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Logic and Databases

Two uses of logic in databases:

� Logic as a query language.

� Logic as a specification language for expressing integrity constraints
(semantic restrictions) that the databases of interest must obey. 
Integrity constraints are also known as database dependencies.
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Functional Dependencies

Definition: Let R be a relational schema and r an instance of R.

� If A1,…,Am, B are attributes of R, then we say that

r satisfies the functional dependency

A1,…,Am → B 

if whenever two tuples in r agree on the values of A1,…,Am, then 
they also agree on the value of B.

(in other words, there are no two tuples in r that have the same 
value on the attributes of A1,…,Am, but differ on the value of B).

� If A1,…,Am, B1,…,Bk are attributes of R, then we say that

r satisfies the functional dependency

A1,…,Am → B1,..,Bk

if r satisfies the functional dependencies 

A1,…,Am → B1, 

…

A1,…,Am → Bk.
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Functional Dependencies

� Definition: A relational schema R satisfies the functional dependency

A1,…,Am → B1,..,Bk

if every instance r of R satisfies A1,…,Am → B1,..,Bk.

� Fact: In effect, the above definition imposes a semantic restriction 
on the instances of R, namely, we disallow all instances that violate 
the functional dependency A1,…,Am → B1,..,Bk.

� Example:   ENROLLS(student, course, term, grade)

� student, course, term → grade         (should be true)

� student, term → course                   (should not be true) 
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Functional Dependencies

Question: How do we know that a FD holds for a database schema?

Answer:

� This is semantic information that is provided by the customer 
who wishes to have a database schema designed for the data of 
interest.

� A FD may be derived (inferred) from other known FDs about the 
schema.
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Functional Dependencies

Example: COMPANY(employee, dpt, manager)

� Some plausible FDs are:

� employee  → dpt

� dpt → manager

� manager → dpt

� employee → manager

� Some implausible FDs are:

� manager → employee

� dpt → employee 

� Note: If both employee → dpt and dpt → manager hold, then 
employee → manager must also hold.
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Functional Dependencies and Relational Calculus

Fact: Every functional dependency A1,…,Am → B can be expressed in 

relational calculus.  More formally, there is a relational calculus formula

ψ such that for every database instance r, we have that the following 

are equivalent:
� r � A1,…,Am → B

� r � ψ.

Proof (by example): Assume that R has attributes A,B,C,D.

Then the following are equivalent for the FD A,B → C.
� r � A,B → C.

� r � ∀x,y,z,w,z’,w’(R(x,y,z,w) Æ R(x,y,z’,w’) → z = z’).

Note: The formula ∀x,y,z,w,z’,w’(R(x,y,z,w) Æ R(x,y,z’,w’) → z = z’)

is an example of an equality-generating dependency (egd).
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Equality-Generating Dependencies

Definition: An equality-generating dependency (egd) is a formula of

relational calculus of the form:

∀ x1,…,xn(ϕ(x1,…,xn) → xi = xj),

where ϕ(x1,…,xn) is a conjunction of atomic formulas 

(i.e., ϕ is a conjunctive query)

Examples:

� ∀x1,x2,x3(R(x1,x2) Æ P(x2,x3)Æ T(x2) → x2 = x3) 

� This is an egd, but not a FD.

� ∀x1,x2,x3(R(x1,x2) Æ R(x1,x3) → x2 = x3)

� This is both an egd and a FD, namely A1 → A2.   
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Inclusion Dependencies

Example: ENROLLS(student-id, name, course), 

PERFORM(student-id, course, grade)

Consider the integrity constraint:

� “every student enrolled in a course is assigned a grade”

This is an example of an inclusion dependency;

it is denoted by:

ENROLLS[student-id,course] ⊆ PERFORM[student-id,course,].
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Inclusion Dependencies

Definition: An inclusion dependency (ID) is an expression of the form

S[A1,…,An] ⊆ T[B1,…,Bn], where 

� A1,…,An are distinct attributes from S

� B1,…,Bn are distinct attributes from T.

� A database instance r satisfies S[A1,…,An] ⊆ T[B1,…,Bn] if 

for every tuple s ∈ S with values c1,…,cn for the attributes A1,…,An, 
there is a tuple t ∈ T with values c1,…,cn for the attributes B1,…,Bn.

� A database schema satisfies S[A1,…,An] ⊆ T[B1,…,Bn]

if every instance of the shema satisfies this ID.
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Inclusion Dependencies and Relational Calculus

Fact: Every inclusion dependency S[A1,…,An] ⊆ T[B1,…,Bn] can be 

expressed in relational calculus.

