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The Relational Data Model (E.F. Codd – 1970)

� The Relational Data Model uses the mathematical concept of a relation as 
the formalism for describing and representing data.

� Question: What is a relation?

� Answer:

� Formally, a relation is a subset of a cartesian product of sets.

� Informally, a relation is a “table” with rows and columns.
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Relational Structures vs. Relational Databases

� Relational Structure

A = (A, R1,…,Rm)

� A is the universe of A

� R1,…,Rm are the relations of A

� Relational Database

D = (R1,…,Rm)

� Thus, a relational database can be thought of as a relational 
structure without its universe.

� And this causes some problems down the road …
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Query Languages for the Relational Data Model

Codd introduced two different query languages for the relational data

model:

� Relational Algebra, which is a procedural language.

� It is an algebraic formalism in which queries are expressed by 
applying a sequence of operations to relations.

� Relational Calculus, which is a declarative language.

� It is a logical formalism in which queries are expressed as 
formulas of first-order logic.

Codd’s Theorem:  Relational Algebra and Relational Calculus are 

“essentially equivalent” in terms of expressive power. 

(but what does this really mean?)
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The Five Basic Operations of Relational Algebra

� Group I: Three standard set-theoretic binary operations:

� Union

� Difference

� Cartesian Product.

� Group II. Two special unary operations on relations:

� Projection

� Selection.

� Relational Algebra consists of all expressions obtained by combining 
these five basic operations in syntactically correct ways.
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Relational Algebra

� Definition: A relational algebra expression is a string obtained from 
relation schemas using union, difference, cartesian product, 
projection, and selection.

� Context-free grammar for relational algebra expressions:

E :=  R, S, … | (E1 ∪ E2) | (E1 – E2) | (E1× E2) | πL (E) | σΘ (E), 

where

� R, S, … are relation schemas

� L is a list of attributes

� Θ is a condition.
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Natural Join 

Given TEACHES(fac-name,course,term) and

ENROLLS(stud-name, course,term):

To compute TAUGHT-BY(stud-name,course,term,fac-name)

1. ENROLLS × TEACHES

2. σ T.course = E.course Æ T.term = E.term (ENROLLS × TEACHES)

3. π stud-name,E.course,E.term,fac-name

(σ T.course = E.course Æ T.term = E.term (ENROLLS × TEACHES))

The result is ENROLLS ⋈ TEACHES.
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SQL vs. Relational Algebra

Selection σWHERE

Cartesian Product ×FROM

Projection πSELECT

Relational AlgebraSQL

Semantics of SQL via interpretation to Relational Algebra

SELECT Ri1.A1, …, Rim.A.m

FROM    R1, …,RK                                   =           π Ri1.A1, …, Rim.A.m (σΨ (R1 × … × RK))

WHERE  Ψ
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Relational Calculus

� In addition to relational algebra, Codd introduced relational calculus.

� Relational calculus is a declarative database query language based 
on first-order logic.

� Relational calculus comes into two different flavors:

� Tuple relational calculus

� Domain relational calculus.

We will focus on domain relational calculus. 

There is an easy translation between these two formalisms.

� Codd’s main technical result is that relational algebra and relational
calculus have “essentially” the same expressive power. 
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Relational Calculus (First-Order Logic for Databases)

� First-order variables: x, y, z, …, x1, …,xk,…

� They range over values that may occur in tables. 

� Relation symbols: R, S, T, … of specified arities (names of relations)

� Atomic (Basic) Formulas:

� R(x1,…,xk), where R is a k-ary relation symbol 

(alternatively, (x1,…,xk) ∈ R; the variables need not be distinct)

� (x op y), where op is one of =, ≠, <, >, ≤, ≥

� (x op c), where c is a constant and op is one of =, ≠, <, >, ≤, ≥.

� Relational Calculus Formulas: 

� Every atomic formula is a relational calculus formula.

� If ϕ and ψ are relational calculus formulas, then so are:

� (ϕ Æ ψ), (ϕ Ç ψ), ¬ ψ, (ϕ → ψ)  (propositional connectives)

� (∃ x ϕ)   (existential quantification)

� (∀ x ϕ)   (universal quantification).
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Relational Calculus as a Database Query Language

Definition: 

� A relational calculus expression is an expression of the form 

{ (x1,…,xk):  ϕ(x1,…xk) },

where ϕ(x1,…,xk) is a relational calculus formula with x1,…,xk as its 
free variables.

