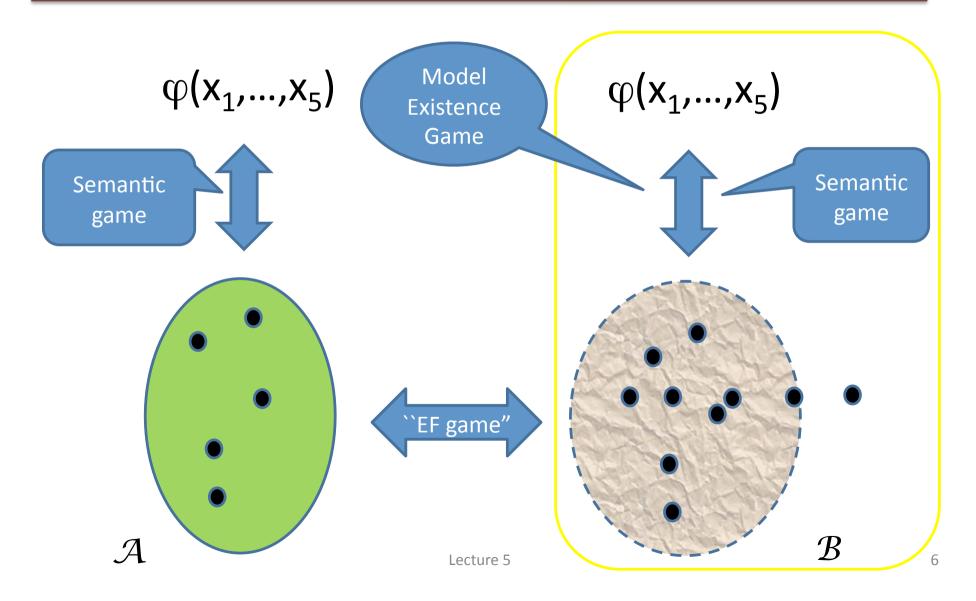
Asynchronous parallel games

(Strategic Balance of Logic)



Model existence game

(Strategic Balance of Logic)

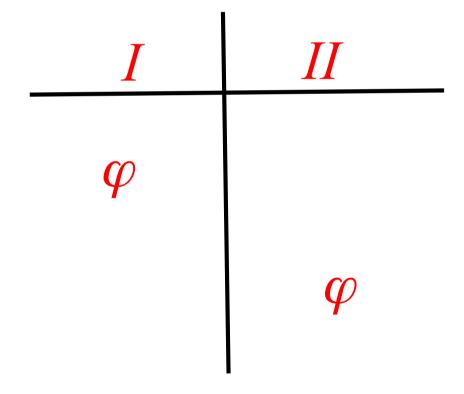


Rules of the game

- C = a new countably infinite set of constants ("elements of the model that II knows")
- The moves are L∪C-sentences in NNF
 - Negation Normal Form
 - ^ ^ J
 - negation only in front of atomic sentences

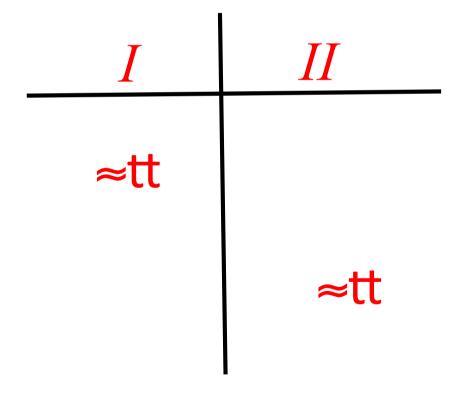
Theory move

- I plays some $\phi \in T$.
- Il accepts.



Equation move

- I plays some ≈tt.
- Il accepts.

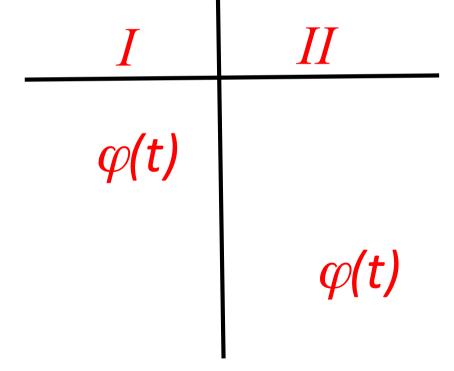


Lecture 5

Substitution move

 I picks ≈ct and φ(c), previously played by II, and plays φ(t).

