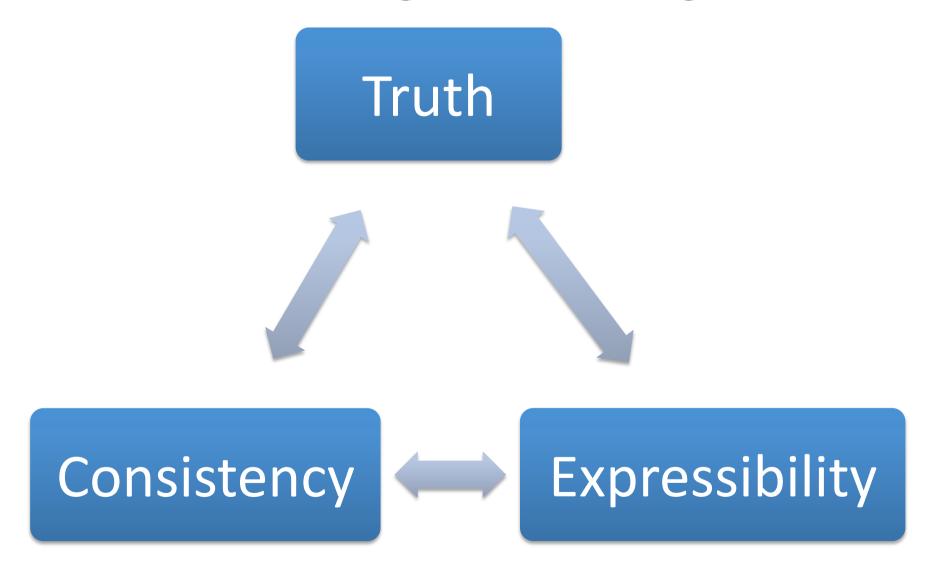
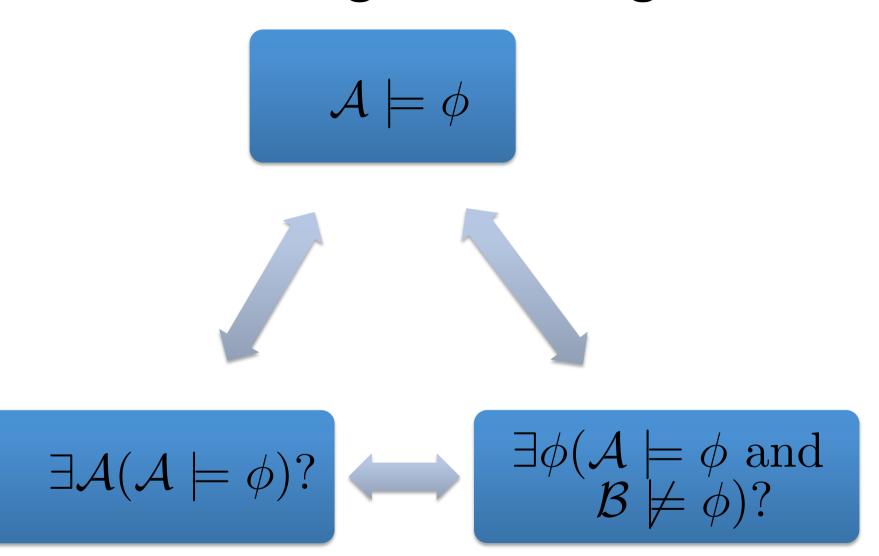
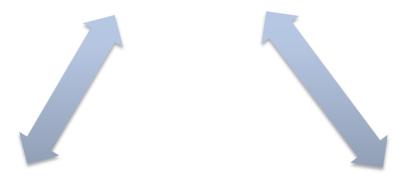


- What is the meaning of a given sentence?
- Can we say the same thing with a shorter sentence?





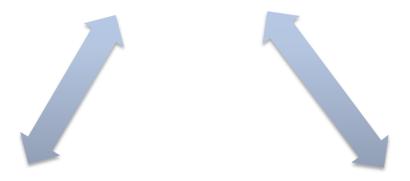
Semantic game



Model existence game

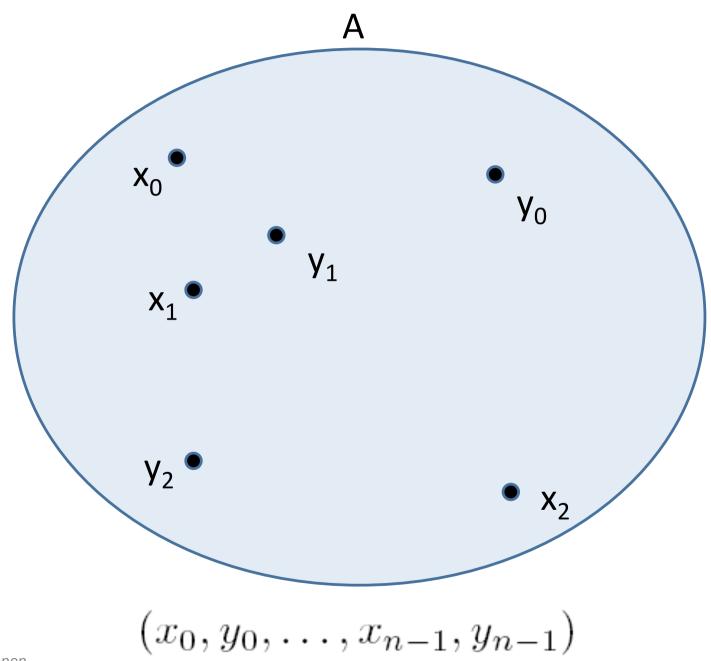
Ehrenfeucht-Fraisse game

Philosophy, science



Mathematics, logic

Linguistics, computer science



Jouko Väänänen

Game

$$\begin{array}{c|c} I & II \\ \hline x_0 & y_0 \\ x_1 & y_1 \\ \vdots & \vdots \\ x_{n-1} & y_{n-1} \end{array}$$