� When applied to a relational database I, this relational calculus 
expression returns the k-ary relation that consists of all k-tuples
(a1,…,ak) that make the formula “true” on I.

Example: The relational calculus expression

{ (x,y):  ∃z(E(x,z) Æ E(z,y)) } 

returns the set P of all pairs of nodes (a,b) that are connected via a 

path of length 2.
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Natural Join in Relational Calculus

Given TEACHES(fac-name,course,term) and

ENROLLS(stud-name, course,term):

Compute TAUGHT-BY(stud-name,course,term,fac-name)

In relational algebra:

π stud-name,E.course,E.term,fac-name

(σ T.course = E.course Æ T.term = E.term (ENROLLS × TEACHES))

In relational calculus:

{ (s,c,t,f):  ENROLL(s,c,t) Æ TEACHES(f,c,t) }
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Relational Algebra vs. Relational Calculus

Codd’s Theorem (informal statement):

Relational Algebra and Relational Calculus have “essentially” the same 

expressive power, i.e., they can express the same queries.

Note: It is not true that for every relational calculus expression ϕ,

there is an equivalent relational algebra expression E.

Examples:

� { (x1,…,xk):   ¬ R(x1,…,xk) }

� { x:   ∀y,z ENROLLS(x,y,z) }, where ENROLLS(s-name,course,term)
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From Relational Calculus to Relational Algebra

Note: The previous relational calculus expression may produce 

different answers when we consider different domains over which

the variables are interpreted.

Example: If the variables x1,…,xk range over a domain D, then  

{(x1,…,xk): ¬ R(x1,…,xk)} = Dk – R.

Fact:

� The relational calculus expression { (x1,…,xk): ¬ R(x1,…,xk) } 

is not “domain independent”.

� The relational calculus expression

{(x1,…,xk):  S(x1,..,xk) Æ ¬ R(x1,…,xk)} is “domain independent”.
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Active Domain and Active Domain Interpretation

Definition:

� The active domain adom(I) of a relational database instance I is the 
set of all values that occur in the relations of I.

� Let ϕ(x1,…,xk) be a relational calculus formula and let I be a

relational database instance. Then

ϕadom(I)

is the result of evaluating ϕ(x1,…,xk) over adom(I) and I, that is,

� all variables and quantifiers are assumed to range over adom(I); 

� the relation symbols in ϕ are interpreted by the relations in I.
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Queries

Definition: Let S be a relational database schema. 

A k-ary query on S is a function q defined on database instances over S

such that if I is a database instance over S, then q(I) is a k-ary relation 

that is invariant under isomorphisms and has values among those

occurring in the relations in I 

(i.e., if h: I → J is an isomorphism, then q(J) = h(q(I)).

Note:

� All “queries” that we have expressed in relational algebra and/or in 
relational calculus so far are queries in the above formal sense.

� In particular, a relational calculus expression of the form 

{(x1,…,xk):  ϕ(x1,…xk)} defines a k-ary query.
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Equivalence of Relational Algebra and Relational Calculus

Theorem: The following are equivalent for a k-ary query q:

1. There is a relational algebra expression E such that q(I) = E(I), for 

every database instance I

(in other words, q is expressible in relational algebra).

2. There is a relational calculus formula ψ such that q(I) = ψadom (I)

(in other words, q is expressible in relational calculus under the 
active domain interpretation).
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From Relational Algebra to Relational Calculus

(1) ⇒ (2) For every relational expression E, there is an equivalent 

relational calculus expression {(x1,…,xk): ϕ(x1,…xk)}.

Proof: By induction on the construction of rel. algebra expressions.

� If E is a relation R of arity k, then we take {(x1,…,xk): E(x1,…,xk)}.

� Assume E1 and E2 are expressible by {(x1,…,xk): ϕ1(x1,…,xk)} and by
{(x1,…,xm): ϕ2(x1,…,xm)}. Then
� E1 ∪ E2 is expressible by 

{(x1,…,xk): ϕ1(x1,…,xk) Ç ϕ2(x1,…,xk)}. 

