Schema Mappings and Data Exchange

Lecture #5

EASSLC 2012
Southwest University
August 2012

Logic and Databases

Two uses of logic in databases:
Logic as a query language.

Logic as a specification language for expressing integrity constraints
(semantic restrictions) that the databases of interest must obey.
Integrity constraints are also known as database dependencies.

Functional Dependencies

Definition: Let R be a relational schema and r an instance of R.
o IfA,...,A,, Bare attributes of R, then we say that
r satisfies the functional dependency
A,..,A,— B
if whenever two tuples in r agree on the values of A,,...,A,, then
they also agree on the value of B.

(in other words, there are no two tuples in r that have the same
value on the attributes of A,,...,A,,, but differ on the value of B).

o IfA,..., A, B...,B are attributes of R, then we say that
r satisfies the functional dependency
A,,... A, — By..B
if r satisfies the functional dependencies
A,,... A, — By,

A, A — B,

Functional Dependencies

Definition: A relational schema R satisfies the functional dependency
A, ... A, — By.. B
if every instance r of R satisfies A,,...,A, — By,..,B,.

Fact: In effect, the above definition imposes a semantic restriction
on the instances of R, namely, we disallow all instances that violate
the functional dependency A,,..., A, — By,..,By.

Example: ENROLLS(student, course, term, grade)
o student, course, term — grade (should be true)
o student, term — course (should not be true)

Functional Dependencies

Question: How do we know that a FD holds for a database schema?

Answer:

o This is semantic information that is provided by the customer
who wishes to have a database schema designed for the data of
interest.

o A FD may be derived (inferred) from other known FDs about the
schema.

Functional Dependencies

Example: COMPANY(employee, dpt, manager)
Some plausible FDs are:
o employee — dpt
o dpt — manager
o manager — dpt
o employee — manager
Some implausible FDs are:
o manager — employee
o dpt — employee

Note: If both employee — dpt and dpt — manager hold, then
employee — manager must also hold.

Functional Dependencies and Relational Calculus

Fact: Every functional dependency A,,...,A, — B can be expressed in
relational calculus. More formally, there is a relational calculus formula
1 such that for every database instance r, we have that the following

are equivalent:
a rEA,,...,A,— B

o rFEa.

Proof (by example): Assume that R has attributes A,B,C,D.

Then the following are equivalent for the FD A,B — C.
o rEAB— C

o rEVvXy,zw,z W(R(Xy,zw) A R(X,y,Z W) =z =72.

Note: The formula vx,y,z,w,z’,W'(R(x,y,z,w) A R(X,y,Z’, W) — z = Z")
is an example of an equality-generating dependency (egd).

Equality-Generating Dependencies

Definition: An equality-generating dependency (egd) is a formula of
relational calculus of the form:
V Xppeee Xn(@(Xgy e Xn) = Xi = X5),
where ¢(x,...,X,) IS @ conjunction of atomic formulas
(i.e., @ is a conjunctive query)

Examples:
0 WXy XX3(R(X1,X5) A P(Xy,X3)A T(Xy) — X5 = X3)
This is an egd, but not a FD.

0 VXX, X3(R(X(,%5) A R(X{,X3) = X5 = X3)
This is both an egd and a FD, namely A; — A,.

Inclusion Dependencies

Example: ENROLLS(student-id, name, course),
PERFORM(student-id, course, grade)

Consider the integrity constraint:
o “every student enrolled in a course is assigned a grade”

This is an example of an inclusion dependency;
it is denoted by:
ENROLLS[student-id,course] € PERFORM[student-id,course,].

Inclusion Dependencies

Definition: An inclusion dependency (ID) is an expression of the form
S[A,,...,A] € T[By...,B,], where
= A,..., A, are distinct attributes from S
= B,,...,B, are distinct attributes from T.
A database instance r satisfies S[A,,...,A,] C T[By,...,B.] if
for every tuple s € S with values c,,...,c, for the attributes A,,..., A,

there is a tuple t € T with values c,,...,c, for the attributes B,,...,B..

