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Query Languages for the Relational Data Model

Codd introduced two different query languages for the relational data

model:

� Relational Algebra, which is a procedural language.

� It is an algebraic formalism in which queries are expressed by 
applying a sequence of operations to relations.

� Relational Calculus, which is a declarative language.

� It is a logical formalism in which queries are expressed as 
formulas of first-order logic.

Codd’s Theorem:  Relational Algebra and Relational Calculus are 

“essentially equivalent” in terms of expressive power. 

(but what does this really mean?)
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Relational Algebra

� Definition: A relational algebra expression is a string obtained from 
relation schemas using union, difference, cartesian product, 
projection, and selection.

� Context-free grammar for relational algebra expressions:

E :=  R, S, … | (E1 ∪ E2) | (E1 – E2) | (E1× E2) | πL (E) | σΘ (E), 

where

� R, S, … are relation schemas

� L is a list of attributes

� Θ is a condition.
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Relational Calculus (First-Order Logic for Databases)

� First-order variables: x, y, z, …, x1, …,xk,…

� They range over values that may occur in tables. 

� Relation symbols: R, S, T, … of specified arities (names of relations)

� Atomic (Basic) Formulas:

� R(x1,…,xk), where R is a k-ary relation symbol 

(alternatively, (x1,…,xk) ∈ R; the variables need not be distinct)

� (x op y), where op is one of =, ≠, <, >, ≤, ≥

� (x op c), where c is a constant and op is one of =, ≠, <, >, ≤, ≥.

� Relational Calculus Formulas: 

� Every atomic formula is a relational calculus formula.

� If ϕ and ψ are relational calculus formulas, then so are:

� (ϕ Æ ψ), (ϕ Ç ψ), ¬ ψ, (ϕ → ψ)  (propositional connectives)

� (∃ x ϕ)   (existential quantification)

� (∀ x ϕ)   (universal quantification).
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Relational Calculus as a Database Query Language

Definition: 

� A relational calculus expression is an expression of the form 

{ (x1,…,xk):  ϕ(x1,…xk) },

where ϕ(x1,…,xk) is a relational calculus formula with x1,…,xk as its 
free variables.

� When applied to a relational database I, this relational calculus 
expression returns the k-ary relation that consists of all k-tuples
(a1,…,ak) that make the formula “true” on I.

Example: The relational calculus expression

{ (x,y):  ∃z(E(x,z) Æ E(z,y)) } 

returns the set P of all pairs of nodes (a,b) that are connected via a 

path of length 2.
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Equivalence of Relational Algebra and Relational Calculus

Theorem: The following are equivalent for a k-ary query q:

1. There is a relational algebra expression E such that q(I) = E(I), for 

every database instance I

(in other words, q is expressible in relational algebra).

2. There is a relational calculus formula ψ such that q(I) = ψadom (I)

(in other words, q is expressible in relational calculus under the 
active domain interpretation).
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Queries 

Definition: Let S be a relational database schema. 

� A k-ary query on S is a function q defined on database instances

over S such that if I is a database instance over S, then q(I) is a 

k-ary relation on adom(I) that is invariant under isomorphisms
(i.e., if h: I → J is an isomorphism, then q(J) = h(q(I)).

� A Boolean query on S is  a function q defined on database instances 
over S such that if I is a database instance over S, then q(I) = 0 or 
q(I) = 1, and q(I) is invariant under isomorphisms. 

Example: The following are Boolean queries on graphs:

� Given a graph E (binary relation), is the diameter of E at most 3?

� Given a graph E (binary relation), is E connected?
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Three Fundamental Algorithmic Problems about Queries

� The Query Evaluation Problem: Given a query q and a database 
instance I, find q(I).

� The Query Equivalence Problem: Given two queries q and q’ of the 
same arity, is it the case that q ≡ q’ ?

(i.e., is it the case that, for every database instance I, we have that 
q(I) = q’(I)?)

� The Query Containment Problem: Given two queries q and q’ of the 
same arity, is it the case that q ⊆ q’ ? 

(i.e., is it the case that, for every database instance I, we have that 
q(I) ⊆ q’(I)?)
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Summary

� Relational Algebra and Relational Calculus have “essentially” the 
same expressive power.

� The Query Equivalence Problem for Relational Calculus in 
undecidable.

� The Query Containment Problem for Relational Calculus is 
undecidable.

� The Query Evaluation Problem for Relational Calculus is PSPACE-
complete.
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Sublanguages of Relational Calculus

� Question: Are there interesting sublanguages of relational calculus 
for which the Query Containment Problem and the Query Evaluation
Problem are “easier” than the full relational calculus?

