





Questions we can address

* Does @ have a model?
* Does T have a model in which @ holds?

* Is @ true in every model of T?

* Is @ true in every model?



Model Existence Game

MEG(T,L), where T is an L-theory.

Player | (" Max”) claims T has no models,
rather it is contradictory.

Player Il (" 'Susan”) claims T has a model, and
she knows one (but she can bluff).

Player Il tries to play only sentences
supposedly true in the supposed model.

Player | tries to challenge this.
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Asynchronous parallel games

(Strategic Balance of Logic)

P(Xq, .00 Xs) cp(xl,...,x )

Semantic
game

.
A




Model existence game

(Strategic Balance of Logic)

P(Xy,--Xs) (EEEE 1 Xs)

Game

Semantlc Semantic
game game

< : AL
~ o
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Rules of the game

* C=a new countably infinite set of constants
(“elements of the model that Il knows”)

e The moves are LUC-sentences in NNF

— Negation Normal Form
e Av -V
* negation only in front of atomic sentences



* | plays some @&T.

* |l accepts.

/ 11

@




* | plays some =tt.

* |l accepts.




Substitution move

* | picks =ct and o(c), previously played by II,
and plays o(t).
* |l accepts. )i 1]

@(t)

@(t)




Conjunction move

* | picks some /\,E,qoi, previously played by I,
/ Il

and someg, 1.

* || accepts.

@;




Disjunction move

* | plays some V,E,QD,-, previously played by II.

. @hooses% 1=l

/

1l

Vo,
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Universal quantifier move

* | picks some Vx@(x) that Il has previously
played, and a constant c. Then he plays (c).

* |l accepts. )i 1]

@(c)

@(c)




Existential quantifier move

* | plays some dx¢(x) that Il has previously
played.

* |l chooses a constant c .and plays ¢(c).

/ 11

Ix@p(x)

@(c)




Constant move

* | plays some t.

* |l plays =ct for some constant c.

/ 11




* For some atomic sentence both ¢ and -~ are
played by /1.

e Otherwise /[ wins.
* Closed game.
e Determined.



Example where | wins

T={Vx(PxvQx), =Pc, =Qc}

/]
Vx(PxvQx)
Vx(PxvQx)
PcvQc PcvQcC

PcvQc

Pc

Qc
- Pc
-QcC
- Pc

-QcC
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Example where Il wins

T={dx(PxAQx), = Pc, Qc}

Ax(PxAQx)

PdAQd
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Example where | wins

T={VX(V c,PX), =Pyc, =P,C, =PyC,...}

Il

Vx(V c,P:x)

VieoPiC
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Example where Il wins

Tz{HX(AiPiX)I —PyC, —IP1C, _'PZC""}

/ ]
Ax( A P.x)
A\.Pd
P,d
P,d
—P,C

| resigns




Example where the game is infinite

T={Vx3 yRxy,....} / /]

\-—————) 3 yRey

R N,

1 yRc'y

;_ﬁ__} RC;CH

= YRCHX
RCIICIII

etc
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* Susan has a winning strategy in the model
existence game on T if and only if T has a

model.



A model strategy

Suppose T has a model M.

During the game Il interprets the constants of
Cin M so that all sentences that she has
played are true in M.



Theory move preserves truth

* | plays some @&T.
* |l accepts.

/

@




Equation move preserves truth

* | plays some =tt.

Trivial, the new
constants of t can
be interpreted

] arbitrarily

* |l accepts.




Substitution move preserves truth

* | picks previously played =ct and ¢(c), and
plays (t).
* || accepts. 7 17" ° ©

@(t)

@(t)




Conjunction move

* | plays some /\,E,QDI-, previously played by I,

and some @, i<J.
l ] ]]. ° e All are
* |l accepts. i

@;

'z




Disjunction move

* | plays some V,E,QD,-, previously played by II.

* Il chooses @, i<J.

/

1l°e

Vo,

| choose the
one that is

true!
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Universal quantifier move

* | picks some Vx@(x), previously played by I,
and a constant c. Then he plays ¢(c).

* |l accepts. )i VIE

e

O
c satisfies

(p(C) @, since

ALL satisfy

@(c)




Existential quantifier move

* | plays some Ixq(x), previously played by II.

* |l chooses a constant c and plays o(c).