A database schema satisfies S[A,,...,A,] C T[B,...,B.]
if every instance of the shema satisfies this ID.

10

Inclusion Dependencies and Relational Calculus

Fact: Every inclusion dependency S[A,,...,A,] € T[B,,...,B,] can be
expressed in relational calculus.

Proof (by example): Consider the ID
ENROLLS[student-id,course] € PERFORM[student-id,course],
which expresses the integrity constraint:
“every student enrolled in a course is assigned a grade”.

This ID is equivalent to the relational calculus formula
vXx,Y,Z (ENROLLS(X,y,z) — 3w PERFORM(x,z,w)).

Note: The formula vx,y,z (ENROLLS(x,y,z) — 3w PERFORM(X,z,w))
is an example of a tuple-generating dependency (tgd).

11

Tuple-Generating Dependencies

Definition: A tuple-generating dependency (tgd) is a formula of
relational calculus of the form:

v X1/---1Xn((P(X11---IXn) — 3 Y1I"IYm w(xlll"'IX,kIY1I"'IYm))I
where

o(Xy,..,X,) and zp(x’l,...,x’k,yl,...,yrn are conjunctions of atomic
formulas

The variables x’l,...,x’k are among the variables x;, ..., X..

Note: In effect, a tuple-generating dependency asserts that one
conjunctive query (namely, the one defined by o(X;,...,X,,))

is contained in another conjunctive query

(namely, the one defined by Hyl,..,ym¢(x’1,...,x’k,yl,...,ym)).

12

Tuple-Generating Dependencies

Examples:
o Every inclusion dependency is a tuple-generating dependency.

o Vxy,z (E(Y)A E(y,z) — E(X,2))
This is a tgd, but not an ID. It asserts that E is transitive.

o Vxy(E(XY) = 3 z(F(x,2) A F(z,y)).
This says that for every edge in E, there is a path of length 2
in F.

o Vxy,z (P(xy,z) = RX,¥)A T(Y,2))
This says that P is decomposed to R and T.

13

Embedded Implicational Dependencies

Definition: A database integrity constraint is an embedded implicational
dependency if it is either a tuple-generating dependency or an
equality-generating dependency.

Fact: Embedded implicational dependencies contain as special cases
the various classes of integrity constraints studied in the 1970s and
the early 1980s, such as:

o Functional dependencies

o Join dependencies

o Inclusion dependencies.

o Multivalued dependencies.
(see the survey paper on database dependencies by Fagin and Vardi)

14

Relational Calculus in Databases

Note:

Relational calculus has been used in databases in two different
ways:

o As a database query language
o As a constraint language for specifying integrity constraints, e.q.,
Key constraints can be expressed in relational calculus.

Inclusion dependencies can be expressed in relational
calculus.

In what follows, we will see that relational calculus is also used to
formalize critical data interoperability tasks, such as

o Data integration and
o Data exchange

15

The Data Interoperability Challenge

Data may reside
o at several different sites
o in several different formats (relational, XML, ...).

Applications need to access and process all these data.
Growing market of enterprise data interoperability tools:

in particuclar, IBM, SAP, Oracle, and Microsoft offer
competing software systems for data interoperability tasks.

16

Theoretical Aspects of Data Interoperability

The research community has studied two different, but
closely related, facets of data interoperability:

Data Integration (aka Data Federation)
o Formalized and studied for the past 10-15 years

Data Exchange (aka Data Translation)

o Formalized and studied for the past 7-8 years
“Data exchange is the oldest database problern’
Phil Bernstein - 2003

17

Data Integration

Query heterogeneous data in different sources via a virtual
global schema

3
.

/ SZ/\
.