� E1 – E2 is expressible by
{(x1,…,xk): ϕ1(x1,…,xk) Æ ¬ϕ2(x1,…,xk)}. 

� E1 × E2 is expressible by
{(x1,…,xk,y1,…,ym): ϕ1 (x1,…,xk) Æ ϕ2(y1,…,ym)} 



19

From Relational Algebra to Relational Calculus

(1) ⇒ (2) For every relational expression E, there is an equivalent 

relational calculus expression {(x1,…,xk): ϕ(x1,…xk)}.

Proof: (continued)
� Assume that E is expressible by {(x1,…,xk): ϕ(x1,…,xk)}. 

Then
� π1,3(E) is expressible by 

{(x1,x3): (∃ x2)(∃ x4) …(∃ xk) ϕ(x1,…,xk) }
� σΘ(E) is expressible by

{(x1,…,xk): Θ* Æ ϕ(x1,…,xk)}, where Θ* is the rewriting of Θ as 

a formula of relational calculus.
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Equivalence of Relational Algebra and Relational Calculus

Proof (Sketch):

2. ⇒ 1.  

� Show first that for every relational database schema S, there is a 
relational algebra expression E such that for every database 
instance I, we have that adom(I) = E(I).

� Use the above fact and induction on the construction of 
relational calculus formulas to obtain a translation of relational 
calculus under the active domain interpretation to relational 
algebra.
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Equivalence of Relational Algebra and Relational Calculus

� In this translation, the most interesting part is the simulation of the 
universal quantifier ∀ in relational algebra.

� It uses the logical equivalence ∀yψ ≡ ¬∃y¬ψ

� As an illustration, consider ∀yR(x,y).

� ∀yR(x,y)  ≡ ¬∃y¬R(x,y)

� adom(I) = π(R) ∪ π(R)

(π(R) ∪ π(R)) – (π((π(R) ∪ π(R))×(π(R) ∪ π(R)) - R))¬∃y¬R(x,y)

π((π(R) ∪ π(R))×(π(R) ∪ π(R)) - R)∃y¬R(x,y)

(π(R) ∪ π(R))×(π(R) ∪ π(R)) – R¬ R(x,y)

Relational Algebra Expression for ϕadomRel.Calc. formula ϕ
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Equivalence of Relational Algebra and Relational Calculus

Remarks:

� The Equivalence Theorem is effective.  Specifically, the proof of this 
theorem yields two algorithms:

� an algorithm for translating from relational algebra to domain 
independent relational calculus, and

� an algorithm from translating from domain independent relational
calculus to relational algebra.

� Each of these two algorithms runs in linear time.



23

Queries 

Definition: Let S be a relational database schema. 

� A k-ary query on S is a function q defined on database instances

over S such that if I is a database instance over S, then q(I) is a 

k-ary relation on adom(I) that is invariant under isomorphisms
(i.e., if h: I → J is an isomorphism, then q(J) = h(q(I)).

� A Boolean query on S is  a function q defined on database instances 
over S such that if I is a database instance over S, then q(I) = 0 or 
q(I) = 1, and q(I) is invariant under isomorphisms. 

Example: The following are Boolean queries on graphs:

� Given a graph E (binary relation), is the diameter of E at most 3?

� Given a graph E (binary relation), is E connected?
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Three Fundamental Algorithmic Problems about Queries

� The Query Evaluation Problem: Given a query q and a database 
instance I, find q(I).

� The Query Equivalence Problem: Given two queries q and q’ of the 
same arity, is it the case that q ≡ q’ ?

(i.e., is it the case that, for every database instance I, we have that 
q(I) = q’(I)?)

� The Query Containment Problem: Given two queries q and q’ of the 
same arity, is it the case that q ⊆ q’ ? 

(i.e., is it the case that, for every database instance I, we have that 
q(I) ⊆ q’(I)?)
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Three Fundamental Algorithmic Problems about Queries

� The Query Evaluation Problem is the main problem in query 
processing.

� The Query Equivalence Problem underlies query processing and 
optimization, as we often need to transform a given query to an 
equivalent one.