• Il accepts.



Conjunction move

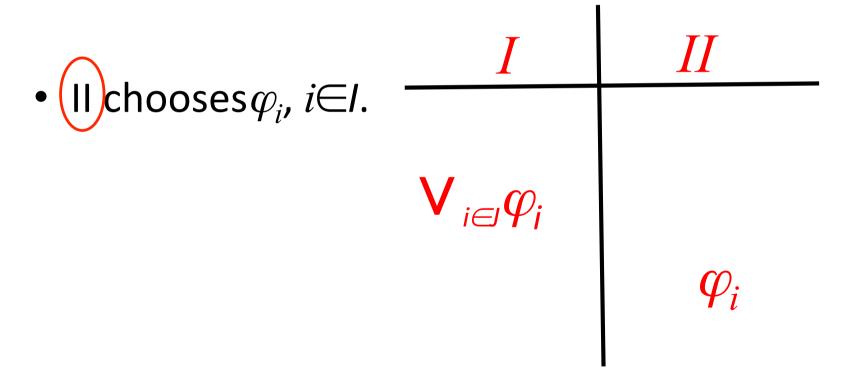
• I picks some $\Lambda_{i\in J}\varphi_i$, previously played by II, and some φ_i , $i\in J$.

• Il accepts.

 $arphi_i$

Disjunction move

• I plays some $V_{i\in I}\varphi_{i}$, previously played by II.



Universal quantifier move

• I picks some $\forall x \phi(x)$ that II has previously played, and a constant c. Then he plays $\phi(c)$.

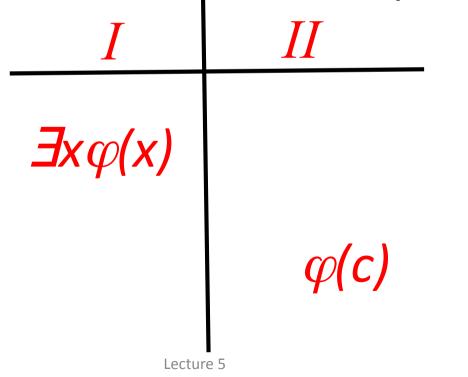
• Il accepts. I

 $\varphi(c)$

Existential quantifier move

• I plays some $\exists x \varphi(x)$ that II has previously played.

• II chooses a constant c and plays $\varphi(c)$.

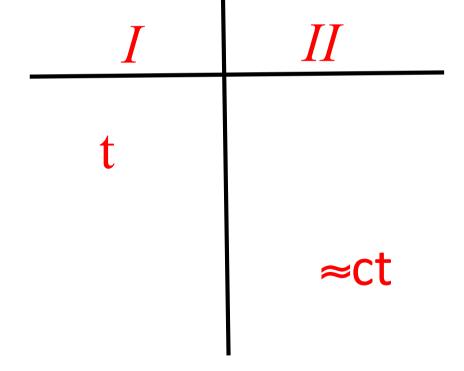


14

Constant move

• I plays some t.

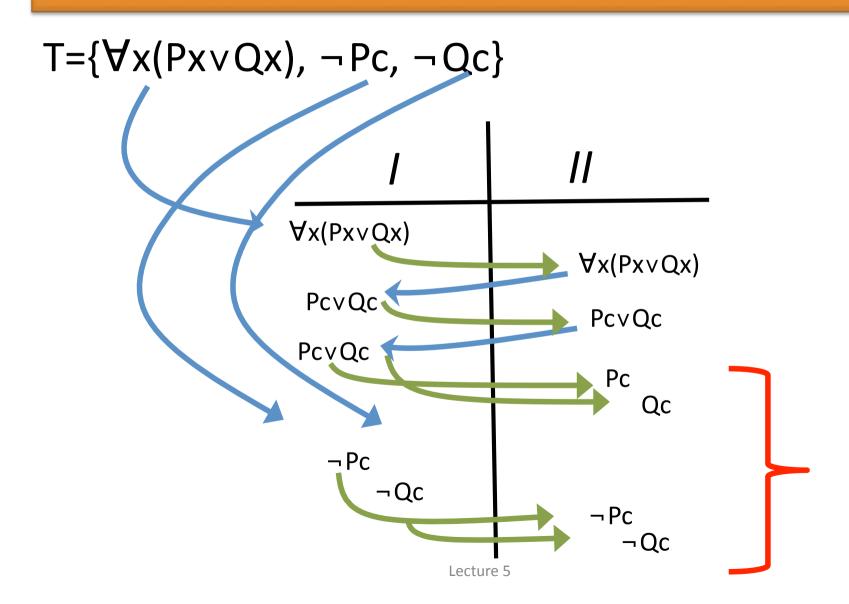
• II plays ≈ct for some constant c.