LS /S

Virtual Integration:
i Sources Expedia, Travelocity, hotels.com, ...

query Q

18

Data Exchange

Transform data structured under a source schema into data
structured under a different target schema.

s 7 T

Source Schema Target Schema

Materialization: Merges and acquisitions

19

Schema Mappings

Schema mappings:

High-level, declarative assertions that specify the relationship
between two database schemas.

Schema mappings constitute the essential building blocks in
formalizing and studying data interoperability tasks, including data
integration and data exchange.

Schema mappings help with the development of tools.

20

‘ Schema-Mapping Systems: State-of-the-Art

Visual spec.
> A
Generic architecture
of schema-mapping
systems
[Declarative Schema Mappings] e.g.,
IBM Clio, HePToX
> Altova MapForce

Stylus Studio

Executable code MS Biztalk Mapper
(XSLT, XQuery, SQL, Java)

@J—.

21

7 Clio

File Schemas Mappings.

HEML Engine QLiEry Rewrite: Schetn

a Evolution Help

@ Source @ Target | ﬁ Schema Yiew @? ety

e om

L

Bscarracare

Su:uuru:e zchemas

E." COMNTACT [L*] 4k

F" EXPERIMENTFACTOR [1,*] {m
* [EL EF_FE (ztting)

FF EXPERIMEMTSET [1,%] fus}

EE" SPECIES [1,%] 4wt
| [EF TL_FACTORMALLE [1,%] 4w

 [EL EF_FK (string)

[EF TREATMENTLEVEL [1,%]
* Bk E5_FK (etring)

[El NAME (string)

I_E LLIMST LT STy)

[EL COM_PE (string)

[EL TYPE (string)

[EL QRGAMIZATION (string)
[EL COMTACT_PERSCOM (sting)
[EL COMTACT_PERSOMN_PHOMNE (string)
[EL COMTACT_PERSOM_EMAILL (string)
[EE QRG_PHOMNE (string)
[EL ORG_EMAILL (string)
[EL URL (ztring)

[EL ES_FK (stting)
[EL FACTOR_MAME (string)

\\\

\\

| f‘r/sy:get zche _

= E?; contact_person_email (sthng)
_ / [EL ora_phone (string)
[EE org_smail (string)

[EE url (string)

= COMNTACT _PERSON_EMAIL

a3 5

= QORG_PHONE

= ORG_EMAIL

= URL

[EL id (string) w2

I @ &ype(sting

® [E species_list fw}
= [EF exp_set [0%] {wl
= [E exp_set_header fm}
[EL biclogy_desc (sting)
[EL analysis_desc (string)
= [E exp_factors_list i}
= [E exp_factor [1.4] fmd

= SK1063(EI0LOGY_DEST, AM...

= TYPE

= BIOLOay _DESC

= ANALYSIS _DESC

[EL id (string) =

[EL FACTOR_UMITS (string)

) fact o naze [sting)

[EL MAJOR_CATEGORY [stting)

0 fac for wwaibs (siing)

[EL MINOR_CATEGORY (string) ___Z_,.f’__

o major cabegory (Sting)

[EL ES_FE (stting)

[EL MAME (string)

[EL RELEASE_DATE (gtring]
[EL BIOLOGY_DESC (string)
[EL AMALYSIS_DESC (string)
[EBL LnZAL_ACCESSION (string)
[EL PROVIDER_COM_FE (string)

[BL TL_FK (ztring)
[EL YALLE (string)
[EL REF_YALLE (ztring)

[EL TL_PK (ztring)

[EL RATIO_AM_FE (inf)

\ \\\

a mimer oabegory (Sting)
= [treatment_list fo}
= [E treatment fed
[B] treat_array_lisk fot
= [g] treat_factor_lisk fed
= [E treat_factaor [0,%]

@ value (string)

o ref wvalue(sting
[EL ratio_am_id (string)

@ id0r)

@ treatmen £ zame (Sthing)

1 [EF array [1*] det

[BE owner_contact_id (string)
@ id(o)

@ gy id(IDREF)

@ mame (sthng)

@ local accessicmisting

ol

@ release dateisting

=EE K

= FACTOR_MAME

= FACTOR_LUNITS

= MAJDR._CATEGORY

= MINOR,_CATEGORY

[EL Factor_id (sting) ——td: [=EF_FK

= YalLLE

= REF_VALLE

= SK1042(BIOLOGY DESC, AM...

