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Sammendrag

En ny metode i dynamikk - The Moving Frame Method (MFM) - er brukt for & analysere hvordan

manipulatorarmen pa en undervannsfarkost (ROV) pavirker bevegelsen til ROV-en.

En ROV utfgrer mange forskjellige oppgaver pa sjgbunnen i oljeserviceindustrien. I de fleste tilfeller,
benyttes en ROV-pilot til & overvake og justere bevegelsene til fartgyet som oppstar pa grunn av strgm,
oppdrift og bevegelse fra manipulatorarmene. A kunne regne ut forventet bevegelse til ROV-en fra
manipulatorarmene, vil kunne assistere piloten, samt gjgre klart for fremtidig automatisering av

prosessen.

I denne rapporten utnyttes en ny metode for 4 analysere de induserte bevegelsene til ROV-en.
Metoden benytter Special Euclidean Group (SE(3)) og MFM. Metoden kan brukes sammen med en
begrenset variasjon av vinkelhastigheten for & beregne bevegelsesligningene til ROV-en.
Bevegelsesligningene lgses sa numerisk ved Runge-Kutta og en formel for rekonstruksjon av
rotasjonsmatrisen (som bygger pa Cayley-Hamilton-teoremet) for a beregne 3D-rotasjonene til
fartgyet. Deler av resultatet er visualisert gjennom 2D-plot, og ligningene benyttes som grunnlag for

en 3D-animasjon som vises i en nettleser.

Rapporten avslutter med et sammendrag av forenklingene som er gjort i utregningene av modellen

og gir forslag for videre fremtidig arbeid.
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Abstract

A new method in dynamics—the Moving Frame Method (MFM)—is used to conduct the analysis of
how a robotic appendage (manipulator) on a Remotely Operated Vehicle (ROV) affects the motion of
the ROV.

An ROV performs multiple tasks on the seabed in the oil service industry. In most cases, an ROV pilot
monitors and adjusts the movement of the vehicle due to induced motion by currents, buoyancy and

the manipulators. Simulation data would assist the pilot and improve the stability of the ROV.

This paper exploits a new method to analyze the induced movements of the ROV. The method uses
the Special Euclidean Group (SE(3)) and the MFM. The method is supplemented with a restricted
variation on the angular velocity to extract the equations of motion for the ROV. Then the equations
of motion are solved numerically using Runge-Kutta Method and a reconstruction formula (founded
upon the Cayley-Hamilton theorem) to secure the 3D rotations of the vehicle. The resulting motion is

visualized with selected 2D plots. The 3D animation is displayed on a 3D web page.

This paper closes with a summary of the simplifications used in the model and suggestions for

advanced work.
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Nomenclature
[B] B-matrix
C Center of mass
[D] Combined angular velocity
E Frame connection matrix
E Time derivative of frame connection matrix
e Frame
{F*} Generalized force
{F} Force and moment list
H Angular Momentum
{H} Generalized momenta
I3 3x3 Identity matrix
@ 3x3 Mass moment of inertia matrix
] Joint
K Kinetic energy
{L} Linear momentum
L Linear momentum
L Lagrangian
[M] Mass matrix
[M* ] Reduced mass matrix
[N*] Reduced nonlinear velocity matrix
q Generalized position
q Generalized velocity
g Generalized acceleration
{4} General velocity variable list
{G} Generalized acceleration variable list
R Rotation matrix
R Time derivative of rotation matrix
r Absolute position vector
s Position vector
U Potential energy
sU Variation of potential energy
ow Virtual work
X} Velocity list
X3 Virtual displacements
x Position vector
X Linear velocity vector
a Index counter
) Variation
oIl Variation of frame connection matrix
0 Angle
on Virtual rotational displacement
Q Time rate of the frame connection matrix
W Angular velocity vector
1 Skew symmetric angular velocity matrix

11
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1. Introduction

A Remotely Operated Vehicle (ROV) is a subsea vehicle that is heavily used in the oil and gas service
industry. It consists of a frame with thrusters, umbilical cables and usually two manipulator arms. One
arm is for securing the ROV to a subsea installation, and one—the focus of this study—for operating

different types of tools [1].

Figure 1 - Typical ROV [1]

In subsea operations, the ROV is exposed to many types of forces. Currents, buoyancy and waves cause
the ROV to translate and rotate [2]. Also, motion of the manipulator can cause the ROV to rotate, when

heavy tools are attached to it. These movements can cause a risk for the subsea operations.

Today, these challenges are being addressed using human pilots who continuously correct the position
and rotation of the ROV. By understanding how the manipulator arms affect the rotations of the ROV,
the motion can be corrected instantaneously instead of correcting the rotation after it has occurred.
This paper analyzes such motion using the MFM. In the next section, the method is introduced along
with a description of the model. A critical aspect of this analysis is that it was conducted by
undergraduate students. This confirms that the MFM, equipped with a consistent notation across the

sub-disciplines of dynamics, is a valuable approach in analysis.

13
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2. Method

The Moving Frame Method (MFM) is founded on: 1) Lie Group Theory distilled to rotation matrices;
2) the concept of attaching a frame to all moving objects; and 3) a compact notation from the discipline

of geometrical physics. A complete description of the MFM is found in reference [3].

The MFM is expanded with a notation that groups both rotation and displacement (SE(3)). Finally, a
restriction on the variation of the angular velocity is obtained by ensuring the commutativity of the
mixed partials (the variation and time).

Traditional methods can also readily extract the equations of motion. The point, however, is that this
research was conducted entirely by undergraduate students. The MFM simplifies 3D dynamics. The
goal of this work is not simply to solve the system, but to demonstrate this power of a new method.
This introduction alludes to the foundation of the theory, but focuses on the application for real-world
challenges. After the theory of the model has been documented, the equations of motion are extracted
theoretically, and the computed symbolically and numerically using a symbolic manipulator (Matlab)

and visualized in a 3D-animation using JavaScript in a HTML-script.

2.1  Model System Description

The model system analyzed in this paper is depicted in Fig. 2.

Figure 2 - Model System Description

The model system consists of an ROV—body(1)—with a two-linked robot arm (manipulator). The
firstarm is body(2), and the second arm is body(3). Each of these two latter bodies rotate in specified
directions with a given amplitude. Each coordinate frame is defined using a vector basis consisting of

three orthogonal vectors on each link or body. Furthermore, an inertial frame is deposited from the

14
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first body and this deposition defines the start time of the analysis. For drawing with dimensions of

each individual part, see Appendix D.

2.2 Mathematical Model

Starting with the inner most component, the ROV itself, and progressing systematically to the first and
then second arm of the manipulator. The bodies are numbered in ascending order from the ROV, to
the first arm and to the second, distal, arm as the third component. This section begins, however, with

a general overview of the MFM as applied to linked systems.

2.2.1 The Moving Frame Method (with SE(3))

The left side of Fig. 3 presents an inertial orthogonal coordinate system, designated by {x; x, x3}” in
dark arrows. The superscript “I” denotes association with the inertial system and the subscripts
represent the coordinate lines. An inertial frame derives from tangent vectors to the coordinate
system e/ = (el e} el), where e! represents the unit tangent vector to the x;-axis. Introducing the
inertial frame defined by the coordinate basis e’ and the 0-position vector, this notation defines the

origin as (e! 0).

Aa)
S3
(a) \
€3 (t)*'\
\ la)
b \ e; (1) (@
T /"; — S,’ :
N R
e% '( =3 -~ r;"
’ - - /E;")(t)
L (a)
P el S
" -
2 Sa X
x1‘/ :

Figure 3 - Relations of the Frames

The right side of Fig. 3 presents a moving orthogonal coordinate system, designated
@4 = (@ (@ (@) ] . : .
S¢ (t) =1{s; ’s, s3 ¢, on body-a frame. It also shows the associated time dependent moving

frame, expressed by e(® (t) = (ega) ® eg“) ® eg“) (). The superscript “(a)” denotes variables that

15
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relates to body- a. In the same figure, it is shown that the vector ega) (t) are the unit tangent vector to

(a)

the s; -axis.

2.2.2 Kinematics of frames in general
In this section, the kinematics of the system is analyzed. A more foundational description of the

method used for the kinematics, is found in reference [3]. The location of the center of mass €V (t) of
the body-1 frame—the ROV—from the origin of the inertial frame, is expressed by the absolute

position vector r with “x” as the absolute coordinate symbol:
1
rél)(t) = e’xé )(0) (1)

The relative location of the center of mass C(@*V(t) of a subsequent body, from the center of mass

€@ (t) of the previous body is expressed with vector S(Caﬂ/a) and coordinate symbol sé“+1/“)and in
the frame of the previous body:
SO = @) SO0 )
Thus, the absolute location of a frame is expressed as:
PO = 1O + e s (3)

Eqn. (3) reveals that to locate a frame, one first proceeds to a previous frame in a linked tree, and,

from that frame, and in that frame’s basis, one proceeds to the current frame.

A 3x3 rotation matrix R(®(t) expresses the rotation of body-a vector-basis e(®)(t) from inertial
vector-basis e':

e@(t) = e'RW (V) (4)
Continuing, the relative rotation of a body-(a + 1) vector-basis e(**1(t) is given by a relative rotation

matrix R(@*+1/0(t) as:

e(a+1) (t) — e(a) (t) R(a+1/a) (t) (5)

16
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The orientation of the e(**D(t) body with respect to the inertial frame is, employing the algebra of
SO(3):
e(c{+1) (t) — eIR((x) (t)R((x+1/a) (t) — eI R(a+1) (t) (6)

2.2.3 Frame Connections Matrices
The next step is to group both the rotation and displacement in one equation. The frame connection

matrix, a form of a homogenous transformation matrix, combines rotations and translations.
Homogenous transformation matrices were first used by Denavit and Hartenberg [4]. However they
did not recognize that such transformations were members of the Special Euclidean Group denoted
as SE(3). The summative development here follows that of Murakami with a consistent reference to

SE(3) [5].

The body-a frame connection (e(® (t) rgx) (t)) is obtained from the inertial frame by post-multiplying

it with a frame connection matrix E(® (t):
(@@ (D) = (' 0)E@(®) (7)

The 4x4 frame connection matrix is shown as:

@ _ [RO® xé‘”(t)]
E@ (1) [ o . (8)

In Eqn. (8), 04 is a 3X1 column zero vector, and xéa) (t) designates coordinates from an inertial frame.

Next, the relative frame connection matrix is described for body (a + 1) with respect to body-a.

(e(““) ® rga+1) ) = (e(a) ) r((:a) (t))E(cHl/a) ® (9)
where:
R(@+1/a) () Séa+1/a’) )

E(a+1/a) (t) —
of 1

(10)

17
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Progressing through the link-tree, the product of the absolute a-frame connection matrix and the
relative (¢ + 1/a)-frame connection matrix, becomes an absolute connection matrix of (a + 1) from

an inertial frame.

E(a+1) (t) — E(a)(t)E(cHl/a)(t) (11)

2.2.4 Kinematics of ROV
With this short foundation, attention is now paid to the first body in the linked tree: the ROV itself.

The frame connection matrix for the ROV E(V(t) is assembled as:

R(l) (t) x(l)(t)] (12)

EM () = [ oT
1

Both the orientation and the position of the first frame (the ROV) is expressed directly with respect to

the inertial frame as shown below as:

D) rP©) = (' OED() (13)
This gives:

(1
€@ 1) = (e 0) [R ® xl(t)]—(e’R(”(t) e'x (1) (19

-1
The inverse, (E(l)(t)) of the frame connection matrix is obtained by the matrix below where the

structure of SE(3) is exploited:

- €Y D
(E0®) " = [R(;)T(t) x%t)] [(R“)(t))T —(R(“(t)l)Txcl () (15)
1

The time derivative of the frame connection matrix:

E(l)(t)=[ ;)T(t) x(l)(t)] (16)
1

The time derivative of the Eqn. (14) defines the linear velocity and the angular velocity vectors of the

ROV:

18
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@@ EP0) = @ 0EV0 = © o) (EP0) EV®
(17)
= (@ © PV

The upper left sub-matrix of Q1 () contains the skew symmetric angular velocity matrix & (t). By

multiplying out the terms in Eqn. (17) one finds:
T .
O = (RO®) RO@©) (18)

The matrix Q™ (t) in Eqn. (17), is referred to as the time rate of the frame connection matrix. The
matrix includes the information describing both the linear velocity and angular velocity of the ROV

coordinate frame:

a0 = (770 (rO0) 1P (19)
of 0

The matrix above is used to express the time-rate of the ROV coordinate frame:

0 -0’ wP®
e () =eP D) = [ (1) 0 —wP (1) (20)
w(®) ) 0

Exploiting the isomorphism between the skewed form in Eqn. (20) and the column representation,

one obtains the angular velocity vector for the ROV in terms of the ROV frame:

w®
1
0D (1) = e (1) | 0 (21)

o

The linear velocity vector x

él)(t) for the ROV, is also expressed with respect to the inertial frame.

T
l.{}) — e® (R(l)(t)) Xél)(t) — elxgl)(t) (22)

19
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Equation (21) and (22) are the first two required expressions needed in the analysis. Attention is now

turned to the second body (the first link).

2.2.5 Kinematics for the first arm
For the first robotic arm (the second body), a frame is placed at the center of mass C® of the first

arm. The system is designed with revolute joints. The MFM is also capable of handle other types of
joints like ball and socket joints, but in this analysis planar rotation is assumed.

T
@ @ @)

A Cartesian coordinate system for the first arm is set to be { Sq , and the coordinate frame

for the first arm is e@(t) = (2 (1) e () P (1).