� Answer:

� Yes, the language of conjunctive queries is such a sublanguage.

� Moreover, conjunctive queries are the most frequently asked 
queries against relational databases.
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Conjunctive Queries

� Definition: A conjunctive query is a query expressible by a 

relational calculus formula in prenex normal form built from atomic 

formulas R(y1,…,yn),  and  Æ and ∃ only.

{ (x1,…,xk):  ∃ z1 …∃ zm χ(x1, …,xk, z1,…,zk) },

where χ(x1, …,xk, z1,…,zk) is a conjunction of atomic formulas of the 

form R(y1,…,ym).

� Equivalently, a conjunctive query is a query expressible by a 
relational algebra expression of the form

πX(σΘ(R1× …× Rn)), where

Θ is a conjunction of equality atomic formulas (equijoin).

� Equivalently, a conjunctive query is a query expressible by an SQL 
expression of the form

SELECT <list of attributes>

FROM    <list of relation names>

WHERE  <conjunction of equalities>
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Conjunctive Queries

� Definition: A conjunctive query is a query expressible by a 

relational calculus formula in prenex normal form built from atomic 

formulas R(y1,…,yn),  and  Æ and ∃ only.

{ (x1,…,xk):  ∃ z1 …∃ zm χ(x1, …,xk, z1,…,zk) }

� A conjunctive query can be written as a logic-programming rule:

Q(x1,…,xk) :-- R1(u1), …, Rn(un), where

� Each variable xi occurs in the right-hand side of the rule.

� Each ui is a tuple of variables (not necessarily distinct)

� The variables occurring in the right-hand side (the body), but 
not in the left-hand side (the head) of the rule are existentially 
quantified (but the quantifiers are not displayed).

� “,” stands for conjunction.  
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Conjunctive Queries

Examples:
� Path of Length 2: (Binary query)

{(x,y): ∃ z (E(x,z) Æ E(z,y))}

� As a relational algebra expression, 
π1,4(σ$2 = $3 (E×E)) 

� As a rule:
q(x,y) :-- E(x,z), E(z,y)

� Cycle of Length 3: (Boolean query)
∃ x∃ y∃ z(E(x,y) Æ E(y,z) Æ E(z,x))

� As a rule (the head has no variables)
� Q :-- E(x,z), E(z,y), E(z,x) 
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Conjunctive Queries

� Every relational join is a conjunctive query:

P(A,B,C), R(B,C,D) two relation symbols

� P ⋈ R =  {(x,y,z,w):  P(x,y,z) Æ R(y,z,w)}

� q(x,y,z,w)  :-- P(x,y,z), R(y,z,w) 

(no variables are existentially quantified)

� SELECT P.A, P.B, P.C, R.D

FROM    P, R

WHERE P.B = R.B  AND  P.C = R.C 

� Conjunctive queries are also known as SPJ-queries

(SELECT-PROJECT-JOIN queries)
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Conjunctive Query Evaluation and Containment

� Definition: Two fundamental problems about CQs

� Conjunctive Query Evaluation (CQE):

Given a conjunctive query q and an instance I, find q(I).

� Conjunctive Query Containment (CQC):

� Given two k-ary conjunctive queries q1 and q2, 

is it true that  q1 ⊆ q2? 

(i.e., for every instance I, we have that q1(I) ⊆ q2(I))

� Given two Boolean conjunctive queries q1and q2, is it true that 

q1 � q2? (that is, for all I, if I � q1, then I � q2)?

CQC is logical implication.
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CQE  vs.  CQC

� Recall that for relational calculus queries:

� The Query Evaluation Problem is decidable 

(in fact, it is PSPACE-complete).

� The Query Containment Problem is undecidable.

� Theorem: Chandra & Merlin, 1977

� CQE and CQC are the “same” problem.

� Moreover, both are decidable (in fact, they are NP-complete).

� Question: What is the common link?

� Answer: The Homomorphism Problem
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Isomorphisms Between Database Instances

� Definition: Let I and J be two database instances over the same 
relational schema S.

� An isomorphism h: I → J is a function h: adom(I) → adom(J) 

such that

� h is one-to-one and onto.

� For every relational symbol P of S and every (a1,…,am), we 
have that 

(a1,…,am) ∈ PI if and only if (h(a1), .., h(am)) ∈ PJ.

� I and J are isomorphic if an isomorphism h from I to J exists.

