


 What is the meaning of a given sentence?

* Can we say the same thing with a shorter
sentence?
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The three games of logic

L Expressibility
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The three games of logic




The three games of logic

Semantic
game

Model existence Ehrenfeucht-
game — Fraisse game
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The three games of logic

Philosophy,
science

Mathematics, Linguistics,
logic — computer science
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Winning

W g ) _12 n

(X’ y) — (;l:()s Z/()-. © ey Lrn—1- l/n—l)

(€0, Y0y -+ s Tn—1,Yn—1) € W



Strategy of player |

o= (00,...,0n—1)

. Al
o; : A* — A
Using a strategy:

Lj = Ui(yOa e 7yi—1)



Perfect

information
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Imperfect
information
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Strategy of player |

T = (T0y.+ s Tn—1)

TZ'ZAH_I —>A

Using a strategy:

Yi = 7'7;(;1}0, s ,;'L'?;)



Perfect

information

y2=1:1(x0,x1,x2)
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Imperfect

information

y2=1:1(x1,x2)
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Xy=O0¢()

Yo=To(Xo)

X1=04(Yo)
Y1=T1(X0.%1)

x2=02(y0,y1)

y2=T1(X01X1;X2)

Now we let two strategies play against each other:
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Finite perfect information games are

determined

Theorem 2.4.1 (Zermelo). If A is any set, n is a natural number and
W C A%", then the game G, (A, W) is determined, i.e. one of the players has

a winning strateqy.
Proof:

Case 1: Player | has a winning strategy. OK

Case 2: Player | does not have a winning strategy. Player Il
moves so that also after her move player | still does not
have a winning strategy.
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Proof

* Otherwise, whatever vy player Il moves, player

| has a winning strategy g(y) for the rest of the
game.

* Now | has a winning strategy already in the

oeginning of the game: Look at the move y of
| and then use g(y).

e Perfect information needed, because | has to
<now the move y of Il.




Non-determined game

Yy, = X, to be chosen knowing only x,

Il cannot have a winning strategy. How can
she hit x, knowing only x,.

| cannot have a winning strategy: [l may be
lucky and | cannot prevent that.
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Infinite game

I IT
ro
Yo
xrq
Y1

Fig. 2.3. An infinite game

Lecture 1
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Infinite game




Strategy in infinite game

o= (09,01, ...)
Ti = 0i(Yo, s Yi—1)
T = (70, T1,-..)

Yi = '/i(CCOa-"vxi)
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Closed game

(LL'(), Yo, L1, Y1y - - ) c W

if every initial segment of the play has some continuation in W.

In a closed game Il wins if at any moment
she has at least one winning continuation.
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(.’130, Yo, L1, Y1y - - ) c W

1mplies the existence of n € N such that

| ) o /
(woayov ceeadn—1Yn—1,Lns Yns Lnt1: Yn+41s - - ) c W

: _— A /
for all ), v, ) 1 Ypyq--- €A
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Examples of infinite games

* Xy =S.

* V,=9.

* Some x_ = 0.

* Somey, =100.
* Foralln:x, =y,

* From some nonwardsy,_ =0
* y, =0 for infinitely many n
* y,=0forall nthat are powers of 2
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Gale-Stewart Theorem

Theorem 2.5.1 (Gale-Stewart [8]). If A is any set and W C A™ is open

0 then the game G,(A, W) is determined.

Proof:

Case 1: Player | has a winning strategy. OK

Case 2: Player | does not have a winning strategy. Player Il plays so
that also after her move player | still does not have a winning
strategy. Since W is closed, player Il wins.
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Now from games to logic



Vocabulary

A vocabulary is a set L of
predicate symbols P,Q,R,...
function symbols f,g,h,...
constant symbols c,d,e,...

Arity function:
#r L — N




* A model (or structure) M, for a vocabulary L
IS @ non-empty set M, called the universe of
M, and:

— A subset PM of M for every unary predicate
symbol P in L of arity n

— A function fM of M into M for every function
symbol f in L of arity n

— An element cM of M for every constant symbol
cin L.
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Examples

Graphs

Groups

Unary structures
Ordered sets

Equivalence relations
Fields
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Isomorphism
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Isomorphism defined

Definition 4.1.2. L-structures M and M’ are isomorphic, if there is a bi-
jection

T M — M
such that

1. Forallay,...,au, gy € M:

[ (a1,...,ax,(p) € RM = (n(ay),...,7(ax, (n)) € M ]

2. Forallay,...,ag, (€ M:

[ M (x(ar), . w0y ) = (M (0, azy ). ]

MI

3. m( M )

=

In this case we say that 7 is an isomorphism M — M’

T M=M.
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Substructure

Definition 4.2.1. An L-structure M is a substructure of another L-structure
M, in symbols M C M, if:

1. M CM

2. RM = RM' ' M" if R € L is an n-ary predicate symbol.

3. fM =M | M"™ if f € L is an n-ary function symbol.