The relative position vector from the center of mass for the ROV €V to the center of mass for the first
arm €@ is found by translating, rotating, and translating again. Thus, to reach the first joint J;at the

end of the ROV where the first arm connects:

0
), = e(l)(t)s]1 =eW(t) (%) (23)
0

The first arm rotates about one single axis, specifically the egz)(t) axis, so the relation between the

ROV and the first arm is expressed as follows:

e@ (1) = eMWORD (1) (24)
where:
o/ cos(8®) —sin(0@) 0
R/D() = RED(OP) = [5in0®@)  cos(@®) 0 (25)
0 0 1

To reach the center of mass for the first arm € from the first joint J; at the end of the ROV, second

frame is used as (where the second axis points directly along the first arm):

0
sc, = e@(D)sg, = e@(0) (scz> (26)
0

20
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The relative position vector from the first frame e (t) at the center of mass of the ROV ¢ to the

center of mass of the firstarm €® is found as:
322/1) = e(l)(t)séz/l) (27)
The connection matrix for the first arm is be obtained as:
(e?2® rP®) = @ O rPEHEX V() (28)
Thus, finally, E?/D(t) is the compact notation for the frame connection matrix:

E@/D (p) = [R(Z/l)(t) (2/1)] B 0 ][R(Z/l)(t) 0, “13 Siz]

oT 1 07
(29)
3 [R(Z/ V() RV (0)sc, + 511]
of 1
The relative connection matrix for the first arm written with respect to inertial frame:
(2@ rP2®) = (' VED(®) = (¢! 0)EMEC/D (30)

where the E @ (t) frame connection matrix is related to the inertial frame.
In Eqn. (30) E@(t) consists of R?)(t), (in the upper left quadrant) and x(z)(t) (in the upper right
quadrant):

RA (&) = ROMRFV(©®) (31)

xP(£) = R ®)s¢, + RD(t)s), +xV(8) (32)

With this information, a rate analysis is conducted like that leading up to Eqn. (19), and specific

information is extracted as follows:

21
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The angular velocity vector for the first arm:

w@ () = RV TwD () + 0@V (t) = RHV()Tw®(t) + §Pe, (33)

where a)(z/l)(t) is the rotation for the first arm and only about one axis, therefore it can be

represented with the notation 8 ®e,. This notation is also used for the second arm.

The linear velocity vector for the first arm with respect to inertial frame:
. L d . —> T .
P = ROOBD®)s), + 2P ) = RO®(5;) 0@ () + 1 (1) (34)

Equation (33) and (34) are the second two required expressions needed in the analysis. Attention is

now turned to the third body (the second link).

2.2.6 Kinematics for the second arm
Similarly, to the first frame, a Cartesian coordinate system for the second arm is set to be

T
{sf) sgg) s§3)} ,and the frame for the second arm is: e (t) = (e§3)(t) eg3)(t) e§3)(t)).

For the second robotic arm, a frame is placed at the center of mass C(®). The relative position vector
from the center of mass for the first arm € to the center of mass for the second arm €, is found
by an analysis like that leading up to Eqn. (27).

The distance from the center of mass for the first arm €® to the second joint J,, and the distance from

the second joint J, to the center of mass for the second arm € is respectively defined as:

0

s, = e(z)(t)sj2 =e@(p) (sz) (35)
0
0

sc, = e®(O)sg, = e® (D) (SCS> (36)
0

As with the first arm, the second arm also rotates about one single axis, the ef’)(t) axis. This relation

between the first arm and the second arm is expressed as follows:

22
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e® (1) = e@(HRG/D (1) (37)
1 0 0
RG/D(¢) = R£3/2)(93) = [0 cos(0®) —sin(@®) (38)

0 sin(0®) sin(@®)

This is also a planar rotation, but now both arms are rotating in different planes and this is now a full

3D problem.

The relative position vector from the center of mass of the first arm € to the center of mass of the

second arm €@ is found, using the second frame as:
s(c3/2) = e(z)(t)sf/z) (39)

The second arm connection matrices are expressed with respect to the inertial frame as:
(e(3)(t) ré3)) — (e(Z)(t) I.C(Z)) EG/2 (1)
(e®(®) 1) = (¢! MHEDWEFV(EFD (D) (40)
(e®(@®) 1) = (¢! DED (@)

Where the frame connection matrix between the first arm and the second arm are now obtained as:

(3/2 (3/2
GG = [13 512] ROy 0,][s S, _[R /() R /)(t)sc3+s]2 (41)
of 1 of 1[]oT 1 o7 1
In Eqn. (40) E®)(¢) consists of R®)(¢), and xég)(t):
R® () = RO@RE/D()RG/D (1) (42)

23
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x () = R®()sc, + RAO(E)(sc, +57,) + RV®)s), + x50 (©) (43)
The angular velocity vector for the second arm is obtained as:

w® () = REVENT0D (1) + (RC/D(£))T6Pe; + 6Ce, (44)
The linear velocity vector for the second arm with respect to inertial frame:

@) = R(l)(t)R(Z/l)(t)R(3/2)(t)(‘st)Tw(3)(t) + R(l)(t)R(Z/l)(sjl)Ta)(Z)(t)
(45)

+ROD)(5) 0D (@) + 20 (0)

Equation (44) and (45) are the last two required expressions needed in the analysis. This closes the

study of kinematics. Attention is now turned to kinetics.

2.3 Kinetics
Now turning to the Kinetics, and commencing with the generalized coordinate, Hamilton’s Principle

is applied. The details regarding the method are found in the references [6, 7].

2.3.1 Generalized Coordinates
The generalized velocity {X(t)} is defined as a 6nx 1 matrix that consists of both linear velocity ng)and

angular velocities »(® at the center of mass, in alternating order, for each body.

For a three-linked system, as analyzed in this paper, the vector {X(t)} has 18 rows. The coordinates

xél) (o), xéz)(t) and J'C£3)(t) are all presented from the inertial frame.

1 (@)
w@ ®
1)
w®@ ® |
() )
w®(t)

xo}=| (46)
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The generalized velocity {X(t)} as in Eqn. (46) is related linearly to essential generalized
velocity {q(t)}[6]. This is an n*x1 matrix for a system with n*degrees of freedom. For the ROV, there

is 8 degrees of freedom, and {¢(t)} is defined as:

1 (@)
@ ()
0@ ®)
63 ®)

g} = (47)

These terms are, respectively: the translational velocity of the ROV (3 components), the angular
velocity of the ROV (3 components), the rotational velocity of the first arm and the rotational velocity
of the second arm—a total of eight.

The linear relationship between {X(t)} and {q(t)} is expressed as:

(X} = [BONq()} (48)

The B matrix [B(t)] in Eqn. (48) is obtained by considering Eqn. (21), (22), (33), (34), (44), and (45).

2.3.2 Hamilton’s Principle
For Kinetics, the Newton and Euler’s equations is derived (the equations of motion). Hamilton’s
Principle is [6]:

) fttol L)+ W@ (6))de = 0 (49)

The Lagrangian L@ (t) is defined as the difference between kinetic energy K9 (t) and potential
energy U@ (t).
L) =KD - U@ (@) (50)

Principle of Virtual work is redefined from Hamilton’s principle as:

5 [P K@) ~UDO+ WO (©))de = 0 (1)
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Here, “U” continues to designate potential energy from conservative forces such as gravity, while “W”

represents the work done by the non-conservative forces.

The Kinetic energy K () (t) and the potential energy U(® (t) is respectively defined as:
K@) = {1 + 0@V} (52)
U@ () = m@gxd 0) (53)

The Kinetic energy K (¥ (t) consists of translational and rotational components with respect to the

center of mass of each link in the system.

The linear momentum L(C“) and the angular momentum H(“),are respectively defined as:

L (6) = e'm@x{ (1) (54)
H® (t) = @ (£)@] @@ (1) (55)

Where the mass moment of inertia matrix ]éa) is a 3X3 matrix. If the coordinate systems are placed at

the center of mass in each link, and oriented such that the axes coincide with the principal axes of

each link, then the ]é“) matrices are diagonal.

@
@ 0 o0

@ _

K=o 1% o (56)
o o0 J¥

When substituting Eqn. (54) and (55) into Eqn. (52), the component form of kinetic energy becomes:

K(a)(t) — %{Xéa)Tm(a)xéa) + w(a)]éa)w(a)} (57)
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Eqn. (57) is expressed more compactly as:
K(®) =X} (H©®} =1 {X©O} MI{X®)} (58)

The generalized momenta {H(t)} is a 6nx1 matrix that contains both the linear momentum L(C“)and

the angular momentum Hé“), respectively defined as in Eqn. (54) and (55):

LD
HEY ()
LP )
HP(0)
LD (@)
H (0

{H(®)} = = [MI{X(®)} (59)

To build the generalized momenta {H (t)} as in Eqn. (59) the Generalized mass matrix [M] is defined.

It is defined as a 6nx6n matrix, that contains the mass m(*) and moment of inertia ]é“) for each link

in the system:

mMI; 03 0, 0; 0, 03]
03 J&¥ 03 05 03 0
03 0; m®I, 0, 03 03

[M] = (2) (60)
03 03 03 ¢ 0; 03

05 03 03 0; m®L, 0,

05 03 05 05 05 J&

where I3 is a 33 identity matrix, and 05 is a 3X3 zero matrix.
When inserting Eqn. (46), (59), (60) into Eqn. (58), the equation for kinetic energy for the ROV turns
out:
T /7D
/ xgl)(t)\ L%)(t)
w®(t) | He = (®)
P | | L
@) | | H? @)
\xéS)(t) G
o®©)/ \gP )

K(t) =3 (61)
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To derive the principal of virtual work, the variation of the Lagrangian L(*)(t) as in Eqn. (51) is

required, and hence the variation of the generalized velocities must be obtained.

To take the variation of the Lagrangian, the variation of the generalized velocities must be obtained.
More specifically, the variation of the angular velocity is needed. It will be seen that there exists a
restriction on the angular velocity. To this end, some definitions are presented and their utility is

shown, shortly.

First, define STI(® as:

st@(t) (R(“)(t))T 5x9(t)

SI@ — (62)
of 0
Where the virtual rotational displacement §1(® is defined as:
—> T
s () = (R@(1)) SR (2) (63)

From the definition in Eqn. (62) the virtual generalized displacement {§X(t)} is defined as a 6nx1

column matrix:

sxP (1)
st (t)

. ()
6X(O)} = | 6ni2)(t) |
kﬁxé”(t) )

st (t)

As in Eqn. (48), the virtual generalized displacement {§X(¢t)} has its relationship also through the

(64)

[B(t)] matrix as per Murakami [3]. The linear relation gives the virtual essential generalized
displacement {6q(t)}.
{6X(0)} = [B(H{sq(D)} (65)
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For a three-linked system, the relationship between {6X(t)} and {§q(t)} is expressed as:

e 0)
5n§1;(t) sx (1)
SxP(t st (¢t
| o%c O = ey | o7 ;O (66)
o' (t) 66 (t)
kaxg”) ) ) 563 (t)
st (t)
Introducing the commutativity of time differentiation and variation of a frame.
80 @(t) = 8mD(t) + 0@ (5T (1) (67)
d .
E<5xg”‘)(t) =62 (0) (68)

Obtaining Eqn. (67) is a bit of work and shown reference [5]. Eqn. (67) and (68) are more compactly

expressed in the matrix form of virtual generalized velocity {6X (t)}, which is defined as:

{6x(®)} = {sX(®)} + [D@OHEX ()} (69)
Where [D(t)] is a 6nx6n skew symmetric matrix, defined for a three-linked system as:

(03 03 03 03 03 03

03 w®(t) 03 03 03 03
03 03 03 03 03 03

03 03 03 w®@(t) 03 03
03 03 03 03 03 03

0, 0, 03 05 05 w®(0)

[D(®)] = (70)

Next the variation of the kinetic energy 6K (¥)(t), the potential energy 6U® (t), and the the virtual
work sW @ (t) is derived.

The variation of the kinetic energy 6K (®(t), is derived by taking the variation of Eqn. (58):

29



O. A. Moe, I. V. K Schen, A. Evjenth

SK(t) = (X0} (H(®)} = {6X(0)) M{X ()} (71)

The variation of work is W (®(t) . This is defined as the work done by resultant external force FC(“)I ®
and external torque Méa) (t), defined with respect to the virtual generalized displacement {§X(t)} as
in Eqn. (64):

SW(6) = {6X ()} {F(©)} (72)

Where the external force {F(t)} is a 6nx 1matrix, defined for a three-linked system as:
FY' (@)
MO (o)
E2' )
M@ (1)
SN0
m®' @

{F()} = (73)

By substitution Eqn. (65) into (72), the virtual work §W (t) expressed with respect to essential

generalized displacement becomes:

SW (1) = {8q(O} {F"(0)} (74)

Where the essential force {F*(t)}is defined as a n* X 1 matrix, where n* defines the number of

essential generalized coordinates:

{F*®)} = [BOI"{F®)} (75)
The virtual work done by conservative external forces is taken to account by variation of potential
energy 6U @ (¢):

SW@(t) = —sU@ (1) (76)

Therefore, the virtual work done by conservative forces is included in the virtual work & W@ (t) asin

Eqn. (74).
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Substitution of Eqn. (71) and (74) into Eqn. (51), with the use of Eqn. (76), Hamilton’s principle turns

to:

Joo {{SX(t)}T[M]{X O} + {6q(t)}T{F*(t)}} dt =0 77

Where {SX(t)} from Eqn. (69) is expressed for a three-linked system as:

(1) (D
®) dx¢ ()
w(l) (t)\ / n-il) (t)\

€3] @
{5X(t)} — 6xC (t) 6xc (t)
sw@ (1) ~dt st (t)
\&'cé”(t) \Sx?)(t)
Ssw® (1) st (t)
(78)
0 0 0 0 0 05 1/6xP)
3 3 3 3 3 3 c
0, w®(@E) 05 05 05 05 [|l6n®®
+ 03 03 03 03 03 03 Sxéz)(t)
03 03 03 0)(2) (t) 03 03 57‘[(2)(1:)
03 03 03 03 03 03 6x£3)(t)
03 03 03 03 03 (JJ(3) (t) 6‘7T(3)(t)
In Eqn. (77) the variation of omega §w®(t) is eliminated by inserting Eqn. (69) into Eqn. (77):
ot d
LR S (M ©)) + (8RO [DOIMIE ©) = (8g(@)(F* (D)}de = 0 (79)

Performing the derivation in Eqn. (79), and substitute {§X(t)} and {X(t)} with the definitions in Eqn.