$$(x_0, y_0, \dots, x_{n-1}, y_{n-1})$$

Winning

$$W \subseteq A^{2n}$$

$$\mathcal{G}_n(A,W)$$

$$(\mathbf{x}; \mathbf{y}) = (x_0, y_0, \dots, x_{n-1}, y_{n-1})$$

$$(x_0, y_0, \dots, x_{n-1}, y_{n-1}) \in W$$

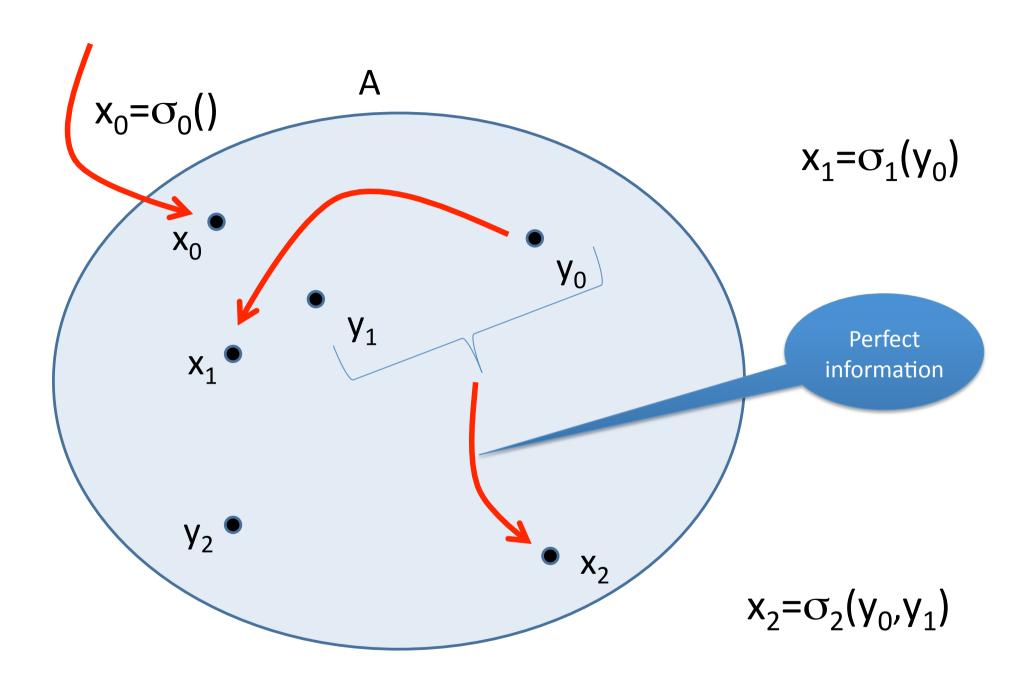
Strategy of player I

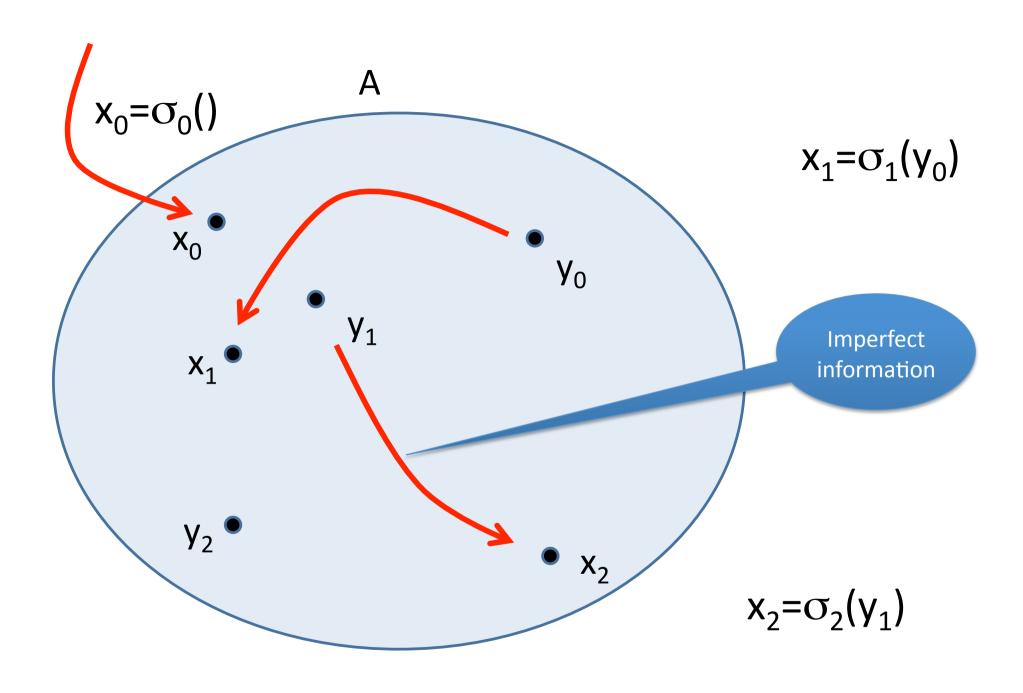
$$\sigma = (\sigma_0, \dots, \sigma_{n-1})$$

$$\sigma_i:A^i\to A$$

Using a strategy:

$$x_i = \sigma_i(y_0, \dots, y_{i-1})$$





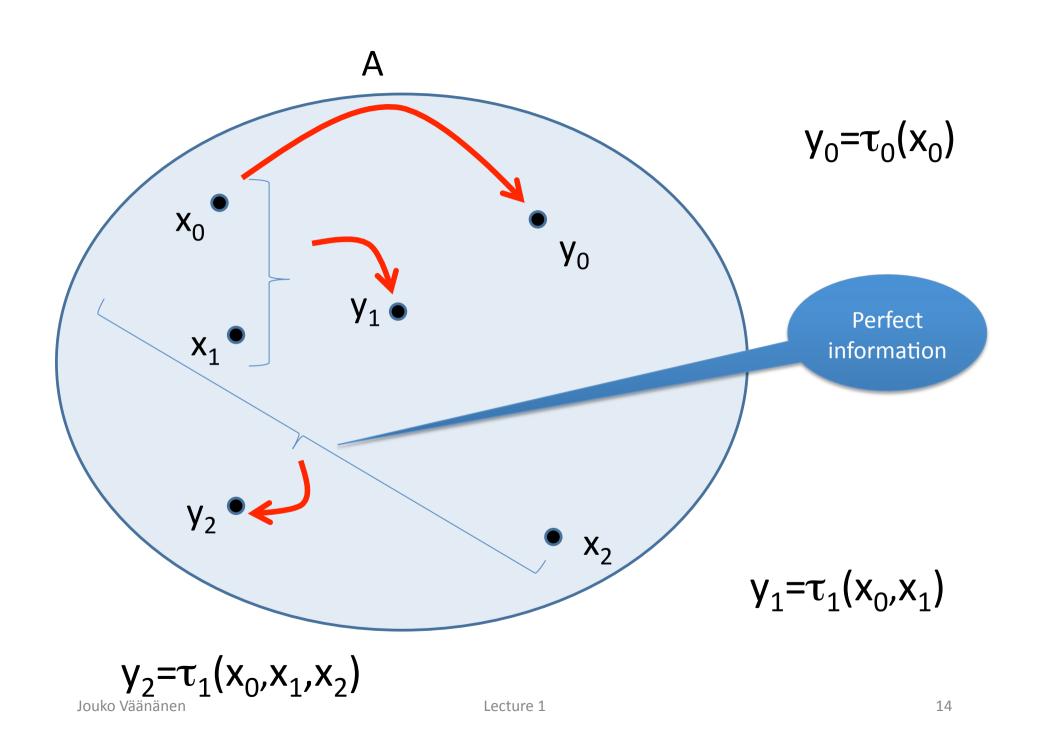
Strategy of player II

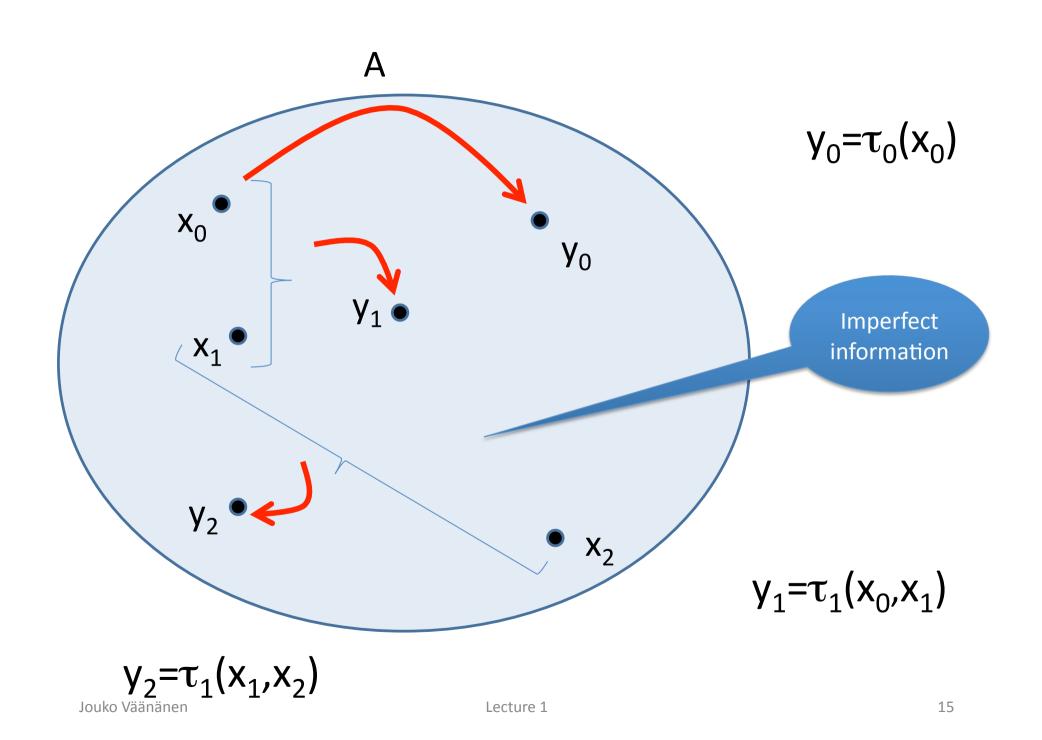
$$\tau = (\tau_0, \dots, \tau_{n-1})$$

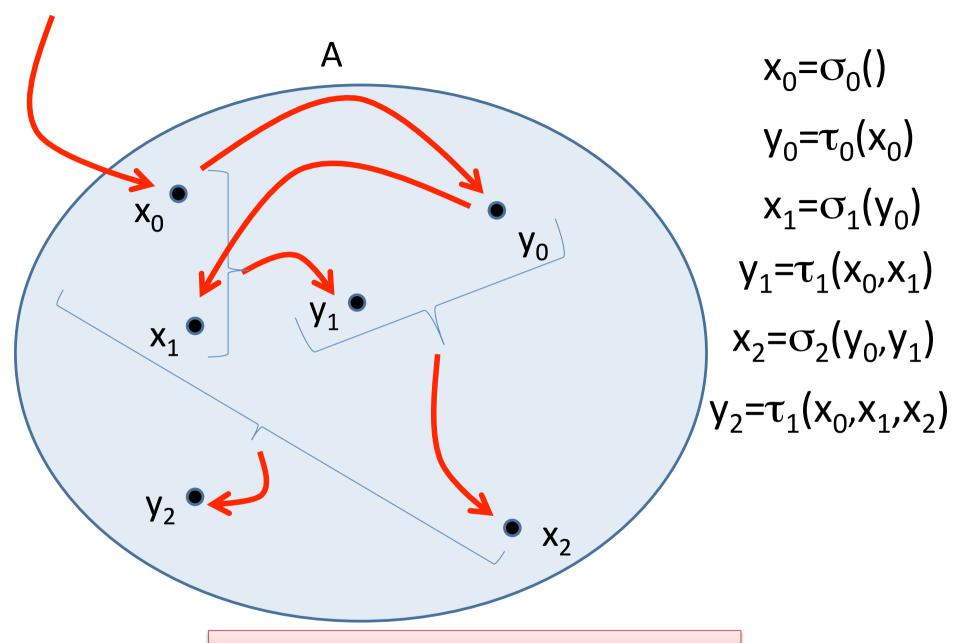
$$\tau_i:A^{i+1}\to A$$

Using a strategy:

$$y_i = \tau_i(x_0, \dots, x_i)$$







Now we let two strategies play against each other:

Finite perfect information games are determined

Theorem 2.4.1 (Zermelo). If A is any set, n is a natural number and $W \subseteq A^{2n}$, then the game $\mathcal{G}_n(A, W)$ is determined, i.e. one of the players has a winning strategy.

Proof:

Case 1: Player I has a winning strategy. OK

Case 2: Player I does not have a winning strategy. Player II moves so that also after her move player I still does not have a winning strategy.

Proof

- Otherwise, whatever y player II moves, player I has a winning strategy g(y) for the rest of the game.
- Now I has a winning strategy already in the beginning of the game: Look at the move y of II and then use g(y).
- Perfect information needed, because I has to know the move y of II.

Non-determined game

- $y_1 = x_1$ to be chosen knowing only x_0
- Il cannot have a winning strategy. How can she hit x₁ knowing only x₀.
- I cannot have a winning strategy: II may be lucky and I cannot prevent that.

Infinite game

$$\begin{array}{c|c} I & II \\ \hline x_0 & \\ y_0 \\ x_1 & \\ y_1 \\ \hline \vdots & \vdots \\ \end{array}$$

Fig. 2.3. An infinite game

Infinite game

$$A^{\mathbb{N}}$$

$$(x_0, x_1, \ldots)$$

$$\mathcal{G}_{\omega}(A, W)$$

$$(\mathbf{x}; \mathbf{y}) = (x_0, y_0, x_1, y_1, \ldots)$$

$$(x_0, y_0, x_1, y_1, \ldots) \in W$$

Strategy in infinite game

$$\sigma = (\sigma_0, \sigma_1, ...)$$

