Schema Mappings and Data Exchange

Lecture #3

EASSLC 2012

Southwest University
August 2012

Query Languages for the Relational Data Model

Codd introduced two different query languages for the relational data model:

- Relational Algebra, which is a procedural language.
 - It is an algebraic formalism in which queries are expressed by applying a sequence of operations to relations.
- Relational Calculus, which is a declarative language.
 - It is a logical formalism in which queries are expressed as formulas of first-order logic.

Codd's Theorem: Relational Algebra and Relational Calculus are "essentially equivalent" in terms of expressive power.

(but what does this really mean?)

Relational Algebra

- Definition: A relational algebra expression is a string obtained from relation schemas using union, difference, cartesian product, projection, and selection.
- Context-free grammar for relational algebra expressions:

E := R, S, ... |
$$(E_1 \cup E_2)$$
 | $(E_1 - E_2)$ | $(E_1 \times E_2)$ | $\pi_L(E)$ | $\sigma_{\Theta}(E)$, where

- R, S, ... are relation schemas
- L is a list of attributes
- \blacksquare Θ is a condition.

Relational Calculus (First-Order Logic for Databases)

- First-order variables: x, y, z, ..., x₁, ...,x_k,...
 - They range over values that may occur in tables.
- Relation symbols: R, S, T, ... of specified arities (names of relations)
- Atomic (Basic) Formulas:
 - □ $R(x_1,...,x_k)$, where R is a k-ary relation symbol (alternatively, $(x_1,...,x_k) \in R$; the variables need not be distinct)
 - \neg (x op y), where op is one of =, \neq , <, >, \leq , \geq
 - □ (x op c), where c is a constant and op is one of =, \neq , <, >, \leq , \geq .
- Relational Calculus Formulas:
 - Every atomic formula is a relational calculus formula.
 - $\ \square$ If ϕ and ψ are relational calculus formulas, then so are:
 - $(\phi \land \psi)$, $(\phi \lor \psi)$, $\neg \psi$, $(\phi \to \psi)$ (propositional connectives)
 - $(\exists x \varphi)$ (existential quantification)
 - $(\forall x \varphi)$ (universal quantification).

Relational Calculus as a Database Query Language

Definition:

- A relational calculus expression is an expression of the form $\{(x_1,...,x_k): \varphi(x_1,...x_k)\},$ where $\varphi(x_1,...,x_k)$ is a relational calculus formula with $x_1,...,x_k$ as its free variables.
- When applied to a relational database I, this relational calculus expression returns the k-ary relation that consists of all k-tuples (a₁,...,a_k) that make the formula "true" on I.

Example: The relational calculus expression

$$\{ (x,y): \exists z(E(x,z) \land E(z,y)) \}$$

returns the set P of all pairs of nodes (a,b) that are connected via a path of length 2.

Equivalence of Relational Algebra and Relational Calculus

Theorem: The following are equivalent for a k-ary query q:

- There is a relational algebra expression E such that q(I) = E(I), for every database instance I (in other words, q is expressible in relational algebra).
- 2. There is a relational calculus formula ψ such that $q(I) = \psi^{adom}(I)$ (in other words, q is expressible in relational calculus under the active domain interpretation).

Queries

Definition: Let **S** be a relational database schema.

- A k-ary query on S is a function q defined on database instances over S such that if I is a database instance over S, then q(I) is a k-ary relation on adom(I) that is invariant under isomorphisms (i.e., if h: I → J is an isomorphism, then q(J) = h(q(I)).
- A Boolean query on S is a function q defined on database instances over S such that if I is a database instance over S, then q(I) = 0 or q(I) = 1, and q(I) is invariant under isomorphisms.

Example: The following are Boolean queries on graphs:

- Given a graph E (binary relation), is the diameter of E at most 3?
- Given a graph E (binary relation), is E connected?

Three Fundamental Algorithmic Problems about Queries

 The Query Evaluation Problem: Given a query q and a database instance I, find q(I).