(65) and (39) to obtain the equations of motion:

[ 8a@Y (BOI"MIBONG®} + [BOIMI[BO]a(®)} +
(80)
[BOI'IDOIMIBM®G®)} — {F*(OD}dt =0

Hence the equations of motion become:
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[M* (OGO} + [N*(ONG(@O} = {F* ()} =0 (81)

Looking at Eqn. (81), the two matrices [M*(t)] and [N*(t)] are respectively defined as:
[M* ()] = [B(OI"[M][B(®)] (82)
[IN*(®] = [BOI"(IM[B®)] + [DOIMI[B(®)]) (83)

Eqgn. (81) is the equation of motion with the essential generalized velocities. The mathematical model

for deriving the equations of motion of an ROV with a three-linked robotic arm has been set.

2.4  Simplified Model

Equation (81) must be solved numerically. However, this paper will attempt to use the Matlab
symbolic manipulator to obtain more direct equations. Thus, the simplifications that follow really
amount to an attempt by student authors, to obtain a qualitative solution under certain simplifying
cases; and, also, simpler equation systems. The main issue up to this point, and the emphasis to be
made, is that the MFM and the restriction on the angular velocity can enable undergraduate students

to conduct this work.

To see the impact of the system parameters, a numerical experiment is conducted with a 3D

simulation. The mathematical model built above is simplified with several assumptions.

Each term in the generalized velocity {X(t)} as in Eqn. (46) contributes to the total momentum. For

the sake of the experiment translation is neglected, and only rotations are analyzed.

Therefore, the first assumption made is for the translation of the ROV to be prescribed zero in velocity
and acceleration, and no translation of the body applies. Hence the ROV only rotates around its center

of mass.

sxV () = o, D) = o, i@ =o0 (84)

The second assumption made, is prescribed angular velocities and accelerations for the first and

second arm.
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0@ (1) = %sin (t 21*—:) , 03 (1) = %sin (t Z*Tn)
(85)
Hence: 66 @ (t) = 603 (t) = 0

The third assumption made, regards the dimensions to the body of the ROV. It is assumed to have the

shape of a square prism, with the width (w) equal to the height (h) and the length (1)

F=p=i=im (86)

where m; = 2000kg

The fourth assumption made, regards the first arm. The first arm is assumed to be a slender rod with
no mass

m® =0, Ji=J3, Ji=0 (87)

The fifth assumption made, is for the second arm. The second arm is assumed to be slender rod,

symmetric about its first and third axis.

Ji=J5=3m;, J3=0 (88)

where mz = 100kg

With these assumptions made, the system simplifies and with the first and second assumption as in
Eqn. (84) and (85). Because of the prescribed rates, the virtual essential generalized displacement
{6q(t)} as in Eqn. (66) turns out:

0

st (t)
0

{6q(0)} = (89)

0
Eqn. (89) is inserted into Eqn. (81) with the definitions in Eqn. (82) and (83).
Eqn. (81) is then simplified. The first assumption as in Eqn. (84) yields that the translation of the ROV

is prescribed to be zero in velocity as with acceleration, hence the top 3 rows of the essential

generalized velocity {q(t)} and acceleration {G(t)} is zero.
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0 0
;0@ ()
M Olows | gy |+ IV Olows| gy | — F @ =0 (90)
690 8x1 690 8x1

Eqn. (90) is simplified in two steps. First due to the three top rows of {¢(t)} and {G(t)} are zero, then
[M*(t)], and [N*(t)] reduces from 8x8 to 8X5 matrices by removing the first three columns. In this
process {¢(t)}, and {G(t)} reduce from 8x1 to 5x1.

A second reduction comes from {§q(t)}. The three top rows and two bottom rows of {§q(t)} are zero,
hence the three top rows and two bottom rows of the total product in Eqn. (90) is zero. Then [M*(t)]

and [N*(t)] reduces from 8x5 to 3x5 matrices by removing the three top rows and two bottom rows.

Any force or moment that impacts a prescribed motion and angel is zero reduces {F*(t)} from 8x1 to

a 3x1 vector, by removing the three top rows and two bottom rows.

Eqn. (90) results in the reduced form:

a')(l)(t) w(l)(t)
[M*(t)]Reduced3X5 é(z)(t) :{F*(t)}3><1— [N*(t)]Reduced3X5 9(2)(t)
IO/ ., - 6w/, »
(91)
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Eqn. (91) gives three equations:

—[N*(D]1,;{¢®)}; — [M* (O], {G®O} + {F* (D}

Nk M (Ol
(92)
jef1, ...,5}, ie{2,3,4,5}
6,0 (0) = —[N"(D)],{g(O)}; — [M*(O]2:{G[®)}: + {F* (O},
[M*(0)]22
(93)
jef1,..,5),  ie{1,3,4,5}
5,0 (0) = —[N*"(®)]3,{q(O)}; — [M*(O)]3:{G@®)}; + {F* (O}
[M*(t)]33
(94)

je{1,..,5},  ie{1,2,4,5}

2.4.1 Reconstruction of the rotation matrix

In [M*(t)], the rotation matrix for the ROV appears, and thus the rotation matrix for the ROV must be
calculated at each time step. If R(t) and w(t) is known, then w(t + At) is calculated using 4t order
Runge-Kutta Method [8]. R(t + At) needs to be obtained before moving on to the next time step of
Runge-Kutta Method.

The rate of change of the rotation matrix is defined from Eqn. (18):
RD(6) = RV () 0™ (1) (95)
For a constant angular velocity problem, this could be solved analytically by integrating Eqn. (95), but

w is not constant. However, by taking the average of w(t) and w(t + At) and assuming a constant

omega between time steps, the rotation matrix is obtained with the following formula.

R(t + At) = R(t)exp(Atw(t + At/2)) (96)
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Where the exponential of the angular velocity is found using the Cayley-Hamilton theorem, which

leads to the following equation:

w(t+At/2)

exp(At®)) =1, + — =
PAtD) = Is 4 o s ae 2l

sin(At||w(t + At/2)|]) +

(97)

w(t+ At/2)
llw(t + At/2)l

2
> (1 — cos(At|lw(t + At/2)]]))

w(t+At/2)

If a unit vector u =
lw(t+At/2)]|

is defined in the direction of the angular velocity vector, then Eqn. (97)

agrees with the Rodrigues formula. Eqn. (97) is used in the numerical integration of Eqn. (95) to

obtain the rotation matrix [9, 10].

2.5 Numerical solution

A symbolic manipulator is used to obtain the equation of motion. Due

to lack of computer processing power and limitations of the program used, some simplifications were
necessary. By collapsing {X(¢)} to only hold w@(t), hence collapsing [B(t)], [M] and [D(t)],
information about the linear momentum is lost, but the angular momentum still stands. For future
iterations of this problem, linear momentum can be considered. The three coupled first order
differential equations Eqn. (92), (93) and (94), are decoupled using a symbolic manipulator through

Gauss-Jordan elimination. Then, the three decoupled equations are solved numerically using the

Runge-Kutta Method, to obtain wfl) (o), wgl) (t) and w?El) (o).
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3. Results

Using Eqn. (92), (93) and (94) and the simplifications above, @23)(t) are solved numerically. Runge-
Kutta is used to solve these equations with time steps of 0.02 seconds for 1000 steps. The plots are

presented below in Fig. 4, 5 and 6:

0.16 ¢
0.12 |

0.08 }

omega 1, PITCH [rad/s]

X 0 5 10

time [sl
Figure 4 - Angular velocity about first axis (pitch) of ROV and
prescribed angular motion of first and second arm (dashed)

omega 2, ROLL [rad/s]

5 10 15 20
time [s]
Figure 5 - Angular velocity about second axis (roll) of the
ROV and prescribed angular motion of just the second arm
(dashed)
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omaga 3, YAW [rad/s]

0 5 10 15 20

time [s]
Figure 6 - Plot of the angular velocity about the third axis
(vaw axis) of the ROV and prescribed motion of the
second arm (dashed)

In these plots, one observes the induced ROV angular velocity due to the input angular velocity of the
first and second arms. The response of the ROV closely matches the input angular velocities of the
two links. However, the reader is reminded that many simplifications were undertaken, especially,
ignoring wave forces, added mass and the input torque generator on the two arms. However, this does

confirm the qualitative response.

More informative, perhaps, is observing the induced rocking on the ROV, itself.

Finally, the authors point the reader to a 3D web page [11]:
http://home.hib.no/prosjekter/dynamics/2017 /robot/

On this web page, one can alter the input parameters and observe the rocking motion of the craft. Left,

middle and right mouse buttons translate as: zoom, pan and rotate.

The scripts used in the symbolic manipulator to extract the symbolic equations are added in the

appendix B and C.
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4. Conclusion

The results show that it is possible to analyze the induced rotations due to movement of the
manipulators. By utilizing the approach used in this paper, combined with coding the solution of Eqn.
(81) directly, a broader in-depth analysis can be performed to include both rotations and
displacements, as well as reducing the number of simplification necessary to carry out the

calculations.

Also, by prescribing the motion of the first arm to be zero, the results reduce to a sine wave about the
first axis with a period equal to the second arm. However, by studying such a 2D-simplification, it
would not have been possible to construct a set of instructions that could be of any use to control an
ROV. With the MFM, the authors have been able to construct and utilize 3D-dynamics. Together with
PID-settings it is possible construct a set of instructions that update the motors of an ROV to prevent

any rotation induced by motion of the arms.
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Appendix A

The following equations gives angular velocity about the first, second and third axis, respectively.
Admittedly, this was an overwrought attempt—to obtain expressions for the three angular velocities
in this form. In future work, it would be best to simply conduct a numerical integration directly with

Eqgn. (81-83) or just with (80) alone.

oW (t) = (2 *J31 * w3 * sin(th1t(t)) * sin(th2t(t))*2 * dth2t(t))/J11 + J31) — (J31 * wl * sin(2 *
th2t(t)) = dth2t(t))/(J11 + J31) — (J31 *w2 * w3 * (cos(th2t(t))*2 — 1))/(J11 + J31) — (J31 %
cos(thlt(t)) * cos(th2t(t)) = sin(th2t(t)) » dth1t(t)*2)/(J11 + J31) — (J31 * w2 * w3 * cos(th1t(t))"2 *
cos(th2t(t))"2)/(J11 + J31) — (J31 * cos(thlt(t)) » ddth2t(t))/(J11 + J31) — (2 *J31 w2 *
cos(th1t(t))"2 x cos(th2t(t))"2 = dth1t(t))/(J11 + J31) + (2 =J31 * sin(th1t(t)) * sin(th2t(t))"2 =
dth1t(t) = dth2t(t))/(J11 + J31) + (J31 * w2”2 x cos(th1t(t)) * cos(th2t(t)) » sin(th2t(t)))/(J11 +
J31) — (J31* w32 x cos(thlt(t)) * cos(th2t(t)) * sin(th2t(t)))/(J11 + J31) — (J31 * cos(th2t(t)) *
sin(th1t(t)) » sin(th2t(t)) » ddth1t(t))/(J11 + J31) + (J31 * wl * w3 * cos(th1t(t)) * cos(th2t(t))"2 *
sin(th1t(t)))/(J11 + J31) — (2 xJ31 * w3 * cos(thlt(t)) * cos(th2t(t)) * sin(th2t(t)) * dth1t(t))/(J11 +
J31) + (2 *J31 x w1 * cos(thlt(t)) * cos(th2t(t))"2 * sin(th1t(t)) = dth1t(t))/(J11 + J31) + (2x]31*
w1l * cos(th1t(t))"2 * cos(th2t(t)) * sin(th2t(t)) » dth2t(t))/(J11 + J31) — (J31 *wl * w2 *
cos(th2t(t)) = sin(th1t(t)) * sin(th2t(t)))/(J11 + J31) + (2 *J31 * w2 * cos(th1t(t)) * cos(th2t(t)) *
sin(th1t(t)) * sin(th2t(t)) = dth2t(t))/(J11 + J31)

O@ () = (2 %J31 *wl w3 * cos(th2t(t))*2)/(J11 + J31) — (J31*wl *w3)/(J11 + J31) — (J31 *
sin(th1t(t)) * ddth2t(t))/(J11 + J31) — (2 *J31 * w3 * cos(thlt(t)) = dth2t(t))/(J11 + J31) + (2 *
J31 *wl * cos(th2t(t))"2 * dth1t(t))/(J11 + J31) — (2 *J31 * cos(thlt(t)) = dthlt(t) = dth2t(t))/(J11 +
J31) — (J31 * cos(th2t(t)) * sin(th1t(t)) * sin(th2t(t)) » dth1t(t)*2)/(J11 + J31) — (J31*wl * w3 *
cos(th1t(t))"2 * cos(th2t(t))"2)/(J11 + J31) + (2 *J31 * w3 * cos(th1t(t)) * cos(th2t(t))"2 *
dth2t(t))/(J11 + J31) — (2 *]J31 *wl * cos(th1t(t))"2 * cos(th2t(t))"2 » dth1t(t))/(J11 + J31) + (2%
J31 * cos(th1t(t)) * cos(th2t(t)) 2 * dth1t(t) = dth2t(t))/(J11 + J31) + (J31 * cos(thlt(t)) *
cos(th2t(t)) = sin(th2t(t)) = ddthlt(t))/(J11 + J31) + (J31 » wl 2 * cos(th2t(t)) * sin(th1t(t)) *
sin(th2t(t)))/(J11 + J31) — (J31 *w3"2 * cos(th2t(t)) * sin(th1t(t)) * sin(th2t(t)))/(J11 + J31) —
(J31 * w2 * w3 * cos(th1t(t)) * cos(th2t(t))"2 * sin(th1t(t)))/(J11 + J31) — (2 *J31 * w3 *
cos(th2t(t)) * sin(th1t(t)) * sin(th2t(t)) » dth1t(t))/(J11 + J31) — (2 *J31 * w2 = cos(thlt(t)) *
cos(th2t(t))"2 * sin(th1t(t)) * dth1t(t))/(J11 + J31) — (2% J31 * w2 * cos(th1t(t))"2 * cos(th2t(t)) *
sin(th2t(t)) » dth2t(t))/(J11 + J31) — (J31 * wl * w2 x cos(th1t(t)) * cos(th2t(t)) * sin(th2t(t)))/
(J11 + J31) + (2% J31 *wl * cos(thlt(t)) » cos(th2t(t)) = sin(th1t(t)) * sin(th2t(t)) * dth2t(t))/(J11 +
J31)