$$x_i = \sigma_i(y_0, ..., y_{i-1})$$

$$\tau = (\tau_0, \tau_1, ...)$$

$$y_i = \tau_i(x_0, ..., x_i)$$

Closed game

$$(x_0, y_0, x_1, y_1, \ldots) \in W$$

if every initial segment of the play has some continuation in W.

In a closed game II wins if at any moment she has at least one winning continuation.

Open game

$$(x_0, y_0, x_1, y_1, \ldots) \in W$$

implies the existence of $n \in \mathbb{N}$ such that

$$(x_0, y_0, \dots, x_{n-1}, y_{n-1}, x'_n, y'_n, x'_{n+1}, y'_{n+1}, \dots) \in W$$

for all
$$x'_n, y'_n, x'_{n+1}, y'_{n+1}, \ldots \in A$$
.

Examples of infinite games

- $x_0 = 5$.
- $y_0 = 9$.
- Some $x_n = 0$.
- Some $y_n = 100$.
- For all n: $x_n = y_n$
- From some n onwards $y_m = 0$
- $y_n = 0$ for infinitely many n
- $y_n = 0$ for all n that are powers of 2

Gale-Stewart Theorem

Theorem 2.5.1 (Gale-Stewart [8]). If A is any set and $W \subseteq A^{\mathbb{N}}$ is open or closed, then the game $\mathcal{G}_{\omega}(A, W)$ is determined.

Proof:

Case 1: Player I has a winning strategy. OK

Case 2: Player I does not have a winning strategy. Player II plays so that also after her move player I still does not have a winning strategy. Since W is closed, player II wins.

Now from games to logic

Vocabulary

A vocabulary is a set L of predicate symbols P,Q,R,... function symbols f,g,h,... constant symbols c,d,e,...

Arity function:

$$\#_L:L\to\mathbb{N}$$

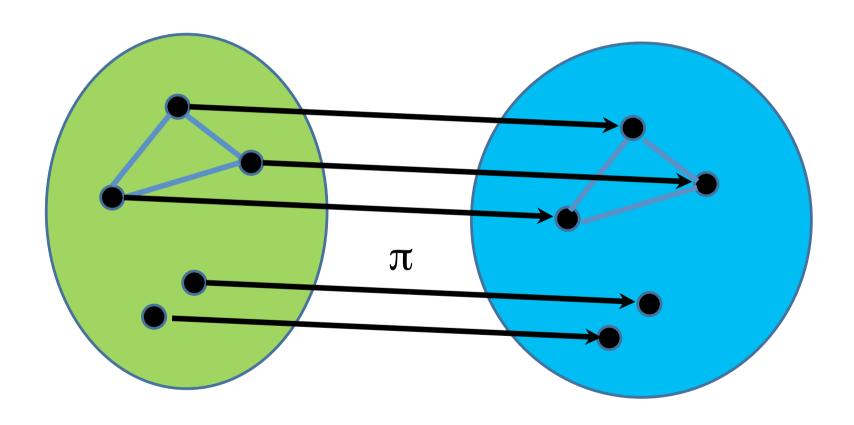
Model

- A model (or structure) M, for a vocabulary L is a non-empty set M, called the universe of M, and:
 - A subset P^M of Mⁿ for every unary predicate symbol P in L of arity n
 - A function f^M of Mⁿ into M for every function symbol f in L of arity n
 - An element c^M of M for every constant symbol c in L.