- The Query Equivalence Problem: Given two queries q and q' of the same arity, is it the case that q ≡ q'?
 (i.e., is it the case that, for every database instance I, we have that q(I) = q'(I)?)
- The Query Containment Problem: Given two queries q and q' of the same arity, is it the case that $q \subseteq q'$?

 (i.e., is it the case that, for every database instance I, we have that $q(I) \subseteq q'(I)$?)

Summary

 Relational Algebra and Relational Calculus have "essentially" the same expressive power.

- The Query Equivalence Problem for Relational Calculus in undecidable.
- The Query Containment Problem for Relational Calculus is undecidable.
- The Query Evaluation Problem for Relational Calculus is PSPACEcomplete.

Sublanguages of Relational Calculus

Question: Are there interesting sublanguages of relational calculus for which the Query Containment Problem and the Query Evaluation Problem are "easier" than the full relational calculus?

Answer:

- Yes, the language of conjunctive queries is such a sublanguage.
- Moreover, conjunctive queries are the most frequently asked queries against relational databases.

■ Definition: A conjunctive query is a query expressible by a relational calculus formula in prenex normal form built from atomic formulas $R(y_1,...,y_n)$, and \wedge and \exists only.

$$\{ (x_1,...,x_k): \exists z_1 ... \exists z_m \chi(x_1,...,x_k, z_1,...,z_k) \},$$

where $\chi(x_1, ..., x_k, z_1, ..., z_k)$ is a conjunction of atomic formulas of the form $R(y_1, ..., y_m)$.

 Equivalently, a conjunctive query is a query expressible by a relational algebra expression of the form

$$\pi_X(\sigma_\Theta(R_1 \times ... \times R_n))$$
, where

 Θ is a conjunction of equality atomic formulas (equijoin).

Equivalently, a conjunctive query is a query expressible by an SQL expression of the form

SELECT < list of attributes >

FROM < list of relation names>

WHERE <conjunction of equalities>

■ Definition: A conjunctive query is a query expressible by a relational calculus formula in prenex normal form built from atomic formulas $R(y_1,...,y_n)$, and \land and \exists only.

{
$$(x_1,...,x_k): \exists z_1 ... \exists z_m \chi(x_1,...,x_k, z_1,...,z_k) }$$

A conjunctive query can be written as a logic-programming rule:

$$Q(x_1,...,x_k) :-- R_1(\mathbf{u}_1), ..., R_n(\mathbf{u}_n),$$
 where

- Each variable x_i occurs in the right-hand side of the rule.
- Each u_i is a tuple of variables (not necessarily distinct)
- The variables occurring in the right-hand side (the body), but not in the left-hand side (the head) of the rule are existentially quantified (but the quantifiers are not displayed).
- "," stands for conjunction.

Examples:

- □ Path of Length 2: (Binary query) $\{(x,y): \exists z (E(x,z) \land E(z,y))\}$
 - As a relational algebra expression, $\pi_{1,4}(\sigma_{\$2} = \$3 (E \times E))$
 - As a rule:

$$q(x,y) :-- E(x,z), E(z,y)$$

- □ Cycle of Length 3: (Boolean query) $\exists x\exists y\exists z(E(x,y) \land E(y,z) \land E(z,x))$
 - As a rule (the head has no variables)
 - \Box Q :-- E(x,z), E(z,y), E(z,x)

- Every relational join is a conjunctive query:
 P(A,B,C), R(B,C,D) two relation symbols
 - $P \bowtie R = \{(x,y,z,w): P(x,y,z) \land R(y,z,w)\}$
 - q(x,y,z,w) :-- P(x,y,z), R(y,z,w)
 (no variables are existentially quantified)
 - SELECT P.A, P.B, P.C, R.DFROM P, RWHERE P.B = R.B AND P.C = R.C
- Conjunctive queries are also known as SPJ-queries (SELECT-PROJECT-JOIN queries)

Conjunctive Query Evaluation and Containment

- Definition: Two fundamental problems about CQs
 - Conjunctive Query Evaluation (CQE):
 Given a conjunctive query q and an instance I, find q(I).
 - Conjunctive Query Containment (CQC):
 - Given two k-ary conjunctive queries q₁ and q₂, is it true that q₁ ⊆ q₂?
 (i.e., for every instance I, we have that q₁(I) ⊆ q₂(I))
 - Given two Boolean conjunctive queries q_1 and q_2 , is it true that $q_1 \models q_2$? (that is, for all I, if $I \models q_1$, then $I \models q_2$)? CQC is logical implication.