@@ (t) = (J31 % cos(0P@ (1)) * (2 * w3 * sin(th2t(t)) * dth2t(t) - cos(th2t(t)) * ddth1t(t) + 2 *
sin(th2t(t)) * dth1t(t) = dth2t(t) - wl * w2 * cos(th2t(t)) + w2 * w3 * sin(th1t(t)) *

sin(th2t(t)) - wl”2 * cos(thlt(t)) * cos(th2t(t)) * sin(th1lt(t)) + w2"2 * cos(thlt(t)) * cos(th2t(t)) *
sin(th1t(t)) + 2 *wl * w2 * cos(thlt(t))"2 * cos(th2t(t)) + 2 * w2 * cos(thlt(t)) * cos(th2t(t)) *
dth2t(t) - 2 * wl * cos(th2t(t)) * sin(th1t(t)) » dth2t(t) + wl* w3 * cos(thlt(t)) * sin(th2t(t))))/
J11 + j31)
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Appendix B

Matlab script

function reduced

% Author: Andreas Evjenth
syms t

syms th1t(t) th2t(t)

syms dth1t(t) dth2t(t)
syms ddth1t(t) ddth2t(t)
syms th1 th2

syms dth1 dth2

syms ddth1 ddth2

syms dx1 dx2 dx3 w1l w2 w3 dwl dw2 dw3
syms ddx1 ddx2 ddx3

syms L
syms m1l m2 m3
symsJ11J12J13J21J22J23J31J32J33

el = sym([1,0;0]);
e3 = sym([0,0;1]);

R2 1 =sym(eye(3,3));

R2_1(1,1) = cos(th1t);
R2_1(2,2) = cos(th1t);
R2_1(1,2) = -sin(th1t);
R2_1(2,1) = sin(th1t);

R3_2 =sym(eye(3,3));
R3_2(2,2) = cos(th2t);
R3_2(3,3) = cos(th2t);
R3_2(2,3) = -sin(th2t);
R3_2(3,2) = sin(th2t);

13 = sym(eye(3,3));

B_matrix = sym(zeros(9,5));
B_matrix(1:3,1:3) = I3;
B_matrix(4:6,1:3) =R2_1.";
B_matrix(4:6,4) = e3;
B_matrix(7:9,1:3) =R3_2."*R2_1.%;
B_matrix(7:9,4) =R3_2.' * e3;
B_matrix(7:9,5) = el;

Bt_matrix = B_matrix.';
dB_matrix = diff(B_matrix,t);
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J13 =1J11;
J12=1J11;

J21 =0;
122 =0;
123 =J21;

J32=0;
J33 =1J31;

M_matrix = sym(diag([J11,J12,J13,J21,J22,J23,J31,J32,J33]));

%Define the omegas
= [wl;w2;w3];
02 = sym(zeros(3,1));
02(1:3,1) = (R2_1." * w) + (dth1t * e3);
03 = sym(zeros(3,1));
03(1:3,1)=R3_2."*R2_1.'*w+R3_2.' * dthlt * e3 + dth2t * el;
Omegal = symSkew(w);
Omega?2 = symSkew(02);
Omega3 = symSkew(0O3);

D_matrix = sym(zeros(9,9));
D_matrix(1:3,1:3) = Omegal(1:3,1:3);
D_matrix(4:6,4:6) = Omega2(1:3,1:3);
D_matrix(7:9,7:9) = Omega3(1:3,1:3);

Mstar = simplify(Bt_matrix * M_matrix * B_matrix);

Nstar = simplify(Bt_matrix * (M_matrix * dB_matrix + D_matrix * M_matrix * B_matrix));

dgr = sym(zeros(5,1));
dagr(1,1) = dwi;

dagr(2,1) = dw2;
dgr(3,1) = dws3;
dgr(4,1) = ddth1t;
dgr(5,1) = ddth2t;

gr = sym(zeros(5,1));
gr(1,1) =wil

ar(2,1) =w2

gr(3,1) =w3

gr(4,1) = dth1t;
gr(5,1) = dth2t;

ess = sym(zeros(3,1));
fora=1:3
for j=1:5
ess(a) = ess(a) - Nstar(a,j)*qr(j);
if(j~=1a)
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ess(a) = ess(a) - Mstar(a,j)*dqr(j);
end
end
ess(a) = ess(a) / Mstar(a,a);
end

%SETTING UP FOR GAUSS ELIMINATION

syms ga gb gc gd gf gg gh gi

ga=sym(ess(1));
gb = sym(ess(1);
ge = sym(ess(1));
gd = sym(ess(2);
ge = sym(ess(2));
of = sym(ess(2);

gg = sym(ess(3));
gh = sym(ess(3));

gi = sym(ess(3));

ga = subs(ga,dw2,0);
ga = subs(ga,dw3,0);

gb = subs(gb,dw2,1);
gb = subs(gb,dw3,0);
gb=gb - ga;

gc = subs(gc,dw2,0);
gc = subs(gc,dw3,1);
gc=gc-ga;

gd = subs(gd,dw1,0);
gd = subs(gd,dw3,0);

ge = subs(ge,dw1,1);
ge = subs(ge,dws3,0);
ge =ge - gd;

gf = subs(gf,dw1,0);
gf = subs(gf,dw3,1);
gf=gf - gd;

gg = subs(gg,dw1,0);
gg = subs(gg,dw2,0);

gh = subs(gh,dw1,1);
gh = subs(gh,dw2,0);
gh=gh - gg;

gi = subs(gi,dwl,0);
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gi = subs(gi,dw2,1);
gi=gi-gg;

gauss_matrix = [-1,gb,gc,-ga;ge,-1,gf,-gd;gh,gi,-1,-gg];
gauss_matrix = rref(gauss_matrix);

g_unc = sym(zeros(3,1));

g_unc(1:3) = gauss_matrix(1:3,4);

g_unc = subs(q_unc,diff(th1t(t), t),dth1t);
g_unc = subs(q_unc,diff(th2t(t), t),dth2t);

time = 0;

step =1;

step_max = 2000;

while step < step_max
step = step * 2;
parfor a=1:3

g_unc(a) = simplify(q_unc(a),'Steps',step);

end
clc;
disp(step);

end

disp(g_unc);
end

function [Mat] = symSkew(vec)
Mat = sym(zeros(3));
Mat(1,2) = -vec(3);
Mat(1,3) = vec(2);
Mat(2,3) = -vec(1);
Mat(2,1) = -Mat(1,2);
Mat(3,1) = -Mat(1,3);
Mat(3,2) = -Mat(2,3);
end
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Appendix C
Main.js, Starter.js, Dynamics.js
S(document).ready(function () {
//Author: Andreas Evjenth
var camera, renderer, controls;
var scene = new THREE.Scene();
var frames = [];
var dq =0, 0, 0];
var q = [0, 0, 0];
var guiParams = gui();
vart = 0;
const dt = 0.016;

function init() {
setRenderer();
frames = loadObjects(scene).slice();
setCamera();
setLights();
seafloor();
setControls();
window.addEventListener('resize', onWindowResize, false);
renderer.render(scene, camera);
animate();

}

function seafloor() {
var mesh, texture;
var worldWidth = 1024, worldDepth = 1024,
worldHalfWidth = worldWidth / 2, worldHalfDepth = worldDepth / 2;
var data = generateHeight(worldWidth, worldDepth);
var geometry = new THREE.PlaneBufferGeometry(3000, 3000, worldWidth - 1, worldDepth - 1);
geometry.rotateX(-Math.PI / 2);
var vertices = geometry.attributes.position.array;
for (vari=0,j =0, 1 = vertices.length; i <1; i++, j +=3) {
vertices[j + 1] = data[i] * 5;
}
texture = new THREE.CanvasTexture(generateTexture(data, worldWidth, worldDepth));
texture.wrapS = THREE.ClampToEdgeWrapping;
texture.wrapT = THREE.ClampToEdgeWrapping;
mesh = new THREE.Mesh(geometry, new THREE.MeshBasicMaterial({ map: texture }));
mesh.rotation.x = Math.Pl / 2;
mesh.position.z = -1500;
mesh.scale.x = 20;
mesh.scale.z = 20;
scene.add(mesh);

}

function animate() {
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requestAnimationFrame(animate);
var ROV_data = updateROV(dq, dt, t, q);
for (vari=0;1<3;dq[i] = ROV _data.ddq[i] * 0.9, i++);
for (vari=0;1<3;q[i]=ROV_data.angles[i] * 0.9, i++);
//dq *=0.5;
rotate(q, getTheta(t));
controls.update();
renderer.render(scene, camera);
t+=dt;
}
function rotate(q, theta) {
frames[0].rotation.x = q[0];
frames[0].rotation.y = q[1];
frames[0].rotation.z = q[2];

frames[2].rotation.z = theta.th1t;
frames[3].rotation.x = theta.th2t;

}

function setCamera() {
camera = new THREE.PerspectiveCamera(60, window.innerWidth / window.innerHeight, 100, 50000);
camera.position.set(5000, 5000, 0);
camera.lookAt(0, 0, 0);
camera.up.set(0, 0, 1);

}

function setRenderer() {
renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setClearColor(0x000055, 1.0);
var container = document.getElementByld("myCanvas");
container.appendChild(renderer.domElement);

}

function setLights() {
var light = new THREE.HemisphereLight(Oxffffbb, 0x080820, 1);
light.castShadow = true;
scene.add(light);

var amblight = new THREE.AmbientLight(0x555555);
scene.add(amblight);

}

function setControls() {
controls = new THREE.OrbitControls(camera, renderer.domElement);
controls.rotateSpeed = 0.5;
controls.zoomSpeed = 2.0;
controls.panSpeed =5,;
controls.minDistance = 5.0;

47



O. A. Moe, I. V. K Schen, A. Evjenth

controls.maxDistance = 100000;

}

function onWindowResize() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();

renderer.setSize(window.innerWidth, window.innerHeight);
1

ijnit();
1)
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function loadObjects(scene) {
var loader = new THREE.OBJMTLLoader();
var objects = loadObject(loader);
var origo = new THREE.Vector3(0, 0, 0);

var linelength = 4000;
var material = new THREE.LineBasicMaterial({
color: 0xff0000
1;
var linegeo = new THREE.Geometry();
linegeo.vertices.push(
new THREE.Vector3(linelength, 0, 0),
origo
);

var line = new THREE.Line(linegeo, material);
scene.add(line);

var materiall = new THREE.LineBasicMaterial({
color: 0x00ff00
1;
var linegeol = new THREE.Geometry();
linegeol.vertices.push(
new THREE.Vector3(0, linelength, 0),
origo
);

var linel = new THREE.Line(linegeol, materiall);
scene.add(linel);

var material2 = new THREE.LineBasicMaterial({
color: 0x0000ff
1;
var linegeo2 = new THREE.Geometry();
linegeo2.vertices.push(
new THREE.Vector3(0, 0, linelength),
origo
);

var line2 = new THREE.Line(linegeo2, material2);

scene.add(line2);

var frames = [];

frames[0] = new THREE.Object3D(0, 0, 0);
frames[1] = new THREE.Object3D(0, O, 0);
frames[1].position.y = 1350;
frames[1].position.z = -170;

frames[2] = new THREE.Object3D(0, 0, 0);
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frames[2].position.y = 50;
frames[3] = new THREE.Object3D(0, O, 0);
frames[3].position.y = 1300;

scene.add(frames[0]);
frames[0].add(objects.ol);
frames[0].add(frames[1]);
frames[1].add(objects.02);
frames[1].add(frames[2]);
frames[2].add(objects.03);
frames[2].add(frames[3]);
frames[3].add(objects.o4);
return frames;

}

function loadObject(loader, num) {
var 01 = new THREE.Object3D();
loader.load('models/realistic_rov.obj', 'models/realistic_rov.mtl', function (object) { o1.add(object); });
ol.position.y = -1300;
ol.position.z = 600;;
ol.position.x = 800;
ol.rotation.y = Math.PI / 2;
ol.rotation.x = Math.Pl / 2;

var 02 = new THREE.Object3D();

loader.load('models/base.obj', 'models/base.mtl’, function (object) { 02.add(object); });
o2.rotation.z = Math.PI;

var 03 = new THREE.Object3D();

loader.load('models/arm1.0bj', 'models/arm1.mtl', function (object) { 03.add(object); });

o3.rotation.z = Math.Pl / 2;
o3.rotation.y = Math.PI / 2;
o3.scale.y = 3;
o3.scale.z=2;

var 04 = new THREE.Object3D();

loader.load('models/arm1.obj', 'models/arm1.mtl', function (object) { o4.add(object); });
o4.rotation.z = Math.Pl / 2;

od.scaleyy = 3;

o4.scale.z =2;

return {
ol: o1,
02: 02,
03: 03,
04: 04

50



A DYNAMIC MODEL FOR MOTION OF ROV DUE TO ON-BOARD ROBOTICS

}

function generateHeight(width, height) {

var size = width * height, data = new Uint8Array(size),
perlin = new ImprovedNoise(), quality = 1, z = Math.random() * 5;
for (var j = 0; j <4; j++) {
for (var i = 0; 1 <size; i++) {
var x =i % width, y = ~~(i / width);
datali] += Math.abs(perlin.noise(x / quality, y / quality, z) * quality * 1.75);
}
quality *=1.2;
}

return data;

function generateTexture(data, width, height) {
var canvas, canvasScaled, context, image, imageData,
level, diff, vector3, sun, shade;
vector3 = new THREE .Vector3(0, 0, 0);
sun = new THREE.Vector3(1, 1, 1);
sun.normalize();
canvas = document.createElement('canvas');
canvas.width = width;
canvas.height = height;
context = canvas.getContext('2d');
context.fillStyle = '#000";
context.fillRect(0, 0, width, height);
image = context.getlmageData(0, 0, canvas.width, canvas.height);
imageData = image.data;
for (vari=0,j =0, | = imageData.length; i <1; i += 4, j++) {
vector3.x = datalj - 2] - data[j + 2];
vector3.y = 2;
vector3.z = datal[j - width * 2] - data[j + width * 2];
vector3.normalize();
shade = vector3.dot(sun);
imageData[i] = (shade * 128) * (0.5 + data[j] * 0.007);
imageData[i + 1] = (32 + shade * 96) * (0.5 + datal[j] * 0.007);
imageData[i + 2] = (shade * 96) * (0.5 + data[j] * 0.007);
}
context.putimageData(image, 0, 0);
// Scaled 4x
canvasScaled = document.createElement('canvas');
canvasScaled.width = width * 4;
canvasScaled.height = height * 4;
context = canvasScaled.getContext('2d');
context.scale(4, 4);
context.drawlmage(canvas, 0, 0);
image = context.getimageData(0, 0, canvasScaled.width, canvasScaled.height);
imageData = image.data;
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for (var i =0, 1 = imageData.length; i <1; i +=4) {

var v = ~~(Math.random() * 5);
imageData[i] +=v;
imageData[i+ 1] +=v;
imageData[i + 2] +=v;