Proof (by example): Consider the ID 

ENROLLS[student-id,course] ⊆ PERFORM[student-id,course],

which expresses the integrity constraint:

“every student enrolled in a course is assigned a grade”.

This ID is equivalent to the relational calculus formula

∀x,y,z (ENROLLS(x,y,z) → ∃w PERFORM(x,z,w)).

Note: The formula ∀x,y,z (ENROLLS(x,y,z) → ∃w PERFORM(x,z,w)) 

is an example of a tuple-generating dependency (tgd).
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Tuple-Generating Dependencies

Definition: A tuple-generating dependency (tgd) is a formula of

relational calculus of the form:

∀ x1,…,xn(ϕ(x1,…,xn) → ∃ y1,..,ym ψ(x’1,…,x’
k
,y1,…,ym)),

where 

� ϕ(x1,…,xn)  and ψ(x’1,…,x’
k
,y1,…,ym are conjunctions of atomic 

formulas 

� The variables x’1,…,x’
k

are among the variables x1,…,xn.

Note: In effect, a tuple-generating dependency asserts that one

conjunctive query (namely, the one defined by ϕ(x1,…,xn))

is contained in another conjunctive query

(namely, the one defined by  ∃y1,..,ymψ(x’1,…,x’
k
,y1,…,ym)).
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Tuple-Generating Dependencies

Examples:

� Every inclusion dependency is a tuple-generating dependency.

� ∀ x,y,z (E(x,y)Æ E(y,z) → E(x,z))

� This is a tgd, but not an ID. It asserts that E is transitive.

� ∀ x,y(E(x,y) → ∃ z(F(x,z) Æ F(z,y)).

� This says that for every edge in E, there is a path of length 2 

in F.

� ∀ x,y,z (P(x,y,z) → R(x,y)Æ T(y,z))

� This says that P is decomposed to R and T.
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Embedded Implicational Dependencies

Definition: A database integrity constraint is an embedded implicational 

dependency if it is either a tuple-generating dependency or an 

equality-generating dependency.

Fact: Embedded implicational dependencies contain as special cases

the various classes of integrity constraints studied in the 1970s and 

the early 1980s, such as:

� Functional dependencies

� Join dependencies

� Inclusion dependencies.

� Multivalued dependencies.

(see the survey paper on database dependencies by Fagin and Vardi)
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Relational Calculus in Databases

Note:

� Relational calculus has been used in databases in two different 
ways:

� As a database query language

� As a constraint language for specifying integrity constraints, e.g.,

� Key constraints can be expressed in relational calculus.

� Inclusion dependencies can be expressed in relational 
calculus.

� In what follows, we will see that relational calculus is also used to 
formalize critical data interoperability tasks, such as

� Data integration and

� Data exchange
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The Data Interoperability Challenge

� Data may reside

� at several different sites

� in several different formats (relational, XML, …).

� Applications need to access and process all these data.

� Growing market of enterprise data interoperability tools:

in particuclar, IBM, SAP, Oracle, and Microsoft offer

competing software systems for data interoperability tasks.
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Theoretical Aspects of Data Interoperability

The research community has studied two different, but 

closely related, facets of data interoperability:

� Data Integration (aka Data Federation)

� Formalized and studied for the past 10-15 years

� Data Exchange  (aka Data Translation)

� Formalized and studied for the past 7-8 years

“Data exchange is the oldest database problem”

Phil Bernstein - 2003
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Data Integration

Query heterogeneous data in different sources via a virtual 

global schema

I1

Global

Schema
I2

I3 Sources

query

S
1

S
2

S
3

T

Q

Virtual Integration:

Expedia, Travelocity, hotels.com, �
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Data Exchange

Transform data structured under a source schema into data 
structured under a different target schema.

S T

Σ

I
J

Source Schema Target Schema

Materialization: Merges and acquisitions
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Schema Mappings

� Schema mappings:

High-level, declarative assertions that specify  the relationship 
between two database schemas.

� Schema mappings constitute the essential building blocks in 
formalizing and studying data interoperability tasks, including data 
integration and data exchange.

� Schema mappings help with the development of tools.
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Schema-Mapping Systems: State-of-the-Art

Source schema SSSS Target schema TTTT

Visual spec.Visual spec.Visual spec.Visual spec.