CQE vs. CQC

- Recall that for relational calculus queries:
 - The Query Evaluation Problem is decidable (in fact, it is PSPACE-complete).
 - The Query Containment Problem is undecidable.
- Theorem: Chandra & Merlin, 1977
 - CQE and CQC are the "same" problem.
 - Moreover, both are decidable (in fact, they are NP-complete).
- Question: What is the common link?
- Answer: The Homomorphism Problem

Isomorphisms Between Database Instances

- Definition: Let I and J be two database instances over the same relational schema S.
 - □ An isomorphism h: $I \rightarrow J$ is a function h: adom(I) \rightarrow adom(J) such that
 - h is one-to-one and onto.
 - For every relational symbol P of S and every $(a_1,...,a_m)$, we have that

$$(a_1,...,a_m) \in P^I$$
 if and only if $(h(a_1),...,h(a_m)) \in P^J$.

- I and J are isomorphic if an isomorphism h from I to J exists.
- Note: Intuitively, two database instances are isomorphic if one can be obtained from the other by renaming the elements of its active domain in a 1-1 way.

Homomorphisms

- Definition: Let I and J be two database instances over the same relational schema S.
 - A homomorphism h: $I \to J$ is a function h: adom(I) \to adom(J) such That for every relational symbol P of S and every ($a_1,...,a_m$), we have that

if
$$(a_1,...,a_m) \in P^I$$
, then $(h(a_1),...,h(a_m)) \in P^J$.

- Note: The concept of homomorphism is a relaxation of the concept of isomorphism, since every isomorphism is also a homomorphism, but not vice versa.
- Example:
 - A graph G = (V,E) is 3-colorable
 if and only if
 there is a homomorphism h: G → K₃

Homomorphisms

Fact: Homomorphisms compose, i.e.,
if f: I → J and g: J → K are homomorphisms, then
g∘f: I → K is a homomorphims, where g∘f(a) = g(f(a)).

Definition:

- Two database instances I and I' are homomorphically equivalent if there is a homomorphism h: $I \to I'$ and a homomorphism h': $I' \to I$.
- $\ \ \square \ \ I \equiv_h I'$ means that I and I' are homomorphically equivalent.
- Note: $I \equiv_h I'$ does **not** imply that I and I' are isomorphic.

Homomorphisms

Fact: Homomorphisms compose, i.e., if f: I → J and g: J → K are homomorphisms, then g∘f: I → K is a homomorphims, where g∘f(a) = g(f(a)).

Definition:

- Two database instances I and I' are homomorphically equivalent if there is a homomorphism h: $I \to I'$ and a homomorphism h': $I' \to I$.
- $\ \ \square \ \ I \equiv_h I'$ means that I and I' are homomorphically equivalent.
- Note: $I \equiv_h I'$ does **not** imply that I and I' are isomorphic.

______ I

The Homomorphism Problem

- Definition: The Homomorphism Problem Given two database instances I and J, is there a homomorphism h: $I \rightarrow J$?
- Notation: $I \rightarrow J$ denotes that a homomorphism from I to J exists.
- Theorem: The Homomorphism Problem is NP-complete Proof: Easy reduction from 3-Colorabilty G is 3-colorable if and only if G → K_{3.}
- Exercise: Formulate 3SAT as a special case of the Homomorphism Problem.