Il

J_'.

| choose the
value of cin M so

that @ is true.

@(c)
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Constant move

* | plays some t.

* |l plays =ct for some constant c.

/

I o

— -

Choose a new

constant c.

31



Il wins

* |l wins because it cannot happen that for
some (atomic) @ both ¢ and - are true in M.




An enumeration strategy

Suppose |l has a winning strategy.

There is a strategy of | which enumerates all possibilities.

It turns out that since Il wins even against the enumeration
strategy, the theory T has to have a model.
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The idea

I plays every ¢&T as a

I plays every possible equation =tt as an

If =ct and ¢(c) have been played, then I plays ¢(t) as a

If A, has been played, then each ¢, is played in

If vg, has been played by II, then also I plays it as a

If Vx¢(x) has been played, and a c is a constant , then I plays ¢(c) as a
If Ixep(x) has been played by II, I plays it as an

Player I plays every term t as a



In detalil

T ={¢,:n €N}
C ={cnp:n €N}
Trm = {t, : n € N}

1. If n =0, then x,, = .

2. If n =2-3", then x,, is ~c;c;.

3. Ifn=4-3".57.7". 11", y; is ~city, and y; is ¢(c;), then r, is p(c;).
4. Ifn=28-3"-5 and y; is \,,cn Pm. then u, is ¢;.

5. Ifn=16 3 and y; is Voen ©m. then xp is \/, oy @m.-

6. If n=232-3"-57, y; is Vuo(x), then &, is ¢(c;).

7. If n=64-3", and y; is ro(x), then z, is Iz d(z).

8. If n =128 3", then z, is t;.
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Constructing the model

* Let H be all the responses of II.

* Definec~dif =cdisin H.

* Equivalence relation, even congruence.
e M={[c]:c&EC}

* RM[c.]...[c ] iff Rc,...c, EH.

* M[c,]...[c ]=[d] iff =dfc,...c, EH.



An easy induction

¢(c,,...,c.)EH =2 M [ o(c,,...,C,)

| has played every sentence of T.
Hence T is contained in H.
Hence M is a model of T.
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Susan wins the semanticgameon M and T

Susan makes sure that if she plays ¢(c,,...,c,), then
¢(cy,...,Cc,) EH
and if Max plays ¢(c,...,c,), then
-p(cy,...,Cc,) EH

Hence M is a model of T.
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Special feature of M

* Every element of M is the interpretation of a
constant symbol from C.

e M is countable.



Game-theoretic proofs

@ is true in every model of T

if and only if

Player | has a winning strategy in MEG(TU{—-q},L).



Compactness strategy

 Compactness Theorem: Suppose every finite
subset of T has a model. Then T has a model.

e Strategy of Il: Play so that
T U{sentences you have played}
is finitely consistent.

* This is possible if T has only finite
conjunctions and disjunctions!
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Interpolation theoremin L, ,

If (P,R) and y(P,S) are given and

— @(PR)2>y(RS),

then there is a O(P) such that
— ¢(P,R)=> 6(P)

and

— O(P)>(P,S).
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\\ ¢ = Vo (Pr — Rx) AVz(Rx — Q)

Y =V (Sx — Px) — Ve (Sr — Qx)

= ¢ — 1,

What is the interpolant?
Fo¢—60and =60 — .

Answer: 6 =V (Pzr — Qx)
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Separating S and S’

S  atheoryinthe vocabulary L,
S’  atheoryin the vocabulary L,

0  asentencein the vocabulary L=L,MNL,

0 separates Sand S’ if every model of S is a model of 6 but no

model of S’ is a model of 6>
Reducts of
models of S’ to L
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W

* If @ and =1 cannot be separated, then Il can
play the whole MEG({p,~y},L,UL,) game
using this as a guiding principle:

— She makes sure the sentences played by her divide
into two parts (according to L, and L,) that cannot

be separated.

* Since this is a winning strategy, @ A— has a

model.
e Hence it cannot be that

= Q2 |




Back-and-forth proof




Back-and-forth proof

Contradiction!
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Lindstrom’s Theorem

* First order logic is maximal wrt the
Compactness Theorem and the Downward

Lowenheim-Skolem Theorem.

e Versions exist for
— Finite variable fragment (van Benthem, ten Cate,
V.)
— Modal logic (van Benthem)

— Infinitary logic (Shelah)