= SK10S1(EIOLOGY DESC, AM...

= NAME

= SK1063(BIOLOGY DESC, AM...

= SK1066(EIOLOGY DESC, AM...

= SK1067(BIOLOGY DESC, AM...

= MAME

= LoCAL ACCESSION

|=RELEASE DATE

File: Cieclipse'workspace'\¥Clio'xsmligenex-rdb2xr

Schema Mappings
3

.
Sy T s

= Schema MappingM = (S, T, 2)
o Source schema S, Target schema T

o A set 2 of high-level, declarative assertions (constraints) that
specify the relationship between S-instances and T-
instances.

= Inst(M) ={ (I, J): Iis an S-instance,] is a T-instance,
and (I, J) E 2 }.

23

Schema Mappings & Data Exchange
3

.
P raye / — /

Schema Mapping M = (S, T, 2)
o Source schema S, Target schema T

o A set 2 of high-level, declarative assertions (constraints) that
specify the relationship between S-instances and T-
instances.

Data Exchange via the schema mappingM = (S, T, %)

Transform a given source instance I to a target instance J, so
that (I, J) satisfy the specifications X of M.

24

Solutions in Schema Mappings

Definition: Schema Mapping M= (S, T, %)
If I is a source instance, then a solution for I is a
target instance J such that (I, J) satisfy 2.

Fact: In general, for a given source instance I,
No solution for I may exist (the constraints overspecify)
or

Multiple solutions for I may exist; in fact, infinitely many solutions
for I may exist (the constraints underspecify).

25

Schema Mappings: Basic Problems
2

Definition: Schema Mapping M= (S, T, 2)
o The existence-of-solutions problem Sol(M): (decision problem)
Given a source instance I, is there a solution J for I?

o The data exchange problem associated with M: (function problem)

Given a source instance I, construct a solution J for I, provided a solution
exists.

26

Schema-Mapping Specification Languages

Ideally, schema mappings should be
o expressive enough to specify data interoperability tasks;
o simple enough to be efficiently manipulated by tools.

Question: How are schema mappings specified?

Answer: Use a high-level, declarative language. In particular, it is natural
to try to use relational calculus (first-order logic) as a specification language
for schema mappings.

Fact: There is a fixed relational calculus sentence specifying a schema
mapping M* such that Sol(M*) is undecidable.

o Reason: Undecidability of the Finite Validity Problem

Hence, we need to restrict ourselves to well-behaved fragments of
relational calculus.

27

Schema-Mapping Specification Languages: Bottom-Up

Let us consider some simple tasks that a schema mapping specification
language should support:
o Copy (Nicknaming):
Copy each source table to a target table and rename it.
o Projection:

Form a target table by projecting on one or more columns of a source
table.

o Decomposition:
Decompose a source table into two or more target tables.
o Column Augmentation:
Form a target table by adding one or more columns to a source table.
o Join:
Form a target table by joining two or more source tables.
o Combinations of the above (e.g., “join + column augmentation”)

28

Schema Mapping Specification Languages

Q

Copy (Nicknaming):

VX1, e Xq(P(Xq, e X) = R(Xq,ee,X0))
Projection:

vx,y,z(P(x,y,z) — R(X,y))
Decomposition:

vx,y,z (P(x,y,z) — R(X,y)A T(y,z))
Column Augmentation:

vx,y (P(x,y) — 3z R(X,Y,2))
Join:

vx,Y,Z(E(x,z)AF(z,y) — R(X,Yy,2))
Combinations of the above (e.g., “join + column augmentation”)

vx,y,Z(E(x,2)A F(z,y) — 3 w T(X,y,z,W)))

29

Schema Mapping Specification Languages

Question: What do all these tasks (copy, projection, decomposition,
column augmentation, join) have in common?