4. eM=eM ifec L is a constant symbol.
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Generated substructure

Lemma 4.2.1. Suppose L is a vocabulary, M an L-
structure and X C M. Suppose furthermore that ei-
ther L contains constant symbols or X # (). There is a

L-structure N such that:

1. NC M.
3. IfN"C M and X C N, then N C N".

Proof. Let Xg = X U {c™ : c € L} and inductively

X411 = {f (al, e ,a#L(f)) Ca, ..., Ah,(F) € X,, f € L}

It is easy to see that the set N = J, .y X, is the uni-
verse of the unique structure N claimed to exist in the

lemma., O .



Partial mappings

Partial mapping




Subset
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Generated submodel

Lecture 1
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Lifting defined
Notation for the submodel
X

Lemma 4.2.2. Suppose L 1is a vocabulary. Suppose
M and N are L-structures and @ : M — N s a
partial mapping. There 1s at most one isomorphism

7 @ [dom(m)|pm — [rng(7)|x extending .
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Partial isomorphism




When there are functions




Partial isomorphism

Definition 4.3.1. Suppose L is a vocabulary and M, M’
are L-structures. A partial mapping ©: M — M’ is a
@al isomorp@./\/l — M’ zf an 1s0mor-
phism 7 [dom(7)|ym — [rng(w)|yme extending m. We
use Part(M, M') to denote the set of partial isomor-
phisms M — M'. If M = M’ we call © a partial

automorphism.




Extending a partial isomorphism




Two unary functions
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Two graphs
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Back-and-forth set

A set of partial isomorphisms satisfying
the sc. back-and-forth condition.

Lecture 1
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Back-and-forth condition

In the back-and-
forth set

In the back-and-
forth set
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Back and forth set defined

Definition 2.3.2. Suppose A and B are L-structures. A back-and-forth set
for A and B is any non-empty set P C Part(A, B) such that

Vf € PVa € Adg € P(f C g and a € dom(g))
Vf € P¥bc B3g € P(f C g and b € rng(g))
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Partially isomorphic models

A >~

Models are partially isomorphic if there is a
back-and-forth set of partial isomorphisms
between them.




Not partially isomorphic
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Not partially isomorphic




Dense total orders

* All dense total orders without endpoints are
partially isomorphic.

P ={f € Part(A, B) : dom( f) is finite}



Proposition 4.3.2. Suppose A and B are dense linear
orders without endpoints. Then A ~, B.

Proof. Let P = {f € Part(A,B) : dom(f) finite}.
It turns out that this straightforward choice works.

Clearly, P # (). Suppose then f € P and a € A.

Let us enumerate f as {(ay, b1),..., (a,,b,)} where
a < ... < a,. Since f is a partial isomorphism, also
by < ... < b,. Now we consider different cases. If

a < ay, we choose b < b; and then fU {(a,b)} € P. If
a; < a < a;y+1, we choose b € B so that b; < b < b;j11
and then f U {(a,b)} € P. If a, < a, we choose b > b,
and again f U {(a,b)} € P. Finally, if a = a;, we let
b=b; and then f U {(a,b)} = f € P. We have proved
4.8). Condition (4.9) is proved similarly. O
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Countable models

* All countable partially isomorphic structures
are isomorphic. Next element |

[ Next element ,

Next element J




Proposition 2.3.1. If A ~, B, where A and B are countable, then A = B.

Proof. Let us enumerate A as (a, : n < w) and B as (b, : n < w). Let P
be a back-and-forth set for A and B. Since PP # (), there is some f; € P. We
define a sequence (f, : n < w) of elements of P as follows: Suppose f,, € P
is defined. If n 18 even, say n = 2m, let y € B and f,+1 € P such that
fonU{(am.y)} C fug1. fnisodd, say n =2m+1, let x € A and f,,4+1 € P
such that f,, U{(2z.b,)} C fr41. Finally, let

f= Ufn'

n=0

Clearly, f: A= B. 0
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/ero-one law

* Extension axioms
 Countable categoricity

* Glebskii et al, Fagin, zero-one law
— Application of back-and-forth



Summary of Lecture 1

* Basic concepts about games, determinacy
* Partial isomorphism
* Back-and-forth set

* Next Lecture:
— EF game

— Characterization of (infinitary) elementary
equivalence

— Characterization of definability