� The Query Containment Problem and Query Equivalence Problem
are closely related to each other:

� q ≡ q’ if and only if q ⊆ q’ and q’ ⊆ q.

� q ⊆ q’ if and only if  q ≡ (q Æ q’).
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Three Fundamental Algorithmic Problems about Queries

� Our goal is to investigate the algorithmic aspects of these problems 
for queries expressible in relational algebra/relational calculus.

� The questions we want to address are:

� How can we measure the precise “difficulty” of these problems?

� Are there “good” algorithms for solving these problems?

� If not, are there special cases of these problems for which “good”
algorithms exist?
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Three Fundamental Algorithmic Problems about Queries

Our study of these problems will use concepts and methods from two 

different, yet related, areas:

� Mathematical Logic:

� Computability Theory and Undecidable Problems

� Computational Complexity Theory:

� Complexity Classes and Complete Problems

� In particular, the classes P and NP, and NP-complete problems.
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Decision Problems and Languages

� Definition (informal): A decision problem Q consists of a set of 
inputs and a question with a “yes” or “no” answer for each input.

� Definition: A decision problem is

� Decidable if there is an algorithm for solving it;

� Undecidable if there is no algorithm for solving it.

Q?
input x

1 (“yes”)

0 (“no”)
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Undecidable Problems

Theorem: The following problems are undecidable:

� The Halting Problem (A. Turing – 1936): Given a Turing machine M 
and an input x, does M halt on x?

� The Finite Validity Problem (B. Trakhtenbrot – 1949): Given a first-
order formula ϕ on graphs, is ϕ true on every finite graph?
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Undecidable Problems

� The Finite Validity Problem (B. Trakhtenbrot – 1949): Given a first-
order sentence ϕ on graphs, is ϕ true on every finite graph?

� Examples of Finitely Valid Formulas:

� ∀ x(E(x,x) → ∃ yE(x,y))

� ∀ x∀ y(E(x,x) Æ x = y → E(y,y))

� “if E is a total order, then E has a biggest element”

� Example of Non-Finitely Valid Formulas:

� ∀ x ∀ y (E(x,y) → E(y,x))

� (∀ x ∃ y E(x,y))  → (∃ y ∀ x E(x,y))

� The undecidability of the Finite Validity Problem means that there is 
no algorithm for telling formulas in the first group from formulas in 
the second group.



31

The Reduction Method

� By now there is a vast library of undecidable problems.

� The Reduction Method is the main technique for establishing 
undecidability.

� Reduction Method: To show that a problem L* is undecidable, it 
suffices to find an undecidable problem L and a computable function 
f such that for every input x, we have that

x ∈ L  ⇔ f(x) ∈ L*.

� Such a function f is called a reduction of L to L* 

� L ≼ L*  means that there is a reduction of L to L*.
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The Reduction Method

� The Halting Problem was the first fundamental decision problem 
shown to be undecidable.

� The Finite Validity Problem was shown to be undecidable by showing 
that Halting Problem ≼ Finite Validity Problem.

� Many database problems have been shown to be undecidable via 
reductions from 

� The Halting Problem

or

� The Finite Validity Problem
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Undecidability of The Query Equivalence Problem

� The Query Equivalence Problem: Given two queries q and q’ of the 
same arity, is it the case that q ≡ q’ ?

(i.e., is q(I) = q’(I) on every database instance I?)

� Theorem: The Query Equivalence Problem for relational calculus 
queries is undecidable.

Proof: Finite Validity Problem ≼ Query Equivalence Problem

� To see, this let ψ* be a fixed finitely valid relational calculus 
sentence (say, ∀ x(E(x,x) → ∃ yE(x,y))).

� Then, for every relational calculus sentence ϕ, we have that

ϕ is finitely valid ⇔ ϕ ≡ ψ*.
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Undecidability of the Query Containment Problem

� The Query Containment Problem: Given two queries q and q’ of the 
same arity, is it the case that q ⊆ q’ ? 

(i.e., is q(I) ⊆ q’(I) on every database instance I?)

� Corollary: The Query Containment Problem for relational calculus 
queries in undecidable.