The Homomorphism Problem

- Note: The Homomorphism Problem is a fundamental algorithmic problem:
 - Satisfiability can be viewed as a special case of it.
 - k-Colorability can be viewed as a special case of it.
 - Many AI problems, such as planning, can be viewed as a special case of it.
 - In fact, every constraint satisfaction problem can be viewed as a special case of the Homomorphism Problem
 (Feder and Vardi 1993).

The Homomorphism Problem and Conjunctive Queries

- Theorem: Chandra & Merlin, 1977
 - CQE and CQC are the "same" problem.
- Question: What is the common link?
- Answer:
 - Both CQE and CQC are "equivalent" to the Homomorphism Problem.
 - The link is established by bringing into the picture
 - Canonical conjunctive queries and
 - Canonical database instances.

Canonical CQs and Canonical Instances

Definition: Canonical Conjunctive Query

Given an instance $I = (R_1, ..., R_m)$, the canonical CQ of I is the Boolean conjunctive query Q^I with (a renaming of) the elements of I as variables and the facts of I as conjuncts, where a fact of I is an expression

 $R_i(a_1,...,a_m)$ such that $(a_1,...,a_m) \in R_i$.

Example:

I consists of E(a,b), E(b,c), E(c,a)

- Q^I is given by the rule:
 - $Q^{I} : -- E(x,z), E(z,y), E(y,x)$
- Alternatively, Q^I is

$$\exists x \exists y \exists z (E(x,z) \land E(z,y) \land E(y,x))$$

Canonical Conjunctive Query

- Example: K₃, the complete graph with 3 nodes
 K₃ is a database instance with one binary relation E, where
 E = {(b,r), (r,b), (b,g), (g,b), (r,g), (g,r)}
- The canonical conjunctive query Q^{K_3} of K_3 is given by the rule: $Q^{K_3} := E(x,y), E(y,x), E(x,z), E(z,x), E(y,z), E(z,y)$
- The canonical conjunctive query Q^{K_3} of K_3 is also given by the relational calculus expression:

$$\exists x,y,z(E(x,y) \land E(y,x) \land E(x,z) \land E(z,x) \land E(y,z) \land E(z,y))$$

Canonical Database Instance

Definition: Canonical Instance

Given a CQ Q, the canonical instance of Q is the instance I^Q with the variables of Q as elements and the conjuncts of Q as facts.

Example:

Conjunctive query Q := E(x,y), E(y,z), E(z,w)

- Canonical instance I^Q consists of the facts E(x,y), E(y,z), E(z,w).
- In other words, $E^{I^Q} = \{(x,y), (y,z), (z,w)\}.$

Canonical Database Instance

Example:

Conjunctive query Q(x,y) :-- E(x,z),E(z,y),P(z) or, equivalently,
$$\{(x,y)\colon \exists z(E(x,z)\wedge E(z,y)\wedge P(z)\}$$

- Canonical instance I^Q consists of the facts E(x,z), E(z,y), P(z).
- In other words, $E^{IQ} = \{(x,z), (z,y)\}$ and $P^{IQ} = \{z\}$

Canonical Conjunctive Queries and Canonical Instances

Fact:

- \neg For every database instance I, we have that $I \models Q^I$.
- □ For every Boolean conjunctive query Q, we have that $I^Q \models Q$.

Fact: Let I be a database instance, let Q^I be its canonical conjunctive query and let IQ^I be the canonical instance of Q^I. Then I is isomorphic to IQ^I.

Canonical Conjunctive Queries and Canonical Instances

Magic Lemma: Assume that Q is a Boolean conjunctive query and J is a database instance. Then the following statements are equivalent.

- J ⊨ Q.
- There is a homomorphism h: $I^Q \rightarrow J$.

Proof: Let Q be $\exists x_1 ... \exists x_m \phi(x_1,...,x_m)$.