}

context.putimageData(image, 0, 0);
return canvasScaled;

function gui() {

}

var gui = new dat.GUI({
height: 5*32-1

1;

guiParams = {
PER1: 10,
PER2: 3,
AMP1:0.7,
AMP2:1.0

2

gui.add(guiParams, 'PER1', 1, 20).name('Period arm 1');
gui.add(guiParams, 'PER2', 1, 20).name('Period arm 2');
gui.add(guiParams, 'AMP1', 0.1, Math.Pl / 4).name('Amplitude arm 1');
gui.add(guiParams, 'AMP2', 0.1, Math.Pl / 2).name('Amplitude arm 2');
return guiParams;

function period(seconds) {

}

return (Math.PI * 2) / seconds;
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var AMP1 =0;

var AMP2 = 0;

var PER1 = period(10);

var PER2 = period(3);

var X = 0;

vary =0;

const phase = Math.P1/2;

const ROV_length = 1.0;

const V_length = .5;

const arm_length = .5;

const m1 =2000;

const m3 =300;

const J11 = ROV_length * ROV_length * m1/ 6;
const J31 =m3 * arm_length * arm_length / 3;
const geo = 0.5;

var rotationMatrix = eyeMat(3, 3);
var identityMat = eyeMat(3, 3);
function getTheta(t) {

return {
thlt: AMP1 * Math.sin(t * PER1 + phase + x),
dth1t: AMP1 * PER1 * Math.cos(t * PER1 + phase),
ddth1t: -AMP1 * PER1 * PER1 * Math.sin(t * PER1 +phase),
th2t: AMP2 * Math.sin(t * PER2 + phase+y),
dth2t: AMP2 * PER2 * Math.cos(t * PER2 + phase),
ddth2t: -AMP2 * PER2 * PER2 * Math.sin(t * PER2 +phase)
}
}

function matlabFunction(om_flag, prev_dq, t,q) {
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var wl = prev_dq[0];
var w2 = prev_dq[1];
var w3 = prev_dq[2];
var theta = getTheta(t);

var th1l = theta.th1t;

var dthl = theta.dth1t;

var ddthl = theta.ddth1t;

var th2 = theta.th2t;

var dth2 = theta.dth2t;

var ddth2 = theta.ddth2t;

var M = getMoments(q,m1,prev_dq);
const M1x = M.M1x;

const M1y = M.M1y;

switch (om_flag) {
case 0:
return (J11*J31*ddth2*Math.cos(th1) - J31*M1x*Math.cos(th2)**2 - J11*M1x +
J31*M1x*Math.cos(th1l)**2*Math.cos(th2)**2 - J11*)31*w2*w3 + J11*J31*dth2*w1*Math.sin(2*th2) +
J11*J31*w2*w3*Math.cos(th2)**2 - 2*J11*)31*dth1*dth2*Math.sin(th1) -
2*J11*)31*dth2*w3*Math.sin(th1) + J31*M1y*Math.cos(th1)*Math.cos(th2)**2*Math.sin(th1) +
2*J11*)31*dth1*w2*Math.cos(th1l)**2*Math.cos(th2)**2 +
J11*)31*dth1**2*Math.cos(th1)*Math.cos(th2)*Math.sin(th2) +
J11*)31*w2*w3*Math.cos(th1)**2*Math.cos(th2)**2 -
J11*)31*w2**2*Math.cos(th1)*Math.cos(th2)*Math.sin(th2) +
J11*)31*w3**2*Math.cos(th1)*Math.cos(th2)*Math.sin(th2) +
2*J11*)31*dth1*dth2*Math.cos(th2)**2*Math.sin(th1) +
2*J11*)31*dth2*w3*Math.cos(th2)**2*Math.sin(th1) +
J11*)31*ddth1*Math.cos(th2)*Math.sin(th1)*Math.sin(th2) +
2*)11*)31*dth1*w3*Math.cos(th1)*Math.cos(th2)*Math.sin(th2) +
J11*J31*w1*w2*Math.cos(th2)*Math.sin(th1)*Math.sin(th2) -
2*)11*)31*dth1*w1*Math.cos(th1)*Math.cos(th2)**2*Math.sin(th1) -
2*)11*)31*dth2*w1*Math.cos(th1)**2*Math.cos(th2)*Math.sin(th2) -
J11*J31*w1*w3*Math.cos(th1)*Math.cos(th2)**2*Math.sin(th1) -
2*J11*)31*dth2*w2*Math.cos(th1)*Math.cos(th2)*Math.sin(th1)*Math.sin(th2))/(J11*(J11 + J31));
case 1:
return (J11*J31*ddth2*Math.sin(th1) - J11*M1y - J31*M1y*Math.cos(th1)**2*Math.cos(th2)**2
- 2*¥J11*)31*dth1*wi1*Math.cos(th2)**2 + 2*)J11*)31*dth1*dth2*Math.cos(th1) +
2*)11*)31*dth2*w3*Math.cos(th1) - J11*J31*w1*w3*(2*Math.cos(th2)**2 - 1) +
J31*M1x*Math.cos(th1)*Math.cos(th2)**2*Math.sin(th1) +
2*J11*J31*dth1*w1*Math.cos(thl)**2*Math.cos(th2)**2 +
J11*)31*w1*w3*Math.cos(th1)**2*Math.cos(th2)**2 +
J11*)31*dth1**2*Math.cos(th2)*Math.sin(th1)*Math.sin(th2) -
J11*)31*w1**2*Math.cos(th2)*Math.sin(th1)*Math.sin(th2) +
J11*)31*w3**2*Math.cos(th2)*Math.sin(th1)*Math.sin(th2) -
2*)11*)31*dth1*dth2*Math.cos(th1)*Math.cos(th2)**2 -
2*)11*)31*dth2*w3*Math.cos(th1)*Math.cos(th2)**2 -
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J11*J31*ddth1*Math.cos(thl)*Math.cos(th2)*Math.sin(th2) +
2*J11*J31*dth1*w3*Math.cos(th2)*Math.sin(th1)*Math.sin(th2) +
J11*J31*wl1*w2*Math.cos(th1)*Math.cos(th2)*Math.sin(th2) +
2*J11*)31*dth1*w2*Math.cos(thl)*Math.cos(th2)**2*Math.sin(th1) +
2*J11*)31*dth2*w2*Math.cos(th1)**2*Math.cos(th2)*Math.sin(th2) +
J11*J31*w2*w3*Math.cos(th1)*Math.cos(th2)**2*Math.sin(th1) -
2*)11*)31*dth2*w1*Math.cos(th1l)*Math.cos(th2)*Math.sin(th1)*Math.sin(th2))/(J11*(J11 + J31));
case 2:
return - (J31*Math.cos(th2)*(2*dth1*dth2*Math.sin(th2) - ddth1*Math.cos(th2) +
2*dth2*w3*Math.sin(th2) + wl*w3*Math.cos(th1l)*Math.sin(th2) +
wl*w2*Math.cos(th2)*(2*Math.cos(th1)**2 - 1) + w2*w3*Math.sin(th1)*Math.sin(th2) -
w1**2*Math.cos(thl)*Math.cos(th2)*Math.sin(th1) +
w2**2*Math.cos(thl)*Math.cos(th2)*Math.sin(th1) + 2*dth2*w2*Math.cos(th1)*Math.cos(th2) -
2*dth2*w1*Math.cos(th2)*Math.sin(th1)))/(J11 +J31) -
(J31*Math.cos(th2)*(M1y*Math.cos(th1)*Math.sin(th2) - M1x*Math.sin(th1)*Math.sin(th2)))/(J11*(J11
+131));
}
console.log("ERROR — matlab switch statemet. No results returned");
return O;

}

function getMoments(g,m1,dq){

const length = 0.5;
const gravity = 9.81;
const mass =m1;
return{
M1x: -m1l * length * gravity * Math.sin(q[0]),
M1ly: m1l* length * gravity * Math.sin(q[1])
}
}
function updateROV(dq, dt, t,q) {
if(period(guiParams.PER1)!=PER1){
x = Math.asin(getTheta(t).th1t/AMP1)-t*period(guiParams.PER1)-phase;
while(x > 2 * Math.PI){
x -= (2 * Math.PI);
}
while(x < 0){
X += 2 * Math.Pl;
!
PER1 = period(guiParams.PER1);
}
if(period(guiParams.PER2)!=PER2){
y = Math.asin(getTheta(t).th2t/AMP2)-t*period(guiParams.PER2)-phase;
while(y > 2 * Math.PI){
y -= (2 * Math.Pl);
}
while(y < 0){
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y += 2 * Math.Pl;
}
PER2 = period(guiParams.PER2);
}
AMP1 = AMP1 > guiParams.AMP1 + 0.05 ? AMP1 - 0.005 : AMP1 < guiParams.AMP1 - 0.05 ? AMP1 +
0.005 : AMP1;
AMP2 = AMP2 > guiParams.AMP2 + 0.05 ? AMP2 - 0.005 : AMP2 < guiParams.AMP2 - 0.05 ? AMP2 +
0.005 : AMP2;
var ddqg = RK4(dgq, dt, t,q);
rotationMatrix = getRotMat(rotationMatrix, ddq, dt);
var angles = rotMatToAngle(rotationMatrix);
return {
angles: angles,
ddg: ddq
}

function RK4(last_dq, dt, t,q) {

varkl =[], k2=[],k3=[], k4 =1];

var arr = [];

var dq = last_dq.slice();

for (vara=0; a < dq.length ; a++) {
k1[a] = dt * matlabFunction(a, dq, t,q);

}

for (vara=0; a < dq.length ; a++) {
for (var i =0 ;i <kl.length ; arr[i] = dq[i] + k1[i] / 2, i++);
k2[a] = dt * matlabFunction(a, arr, t + dt / 2,q)

}

for (vara=0; a <dqg.length ; a++) {
for (var i =0 ;i <k2.length ; arr[i] = dq[i] + k2[i] / 2, i++);
k3[a] = dt * matlabFunction(a, arr, t + dt / 2,q);

}

for (vara=0; a <dqg.length ; a++) {
for (var i =0 ;i <k3.length ; arr[i] = dq[i] + k3[i], i++);
k4[a] = dt * matlabFunction(a, arr, t + dt,q);

i
for (var i =0 ;i<dq.length ; dq[i] = dq[i] + (k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]) / 6, i++);

return dg;
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function rotMatToAngle(rotMat) {
var r00 = rotMat[0][0];
var 01 = rotMat[0][1];
var r10 = rotMat[1][0];
var rl11 = rotMat[1][1];
var r02 = rotMat[0][2];
var r20 = rotMat[2]
var r12 = rotMat[ 1]
var r21 = rotMat[2]
(2]

[0];
[2];
[1];
[2]

>

var 122 = rotMat

>

var rot] = Math.atan2(r12, 122);

var s1 = Math.sin(rot1);

var ¢l = Math.cos(rot1);

var c¢2 = Math.sqrt(r00 * r00 + r01 * r01);

var rot2 = Math.atan2(r02, c2);

var rot3 = Math.atan2(s1 * r20 - c1 * r10, c1 * r11 - s1 * r21);

return [rotl, rot2, rot3];

function eyeMat(rows, cols) {
var Mat = zerosMat([rows, cols]);
for (var i =0; i <rows; i++) {
Mat[i][i] = 1;
H

return Mat;

}

function getRotMat(rotMat, w, dt) {
var wl = w[0];
var w2 = w[1];
var w3 = w[2];
var wNorm = Math.sqrt(wl * wl + w2 * w2 + w3 * w3);
if (Wl * w2 * w3 < 0)wNorm = -wNorm;

var wSkew = [[0, -w3, w2], [w3, 0, -w1], [-w2, w1, 0]];

var ¢2 = Math.sin(dt * wNorm) / wNorm;
var ¢3 = (1 - Math.cos(dt * wNorm)) / (WNorm * wNorm);

var term1 = eyeMat(3, 3);
var term2 = constMatMult(c2, wSkew);
var term3 = constMatMult(c3, MatMatMult(wSkew, wSkew));

var expwt = MatMatAdd(term1, MatMatAdd(term2, term3));
rotMat = MatMatMult(rotMat, expwt);

return rotMat;

}

function constMatMult(c, Mat) {
var rows = Mat.length;
var cols = Mat[0].length;
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for (var i = 0; 1 <rows; i++) {
for (var j =0; j <cols; j++) {
Mat[i][j] = ¢ * Mat[i][jl;
}
}

return Mat;

}

function MatMatAdd(Mat1, Mat2) {
var rows = Matl.length;
var cols = Mat1[0].length;
for (var i = 0; i <rows; i++) {
for (var j = 0; j <cols; j++) {
Matl[i][j] += Mat2[i][j];
}
}

return Mat1l,;

}

function MatMatMult(Mat1, Mat2) {
var rows1 = Matl.length;
var cols1 = Mat1[0].length;
var rows2 = Mat2.length;
var cols2 = Mat2[0].length;
var Mat = zerosMat([rows1, cols2]);

for (var i=0; 1 <rowsl; i++) {
for (var j = 0;j <cols2; j++) {
for (var k = 0; k < colsl; k++) {
Mat[i][j] += Matl1[i][k] * Mat2[k][j];
}
}
}

return Mat;

}

function zerosMat(dimensions) {
var mat = [];
for (var i = 0; i < dimensions[0]; ++i) {
mat.push(dimensions.length == 1 ? 0 : zerosMat(dimensions.slice(1)));

}

return mat;

}

function period(seconds) {
return (Math.PI * 2) / seconds;
H
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Appendix E

In parallel with the bachelor project, a draft for an IMECE article has been produced. It is written with the help of
Professor Thomas J. Impelluso, and it is pending acceptance as a conference article in the fall of 2017. In short, it is a
more compactly written version of the bachelor project. The article is presented on the next pages.