Declarative Schema Mappings

Executable code

(XSLT, XQuery, SQL, Java)

I
J

Generic architecture Generic architecture Generic architecture Generic architecture 

of schemaof schemaof schemaof schema----mapping mapping mapping mapping 

systemssystemssystemssystems

e.g.,

IBM Clio, HePToX

Altova MapForce

Stylus Studio

MS Biztalk Mapper
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Schema Mappings 

Source  S Target  T

� Schema Mapping M = (S, T, Σ)

� Source schema  S, Target schema T

� A set Σ of high-level, declarative assertions (constraints) that 
specify the relationship between S-instances and T-
instances. 

� Inst(M) = { (I, J):  I is an S-instance, J is a T-instance, 

and (I, J) � Σ }.

I
J

Σ
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Schema Mappings & Data Exchange

Source  S Target  T

� Schema Mapping M = (S, T, Σ)

� Source schema  S, Target schema T

� A set Σ of high-level, declarative assertions (constraints) that 
specify the relationship between S-instances and T-
instances.

� Data Exchange via the schema mapping M = (S, T, Σ)

Transform a given source instance I to a target instance J, so 
that (I, J) satisfy the specifications Σ of M.

I
J

Σ
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Solutions in Schema Mappings

Definition: Schema Mapping M = (S, T, Σ)

If I is a source instance, then a solution for I is a

target instance J such that  (I, J) satisfy Σ.

Fact: In general, for a given source instance I,

� No solution for I may exist (the constraints overspecify)

or

� Multiple solutions for I may exist; in fact, infinitely many solutions 
for I may exist (the constraints underspecify).
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Schema Mappings:  Basic Problems

Definition: Schema Mapping M = (S, T, Σ)

� The existence-of-solutions problem Sol(M):    (decision problem)

Given a source instance I, is there a solution J for I?

� The data exchange problem associated with M:  (function problem)

Given a source instance I,  construct a solution J for I, provided a solution 
exists.

Schema  S Schema  T

I J

Σ



27

Schema-Mapping Specification Languages

� Ideally, schema mappings should be
� expressive enough to specify data interoperability tasks;
� simple enough to be efficiently manipulated by tools.

� Question: How are schema mappings specified?

� Answer:  Use a high-level, declarative language. In particular, it is natural 
to try to use relational calculus (first-order logic) as a specification language 
for schema mappings.

� Fact: There is a fixed relational calculus sentence specifying a schema 
mapping M* such that Sol(M*) is undecidable.
� Reason: Undecidability of the Finite Validity Problem 

� Hence, we need to restrict ourselves to well-behaved fragments of 
relational calculus.
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Schema-Mapping Specification Languages:   Bottom-Up

Let us consider some simple tasks that a schema mapping specification 

language should support:

� Copy (Nicknaming):

� Copy each source table to a target table and rename it.

� Projection:

� Form a target table by projecting on one or more columns of a source 
table.

� Decomposition:

� Decompose a source table into two or more target tables.

� Column Augmentation:

� Form a target table by adding one or more columns to a source table.

� Join:

� Form a target table by joining two or more source tables.

� Combinations of the above (e.g., “join + column augmentation”)
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Schema Mapping Specification Languages

� Copy (Nicknaming):

� ∀x1, …,xn(P(x1,…,xn) → R(x1,…,xn))

� Projection:

� ∀x,y,z(P(x,y,z) → R(x,y))

� Decomposition:

� ∀x,y,z (P(x,y,z) → R(x,y)Æ T(y,z))

� Column Augmentation:

� ∀x,y (P(x,y) → ∃ z R(x,y,z))

� Join:

� ∀x,y,z(E(x,z)ÆF(z,y) → R(x,y,z))

� Combinations of the above (e.g., “join + column augmentation”)

� ∀x,y,z(E(x,z)Æ F(z,y) → ∃ w T(x,y,z,w)))
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Schema Mapping Specification Languages

� Question: What do all these tasks (copy, projection, decomposition, 
column augmentation, join) have in common?

� Answer:

� They can be specified using

tuple-generating dependencies (tgds).

� In fact, they can be specified using a special class of 

tuple-generating dependencies known as 

source-to-target tuple generating dependencies (s-t tgds).
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Schema Mapping Specification Language

The relationship between source and target is given by formulas of 
relational calculus, called 

Source-to-Target Tuple Generating Dependencies (s-t tgds)

∀ x (ϕ(x) → ∃y ψ(x, y)), where

� ϕ(x)     is a conjunction of atoms over the source; 

� ψ(x, y) is a conjunction of atoms over the target;

� x and y are tuples of variables. 