Answer:
o They can be specified using
tuple-generating dependencies (tgds).

o In fact, they can be specified using a special class of

tuple-generating dependencies known as
source-to-target tuple generating dependencies (s-t tgds).

30

Schema Mapping Specification Language

The relationship between source and target is given by formulas of
relational calculus, called

Source-to-Target Tuple Generating Dependencies (s-t tgds)
vV X (o(x) — 3y y(X, y)), where

= o@(x) is a conjunction of atoms over the source;

= (X, y) is a conjunction of atoms over the target;

= x and y are tuples of variables.

They are also known as GLAV (Global-and-Local-as-View) constraints
Example:

(Student(s) A Enrolls(s,c)) — 3t 3g (Teaches(t,c) A Grade(s,c,9))
(here, we have dropped the universal quantifiers in front of s-t tgds)

31

Schema Mapping Specification Language

s-t tgds will be used to specify the relationship between source and target;
they assert that: some conjunctive query over the source is contained in
some other conjunctive query over the target.

(Student (s) A Enrolls(s,c)) — 3t 3g (Teaches(t,c) A Grade(s,c,q9))

s-t tgds (GLAV constrtaints) generalize the main specifications used in data
integration:

= They generalize LAV (local-as-view) specifications:
P(x) — 3y y(X, y), where P is a source relation.
Note: Copy, projection, and decomposition are LAV s-t tgds.
= They generalize GAV (global-as-view) specifications:
o(x) — R(x), where R is a target relation
(they are equivalent to full tgds: o(xX) — y(X),
where ¢(x) and y(x) are conjunctions of atoms).
Note: Copy, projection, and join are GAV s-t tgds.

32

Target Dependencies

In addition to source-to-target dependencies, we also consider
target dependencies, since, after all, the target schema may have its own

integrity constraints:
o TargetTgds: oX) —» Iy vy(X,Y)

Dept (did, dname, mgr_id, mgr_name) — Mgr (mgr_id, did)
(a target inclusion dependency constraint)

o Target Equality Generating Dependencies (egds):
or(X) = (X{=X,)

(Mgr (e, d;) A Mgr (e, d,)) > (d; =d,)
(a target key constraint)

33

Data Exchange Framework

/St\

Source Target
Schema S Schema T

/-

Schema MappingM = (S, T, 2, 2,), where
2. IS a set of source-to-target tgds

2. is a set of target tgds and target egds

34

Schema Mappings: An Example

Source Schema S: Movies database with relations

P(title, year), R(title, director)

Target Schema T: Movies database with relations
Movies(title, year, director), Reviews(title, year, critic, score)

2 consists of the following source-to-target tgds

Q

a

vt vy vd (P(t,y) A R(t,d) — Movies(t,y,d)) (GAV)
vt vy (P(t,y) — dJc ds Reviews(t,y,c,s)) (LAV)

2. consists of the following target tgds and target egds

Q

Q

a

vt vy vd vd’ (Movies(t,y,d) A Movies(t,y,d) — d =d’)
vt vy Ve Vs Vs’ (Reviews(t,y,c,s) A Reviews(t,y,c,s") — s =5)
vt vy Vc Vs (Reviews(t,y,c,s) — 3d Movies(t,y,d))

35

‘ Visual Specification

- qmm'ﬂﬂ—n—-

ht_tthﬁ____ -_ _
._ m .: 4 :hhbhtkhhﬂhktut.—t“ ERERE] E,—t..._...r_n.- ?m

R

SCercitmn i
oo oy

Az EBRA-.