Proof:  Query Equivalence ≼ Query Containment, since

q ≡ q’ ⇔ q ⊆ q’ and q’ ⊆ q.

� Notice the chain of reductions:

Halting Problem ≼ Finite Validity  ≼ Query Equiv. ≼ Query Cont.
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The Query Evaluation Problem

� The Query Evaluation Problem: Given a query q and a database 
instance I, find q(I).

� The Query Evaluation Problem for relational calculus queries is 
decidable, but, as we will see, it has high computational complexity.

� To understand the precise algorithmic difficulty of the Query 
Evaluation Problem, we need some basic notions and results from 
computational complexity.
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Decidable Problems and Computational Complexity

� Computational Complexity is the 
quantitative study of decidable problems.

� “From these and other considerations 
grew our deep conviction that there 
must be quantitative laws that 
govern the behavior of information 
and computing. The results of this 
research effort were summarized in our 
first paper on this topic, which also 
named this new research area, "On the 
computational complexity of 
algorithms“.”

J. Hartmanis, Turing Award Lecture, 1993

Undecidable

Problems

Decidable

Problems
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Computational Complexity Classes

� Decidable problems are grouped together in computational 
complexity classes.

� Each computational complexity class consists of all problems that 
can be solved in a computational model under certain restrictions on 
the resources used to solve the problem.

� Examples of computational models:

� Turing Machine TM (deterministic Turing machine)

� Non-deterministic Turing machine NTM

� …

� Examples of resources:

� Amount of time needed to solve the problem

� Amount of space (memory) needed to solve the problem.

� …
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Computational Complexity Classes

Classification of Decidable Problems

(not on scale)

There are many other complexity 

classes. For a comprehensive catalog,

visit the Complexity Zoo at

qwiki.stanford.edu/wiki/Complexity_Zoo

LOGSPACE

NLOGSPACE

P

NP

PSPACE

.

.

.
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Complexity of the Query Evaluation Problem

The Query Evaluation Problem for Relational Calculus:

Given a relational calculus formula ϕ and a database instance I, find 

ϕadom(I).

Theorem: The Query Evaluation Problem for Relational Calculus is 

PSPACE-complete.

Proof: We need to show that

� This problem is in PSPACE.

� This problem is PSPACE-hard.

We start with the second task.
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Complexity of the Query Evaluation Problem

� Theorem: The Query Evaluation Problem for Relational Calculus is 
PSPACE-hard.

� Proof: Show that

Quantified Boolean Formulas ≼p Query Evaluation for Rel. Calc.

Given QBF ∀ x1∃ x2 …. ∀ xk ψ

� Let V and P be two unary relation symbols

� Obtain ψ*  from ψ by replacing xi by P(xi),  and ¬xi by ¬P(xi)

� Let I be the database instance with V = {0,1}, P={1}.

� Then the following statements are equivalent:

� ∀ x1∃ x2 …. ∀ xk ψ is true

� ∀ x1 (V(x1) → ∃ x2 (V(x2)Æ(… ∀ xk(V(xk) → ψ*))…) is true on I.
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Complexity of the Query Evaluation Problem

� Theorem: The Query Evaluation Problem for Relational Calculus is in PSPACE.

Proof (Hint): Let ϕ be a relational calculus formula ∀x1∃x2 … ∀xmψ and let I be 

a database instance.

� Exponential Time Algorithm: We can find ϕadom(I), by exhaustively cycling 
over all possible interpretations of the xi’s.

This runs in time O(nm), where n = |I| (size of I).

� A more careful analysis shows that this algorithm can be implemented in 
O(m·logn)-space.

� Use m blocks of memory, each holding one of the n elements of 
adom(I) written in binary (so O(logn) space is used in each block).

� Maintain also m counters in binary to keep track of the number of 
elements examined.

am in adom(I) 
written in binary

…a2 in adom(I) 
written in binary

a1 in adom(I) 
written in binary

∀ xm…∃ x2∀ x1
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Summary

� Relational Algebra and Relational Calculus have “essentially” the 
same expressive power.

� The Query Equivalence Problem for Relational Calculus in 
undecidable.

� The Query Containment Problem for Relational Calculus is 
undecidable.