They are also known as GLAV (Global-and-Local-as-View) constraints

Example:

(Student(s) ∧ Enrolls(s,c)) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g))

(here, we have dropped the universal quantifiers in front of s-t tgds)
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Schema Mapping Specification Language

� s-t tgds will be used to specify the relationship between source and target; 
they assert that: some conjunctive query over the source is contained in 
some other conjunctive query over the target.

(Student (s) ∧ Enrolls(s,c)) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g))       

� s-t tgds (GLAV constrtaints) generalize the main specifications used in data 

integration:

� They generalize LAV (local-as-view) specifications:

P(x)  → ∃y ψ(x, y), where P is a source relation.

Note: Copy, projection, and decomposition are LAV s-t tgds.

� They generalize GAV (global-as-view) specifications:

ϕ(x)  → R(x),  where R is a target relation

(they are equivalent to full tgds:   ϕ(x)  → ψ(x), 

where ϕ(x) and ψ(x) are  conjunctions of atoms).

Note: Copy, projection, and join are GAV s-t tgds.
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Target Dependencies

In addition to source-to-target dependencies, we also consider

target dependencies, since, after all, the target schema may have its own 

integrity constraints:

� Target Tgds :    ϕT(x)  → ∃y ψT(x, y)

Dept (did, dname, mgr_id, mgr_name)  → Mgr (mgr_id, did) 
(a target inclusion dependency constraint)

� Target Equality Generating Dependencies (egds):

ϕT(x)  → (x1=x2) 

(Mgr (e, d1) ∧ Mgr (e, d2)) → (d1 = d2)
(a target key constraint) 
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Data Exchange Framework

Schema Mapping M = (S, T, Σst , Σt ), where

� Σst is a set of source-to-target tgds

� Σt  is a set of target tgds and target egds

Source 
Schema  S

Target 
Schema  T

Σst

I J

Σt
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Schema Mappings: An Example

� Source Schema S: Movies database with relations

P(title, year),  R(title, director)

� Target Schema T: Movies database with relations

Movies(title, year, director), Reviews(title, year, critic, score)

� Σst consists of the following source-to-target tgds

� ∀t ∀y ∀d (P(t,y) ∧ R(t,d) → Movies(t,y,d))        (GAV)

� ∀t ∀y (P(t,y) → ∃c ∃s Reviews(t,y,c,s))             (LAV)

� Σt  consists of the following target tgds and target egds

� ∀t ∀y ∀d ∀d’ (Movies(t,y,d) ∧ Movies(t,y,d’) → d = d’)

� ∀t ∀y ∀c ∀s ∀s’ (Reviews(t,y,c,s) ∧ Reviews(t,y,c,s’) → s = s’)

� ∀t ∀y ∀c ∀s (Reviews(t,y,c,s)  → ∃d Movies(t,y,d))



36

Visual Specification

� Screenshot from Bernstein and Haas 2008 CACM article. 
“Information Integration in the Enterprise”
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Schema Mappings (one of many pages)
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Underspecification in Data Exchange

� Fact: Given a source instance, multiple solutions may exist.

� Example: 

Source relation E(A,B), target relation H(A,B)

Σ:  E(x,y) → ∃z (H(x,z) ∧ H(z,y))

Source instance I = {E(a,b)}

Solutions: Infinitely many solutions exist

� J1  =  {H(a,b), H(b,b)}                                    constants:

� J2  =  {H(a,a), H(a,b)}                                        a, b, …

� J3  =  {H(a,X), H(X,b)}                                    variables (labelled nulls):         

� J4  =  {H(a,X), H(X,b), H(a,Y), H(Y,b)}               X, Y, …

� J5  =  {H(a,X), H(X,b), H(Y,Y)}
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Main issues in data exchange

For a given source instance, there may be multiple target instances 
satisfying the specifications of the schema mapping. Thus,

� When more than one solution exist, which solutions are “better”
than others?

� How do we compute a “best” solution?

� In other words, what is the “right” semantics of data exchange?
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Universal Solutions in Data Exchange

Definition (Fagin, K …, Miller, Popa 2003):  A solution is universal

if it has homomorphisms to all other solutions 

(thus, it is a “most general” solution).

� Constants: entries in source instances

� Variables (labeled nulls): other entries in target instances

� Homomorphism h: J1 → J2 between target instances:

� h(c) = c, for constant c

� If P(a1,…,am) is in J1,, then P(h(a1),…,h(am)) is in J2.