� Note: Intuitively, two database instances are isomorphic if one can 
be obtained from the other by renaming the elements of its active 
domain in a 1-1 way.
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Homomorphisms

� Definition: Let I and J be two database instances over the same 
relational schema S.  
A homomorphism h: I → J is a function h: adom(I) → adom(J) such 

That for every relational symbol P of S and every (a1,…,am), we
have that 

if (a1,…,am) ∈ PI , then  (h(a1), .., h(am)) ∈ PJ.

� Note: The concept of homomorphism is a relaxation of the concept 
of isomorphism, since every isomorphism is also a homomorphism, 
but not vice versa.

� Example:
� A graph G = (V,E) is 3-colorable 

if and only if
there is a homomorphism h: G → K3
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Homomorphisms

� Fact: Homomorphisms compose, i.e., 

if f: I → J and g: J → K are homomorphisms, then 

g◦f: I → K is a homomorphims, where g◦f(a) = g(f(a)).

� Definition: 

� Two database instances I and I’ are homomorphically equivalent
if there is a homomorphism h: I → I’ and a homomorphism      
h’: I’ → I. 

� I ≡h I’ means that I and I’ are homomorphically equivalent.

� Note: I ≡h I’ does not imply that I and I’ are isomorphic.
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Homomorphisms

� Fact: Homomorphisms compose, i.e., 

if f: I → J and g: J → K are homomorphisms, then 

g◦f: I → K is a homomorphims, where g◦f(a) = g(f(a)).

� Definition: 

� Two database instances I and I’ are homomorphically equivalent
if there is a homomorphism h: I → I’ and a homomorphism      
h’: I’ → I. 

� I ≡h I’ means that I and I’ are homomorphically equivalent.

� Note: I ≡h I’ does not imply that I and I’ are isomorphic.

I I’
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The Homomorphism Problem

� Definition: The Homomorphism Problem
Given two database instances I and J, is there a homomorphism
h: I → J?

� Notation: I → J denotes that a homomorphism from I to J exists.

� Theorem: The Homomorphism Problem is NP-complete
Proof: Easy reduction from 3-Colorabilty
G is 3-colorable if and only if  G → K3.

� Exercise: Formulate 3SAT as a special case of the Homomorphism 
Problem.
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The Homomorphism Problem

� Note: The Homomorphism Problem is a fundamental algorithmic 
problem:

� Satisfiability can be viewed as a special case of it.

� k-Colorability can be viewed as a special case of it.

� Many AI problems, such as planning, can be viewed as a special 
case of it.

� In fact, every constraint satisfaction problem can be viewed as a 
special case of the Homomorphism Problem 

(Feder and Vardi – 1993).
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The Homomorphism Problem and Conjunctive Queries

� Theorem: Chandra & Merlin, 1977

� CQE and CQC are the “same” problem.

� Question: What is the common link?

� Answer:

� Both CQE and CQC are “equivalent” to the Homomorphism 
Problem.

� The link is established by bringing into the picture 

� Canonical conjunctive queries and

� Canonical database instances.
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Canonical CQs and Canonical Instances

� Definition: Canonical Conjunctive Query
Given an instance I = (R1, …,Rm), the canonical CQ of I is the 
Boolean conjunctive query QI with (a renaming of) the elements of I 
as variables and the facts of I as conjuncts, where a fact of I is an 
expression
Ri(a1,…,am) such that (a1,…,am) ∈ Ri.

� Example:
I consists of E(a,b), E(b,c), E(c,a)

� QI is given by the rule:
QI :-- E(x,z), E(z,y), E(y,x)

� Alternatively, QI is 
∃ x ∃ y ∃ z (E(x,z) Æ E(z,y) Æ E(y,x)) 
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Canonical Conjunctive Query

� Example: K3, the complete graph with 3 nodes

K3 is a database instance with one binary relation E, where

E  = {(b,r), (r,b), (b,g), (g,b), (r,g), (g,r)}

� The canonical conjunctive query QK3 of K3 is given by the rule:

QK3 :- E(x,y),E(y,x),E(x,z),E(z,x),E(y,z),E(z,y)

� The canonical conjunctive query QK3 of K3 is also given by the 
relational calculus expression:

∃x,y,z(E(x,y) Æ E(y,x) Æ E(x,z) Æ E(z,x) Æ E(y,z) Æ E(z,y))
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Canonical Database Instance

� Definition: Canonical Instance

Given a CQ Q, the canonical instance of Q is the instance IQ with the 
variables of Q as elements and the conjuncts of Q as facts.

� Example:

Conjunctive query Q :-- E(x,y),E(y,z),E(z,w)

� Canonical instance IQ consists of the facts E(x,y), E(y,z),E(z,w).