61



Proceedings of the ASME 2017 International Mechanical Engineering & Exposition

IMECE2017
November 03-09, 2017, Tampa, Florida, USA

IMECE2017-70110

A DYNAMIC MODEL FOR MOTION OF AN ROV DUE TO ON-BOARD ROBOTICS

Andreas Evjenth
Mechanical and Marine Engineering
Western Norway University of Applied
Sciences
Bergen, Norway
anstroen@gmail.com

Iselin Violet Kjelland Schen
Mechanical and Marine Engineering
Western Norway University of Applied
Sciences
Bergen, Norway
iselinvks@gmail.com

ABSTRACT

A new method in dynamics—the Moving Frame Method
(MFM)—is used to conduct the analysis of how a robotic
appendage (manipulator) on a Remotely Operated Vehicle
(ROV) affects the motion of the ROV, An ROV performs
multiple tasks on the seabed in the oil service industry. In most
cases, an ROV pilot monitors and adjusts the movement of the
vehicle due to induced motion by currents, buoyancy and the
manipulators, Simulation data would assist the pilot and improve
the stability of the ROV. This paper exploits a new method to
analyze the induced movements of the ROV. The method uses
the Special Euclidean Group (SE(3)) and the MFM. The method
is supplemented with a restricted variation on the angular
velocity to extract the equations of motion for the ROV. Then the
equations of motion are solved numerically using Runge-Kutta
Method and a reconstruction formula (founded upon the Cayley-
Hamilton theorem) to secure the 3D rotations of the vehicle. The
resulting motion is visualized with selected 2D plots. The 3D
animation is displayed on a 3D web page. This paper closes with
a summary of the simplifications used in the model and
suggestions for advanced work.

FIGURE 1: Typical ROV
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INTRODUCTION

A Remotely Operated Vehicle (ROV) is a subsea vehicle that is
heavily used in the oil and gas service industry. It consists of a
frame with thrusters, umbilical cables and usually two
manipulator arms. One arm is for securing the ROV to a subsea
installation, and one—the focus of this study—for operating
different types of tools [1].

In subsea operations, the ROV is exposed to many types of
forces. Currents, buoyancy and waves cause the ROV to translate
and rotate [2]. Also, motion of the manipulator can cause the
ROV to rotate, when heavy tools are attached to it. These
movements can cause a risk for the subsea operations.

Today, these challenges are being addressed using human pilots
who continuously correct the position and rotation of the ROV,
By understanding how the manipulator arms affect the rotations
of the ROV, the motion can be corrected instantancously instead
of correcting the rotation after it has occurred. This paper
analyzes such motion using the MFM. In the next section, the
method is introduced along with a description of the model. A
critical aspect of this analysis is that it was conducted by
undergraduate students. This confirms that the MFM, equipped
with a consistent notation across the sub-disciplines of dynamics,
is a valuable approach in analysis.

MODEL SYSTEM DESCRIPTION

The Moving Frame Method (MFM) is founded on: 1) Lie Group
Theory distilled to rotation matrices: 2) the concept of attaching
a frame to all moving objects; and 3) a compact notation from
the discipline of geometrical physics. A complete description of
the MFM is found in reference [3].
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The MFM is expanded with a notation that groups both rotation
and displacement (SE(3)). Finally, a restriction on the variation
of'the angular velocity is obtained by ensuring the commutativity
of the mixed partials (the variation and time),

Traditional methods can also readily extract the equations of
motion. The point, however, is that this research was conducted
entirely by undergraduate students. The MFM simplifies 3D
dynamics. The goal of this work is not simply to solve the
system, but to demonstrate this power of a new method. This
introduction alludes to the foundation of the theory, but focuses
on the application for real-world challenges. The key with the
MFM is that from 2D dynamics to 3D, the notation remains
unchanged; from contact, to linkages, from self-contracting
robotics to beam deformation and gyroscopic phenomena.

The model system analyzed in this paper is depicted in Fig. 2.

/ e
e ()

FIGURE 2: Model System Description

')

The model system consists of an ROV-—body( | )-—with a two-
linked robot arm (manipulator), The first arm is body(2), and the
second arm is body(3). Each of these two latter bodies rotate in
specified directions with a given amplitude. Each coordinate
frame is defined using a vector basis consisting of three
orthogonal vectors on each link or body. Furthermore, an inertial
frame is deposited from the first body and this deposition defines
the start time of the analysis.

MATHEMATICAL MODEL

Starting with the inner most component, the ROV itself, and
progressing systematically to the first and then second arm of the
manipulator. The bodies are numbered in ascending order from
the ROV, to the first arm and to the second, distal, arm as the
third component. This section begins, however, with a general
overview of the MFM as applied to linked systems.

The Moving Frame Method (with SE(3))

The left side of Fig. 3 presents an inertial orthogonal coordinate
system, designated by {x; x; x3}7 in dark arrows. The
superscript “I" denotes association with the inertial system and
the subscripts represent the coordinate lines. An inertial frame
derives from tangent vectors to the coordinate system e’ =
(e} el el), where e] represent the unit tangent vector to the x;-
axis. Introducing the inertial frame defined by the coordinate
basis e’ and the 0-position vector, this notation defines the origin
as (e! 0).

Xy

FIGURE 3: Relations of the Frames

The right side of Fig. 3 presents a moving orthogonal coordinate

e
system, designated sé“)(t)={s§“) si s\ on body- «

frame. It also shows the associated time dependent moving
frame, expressed by e (1) = (el (1) el (t) el(1)). The
superscript “(a)” denotes variables that relates to body- a. In the

same figure, it is shown that the vector e{”’(¢) are the unit

s\ axis.

tangent vector to the
Kinematics of frames in general

In this section, the kinematics of the system is analyzed. A more
foundational description of the method used for the kinematics,
is found in reference [3]. The location of the center of mass
CY(t) of the body-1 frame—the ROV-—from the origin of the
inertial frame, is expressed by the absolute position vector r with
“x" as the absolute coordinate symbol:

V(@) = e'xP(1). (1)

By placing the frame, as a row vector, before the components [3].
one is able to maintain the traditional sense of components as a
column vector and still carry out the computation. The ensuing
notation cnables one to view rotation matrices as matrix
operators on columns of components. Furthermore, the notation
of placing the basis to the left of the components is linguistically
equivalent to "go in this direction, a certain amount”. The
traditional notation, with the basis on the right of the
components, implies "go a certain amount, in this direction”,
Thus, the new notation is also more intuitive as language.
Furthermore, it leads to definitive analyses of problems [4].

The relative location of the center of mass C“*Y(1) of a
subsequent body, from the center of mass €@ (t) of the previous
body is expressed with vector s/ and coordinate symbol
stV @and in the frame of the previous body:

SEO() = e @O (). @)

1]
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Thus, the absolute location of a frame is expressed as:

i) = rP) + €900, G)
Equation (3) reveals that to locate a frame, one first proceeds to
a previous frame in a linked tree, and. from that frame, and in
that frame’s basis, one proceeds to the current frame,

A 3 x 3 rotation matrix R‘“(t) expresses the rotation of body-
@ vector-basis €/®(t) from inertial vector-basis e':

e@(t) = e'R“(v). (4)

Continuing, the relative rotation of a body-(a + 1) vector-basis
e'@* (1) is given by a relative rotation matrix R(“* /@) (t) as:

el@*+ 1 (1) = (@ (r)Rla+1/a)(y), (5)

The orientation of the e“**(1) body with respect to the inertial
frame is, employing the algebra of SO(3):

e(‘””(t) = e’R("')(t)R(“”/“’(t) =e! R(“’”(t). (6)

Frame Connections Matrices

The next step is to group both the rotation and displacement in
once cquation. The frame connection matrix, a form of a
homogenous transformation matrix, combines rotations and
translations. Homogenous transformation matrices were first
used by Denavit and Hartenberg [5]. However, they did not
recognize that such trans formations were members of the Special
Euclidean Group denoted as SE(3). The summative development
here follows that of Murakami with a consistent reference to
SE(3) [6].

The body-a frame connection (/@ (t) L/ (t)) is obtained from
the inertial frame by post-multiplying it with a frame connection
matrix E(t):

(@) 1) = (¢! 0)E@(L). &)

where the 4x4 frame connection matrix is shown as:

(8)

E@(p) = [R(a)(t) x(a)(t)]

07

where 0, isa 3 X 1 column zero vector. Here, x(")(t) designates
coordinates from an inertial frame.

Next, the relative frame connection matrix is described for body
{a + 1) with respect to body-a.

(e(a+1)(t) (a#l)(t)) = (e(“’(t) r(a)(t)) E("“/")(t)- (9)

R(a+ l/a)(t)
07

séaﬂ/a](t)

where E(@*1/@)(1) = (10)

Progressing through the link-tree, the product of the absolute a-
frame connection matrix and the relative (a + 1/a)-frame
connection matrix, becomes an absolute connection matrix of
(a + 1) from an inertial frame.

E((H'l)(t) — E(“)([)E(a"l/a)((). (ll’

Kinematics of ROV

With this short foundation, attention is now on the first body in
the linked tree: the ROV itself. The frame connection matrix for
the ROV E(t) is assembled as:

EW)(e) = [R(;)r(t) x(x)(t)l (12)
1

Both the orientation and the position of the first frame (the ROV)
is expressed directly with respect to the inertial frame as shown
below as:

(e (e) (1) = (e' OEMV (D). (13)
This gives:
V() 1) = (' 0) [R‘”(t) 20

(14)
(e'RV(t) e'xM(1)).

-]
The inverse, (E“)(t)) of the frame connection matrix is
obtained by the matrix below. where the structure of SE(3) is

exploited:
1 R“) t (1) t
(@)™ = | oT() xg ()
(15)
(R ()" —(R‘”(t»’ ”(c)]
07
The time derivative of the frame connection matrix:
3 (1) (1)
E‘”(t)=[Ro,(t) e (')I (16)
1

The time derivative of the Eq. (14) defines the linear velocity and
the angular velocity vectors of the ROV:

@M@ i) = (e 0ENV () =
@ @ PO (EYW) EYm= a7

e () ).
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The upper left sub-matrix of QY(¢) contains the skew
symmetric angular velocity matrix & (¢). By multiplying out
the terms in Eq. (17) one finds:

aN(t) = (R“)(t))r RO(). (18)

The matrix Q(t) in Eq. (17) is referred to as the time rate of
the frame connection matrix. The matrix includes the
information describing both the linear velocity and angular
velocity of the ROV coordinate frame:

BV (R(‘)(t))rf,(_.”(t) . (19)
of 9

ﬂ“)(t) =

The matrix above is used to express the time-rate of the ROV
coordinate frame:

() = eV ()t =

(20)
0 (l)(t) w;l)(t)
e(l)(c) w;”(t) 0 —w{l)(t) |
wi”(t) w,m(t) 0

Exploiting the isomorphism between the skewed form in Eq.
(20) and the column representation, one obtains the angular
velocity vector for the ROV in terms of the ROV frame:

(1)
@y

w‘”(t)=e(”(t) wél) X (21)
wél)

The linear velocity vector xc‘)(t) for the ROV, is also expressed
with respect to the inertial frame.

O = g (R(”(t)) Jey=ez@).  (22)

Equation (21) and (22) are the first two required expressions
needed in the analysis. Attention is now turned to the second
body (the first link).

Kinematics for the first arm

For the first robotic arm (the second body), a frame is placed at
the center of mass C'® of the first arm. The system is designed
with revolute joints. The MFM is also capable of handle other
types of joints like ball and socket joints, but in this analysis
planar rotation is assumed.

A Cartesian coordinate system for the first arm is set to

be { sm s(zz) sgn } and the coordinate frame for the first arm is
— (a'?) {2) (2}

e@ (1) = (e, (1) &7 (1) e (V).

The relative position vector from the center of mass for the ROV
€™ 1o the center of mass for the first arm € is found by
translating, rotating, and translating again. Thus, to reach the first
joint /yat the end of the ROV where the first arm connects:

0
s;, = eV(b)s;, = eV(1) (s,l). (23)
0

The first arm rotates about one single axis, specifically the

w(t) axis, so the relation between the ROV and the first arm
is expressed as follows:

e(z)(t) = em(t)R(z“)(t), (24)

cos(6@) —sin(8¥) o0
REM() = RV(09) = |sin(9®)  cos(0®) 0|29
0 0 1

To reach the center of mass for the first arm €® from the first
joint J; at the end of the ROV, second frame is used as (where
the second axis points directly along the first arm);

0
sc, = eP(t)s¢, = e@(0) (sc,)- (26)
0

The relative position vector from the first frame e'*'(t) at the
center of mass of the ROV C* 1o the center of mass of the first
arm C‘?) is found as:

s,(:zm = e‘”(t)sézm. (27)
The connection matrix for the first arm is be obtained as:
rd
(@) rP®) = e OrED@. @8

Thus, finally, E/V(¢t) is the compact notation for the frame
connection matrix:

E@M () = [R(zn)(t) s(2/1)]

07
R‘Z’”(t) 0, Sc,
o ] [ l [ )

[R“"/”(t) R@M(t)sc, +s,l]
07 1

The relative connection matrix for the first arm written with
respect to inertial frame:

(e@(@®) rP ()= (e! OED () = (¢! O)ENVED, (30)

where the E(¢t) frame connection matrix is related to the
inertial frame.
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In Eq. (30) E@ () consists of R (¢) (in the upper left quadrant)
and xm(t) (in the upper right quadrant):

RA(t) = RW()RE/M(p), (31)
x2 () = R2(D)se, + RV (B)s), +xV().  (32)

With this information, a rate analysis is conducted similar to that
leading up to Eq. (19), and specific information is extracted as
follows:

The angular velocity vector for the first arm:

0@ (t) = RV (1)) (1) + @@M(t) =
(33)
(REMDE)T 0D (2) + §De,,

where @?/Y)(¢) is the rotation for the first arm and only about
one axis, therefore it can be represented with the notation 6 e,.
This notation is also used for the second arm.