- 1. \Rightarrow 2. Assume that J \models Q. Hence, there are elements $a_1, ..., a_m$ in adom(J) such that J $\models \phi(a_1, ..., a_m)$. The function h with $h(x_i) = a_i$, for i=1,...,m, is a homomorphism from I^Q to J.
- 2. \Rightarrow 1. Assume that there is a homomorphism h: $I^Q \rightarrow J$. Then the values $h(x_i) = a_i$, for i = 1,..., m, give values for the interpretation of the existential quantifiers $\exists x_i$ of Q in adom(J) so that $J \models \phi(a_1,...,a_m)$.

Homomorphisms, CQE, and CQC

The Homomorphism Theorem: Chandra & Merlin – 1977 For Boolean CQs Q and Q', the following are equivalent:

- $Q \subseteq Q'$
- \blacksquare There is a homomorphism h: $I^{Q'} \to I^Q$
- $I^{Q} \models Q'$.

In dual form:

The Homomorphism Theorem: Chandra & Merlin – 1977 For instances I and I', the following are equivalent:

- There is a homomorphism h: $I \rightarrow I'$
- $I' \models Q^I$
- ${}^{\blacksquare} \quad Q^{I'} \subseteq Q^I$

Homomorphisms, CQE, and CQC

The Homomorphism Theorem: Chandra & Merlin – 1977

For Boolean CQs Q and Q', the following are equivalent:

- 1. $Q \subseteq Q'$
- 2. There is a homomorphism h: $I^{Q'} \rightarrow I^{Q}$
- 3. $I^Q \models Q'$.

Proof:

- 1. \Rightarrow 2. Assume Q \subseteq Q'. Since $I^Q \models Q$, we have that $I^Q \models Q'$. Hence, by the Magic Lemma, there is a homomorphism from $I^{Q'}$ to I^Q .
- $2. \Rightarrow 3.$ It follows from the other direction of the Magic Lemma.
- 3. \Rightarrow 1. Assume that $I^Q \models Q'$. So, by the Magic Lemma, there is a homomorphism $h\colon I^{Q'} \to I^Q$. We have to show that if $J \models Q$, then $J \models Q'$. Well, if $J \models Q$, then (by the Magic Lemma), there is a homomorphism $h'\colon I^Q \to J$. The composition $h'\circ h\colon I^{Q'} \to J$ is a homomorphism, hence (once again by the Magic Lemma!), we have that $J \models Q'$.

Illustrating the Homomorphism Theorem

Example:

- $Q': \exists x_1 \exists x_2 \exists x_3 (E(x_1,x_2) \land E(x_2,x_3))$

Then:

• Q ⊆ Q'

Homomorphism h: $I^{Q^{\prime}}\!\to I^{Q}$ with

$$h(x_1) = x_1, h(x_2) = x_2, h(x_3) = x_3.$$

Q' ⊈ Q (why?).

Illustrating the Homomorphism Theorem

Example:

□ Q: $\exists x_1 \exists x_2 (E(x_1, x_2) \land E(x_2, x_1))$ □ Q': $\exists x_1 \exists x_2 \exists x_3 \exists x_4 (E(x_1, x_2) \land E(x_2, x_1) \land E(x_2, x_3) \land E(x_3, x_2) \land E(x_3, x_4) \land E(x_4, x_3) \land E(x_4, x_1) \land E(x_1, x_4))$

Then:

- Q \subseteq Q' Homomorphism h: $I^{Q'} \rightarrow I^{Q}$ with $h(x_1) = x_1$, $h(x_2) = x_2$, $h(x_3) = x_1$, $h(x_4) = x_2$.
- $Q' \subseteq Q$ Homomorphism h': $I^Q \to I^{Q'}$ with $h'(x_1) = x_1$, $h(x_2) = x_2$.
- Hence, $Q \equiv Q'$.

Illustrating the Homomorphism Theorem

Example: 3-Colorability

For a graph G=(V,E), the following are equivalent:

- G is 3-colorable
- There is a homomorphism h: $G \rightarrow K_3$
- $K_3 \models Q^G$
- $\mathbf{Q}^{K_3} \subseteq \mathbf{Q}^G$.