Examples

- Graphs
- Groups
- Unary structures
- Ordered sets
- Equivalence relations
- Fields

Isomorphism



Isomorphism defined

Definition 4.1.2. L-structures M and M' are isomorphic, if there is a bijection

$$\pi: M \to M'$$

such that

1. For all $a_1, \ldots, a_{\#_L(R)} \in M$:

$$(a_1, \dots, a_{\#_L(R)}) \in R^{\mathcal{M}} \iff (\pi(a_1), \dots, \pi(a_{\#_L(R)})) \in R^{\mathcal{M}'}$$

2. For all $a_1, ..., a_{\#_L(f)} \in M$:

$$f^{\mathcal{M}'}(\pi(a_1),\ldots,\pi(a_{\#_L(f)})) = \pi(f^{\mathcal{M}}(a_1,\ldots,a_{\#_L(f)})).$$

3. $\pi(c^{\mathcal{M}}) = c^{\mathcal{M}'}$.

In this case we say that π is an isomorphism $\mathcal{M} \to \mathcal{M}'$

$$\pi : \mathcal{M} \cong \mathcal{M}'$$
.

Substructure

Definition 4.2.1. An L-structure \mathcal{M} is a substructure of another L-structure \mathcal{M}' , in symbols $\mathcal{M} \subseteq \mathcal{M}'$, if:

- 1. $M \subseteq M'$
- 2. $R^{\mathcal{M}} = R^{\mathcal{M}'} \cap M^n$ if $R \in L$ is an n-ary predicate symbol.
- 3. $f^{\mathcal{M}} = f^{\mathcal{M}'} \upharpoonright M^n$ if $f \in L$ is an n-ary function symbol.
- 4. $c^{\mathcal{M}} = c^{\mathcal{M}'}$ if $c \in L$ is a constant symbol.

Generated substructure

Lemma 4.2.1. Suppose L is a vocabulary, \mathcal{M} an L-structure and $X \subseteq M$. Suppose furthermore that either L contains constant symbols or $X \neq \emptyset$. There is a unique L-structure \mathcal{N} such that:

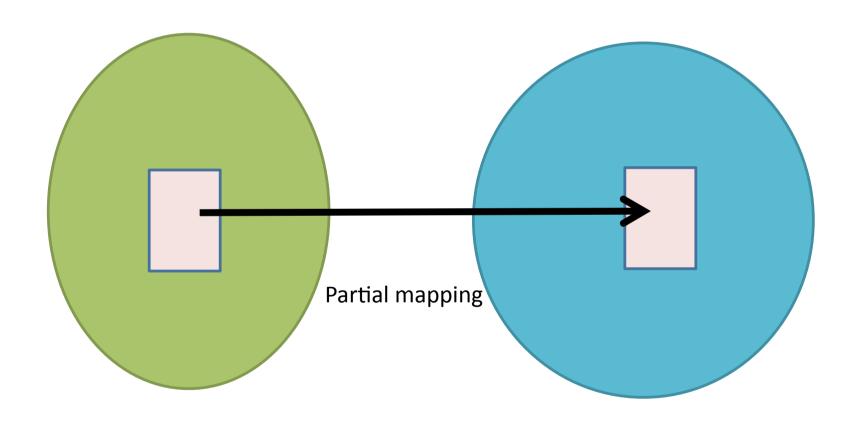
- 1. $\mathcal{N} \subset \mathcal{M}$.
- 2. $X \subseteq N$.
- 3. If $\mathcal{N}' \subseteq \mathcal{M}$ and $X \subseteq \mathcal{N}'$, then $\mathcal{N} \subseteq \mathcal{N}'$.

Proof. Let $X_0 = X \cup \{c^{\mathcal{M}} : c \in L\}$ and inductively

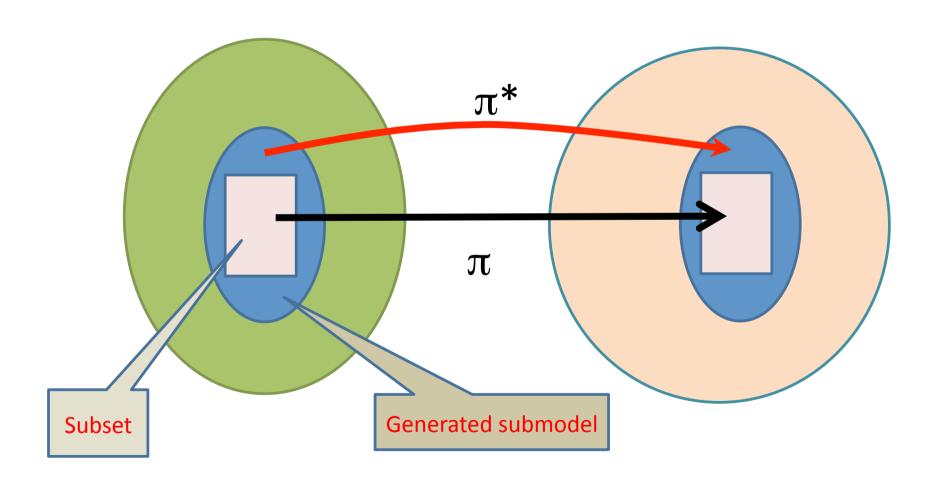
$$X_{n+1} = \{ f^{\mathcal{M}}(a_1, \dots, a_{\#_L(f)}) : a_1, \dots, a_{\#_L(f)} \in X_n, f \in L \}.$$

It is easy to see that the set $N = \bigcup_{n \in \mathbb{N}} X_n$ is the universe of the unique structure \mathcal{N} claimed to exist in the lemma.