Claim: Universal solutions are the preferred solutions in 

data exchange.
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Universal Solutions in Data Exchange

Schema  S Schema  T

I
J

Σ

J1

J2
J3

Universal Solution

Solutions

h1 h2 h3
Homomorphisms
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Example - continued

Source relation S(A,B), target relation T(A,B)

Σ :  E(x,y) → ∃z (H(x,z) ∧ H(z,y))

Source instance I = {E(a,b)}

Solutions: Infinitely many solutions exist

� J1  =  {H(a,b), H(b,b)}    is not universal

� J2  =  {H(a,a), H(a,b)}    is not universal

� J3  =  {H(a,X), H(X,b)}   is universal

� J4  =  {H(a,X), H(X,b), H(a,Y), H(Y,b)}   is universal

� J5  =  {H(a,X), H(X,b), H(Y,Y)}               is not universal
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Structural Properties of Universal Solutions

� Universal solutions are analogous to most general unifiers in logic 
programming.

� Uniqueness up to homomorphic equivalence: 
If J and J’ are universal for I, then they are homomorphically
equivalent.

� Representation of  the entire space of solutions:
Assume that J is universal for I, and J’ is universal for I’.
Then the following are equivalent:
1. I and I’ have the same space of solutions.
2. J and J’ are homomorphically equivalent. 
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The Existence-of-Solutions Problem

Question: What can we say about the existence-of-solutions 

problem Sol(M) for a fixed schema mapping M = (S, T, Σst,Σt) 

specified by s-t tgds and target tgds and egds?

Answer:  Depending on the target constraints in Σt:

� Sol(M) can be trivial (solutions always exist).

…

� Sol(M) can be in PTIME.

…

� Sol(M) can be undecidable.
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Algorithmic Problems in Data Exchange

Proposition: Let M = (S, T, Σst) be  a schema mapping with no

target constraints, i.e., Σst is a set of s-t tgds and Σt   = ∅.  Then

� Solutions always exist; hence, Sol(M) is trivial.

� Universal solutions can be computed in polynomial time 
via the naïve chase procedure.
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The Naïve Chase Algorithm

Naïve Chase Algorithm for M* = (S, T, Σst) : given a source 

instance I, build a target instance J* that satisfies each s-t tgd in Σst

� by introducing new facts in J* as dictated by the RHS of the s-t tgd

and

� by introducing new values (variables) in J* each time existential 
quantifiers need witnesses.  

Example: M = (S, T, Σst)   (here Σt =∅)

Σst:  E(x,y)  → ∃ z(F(x,z)Æ F(z,y))

The naïve chase returns a relation F* obtained from E by adding a

new node between every edge of E.

� If E= { (1,2) }, then F*={ (1,N),(N,2) }  is universal solution for E

� If E ={ (1,2),(2,3),(1,4) }, then 

� F*={ (1,M),(M,2),(2,N),(N,3),(1,U),(U,4) } is universal solution for E. 
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The Naïve Chase Algorithm

Example : Collapsing paths of length 2 to edges

M = (S, T, Σst)   (here Σt =∅)

Σst:     E(x,z)Æ E(z,y) → F(x,y)         (GAV mapping)

� E = { (1,3), (2,4), (3,4) }

F* = { (1,4) }     Universal Solution for E

� E =   { (1,3}, (2,4), (3,4), (4,3) }

F* =   { (1,4), (2,3), (3,3), (4,4) }   Universal solution for E
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Algorithmic Problems in Data Exchange

Question:

What about arbitrary target tgds and egds?

More formally:

What can we say about the existence-of-solutions problem for 

schema mappings M= (S, T, Σ*st, Σ*t) such that

� Σ*st is a set of s-t tgds;

� Σ*t is a set of target tgds and target egds?
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The Complexity of the Existence of Solutions Problem

No algorithm 
exists, in general

Undecidable, in 
general 

Undecidable, in 
general

Σt: target tgds + 

egds

PTIMEPTIME

Univ. solutions 
exist if and only if

solutions exist

PTIME

It can be PTIME-
complete

Σt:

Weakly acyclic set 
of target tgds + 
egds

PTIMETrivialTrivialΣt = ∅

No target 
constraints

Computing a 
Universal Solution

Existence-of-
Universal 
Solutions Problem

Existence-of-
Solutions Problem

M = (S, T, Σst , Σt )

Σst a set of s-t
tgds
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