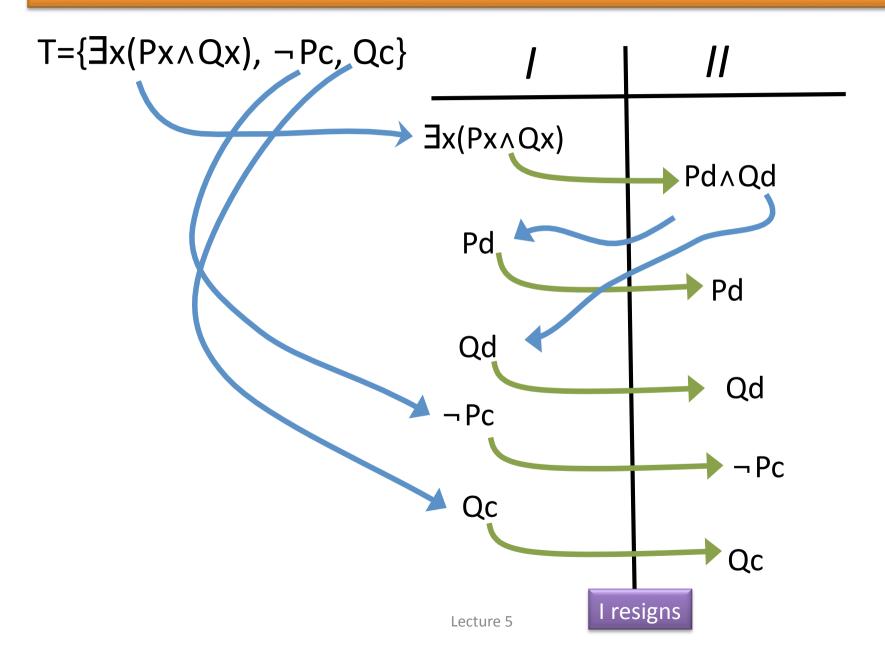
I wins if ...

- For some atomic sentence both ϕ and $\neg \phi$ are played by II.
- Otherwise *II* wins.
- Closed game.
- Determined.