� The Query Evaluation Problem for Relational Calculus is PSPACE-
complete.
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Sublanguages of Relational Calculus

� Question: Are there interesting sublanguages of relational calculus 
for which the Query Containment Problem and the Query Evaluation
Problem are “easier” than the full relational calculus?

� Answer:

� Yes, the language of conjunctive queries is such a sublanguage.

� Moreover, conjunctive queries are the most frequently asked 
queries against relational databases.
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Conjunctive Queries

� Definition: A conjunctive query is a query expressible by a 

relational calculus formula in prenex normal form built from atomic 

formulas R(y1,…,yn),  and  Æ and ∃ only.

{ (x1,…,xk):  ∃ z1 …∃ zm χ(x1, …,xk, z1,…,zk) },

where χ(x1, …,xk, z1,…,zk) is a conjunction of atomic formulas of the 

form R(y1,…,ym).

� Equivalently, a conjunctive query is a query expressible by a 
relational algebra expression of the form

πX(σΘ(R1× …× Rn)), where

Θ is a conjunction of equality atomic formulas (equijoin).

� Equivalently, a conjunctive query is a query expressible by an SQL 
expression of the form

SELECT <list of attributes>

FROM    <list of relation names>

WHERE  <conjunction of equalities>



45

Conjunctive Queries

� Definition: A conjunctive query is a query expressible by a 

relational calculus formula in prenex normal form built from atomic 

formulas R(y1,…,yn),  and  Æ and ∃ only.

{ (x1,…,xk):  ∃ z1 …∃ zm χ(x1, …,xk, z1,…,zk) }

� A conjunctive query can be written as a logic-programming rule:

Q(x1,…,xk) :-- R1(u1), …, Rn(un), where

� Each variable xi occurs in the right-hand side of the rule.

� Each ui is a tuple of variables (not necessarily distinct)

� The variables occurring in the right-hand side (the body), but 
not in the left-hand side (the head) of the rule are existentially 
quantified (but the quantifiers are not displayed).

� “,” stands for conjunction.  
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Conjunctive Queries

Examples:
� Path of Length 2: (Binary query)

{(x,y): ∃ z (E(x,z) Æ E(z,y))}

� As a relational algebra expression, 
π1,4(σ$2 = $3 (E×E)) 

� As a rule:
q(x,y) :-- E(x,z), E(z,y)

� Cycle of Length 3: (Boolean query)
∃ x∃ y∃ z(E(x,y) Æ E(y,z) Æ E(z,x))

� As a rule (the head has no variables)
� Q :-- E(x,z), E(z,y), E(z,x) 
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Conjunctive Queries

� Every relational join is a conjunctive query:

P(A,B,C), R(B,C,D) two relation symbols

� P ⋈ R =  {(x,y,z,w):  P(x,y,z) Æ R(y,z,w)}

� q(x,y,z,w)  :-- P(x,y,z), R(y,z,w) 

(no variables are existentially quantified)

� SELECT P.A, P.B, P.C, R.D

FROM    P, R

WHERE P.B = R.B  AND  P.C = R.C 

� Conjunctive queries are also known as SPJ-queries

(SELECT-PROJECT-JOIN queries)
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Conjunctive Query Evaluation and Containment

� Definition: Two fundamental problems about CQs

� Conjunctive Query Evaluation (CQE):

Given a conjunctive query q and an instance I, find q(I).

� Conjunctive Query Containment (CQC):

� Given two k-ary conjunctive queries q1 and q2, 

is it true that  q1 ⊆ q2? 

(i.e., for every instance I, we have that q1(I) ⊆ q2(I))

� Given two Boolean conjunctive queries q1and q2, is it true that 

q1 � q2? (that is, for all I, if I � q1, then I � q2)?

CQC is logical implication.
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CQE  vs.  CQC

� Recall that for relational calculus queries:

� The Query Evaluation Problem is PSPACE-complete

(combined complexity).

� The Query Containment Problem is undecidable.

� Theorem: Chandra & Merlin, 1977

� CQE and CQC are the “same” problem.

� Moreover, each is an NP-complete problem.

� Question: What is the common link?

� Answer: The Homomorphism Problem