Partial mappings



Lifting



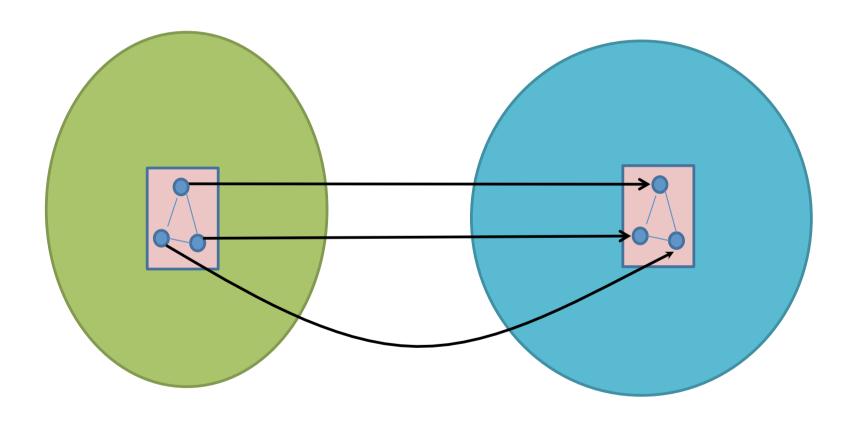
Lifting defined

Notation for the submodel generated by X

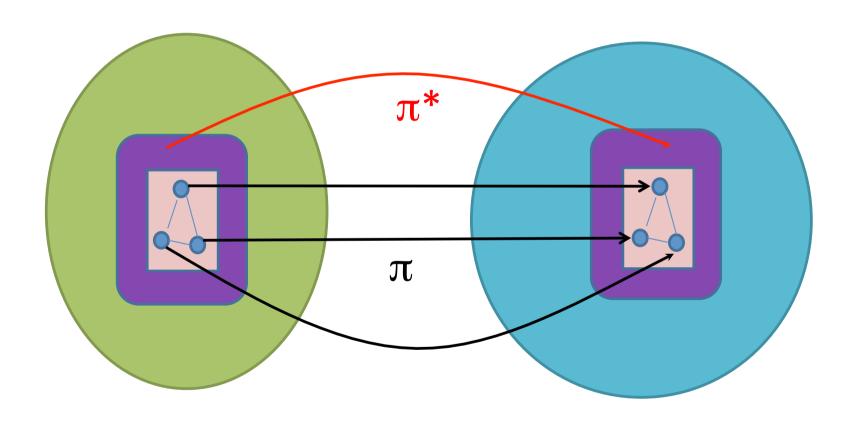
$$[X]_{\mathcal{M}}$$

Lemma 4.2.2. Suppose L is a vocabulary. Suppose \mathcal{M} and \mathcal{N} are L-structures and $\pi: M \to N$ is a partial mapping. There is at most one isomorphism $\pi^*: [\operatorname{dom}(\pi)]_{\mathcal{M}} \to [\operatorname{rng}(\pi)]_{\mathcal{N}}$ extending π .

Partial isomorphism



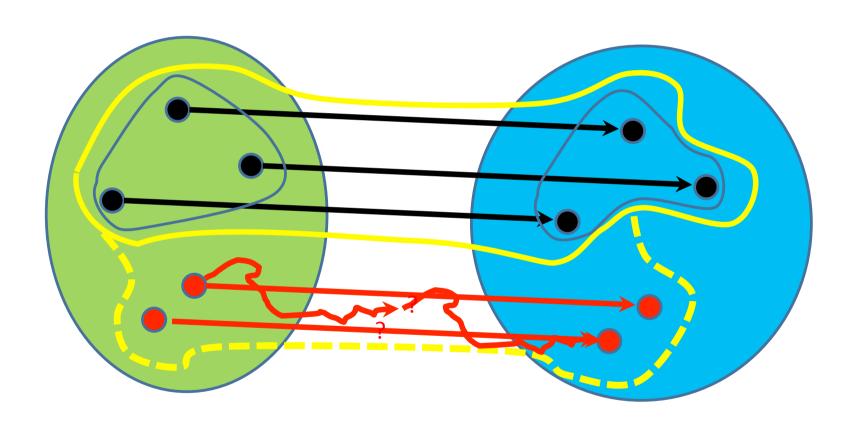
When there are functions



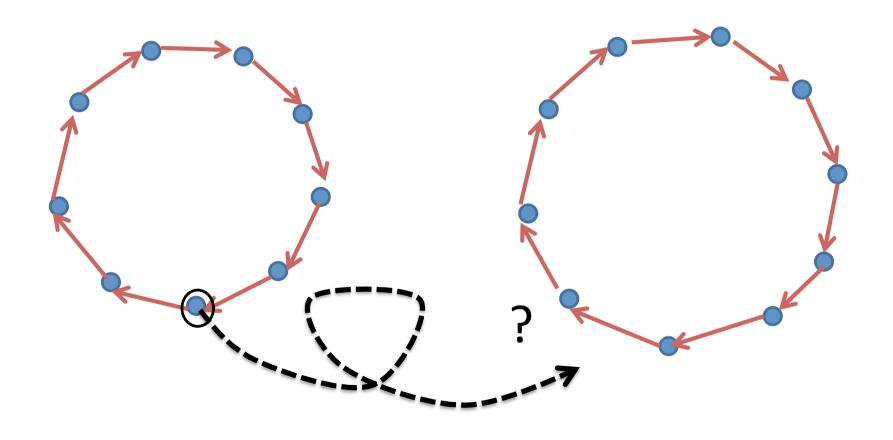
Partial isomorphism

Definition 4.3.1. Suppose L is a vocabulary and \mathcal{M} , \mathcal{M}' are L-structures. A partial mapping $\pi : \mathcal{M} \to \mathcal{M}'$ is a partial isomorphism $\mathcal{M} \to \mathcal{M}'$ if there is an isomorphism $\pi^* : [\text{dom}(\pi)]_{\mathcal{M}} \to [\text{rng}(\pi)]_{\mathcal{M}'}$ extending π . We use $\text{Part}(\mathcal{M}, \mathcal{M}')$ to denote the set of partial isomorphisms $\mathcal{M} \to \mathcal{M}'$. If $\mathcal{M} = \mathcal{M}'$ we call π a partial automorphism.