Example where I wins

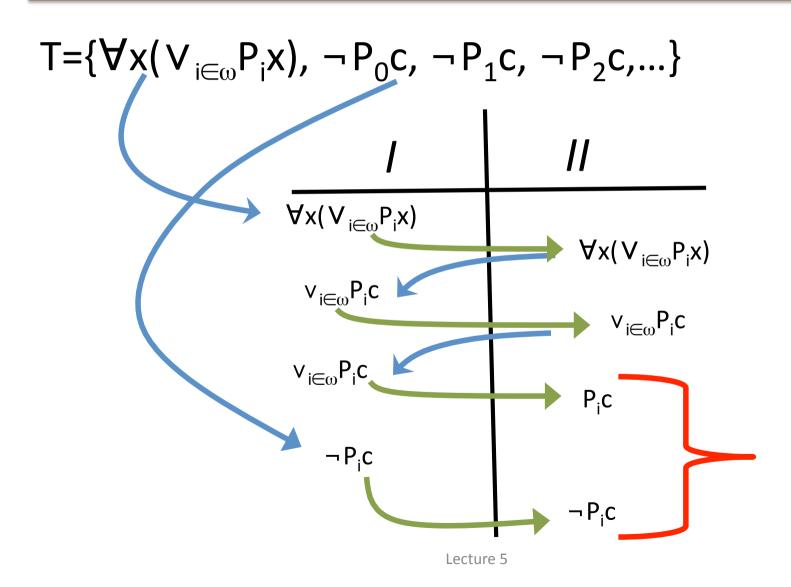


Example where II wins

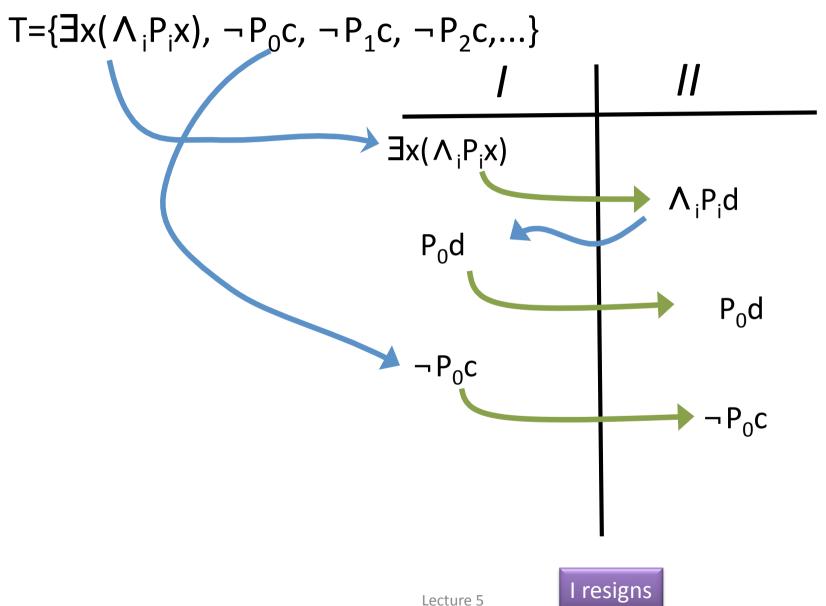


Example where I wins

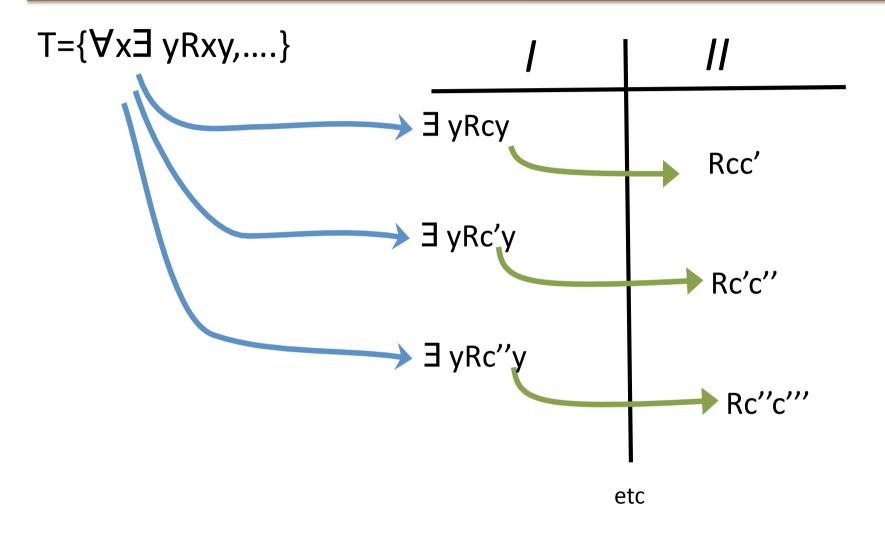
19



Example where II wins



Example where the game is infinite



Basic Theorem

 Susan has a winning strategy in the model existence game on T if and only if T has a model.

A model strategy

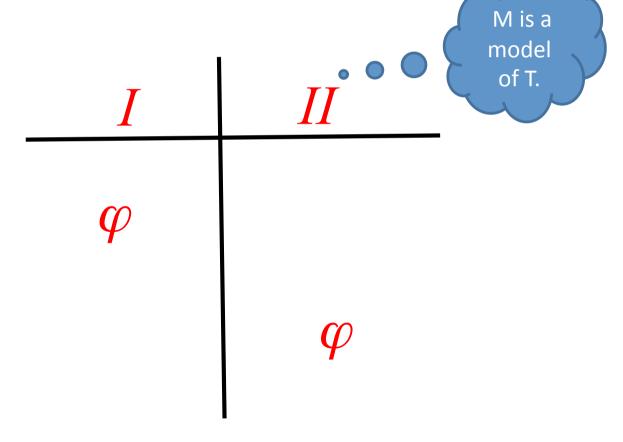
Suppose T has a model M.