� In other words, EIQ = {(x,y), (y,z), (z,w)}.
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Canonical Database Instance

� Example:

Conjunctive query Q(x,y) :-- E(x,z),E(z,y),P(z)

or, equivalently,

{(x,y):  ∃ z(E(x,z)Æ E(z,y)Æ P(z)}

� Canonical instance IQ consists of the facts 

E(x,z), E(z,y),P(z).

� In other words, EIQ = {(x,z), (z,y)} and PIQ={z}
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Canonical Conjunctive Queries and Canonical Instances

� Fact:

� For every database instance I, we have that I � QI.

� For every Boolean conjunctive query Q, we have that IQ � Q.

� Fact: Let I be a database instance, let QI be its canonical 

conjunctive query and let IQI
be the canonical instance of QI.

Then I is isomorphic to IQI
.
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Canonical Conjunctive Queries and Canonical Instances

Magic Lemma: Assume that Q is a Boolean conjunctive query and J is a 

database instance. Then the following statements are equivalent.
� J � Q.  

� There is a homomorphism h: IQ → J.

Proof: Let Q be ∃ x1 …∃ xm ϕ(x1,…,xm).

1. ⇒ 2. Assume that J � Q.  Hence, there are elements

a1, …, am in adom(J) such that J � ϕ(a1,…,am). The function h with 

h(xi) = ai, for i=1,…,m, is a homomorphism from IQ to J.

2. ⇒ 1. Assume that there is a homomorphism h: IQ → J.

Then the values h(xi) = ai, for i = 1,…, m, give values for the 

interpretation of the existential quantifiers ∃ xi of Q in adom(J) 
so that J � ϕ(a1,…,am). 
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Homomorphisms, CQE, and CQC

The Homomorphism Theorem: Chandra & Merlin – 1977

For Boolean CQs Q and Q’, the following are equivalent:

� Q ⊆ Q’

� There is a homomorphism h: IQ’ → IQ

� IQ � Q’.

In dual form:

The Homomorphism Theorem: Chandra & Merlin – 1977

For instances I and I’, the following are equivalent:

� There is a homomorphism h: I → I’
� I’ � QI

� QI’ ⊆ QI
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Homomorphisms, CQE, and CQC

The Homomorphism Theorem: Chandra & Merlin – 1977

For Boolean CQs Q and Q’, the following are equivalent:

1. Q ⊆ Q’

2. There is a homomorphism h: IQ’ → IQ

3. IQ � Q’.

Proof:

1. ⇒ 2. Assume Q ⊆ Q’. Since IQ � Q, we have that IQ � Q’. 

Hence, by the Magic Lemma, there is a homomorphism from IQ’ to IQ.

2. ⇒ 3. It follows from the other direction of the Magic Lemma.

3. ⇒ 1. Assume that IQ � Q’. So, by the Magic Lemma, there is a 

homomorphism h: IQ’ → IQ.  We have to show that if J � Q, then J � Q’. Well, if 

J � Q, then (by the Magic Lemma), there is a homomorphism h’: IQ → J. The 

composition h’◦ h: IQ’ → J is a homomorphism, hence 

(once again by the Magic Lemma!), we have that J � Q’.
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Illustrating the Homomorphism Theorem

� Example:

� Q:    ∃x1∃x2∃x3∃x4 (E(x1,x2)Æ E(x2,x3) Æ E(x3,x4))

� Q’ :  ∃x1∃x2∃x3 (E(x1,x2)Æ E(x2,x3))

Then:

� Q ⊆ Q’

Homomorphism h: IQ’→ IQ with 

h(x1) = x1, h(x2) = x2, h(x3) = x3.

� Q’ ⊈ Q (why?).
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Illustrating the Homomorphism Theorem

� Example:

� Q :  ∃x1∃x2 (E(x1,x2) Æ E(x2,x1))

� Q’:  ∃x1∃x2∃x3∃x4 (E(x1,x2) Æ E(x2,x1) Æ E(x2,x3) Æ E(x3,x2) Æ

E(x3,x4) Æ E(x4,x3) Æ E(x4,x1) Æ E(x1,x4))

Then:

� Q ⊆ Q’

Homomorphism h: IQ’→ IQ with 

h(x1) = x1, h(x2) = x2, h(x3) = x1, h(x4) = x2.

� Q’ ⊆ Q

Homomorphism h’: IQ → IQ’ with h’(x1) = x1,  h(x2) = x2.

� Hence, Q ≡Q’.
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Illustrating the Homomorphism Theorem

Example: 3-Colorability

For a graph G=(V,E), the following are equivalent:

� G is 3-colorable

� There is a homomorphism h: G → K3

� K3 � QG 

� QK3 ⊆ QG.