[0
O
v
©
=
@)
<
C ~
S 3
Sk

Ny |
o 9 S 5 A%
© S 7 | DN
H E r £ | \‘.,..‘\h-'._ 3 __
T U 777/ Y ISETHADNR
© O
£ S : L.._.._.__n
v S !
S
gl B
= ®
TR Ik
o R
m ._m wmn_
Il

SR
Gl AL AR il sl o
2 £ fl LRI 1 K
e 0 < mm mJJiliﬂddiﬂ#ﬂd:th‘diﬂ M..-.s._-‘.-ﬂn_:iﬂ
() r_l m# m m.._. ! w4 iq: :
d _m_ m..u__m .a.si.-un: : B

AP T e TR e se——

Farmix) Rarend

il T TR

36

Schema Mappings (one of many pages)

Map 2:

for sm2

exists
where

satisf

Map 3:

Map 4:

Map 5:

x0 in SO.dummy_ COUNTRY_ 4

tm2Zx0@ in S27.dummy_country 10, tmZxl in S2Z7.dummy_organiza 13
tm2Zx0.country.membership=tmZxl.organization.id,

sm2x0 .COUNTRY . AREA=tm2x0 .country.area, sm2x0.COUNTRY .CAPITAL=tm2x0.country.capital,

smZ2x0 . COUNTRY .CODE=tm2x0.country.id, sm2x0.COUNTRY .NAME=tm2x0@.country.name,

smZx0 . COUNTRY .POPULATION=tm2x@.country . population, (

for sm3x@ in SO.dummy_ GEO RIVE 23, sm3xl in SO0.dummy RIVER 24,

sm3xZ2 in SO.dummy_ PROVIMNCE_ S5
where sm3x0.GEO_RIVER.RIVER=sm3x1.RIVER.NAME, sm3x2.PROVINCE.NAME=sm3x0.GEO_RIVER.PROVIMNCE,

sm3x2 .PROVINCE . COUNTRY=smZx@ .COUNTRY .CODE,

exists tm3x@ in S27.dummy_river 24, tm3x1l in tm3x0.river.dummy_located 23,
tm3x4 in S27 .dummy_country 18, tm3x5 in tm3x4.country.dummy province 9,
tm3x6 in S27 .dummy_organiza 13

where tm3x4d.country.membership=tm3x6.organization.id, tm3x5.province.id=tm3xl .located.province,
tm2x0.country.id=tm3xl.located.country,

satisft sm2x0.COUNTRY .AREA=tm3x4.country.area, sm2x0.COUNTRY .CAPITAL=tm3x4d.country.capital,
sm2x0 . COUNTRY .CODE=tm3x4 .country.id, sm2x0.COUNTRY .NAME=tm3x4d.country.name,
sm2x0 . COUNTRY .POPULATION=tm3x4 .country . .population, sm3x1 _ RIVER.LENGTH=tm3x0.river.length,
sm3x0 .GEO_RIVER.COUNTRY=tm3xl.located.country, sm3x0.GEO_RIVER.PROVINCE=tm3xl.located.province,
sm3x]1 .RIVER .NAME=tm3x@.river.name), (

for smd4x0@ in SO.dummy_ GEO ISLA 25, smd4xl in SO.dummy_ ISLAND 26,
sm4x2 in SO.dummy_ PROVINCE 5
where smd4x0.GEO_ISLAND.ISLAND=sm4x1.ISLAND.MNAME, sm4x2.PROVINCE.NAME=sm4x0.GEO_ ISLAND.PROVIMNCE,
sm4x2 .PROVINCE . COUNTRY=sm2ZxB .COUNTRY .CODE,
exists tm4x0 in S27 .dummy_ island 26, tm4xl in tm4x0.island.dummy_ located 25,
tm4x4 in S27 .dummy_country 10, tm4x5 in tm4x4.country.dummy province 9,
tmd4x6 in S2Z7 .dummy_organiza 13
where tmdxd.country.membership=tmd4x6.organization.id, tmdx5.province.id=tmdxl .located.province,
tm2x0.country.id=tmd4xl.located.country,
satisf sm2Zx0.COUNTRY .AREA=tmdx4d.country.area, smZx0.COUNTRY.CAPITAL=tm4x4.country.capital,
sm2x@ . COUNTRY .CODE=tmdx4 .country.id, smZ2x®.COUNTRY .NAME=tmdx4.country.name,
sm2x@ . COUNTRY .POPULATION=tm4x4.country.population, smd4xl._ ISLAND.AREA=tm4x0.island.area,
smdx1l.ISLAND .COORDINATESLAT=tm4x0.island.latitude, smd4x0.GEC_ISLAND.COUNTRY=tm4x1l.located.country,
sm4xB0.GEO_ISLAND.PROVINCE=tm4xl .located.province, smd4x1l.ISLAND.COORDINATESLONG=tm4x0.island.longitude,
smdx]1 . ISLAND .NAME=tm4dx0@.island.name) ,(