During the game II interprets the constants of C in M so that all sentences that she has played are true in M.

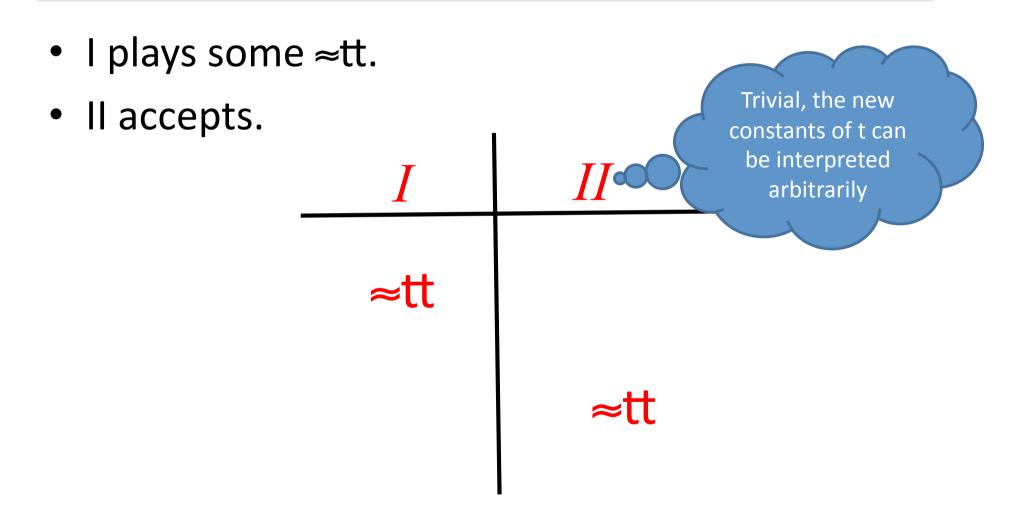
Theory move preserves truth

• I plays some $\varphi \in T$.

• Il accepts.



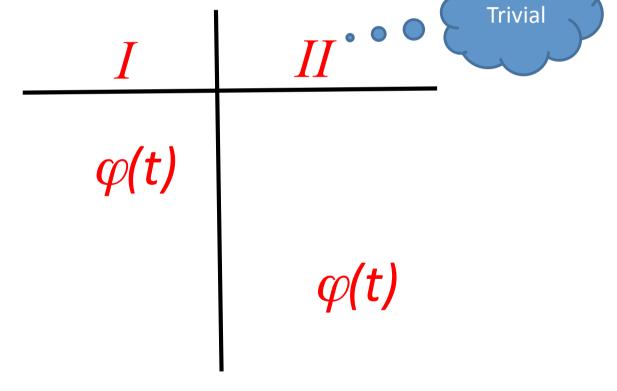
Equation move preserves truth



Substitution move preserves truth

 I picks previously played ≈ct and φ(c), and plays φ(t).

• Il accepts.

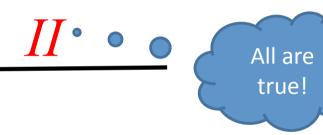


Conjunction move

• I plays some $\Lambda_{i\in I} \varphi_i$, previously played by II,

and some φ_i , $i \in J$.

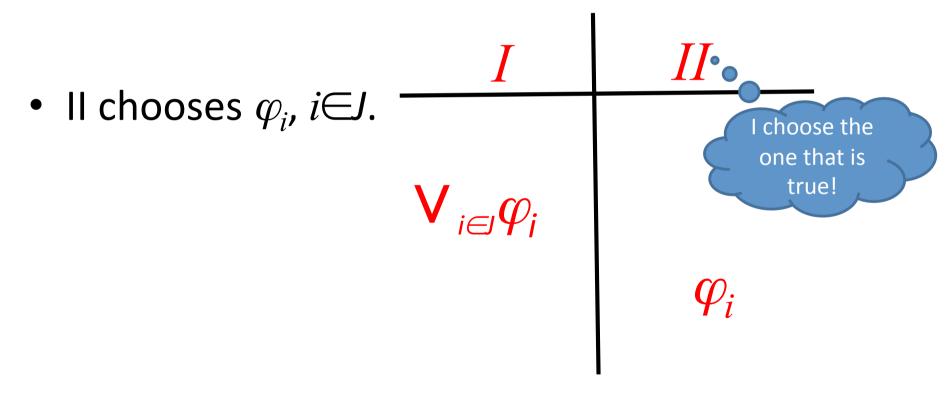
Il accepts.