The linear velocity vector for the first arm with respect to inertial
frame:

20 = RO(OEV(2)s), + 2.7 (6) =
(34)
(l)(t)(’ST') w(l)(t) +x(l)(t).

Equation (33) and (34) are the second two required expressions

needed in the analysis. Attention is now turned to the third body
(the second link).

Kinematics for the second arm

Similarly, to the first frame, a Cartesian coordinate system for
the second arm is set to be { & sg” s§3’} and the frame for the
second arm is e (1) = (e (1) e (1) eV (1)).

For the second robotic arm, a frame 1s placed at the center of

mass C®. The relative position vector from the center of mass
for the first arm €® to the center of mass for the second arm
€™ _is found by an analysis similar to that leading up to Eq. (27).
The distance from the center of mass for the first arm €?’ to the
second joint /5, and the distance from the second joint J; to the
center of mass for the second arm €*) is respectively defined as:

0

s;, = e (t)s;, = e?(1) (s,z). (35)
0
0

s, = eP¥(t)se, = e®(p) (sca). (36)
0

As with the first arm, the second arm also rotates about one

single axis, the e} 3 (t) axis. This relation between the first arm
and the second arm is expressed as follows:

e () = e@(HRBA(1). (37)

1 0 0
RG/) () = R§3/2)(93) = |0 cos(68®) —sin(6®)] (38)
0 sin(6) sin(6™)

This is also a planar rotation, but now both arms are rotating in
different planes and this is now a full 3D problem.

The relative position vector from the center of mass of the first

arm €@ to the center of mass of the second arm € is found,
using the second frame as:

55:3/2) - e(z)(t)sé:l/z)- (39)

The second arm connection matrices are expressed with respect
to the inertial frame as:

(@) 12”) = (e@(0) P)EC (D),
(e () 1) = (¢! 0)EW()EFV()EB/A (L), (40)
(D) 1) = (e' 0)EW(0).

Where the frame connection matrix between the first arm and the
second arm are now obtained as:

EGRI(p) = 03 ][R(B/Z)(t) 0][OT s;J]

(41)
_ lR(SIZ)(t) R(S"‘z)(t)sc:3 + 512]
0] 1
In Eq. (40) E®(¢) consists of R®(¢), and x,f-:” (t):
R(3)(t) B Rm(t)R(Z/”(t)R(a/z)(t), (42)
x(t) = RO (O)sc, + RD(t)(sc, +57,) +
(43)

1
RO(t)sy, +xc7 ().
The angular velocity vector for the second arm is obtained as:

w® () = ROV (O) V(1)
_ _ (44)
+(RED()6Pe, + 6We,.

5 Copyright © 2017 by ASME



The linear velocity vector for the second arm with respect to
inertial frame:

i,f-”(t) - R(l)(t)R(Z/l)(t)R(B/Z)(t)('s-’:)rw(l](t) +
R“)(t)R[z“)(s,,)rwm(t) + (45)

RO®)(s;) 0V(@) + 2 (@),

Equation (44) and (45) are the last two required expressions
needed in the analysis. This closes the study of kinematics.
Attention is now turned to kinetics.

Kinetics

Now turning to the Kinetics, and commencing with the
generalized coordinate, Hamilton’s Principle is applied. The
details regarding the method are found in the references (6, 7).

Generalized Coordinates

The generalized velocity {X(t)} is defined as a 6n x 1 matrix that
consists of both linear velocity X and angular velocities w® at
the center of mass, in alternating order, for each body.

For a three-linked system, as analyzed in this paper, the vector
[f( (t)} has I8 rows. The coordinates i"(:u ( t),i,(_.” (t) and :2'23) (t)
are all presented from the inertial frame,

i (e)
()
(0
w@(t) i
i (1)
w® (1)

X} = (46)

The generalized velocity {f((t)} as in Eq. (46) is related linearly
to essential generalized velocity {¢(t)}. This is an n* X 1 matrix
for a system with n*degrees of freedom, For the ROV, there is
eight degrees of freedom, and {q(t)} is defined as:

()
w'V(t)
63y |
69 ()

la()} = (47)

These terms are, respectively: the translational velocity of the
ROV (3 components), the angular velocity of the ROV (3
components), the rotational velocity of the first arm and the
rotational velocity of the second arm—a total of eight.

The linear relationship between {X(t)} and {¢(t)} is expressed
as:

{X(®)} = [BONa())- (48)

The B matrix [B(t)] in Eq. (48) is obtained by considering Eq.
(21),(22), (33). (34). (44), and (45).

Hamilton’s Principle
For Kinetics, the Newton and Euler’s equations is derived (the
equations of motion). Hamilton’s Principle is:

6!:; L(a)(t)+ W(G)(t) )dt = (). (49)

The Lagrangian L'“)(t) is defined as the difference between
kinetic energy K (t) and potential energy U@ (1),

L(")(t) = K(“)(t) =5 U(‘”(t). (50)

Principle of Virtual work is redefined from Hamilton’s principle
as:

8 [DK@@EO - U+ WD (e))de =0 (51)

Here, “U" continues to designate potential energy from
conservative forces such as gravity, while “W" represents the
work done by the non-conservative forces.

The Kinetic energy K“)(t) and the potential energy U“(¢t) is
respectively defined as:

K(6) = L {FLY + 0 @R, (52)
UD(t) = m@ gxi®(¢). (53)

The Kinetic energy K'®(t) consists of translational and
rotational components with respect to the center of mass of each
link in the system.

The linear momentum LY’ and the angular momentum H." are
respectively defined as:

L) = e'm W% (p), (54)
HL (1) = e @ ()9 0 @(0), (55)

Where the mass moment of inertia matrix jé“) isa 3 X 3 matrix,
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If the coordinate systems are placed at the center of mass in each

link, and oriented such that the axes coincide with the principal

axes of each link, then the ]é“) matrices are diagonal.

(
W00

(a) _ (a)

=10 @ a| (56)
0 o0 S

When substituting Eq. (54) and (55) into Eq. (52), the component
form of kinetic energy becomes:

K@) = O m@5® + 0@@ @), (57)
Equation (57) is expressed more compactly as:
K@) =X} (@) = {XO) Mx©}  (68)

The generalized momenta {H(t)} is a 6nx 1 matrix that
contains both the linear momentum L%“)and the angular
momentum Hf;”. respectively defined as in Eq. (54) and (55):

L (@)
HEY ()
L
HéZ) (t)
RIG)
HE (0)

{H()} = = [M}I{X()}. (59)

To build the generalized momenta {H(t)} as in Eq. (59) the
generalized mass matrix [M] is defined. It is defined as a
6n X 6n matrix, that contains the mass m'® and moment of

inertia l,(_-“) for each link in the system:

-m(”l; 03 03 03 03 03 l
0 J' 05 05 0y 0
03 03 m(z)l3 03 03 03
[M] = @ . (60)
0; 0 03 J¢ 0; 0
0 0, 05 0 m®L 04

L 0, 0, 0, 0, 05 J&P

where /5 isa 3 X 3 identity matrix, and 05 isa 3 X 3 zero matrix.

When inserting Eq. (46), (59), (60) into Eq. (58), the equation
for kinetic energy for the ROV tums out:

D\ [L®

w0 | | HE(©
20 | | P
20 | | 1@
0@/ \g® ()

To derive the principal of virtual work, the variation of the
Lagrangian L™ (t) as in Eq. (51) is required, and hence the
variation of the generalized velocities must be obtained.

To take the variation of the Lagrangian, the variation of the
generalized velocities must be obtained. More specifically, the
variation of the angular velocity is needed. It will be seen that
there exists a restriction on the angular velocity. To this end,
some definitions are presented and their utility is shown, shortly.

First, define 811 as:

om—— T
sn@(e) (R@()) sxi™(t)
o7 0

SN = (62)

Where the virtual rotational displacement §m(®) is defined as:
—— ¢ A
s (t) = (R@(t)) SR(e). (63)

As an aside, w does not exist. It exists only in its representation
of the variation, sn'® = e@ nl™ snl™ snl)7.

From the definition in Eq. (62) the virtual generalized
displacement {6X(t)} is defined as a 6n x 1 column matrix:

sxc ()
6"(1)(0
sx2 ()
sn® (t) !
sx (1)
st (t)

(8X()} = (64)

As in Eq. (48), the virtual generalized displacement {X(£)} has
its relationship also through the [B(t)] matrix as per Murakami
[3]. The linear relation gives the virtual essential generalized
displacement {5q(¢t)}.

{8X(t)} = [B(1)]{8q(1)). (65)

7 Copyright © 2017 by ASME



For a three-linked system, the relationship between {§X(t)} and
{8q(t)}1s expressed as:

8x (1)

sn(l)(t) ax‘(:l)(t)

8O | Z gl 7@ e
5"(2)(0 [B(t)] 59(2)(0 i (66)
5x5(0) 509 (1)

5,.‘.(3)(:)

Introducing the commutativity of time differentiation and
variation of a frame.

80 @(t) = S5 (1) + w@ () (1), (67)

= 8xg (1) = 827 (1). (68)

Obtaining Eq. (67) is a bit of work and shown reference [5].
Equations (67) and (68) are more compactly expressed in the
matrix form of virtual generalized velocity {8X(t)}. which is
defined as:

(Bx©)={sx®}+ pOIBXW®).  ©9)
Where [D(t)] is a 6n x 6n skew symmetric matrix, defined for
a three-linked system as:
03 05 03 05 05 0,

0; w®(t) 04 04 04 04
0, 05 0, 0, 05 0

03 03 03 w'?) (t) 03 03
0 03 0 03 03 0

.03 03 03 03 03 (IJ(:”(t).

[D()] = . (70)

Next the variation of the kinetic energy 8K @(t), the potential
energy 8U @ (¢), and the the virtual work §W @ (¢) is derived.

The variation of the kinetic energy §K@(t) is derived by taking
the variation of Eq. (58):

8K(t) = {8X(0) (H(®) = (X0} MX(©)}. (7))

The variation of work is W @ (t), This is defined as the work

1
done by resultant external force FC(") (t) and external torque
ML(t), defined with respect to the virtual generalized
displacement {§X(t)} as in Eq. (64):

SW() = (8X (1)) {F(0)). (72)

Where the external force {F(t)} is a 6n X 1matrix, defined for a
three-linked system as:

(FV'@
[0
F2' (1)
M@ @ [
£ @)

\M?"(t))
By substitution Eg. (65) into (72), the virtual work W (t)

expressed with respect to essential generalized displacement
becomes:

{F(t)} = (73)

aw(t) = {8q(O} {F"(0)}. (74)
Where the essential force {F*(¢)}1s defined as an® x 1 matrix,

where n* defines the number of essential generalized
coordinates:

{(F* ()} = [B(OI"(F(1)). (75)

The virtual work done by conservative external forces is taken to
account by variation of potential energy U@ (t):

SW () = =50 (¢). (76)

Therefore, the virtual work done by conservative forees is
included in the virtual work §W ®)(t) as in Eq. (74).

Substitution of Eq. (71) and (74) into Eq. (51) with the use of Eq.
(76), Hamilton's principle tumns to:

I {{ox O} MIx©)} + {Sq(t)}T{F'(t)}} dt = 0. (77)

Where {§X(¢)} from Eq. (69) is expressed for a three-linked
system as:

52 (0) sx(t)
Gw(”(t) 6'"“)(t)
pi) =| #8000 |4l sl |,
Sw@(t) | dt| s (t)
817 (8) xc (t)
Sw@(t) sr(t)
(78)
0 03 03 03 03 05 1/6xV(0)
0, whi(t) 0, 05 05 05 ||670@)
0, 03 0, 04 04 0, 6x£2)(t)
03 03 0; w@(t) 0 03 se@) |
0 03 05 05 05 0 || 509
0 04 04 0 0; w®(t) st (e)
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In Eq. (77) the variation of omega Sw'®(t) is eliminated by
inserting Eq. (69) into Eq. (77):

LX) L (IMI{X (D)) + (RO [DO]MI(X (6)} -
(79)
{8q()) (F*(t)}dt = 0.

Performing the derivation in Eq. (79), and substitute {§X (t)} and
{X(t)} with the definitions in Eq. (65) and (39) to obtain the
equations of motion:

[ SeO) (BOY MIBOIG®) +
to

[BOI"M][B()]{a()} + (80)
BOT DOIMIBONED) — (F(©])dt = 0.

Hence the equations of motion become:

[M* (OGO} + [N (O){g(D)) = (F (O} =0. (81

Looking at Eq. (81), the two matrices [M*(t)] and [N"(t)] are
respectively defined as:

[M* ()] = [B(OI"[M][B(D)], (82)
[N* ()] = [BOI"([MI[B(O)] + [DONMIBD)]). (83)

Eq. (81) is the equation of motion with the essential generalized
velocities. The mathematical model for deriving the equations of
motion of an ROV with a three-linked robotic arm has been set.

SIMPLIFIED MODEL

Equation (81) must be solved numerically. However, this paper
will attempt to use the Matlab symbolic manipulator to obtain
more direct equations. Thus, the simplifications that follow
really amount to an attempt by student authors. to obtain a
qualitative solution under certain simplifying cases, also to
simpler equation systems. The main issue up to this point, and
the emphasis to be made, is that the MFM and the restriction on
the angular velocity can enable undergraduate students to
conduct this work.,

To see the impact of the system parameters, a numerical
experiment is conducted with a 3D simulation, The mathematical
model built above is simplified with several assumptions.

Each term in the generalized velocity {X(t)} as in Eq. (46)
contributes to the total momentum. For the sake of the
experiment translation is neglected. and only rotations are
analyzed.