for smSx@ in SO.dummy_ GEO_SEA_19, smSxl in SG.dummy_ SEA_ 206,
sm5x2 in SO.dummy PROVINCE 5
where smSx2.PROVINCE.NAME=sm5x0.GEO_SEA.PROVINCE, smSx0.GEO_SEA.SEA=smSx1.SEA.MAME,
sm5x2 .PROVINCE .COUNTRY=sm2Zx0 .COUNTRY .CODE,
exists tm5x@ in S27 .dummy_sea_ 19, tmSx1l in tm5x0.sea.dummy located 18,
tmSx4 in S27V.dummy_country_ 1@, tmSx5 in tmSx4.country.dummy_province 9,
tm5x6 in S27 .dummy_organiza 13
where tmbx4.country.membership=tmSx6.organization.id, tmSx5.province.id=tm5xl.located.province,
tm2x0.country.id=tmS5xl.located.country,
satist sm2Z2x0.COUNTRY .AREA=tmSx4.country.area, sm2x0.COUNTRY .CAPITAL=tmb5x4.country.capital,
smZ2x0 .COUNTRY .CODE=tmSx4 .country.id, sm2x0.COUNTRY .NMAME=tmSx4 .country.name,
smZ2x0 . COUNTRY .POPULATION=tmSx4 .country.population, sm5xl_SEA.DEPTH=tm5x0.sea.depth,
smS5x@ .GEO_SEA .COUNTRY=tm5x1 .located.country, sm5x0.GEQ_SEA.PROVINCE=tmSxl.located.province,
bm5x1.SEA.NAME=tm5xG.sea.name 1.0

Underspecification in Data Exchange

Fact: Given a source instance, multiple solutions may exist.

Example:
Source relation E(A,B), target relation H(A,B)
2. E(x,y) — 3z (H(x,2) A H(z,y))

Source instance I = {E(a,b)}

Solutions: Infinitely many solutions exist

= J; = {H(a,b), H(b,b)} constants:

= J, = {H(a,a), H(a,b)} a, b, ..

= J; = {H(a,X), H(X,b)} variables (labelled nulls):
=], = {H(a,X), H(X,b), H(a,Y), H(Y,b)} XY, ..

. J5 = {H(alx)l H(le)/ H(Y/Y)}

38

Main issues in data exchange

For a given source instance, there may be multiple target instances
satisfying the specifications of the schema mapping. Thus,

o When more than one solution exist, which solutions are “better”
than others?

o How do we compute a “best” solution?

o In other words, what is the “right” semantics of data exchange?

39

Universal Solutions in Data Exchange

Definition (Fagin, K ..., Miller, Popa 2003): A solution is universal
if it has homomorphisms to all other solutions
(thus, it is a "most general” solution).
o Constants: entries in source instances
o Variables (labeled nulls): other entries in target instances
o Homomorphism h: J, — J, between target instances:
h(c) = ¢, for constant c
If P(ay,...,ay,) is in J; , then P(h(a,),...,h(a,,)) is in J,,

Claim: Universal solutions are the preferred solutions in
data exchange.