 φ_i

Disjunction move

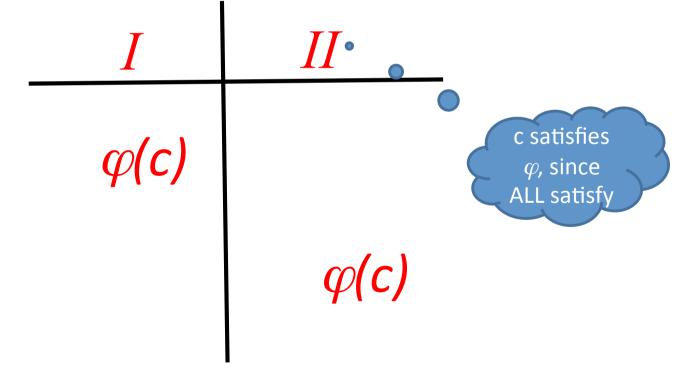
• I plays some $V_{i\in I}\varphi_{i}$, previously played by II.



Universal quantifier move

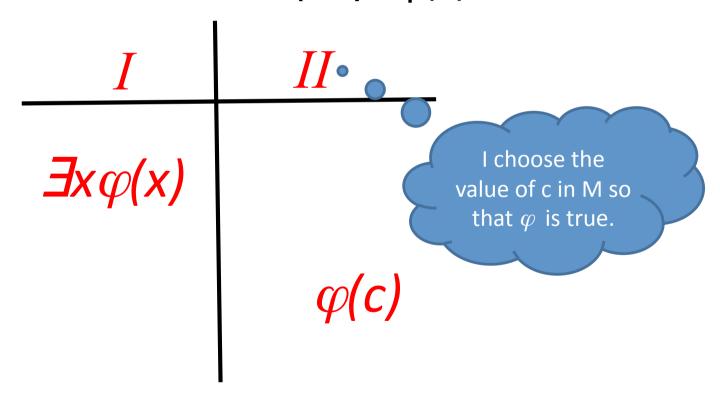
• I picks some $\forall x \phi(x)$, previously played by II, and a constant c. Then he plays $\phi(c)$.

• Il accepts.



Existential quantifier move

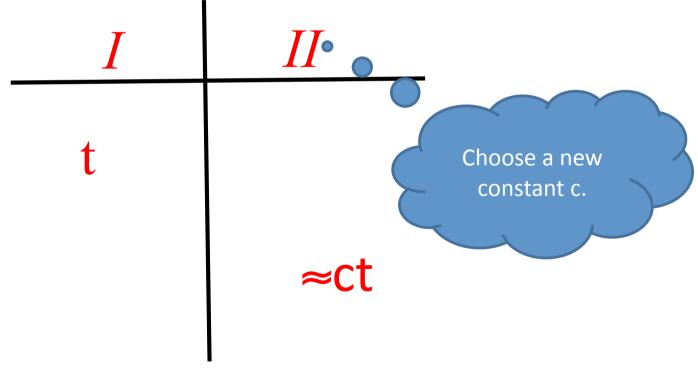
- I plays some $\exists x \varphi(x)$, previously played by II.
- II chooses a constant c and plays $\varphi(c)$.



Constant move

• I plays some t.

• II plays ≈ct for some constant c.



II wins

• II wins because it cannot happen that for some (atomic) ϕ both ϕ and $\neg \phi$ are true in M.

An enumeration strategy

Suppose II has a winning strategy.

There is a strategy of I which enumerates all possibilities.

It turns out that since II wins even against the enumeration strategy, the theory T has to have a model.

The idea

I plays every $\varphi \in T$ as a **theory move**.

I plays every possible equation ≈tt as an equation move.

If \approx ct and φ (c) have been played, then I plays φ (t) as a substitution move.