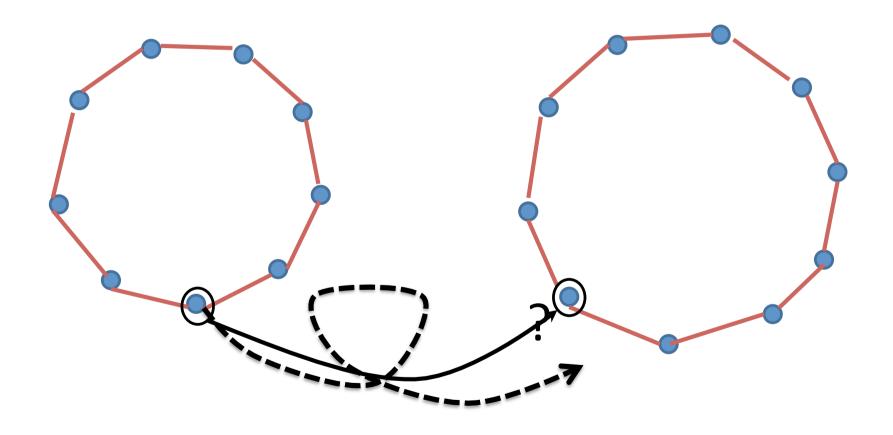
Extending a partial isomorphism



Two unary functions

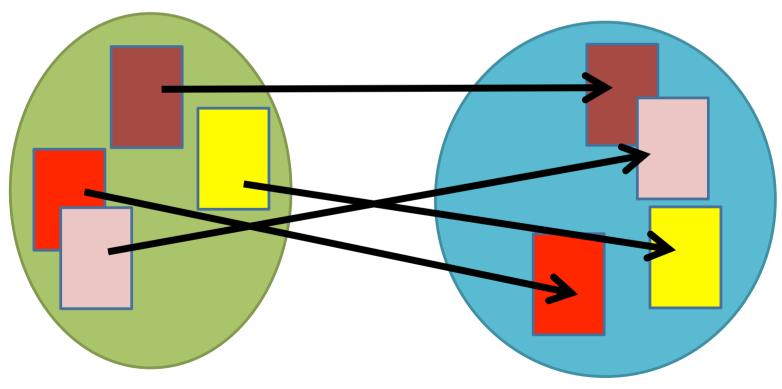


Two graphs

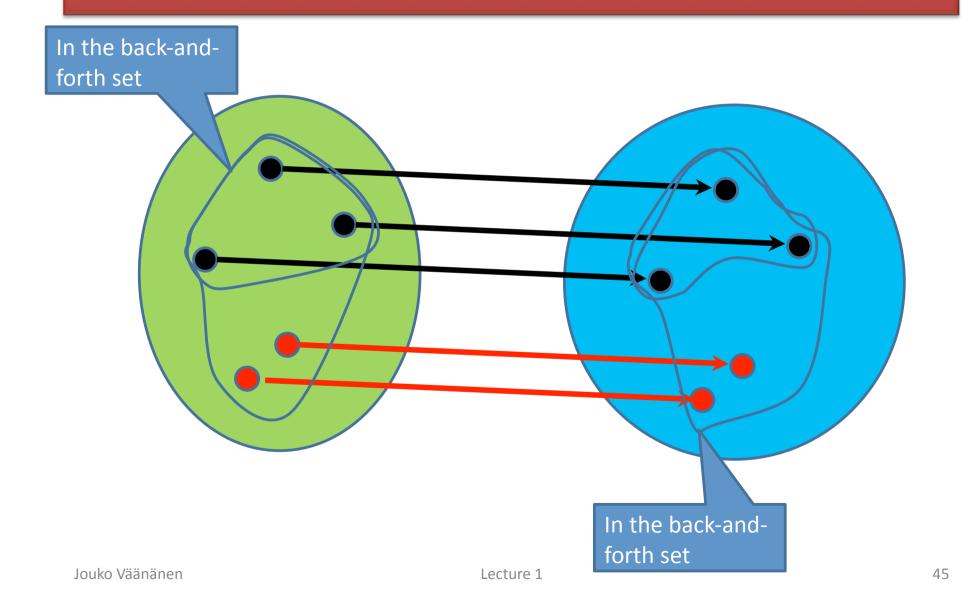


Back-and-forth set

A set of partial isomorphisms satisfying the sc. back-and-forth condition.



Back-and-forth condition



Back and forth set defined

Definition 2.3.2. Suppose A and B are L-structures. A back-and-forth set for A and B is any non-empty set $P \subseteq Part(A, B)$ such that

$$\forall f \in P \forall a \in A \exists g \in P (f \subseteq g \ and \ a \in \text{dom}(g))$$
 (2.8)

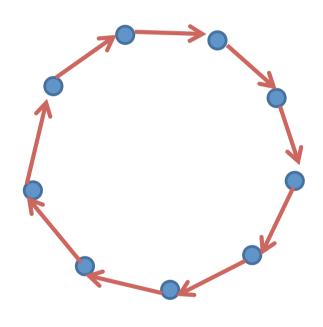
$$\forall f \in P \forall b \in B \exists g \in P (f \subseteq g \ and \ b \in rng(g))$$
 (2.9)

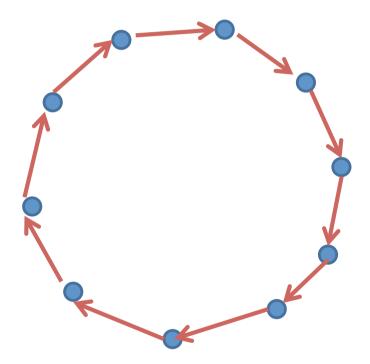
Partially isomorphic models

$$\mathcal{A} \simeq_p \mathcal{B}$$

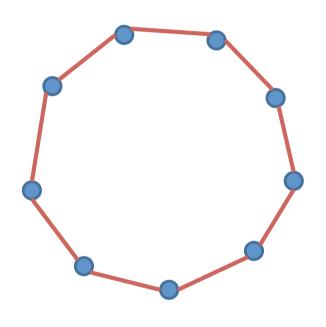
Models are partially isomorphic if there is a back-and-forth set of partial isomorphisms between them.