Therefore, the first assumption made is for the translation of the
ROV to be prescribed zero in velocity and acceleration, and no

translation of the body applies. Hence the ROV only rotates
around its center of mass,

s =0. x@w=0 =0 (84
The second assumption made, 1s prescribed angular velocities
and accelerations for the first and second arm.

83 (t) = %sin (tzl‘_:) . 89 = Esin (tz?")
(85)

Hence: 862)(t) = 603(t) = 0.

The third assumption made, regards the dimensions to the body
of the ROV, It is assumed to have the shape of a square prism,
with the width (w) equal to the height (h) and the length (1)

R=B=h=5m. (86)
where my = 2000kg

The fourth assumption made, regards the first arm. The first arm
is assumed to be a slender rod with no mass

m® =0,/ =3, J;i=0. (87)
The fifth assumption made, is for the second arm, The second

arm is assumed to be slender rod, symmetric about its first and
third axis.

B=J3=3ms J3=0, (88)

where m; = 100kg

With these assumptions made, the system simplifies and with the
first and second assumption as in Eq. (84) and (85). Because of
the prescribed rates, the virtual essential generalized
displacement {8g(t)} as in Eq. (66) turns out:

0

s7'V(e)
sl

{6q(t)} = (89)

0

Equation (89) is inserted into Eq. (81) with the definitions in Eq.
(82) and (83).

Equation (81) is then simplified. The first assumption as in Eq.
(84) yiclds that the translation of the ROV is prescribed to be
zero in velocity as with acceleration, hence the top three rows of
the essential generalized velocity {¢(t)]} and acceleration {G(t)]
is zero.

0 0
d)‘l)(t) a)“)(t)
(M (D]axe | g2y +IN'(Dexs | gy
9w/, (1)

Bx1

(90)
{F'(t)}gx1 = 0.
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Equation (90) is simplified in two steps. First due to the three top
rows of {g(t)} and {§(t)} are zero, then [M"(t)], and [N" ()]
reduces from 8 X 8 10 8 X 5 matrices by removing the first three
columns. In this process {¢(t)}. and {§(t)} reduce from 8 x 1 to
5% 1.

A second reduction comes from {§q(t)}. The three top rows and
two bottom rows of {§q(t)} are zero, hence the three top rows
and two bottom rows of the total product in Eq. (90) is zero. Then
[M*(t)] and [N*(t)] reduces from 8 x 5 to 3 x 5 matrices by
removing the three top rows and two bottom rows,

Any force or moment that impacts a prescribed motion and angel
is zero reduces {F'(t)} from 8x 1 to a 3x1 vector, by
removing the three top rows and two bottom rows.

Equation (90) results in the reduced form:

d)“)(t)
[M* ()] Reducedss | 82 (1) =
5(3)“) sl 2
(91)

w ™ (t)
{F (t)}axs— [N.(t)]Reduccd,,s (é(z)(t))
09/ 504/ 5.,

Equation (91) gives three equations:

=IN" (0], {g(O)}; = [M* ()], {G(O}: + {(F* (D)}

- (1) -
@O = [M* ()],
(92)
je(l,...5),  ie{2.34,5),
@ () = —[N* ()] g (D)} — [M* ()2 {G (D)} + {F7 (D)),
[M*()]22
(93)
je(1, ...,5}, i€{1,3,4,5},
sV (t) = =[N*(0)]5 44 (O)}; — [M*()]5:{G(O} + {F7(D)}s
[M* (]33
(94)
jefl, .5} ie(1,2:4,5).

Reconstruction of the rotation matrix

In [M*(¢t)], the rotation matrix for the ROV appears, and thus the
rotation matrix for the ROV must be calculated at each time step.,
If R(t) and w(t) is known, then w(t + At) is calculated using
4" order Runge-Kutta Method [8]. R(t + At) needs to be
obtained before moving on to the next time step of Runge-Kutta
Method,

The rate of change of the rotation matrix is defined from Eq.
(18):

RM(t) = RV (1) 0™ (¢). (95)

For a constant angular velocity problem, this could be solved
analytically by integrating Eq. (95), but @ is not constant.
However, by taking the average of w(¢t) and w(t + At) and
assuming a constant omega between time steps, the rotation
matrix is obtained with the following formula,

R(t + At) = R(t) exp (Atw(t + At/"z")‘). (96)

Where the exponential of the angular velocity is found using
the Cayvlev-Hamilton theorem, which leads to the following
equation:

exp(Atw) =

w(t+AL/2)

by lew(t+at/2)]|

sin(Atllw(t +At/2)ID+  (97)

T
W(t+8E/2)
(————-—-—-lwum m“) (1 — cos(Atllw(t + At/2)ID)).

w(t+AL/2)
Raw(e+ar/2)l
angular velocity vector, then Eq. (97) agrees with the Rodrigues

If a unit vector u = 1s defined in the direction of the

formula. Equation (97) is used in the numerical integration of Eq.

(95) to obtain the rotation matrix [6, 8].

oD
oms! \
ooz (]

oms - _ \ /1))

omegs 3, YAW [radvs]

omss ¥ } |

o . : a

0 L) w0 15 2
vrme 8

FIGURE 4: Plot of the angular velocity about the third axis

(vaw axis) of the ROV and prescribed motion of the second

arm (dashed)

Numerical solution

A symbolic manipulator is used to obtain the equation of motion.
Due to lack of computer processing power and limitations of the
program used, some simplifications were necessary. By
collapsing {X(t)} to only hold w'® (¢), hence collapsing [B(t)].
[M] and [D(t)], information about the linear momentum is lost,
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but the angular momentum still stands. For future iterations of
this problem, linear momentum can be considered. The three
coupled first order differential equations Eq. (92), (93) and (94).
are decoupled using a symbolic manipulator through Gauss-
Jordan elimination. Then, the three decoupled equations are
solved numerically using the Runge-Kutta Method, to obtain

iV (8), @iV (t) and WiV (0).

RESULTS

Using Eq. (92), (93) and (94) and the simplifications above,
@23 (¢) are solved numerically. Runge-Kutta is used to solve
these equations with time steps of 0.02 seconds for 1000 steps.
The plots are presented below in Fig. 4, 5 and 6:

ny |

ommgn | FITOM ety

n s 1 " m
e al

FIGURE 5: Angular velocity about first axis (pitch) of
ROV and prescribed angular motion of first and second

arm (dashed)

90

pod
7 |
o | (
g 03 v 1
b

(|
a0 |
m
3 s 10 " P
e (w)

FIGURE 6: Angular velocity about second axis (roll)
of the ROV and prescribed angular motion of just the
second arm (dashed).

In these plots, one observes the induced ROV angular velocity
due to the input angular velocity of the first and second arms.
The response of the ROV closely matches the input angular
velocities of the two links. However, the reader is reminded that
many simplifications were undertaken. especially, ignoring wave

forces, added mass and the input torque generator on the two
arms. However, this does confirm the qualitative response.

More informative, perhaps, is observing the induced rocking on
the ROV, itself.

Finally, the authors point the reader to a 3D web page (viewable
on most mobile devices) (control box in upper right corner of
web page):

http://home.hib.no/prosjekter/dvnamics/201 7/robot/

On this web page, one can alter the input parameters and observe
the rocking motion of the craft. Left, middle and right mouse
buttons translate as: zoom, pan and rotate,

CONCLUSION
Primarily, this work needs experimental confirmation. This work
is next and will utilize a wave tank at HVL.

The results show that it is possible to analyze the induced
rotations due to movement of the manipulators. By utilizing the
approach used in this paper, combined with coding the solution
of Eq. (81) directly, a broader in-depth analysis can be performed
to include both rotations and displacements, as well as reducing
the number of simplification necessary to carry out the
calculations,

Also, by prescribing the motion of the first arm to be zero, the
results reduce to a sine wave about the first axis with a period
equal to the second arm. However, by studying such a 2D-
simplification, it would not have been possible to construct a set
of instructions that could be of any use to control an ROV. With
the MFM, the authors have been able to construct and utilize 3D-
dynamics. Together with PID-settings it is possible construct a
set of instructions that update the motors of an ROV to prevent
any rotation induced by motion of the arms.
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ANNEX A

The following equations gives angular velocity about the first,
second and third axis, respectively. Admittedly, this was an
overwrought attempt—to obtain expressions for the three
angular velocities in this form. In future work, it would be best
to simply conduct a numerical integration directly with Eq. (81-
83) or just with Eq. (80) alone.

@ M(t) L (2 + /31 + w3 = sin(th1t(t)) + sin(th2t(t))"2 »
dth2e(6))/(J11 + J31) — (J31 = w1 +sin(2 + th2t(t)) =
dth2e(t))/(J11 + J31) — (J31 = w2 + w3 » (cos(th2t(t))"2 1))/
(J11 + J31) — (J31 » cos(thlt(t)) = cos(th2t(t)) +
sin(th2e(t)) = dth1e(6)"2)/(J11 + J31) — (J31«+ w2+ w3 =
cos(thlr(t))*2 = cos(th2e(t))*2)/(J11 + J31) — (J31 =
cos(thlt(t)) = ddth2e(e))/(J11 + J31) — (2+ J31« w2 =
cos(th1t(t)) 2 # cos(th2t(t))*2 » dthit(t))/(J11 + J31) + (2«
J31 + sin(th1t(t)) = sin(th2e(t)) 2 « deh1t(t) + deh2e(t))/
(J11 + J31) + (J31 « w22« cos(th1t(t)) » cos(th2t(t)) «
sin(th2e()))/UJ11 + J31) = (J31 « w32 « cos(thlt(t)) «
cos(th2e(e)) = sin(th2e(e)))/(J11 + J31) = (J31 +
cos(th2t(t)) « sin(th1t(t)) « sin(th2t(t)) » ddth1e(t))/(J11 +
J31) + (J31 » w1l « w3 «cos(thlt(t)) » cos(th2t(t))*2 «
sin(th1e(t)))/J11 + J31) = (2+ )31« w3 + cos(thle(t)) «
cos(th2t(t)) = sin(th2t(t)) » dthit(t))/(J11 + J31) + (2«
J31 + w1l = cos(thlt(t)) « cos(th2t(t))"2 » sin(th1t(t)) *
dth1t(t))/(J11 + J31) + (2 +J31 + wl » cos(thlt(t))"2 +
cos(th2e(t)) « sin(th2t(t)) » deh2t(t))/(J11 + J31) — (J31 »
w1l = w2+ cos(th2t(t)) = sin(thlt(t)) = sin(th2t(t)))/(J11 +
J31) + (2 + )31 =w2+cos(thit(t)) « cos(th2t(t)) *
sin(th1t(t)) = sin(th2t(t)) = dth2t(t))/(J11 + J31)

p@(t) = (2+ 31+ wl = w3+ cos(th2t(t))"2)/(J11 + J31) —

(/31 =wl=+w3)/(J11 + J31) — (J31 «sin(thlt(t))*
ddth2e(t))/(J11 + J31) — (2 = /31 = w3 * cos(thlt(t)) *
dth2e(t))/(J11 + J31) + (2 = /31 » w1 = cos(th2e(t))"2 »
dth1e(e))/(J11 + J31) — (2 +J31 « cos(thle(t)) » dthle(t) +
dth2t(t))/(J11 + J31) — (J31 = cos(th2t(t)) * sin(th1t(t)) «
sin(th2t(t)) = dth1e(e)*2)/(J11 + J31) — (J31 s+ wl*s w3 =
cos(th1t(£))"2 « cos(th2e(t))*2)/(J11 + J31) + (2+J31 « w3«
cos(thlt(t)) = cos(th2e(t)) 2 » dth2e(e))/(J11 + J31) — (2«
J31 v+ w1 « cos(th1t(t))"2 = cos(th2t(¢)) 2 » dthlt(t))/(J11 +
J31) + (2 + /31 «cos(thlt(t)) « cos(th2t(t))"2 « dthlt(t) «
deh2e(t))/(J11 + J31) + (J31 « cos(thit(t)) « cos(th2e(t)) «
sin(th2e(t)) « ddeh1e(e))/(J11 + J31) + (J31~ w1 2»
cos(th2t(t)) » sin(th1t(t)) » sin(th2t()))/(J11 + J31) -

(J31 » w32 « cos(th2t(t)) + sin(th1t(t)) « sin(th2t(t)))/(J11 +
J31) = (J31 » w2 » w3 « cos(thlt(t)) « cos(th2t(t))"2 «
sin(th1e(t)))/(J11 + J31) — (2 /31 + w3 » cos(th2t(t)) +
sin(thlt(t)) = sin(th2t(t)) = dthle(t))/(J11 + J31) — (2+)31 =
w2 = cos(thlt(t)) = cos(th2t(t))"2 = sin(th1t(t)) = dthlt(t))/
(11 + J31) — (2+]31+» w2 = cos(th1t(t))"2 + cos(th2t(t)) +
sin(th2e(r)) = dth2e(t))/(J11 + J31) — (J31 = wl s w2+
cos(thle(t)) = cos(th2t(t)) = sin(th2t(t)))/(J11 + J31) + (2=
J31 + w1 = cos(thlt(t)) * cos(th2t(t)) * sin(th1t(t)) =
sin(th2e(r)) = deh2e(e))/(J11 + J31)

a':"’(t? = (J31 + cos(th2e(t)) + (2 = w3 » sin(th2t(t)) «

tRZE(t) — cos(th2t(t)) « ddth1t(t) + 2+ sin(th2e(t)) «
dth1e(t) « dth2e(t) — wl + w2 « cos(th2t(t)) + w2+ w3+
sin(thlt(t)) « sin(th2t(t)) — wl*2+ cos(thlt(t)) «
cos(th2t(t)) « sin(thlt(t)) + w272+ cos(thlt(t)) +
cos(th2t(t)) « sin(thlt(t)) + 2 « wl» w2+ cos(thit(t))*2 «
cos(th2t(t)) + 2« w2 « cos(thlt(t)) + cos(th2t(t)) »
dth2t(t) — 2+ wl = cos(th2t(t)) » sin(thlt(t)) » dth2t(t) +
wl = w3« cos(thit(t)) =sin(th2e(t))))/(J11 + J31)
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