If $\Lambda \phi_i$ has been played, then each ϕ_i is played in **conjunction moves**.

If $v\varphi_i$ has been played by II, then also I plays it as a disjunction move.

If $\forall x \phi(x)$ has been played, and a c is a constant , then I plays $\phi(c)$ as a universal quantifier move.

If $\exists x \varphi(x)$ has been played by II, I plays it as an **existential quantifier** move.

Player I plays every term t as a constant move.

In detail

$$T = \{\phi_n : n \in \mathbb{N}\}$$

$$C = \{c_n : n \in \mathbb{N}\}$$

$$Trm = \{t_n : n \in \mathbb{N}\}$$

- 1. If n=0, then $x_n=\varphi$.
- 2. If $n = 2 \cdot 3^i$, then x_n is $\approx c_i c_i$.
- 3. If $n = 4 \cdot 3^i \cdot 5^j \cdot 7^k \cdot 11^l$, y_i is $\approx c_j t_k$, and y_l is $\varphi(c_j)$, then x_n is $\varphi(c_i)$.
- 4. If $n = 8 \cdot 3^i \cdot 5^j$ and y_i is $\bigwedge_{m \in \mathbb{N}} \varphi_m$, then x_n is φ_i .
- 5. If n = 16 3ⁱ and y_i is $\bigvee_{m \in \mathbb{N}} \varphi_m$, then x_n is $\bigvee_{m \in \mathbb{N}} \varphi_m$.
- 6. If $n = 32 \cdot 3^i \cdot 5^j$, y_i is $\forall x \phi(x)$, then x_n is $\phi(c_j)$.
- 7. If $n = 64 \cdot 3^i$, and y_i is $\exists x \phi(x)$, then x_n is $\exists x \phi(x)$.
- 8. If $n = 128 \cdot 3^i$, then x_n is t_i .

Constructing the model

- Let H be all the responses of II.
- Define $c \sim d$ if $\approx cd$ is in H.
- Equivalence relation, even congruence.
- *M*={[*c*]:*c*∈*C*}
- $R^{M}[c_{1}]...[c_{n}]$ iff $Rc_{1}...c_{n} \in H$.
- $f^{M}[c_1]...[c_n]=[d]$ iff $\approx dfc_1...c_n \in H$.

An easy induction

$$\varphi(c_1,...,c_n) \in H \rightarrow M \models \varphi(c_1,...,c_n)$$

I has played every sentence of T.

Hence T is contained in H.

Hence M is a model of T.

Susan wins the semantic game on M and T

Susan makes sure that if she plays
$$\phi(c_1,...,c_n)$$
, then
$$\phi(c_1,...,c_n)\in H$$
 and if Max plays $\phi(c_1,...,c_n)$, then
$$\neg\phi(c_1,...,c_n)\in H$$

Hence M is a model of T.

Lecture 4 38

Special feature of M

- Every element of M is the interpretation of a constant symbol from C.
- M is countable.

Game-theoretic proofs

 ϕ is true in every model of T

if and only if

Player I has a winning strategy in MEG(T \cup {¬ ϕ },L).

Compactness strategy

 Compactness Theorem: Suppose every finite subset of T has a model. Then T has a model.

- Strategy of II: Play so that

 T ∪{sentences you have played}
 is finitely consistent.
- This is possible if T has only finite conjunctions and disjunctions!

Interpolation theorem in $L_{\omega_1\omega}$

If $\varphi(P,R)$ and $\psi(P,S)$ are given and

$$= \varphi(P,R) \rightarrow \psi(P,S),$$

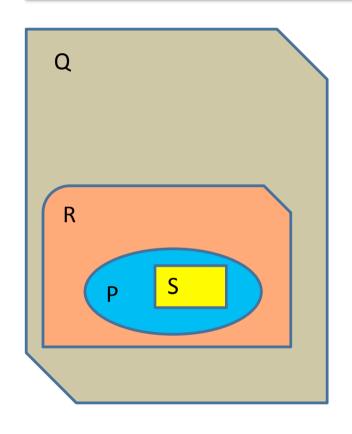
then there is a $\theta(P)$ such that

$$\models \varphi(P,R) \rightarrow \theta(P)$$

and

$$\models \theta(P) \rightarrow \psi(P,S).$$

Example



$$\phi = \forall x (Px \to Rx) \land \forall x (Rx \to Qx)$$

$$\psi = \forall x (Sx \to Px) \to \forall x (Sx \to Qx)$$

$$\models \phi \rightarrow \psi$$
,

What is the interpolant?