40

Universal Solutions in Data Exchange
2

T~
s T St

Universal Solution

Homomorphisms

.
a®
lllllllllllllll

41

Example - continued

Source relation S(A,B), target relation T(A,B)
2 E(Xxy) — 3z (H(x,z) A H(z,y))
Source instance I = {E(a,b)}

Solutions: Infinitely many solutions exist

= J, = {H(a,b), H(b,b)} is not universal

= J, = {H(a,a), H(a,b)} is not universal

= J; = {H(a,X), H(X,b)} is universal

= J, = {H(a,X), H(X,b), H(a,Y), H(Y,b)} is universal

= J. = {H(a,X), H(X,b), H(Y,Y)} is not universal

42

Structural Properties of Universal Solutions

Universal solutions are analogous to most general unifiers in logic
programming.

Uniqueness up to homomorphic equivalence:
If J and J’ are universal for I, then they are homomorphically
equivalent.

Representation of the entire space of solutions:

Assume that J is universal for I, and J' is universal for I'.
Then the following are equivalent:

1. I and I have the same space of solutions.

2. Jand J’ are homomorphically equivalent.

43

The Existence-of-Solutions Problem

Question: What can we say about the existence-of-solutions
problem Sol(M) for a fixed schema mapping M = (S, T, £.,%,)
specified by s-t tgds and target tgds and egds?

Answer: Depending on the target constraints in X;:
Sol(M) can be trivial (solutions always exist).

Sol(M) can be in PTIME.

Sol(M) can be undecidable.

44

Algorithmic Problems in Data Exchange

Proposition: LetM = (S, T, Z,) be a schema mapping with no
target constraints, i.e., X is a set of s-t tgds and X, = (. Then

= Solutions always exist; hence, Sol(M) is trivial.

= Universal solutions can be computed in polynomial time
via the naive chase procedure.

45

The Naive Chase Algorithm

Naive Chase Algorithm for M* = (S, T, =) : given a source
instance I, build a target instance J* that satisfies each s-t tgd in =

by introducing new facts in J* as dictated by the RHS of the s-t tgd
and

by introducing new values (variables) in J* each time existential
quantifiers need witnesses.

Example:M = (S, T, Z,) (here X, =0)
e E(xy) — Jz(F(x,2)A F(z,y))
The naive chase returns a relation F* obtained from E by adding a
new node between every edge of E.
If E= { (1,2) }, then F*={ (1,N),(N,2) } is universal solution for E
IfE={(1,2),02,3),(1,4) }, then

F*={ (1,M),(M,2),(2,N),(N,3),(1,U),(U,4) } is universal solution for E.

46

The Naive Chase Algorithm

Example : Collapsing paths of length 2 to edges
M=(S T2, (herelX =()
. E(X2)A E(zy) — F(XY) (GAV mapping)

E=1(3),(24), (34)
F*={(1,4)} Universal Solution for E

E= {(1,3}(24), (34, (43)}
F*= {(1,4), (2,3), (3,3), (4,4) } Universal solution for E

47

Algorithmic Problems in Data Exchange

Question:
What about arbitrary target tgds and egds?

More formally:

What can we say about the existence-of-solutions problem for
schema mappings M= (S, T, =*,, £*,) such that

o X*, is a set of s-t tgds;

o X* s a set of target tgds and target egds?

48

The Complexity of the Existence of Solutions Problem

2 asetof s-t
tgds

Existence-of-
Solutions Problem

Existence-of-
Universal
Solutions Problem

Computing a
Universal Solution

Y, =0 Trivial Trivial PTIME

No target

constraints

X PTIME PTIME PTIME
Weakly acyclic set | It can be PTIME- | Univ. solutions

of target tgds + complete exist if and only if

egds solutions exist

Y. target tgds + | Undecidable, in Undecidable, in No algorithm

egds

general

general

exists, in general

49

/R
I

Uff

7