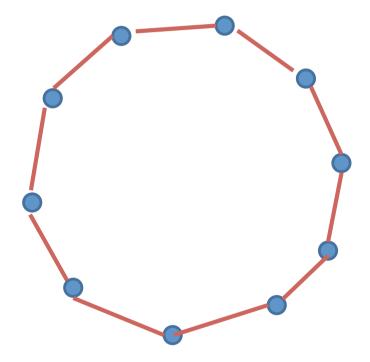
Not partially isomorphic





Not partially isomorphic

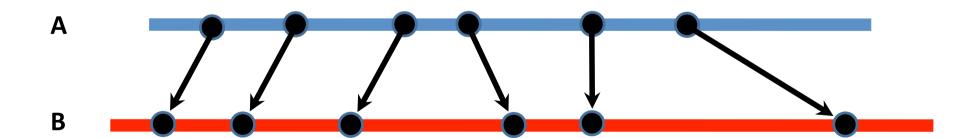




Dense total orders

 All dense total orders without endpoints are partially isomorphic.

$$P = \{ f \in \text{Part}(\mathcal{A}, \mathcal{B}) : \text{dom}(f) \text{ is finite} \}$$



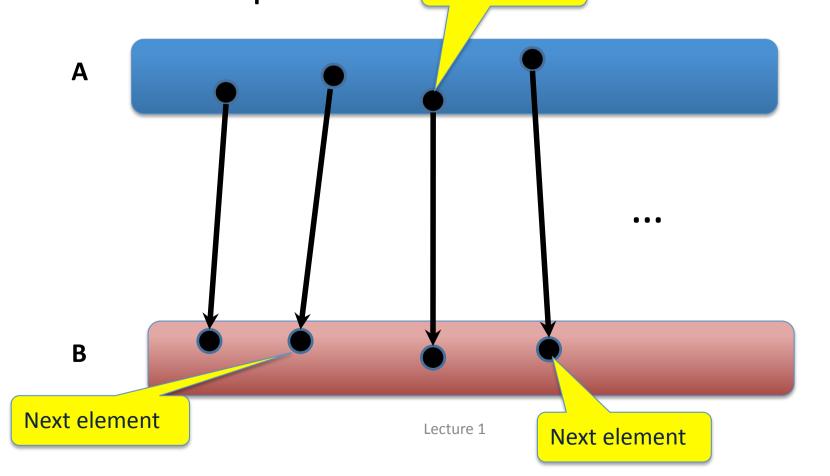
Proposition 4.3.2. Suppose \mathcal{A} and \mathcal{B} are dense linear orders without endpoints. Then $\mathcal{A} \simeq_p \mathcal{B}$.

Proof. Let $P = \{ f \in Part(\mathcal{A}, \mathcal{B}) : dom(f) finite \}.$ It turns out that this straightforward choice works. Clearly, $P \neq \emptyset$. Suppose then $f \in P$ and $a \in A$. Let us enumerate f as $\{(a_1, b_1), \ldots, (a_n, b_n)\}$ where $a_1 < \ldots < a_n$. Since f is a partial isomorphism, also $b_1 < \ldots < b_n$. Now we consider different cases. If $a < a_1$, we choose $b < b_1$ and then $f \cup \{(a,b)\} \in P$. If $a_i < a < a_{i+1}$, we choose $b \in B$ so that $b_i < b < b_{i+1}$ and then $f \cup \{(a,b)\} \in P$. If $a_n < a$, we choose $b > b_n$ and again $f \cup \{(a,b)\} \in P$. Finally, if $a = a_i$, we let $b = b_i$ and then $f \cup \{(a,b)\} = f \in P$. We have proved (4.8). Condition (4.9) is proved similarly.

Countable models

• All countable partially isomorphic structures are isomorphic.

Next element



Proposition 2.3.1. If $A \simeq_p B$, where A and B are countable, then $A \cong B$.

Proof. Let us enumerate A as $(a_n : n < \omega)$ and B as $(b_n : n < \omega)$. Let P be a back-and-forth set for A and B. Since $P \neq \emptyset$, there is some $f_0 \in P$. We define a sequence $(f_n : n < \omega)$ of elements of P as follows: Suppose $f_n \in P$ is defined. If n is even, say n = 2m, let $y \in B$ and $f_{n+1} \in P$ such that $f_n \cup \{(a_m, y)\} \subseteq f_{n+1}$. If n is odd, say n = 2m + 1, let $x \in A$ and $f_{n+1} \in P$ such that $f_n \cup \{(x, b_m)\} \subseteq f_{n+1}$. Finally, let

$$f = \bigcup_{n=0}^{\infty} f_n.$$

Clearly, $f: A \cong \mathcal{B}$.

Zero-one law

- Extension axioms
- Countable categoricity
- Glebskii et al, Fagin, zero-one law
 - Application of back-and-forth

Summary of Lecture 1

- Basic concepts about games, determinacy
- Partial isomorphism
- Back-and-forth set
- Next Lecture:
 - EF game
 - Characterization of (infinitary) elementary equivalence
 - Characterization of definability