$$\models \phi \to \theta \text{ and } \models \theta \to \psi.$$

Answer:
$$\theta = \forall x (Px \to Qx)$$

Separating S and S'

- S a theory in the vocabulary L₁
- S' a theory in the vocabulary L₂
- θ a sentence in the vocabulary L=L₁ \cap L₂

 θ separates S and S' if every model of S is a model of θ but no

model of S' is a model of θ

Reducts of models of S to L

Reducts of models of S' to L

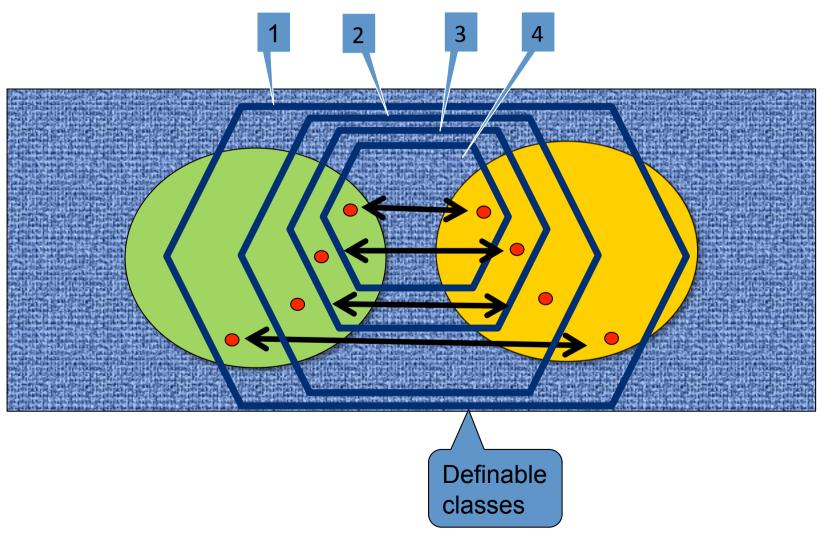
Lecture 6 44

Interpolation strategy

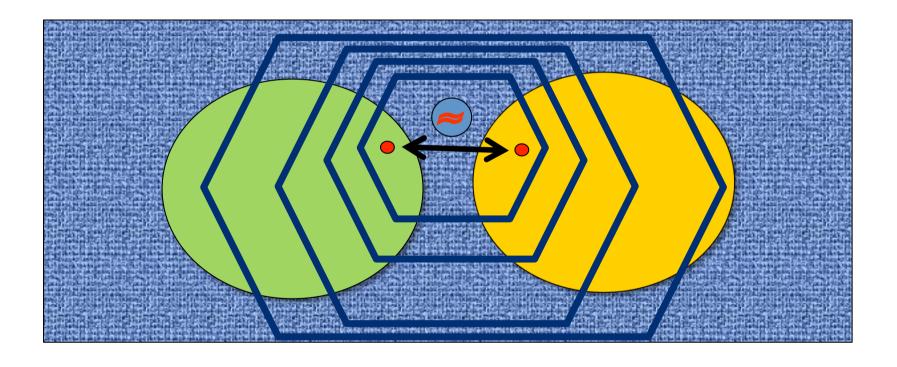
- If ϕ and $\neg \psi$ cannot be separated, then II can play the whole MEG($\{\phi, \neg \psi\}, L_1 \cup L_2$) game using this as a guiding principle:
 - She makes sure the sentences played by her divide into two parts (according to L₁ and L₂) that cannot be separated.
- Since this is a winning strategy, $\phi \land \neg \psi$ has a model.
- Hence it cannot be that $\models \varphi \rightarrow \psi$!

Lecture 6 45

Back-and-forth proof



Back-and-forth proof



Contradiction!

Lindström's Theorem

- First order logic is maximal wrt the Compactness Theorem and the Downward Löwenheim-Skolem Theorem.
- Versions exist for
 - Finite variable fragment (van Benthem, ten Cate,V.)
 - Modal logic (van Benthem)
 - Infinitary logic (Shelah)