
DELTA*
A tool for database refactoring

Patrick Stünkel

Western Norway University of Applied Sciences
*Supported by the "Modern Refactoring"bilateral SIU/CAPES project

November 21, 2018



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

About Me

I B.Sc. and M.Sc. from FHDW Hannover in Germany
I There DELTA was developed.

I 3 years in industry as a Software Engineer
I Since September 2017: PhD research fellow at Western Norway

University of Applied Sciences
I Topic: Interoperability in Model Driven Software Engineering (MDSE)
I Areas: MDSE, Bidirectional Transformations (BX), Co-Evolution

2 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Motivation

I Software refactoring is widely adopted and is performed
automatically...

I ... whereas database refactoring is not.
I Ambler/Sadalage „Database Refactoring“, 2006 [1]

Definition 1 (Ambler): Database refactoring

A simple change to a database schema that improves its design while
retaining both its behavioural and informational semantics.

3 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Motivation

I Software refactoring is widely adopted and is performed
automatically...

I ... whereas database refactoring is not.

I Ambler/Sadalage „Database Refactoring“, 2006 [1]

Definition 1 (Ambler): Database refactoring

A simple change to a database schema that improves its design while
retaining both its behavioural and informational semantics.

4 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Motivation

I Software refactoring is widely adopted and is performed
automatically...

I ... whereas database refactoring is not.
I Ambler/Sadalage „Database Refactoring“, 2006 [1]

Definition 1 (Ambler): Database refactoring

A simple change to a database schema that improves its design while
retaining both its behavioural and informational semantics.

5 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Motivation

I Software refactoring is widely adopted and is performed
automatically...

I ... whereas database refactoring is not.
I Ambler/Sadalage „Database Refactoring“, 2006 [1]

Definition 1 (Ambler): Database refactoring

A simple change to a database schema that improves its design while
retaining both its behavioural and informational semantics. 6 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Distinction: code refactoring - database refactoring

What makes Database refactoring different ?

I deals with behavioural and informational aspects,

I affects actual stored data,

I requires manual effort,

I in general a database schema is shared between many different
applications.

Requirement 1: Transition periods

The database has to be accessible through the new and the old schema
after a refactoring for certain transition period because the different
dependent applications need time to adopt the changed schema.

7 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Distinction: code refactoring - database refactoring

What makes Database refactoring different ?

I deals with behavioural and informational aspects,

I affects actual stored data,

I requires manual effort,

I in general a database schema is shared between many different
applications.

Requirement 1: Transition periods

The database has to be accessible through the new and the old schema
after a refactoring for certain transition period because the different
dependent applications need time to adopt the changed schema.

8 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Distinction: code refactoring - database refactoring

What makes Database refactoring different ?

I deals with behavioural and informational aspects,

I affects actual stored data,

I requires manual effort,

I in general a database schema is shared between many different
applications.

Requirement 1: Transition periods

The database has to be accessible through the new and the old schema
after a refactoring for certain transition period because the different
dependent applications need time to adopt the changed schema.

9 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Distinction: code refactoring - database refactoring

What makes Database refactoring different ?

I deals with behavioural and informational aspects,

I affects actual stored data,

I requires manual effort,

I in general a database schema is shared between many different
applications.

Requirement 1: Transition periods

The database has to be accessible through the new and the old schema
after a refactoring for certain transition period because the different
dependent applications need time to adopt the changed schema.

10 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Distinction: code refactoring - database refactoring

What makes Database refactoring different ?

I deals with behavioural and informational aspects,

I affects actual stored data,

I requires manual effort,

I in general a database schema is shared between many different
applications.

Requirement 1: Transition periods

The database has to be accessible through the new and the old schema
after a refactoring for certain transition period because the different
dependent applications need time to adopt the changed schema.

11 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Distinction: code refactoring - database refactoring

What makes Database refactoring different ?

I deals with behavioural and informational aspects,

I affects actual stored data,

I requires manual effort,

I in general a database schema is shared between many different
applications.

Requirement 1: Transition periods

The database has to be accessible through the new and the old schema
after a refactoring for certain transition period because the different
dependent applications need time to adopt the changed schema.

12 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Further requirements

Requirement 2: Generated Migrations

As the manual development of migration procedures is error-prone and
there are recurring patterns of migrations the migration code itself shall
be generated.

Requirement 3: Revertible Migrations

As a refactoring must not change the behaviour of the data or cause
information loss the refactoring can be reverted. Therefore we require an
undo-feature for our migrations.

Requirement 4: Avoid downtimes

As long downtimes have negative impact and productivity and sale they
shall be avoided whilst applying refactorings.

13 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Further requirements

Requirement 2: Generated Migrations

As the manual development of migration procedures is error-prone and
there are recurring patterns of migrations the migration code itself shall
be generated.

Requirement 3: Revertible Migrations

As a refactoring must not change the behaviour of the data or cause
information loss the refactoring can be reverted. Therefore we require an
undo-feature for our migrations.

Requirement 4: Avoid downtimes

As long downtimes have negative impact and productivity and sale they
shall be avoided whilst applying refactorings.

14 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Further requirements

Requirement 2: Generated Migrations

As the manual development of migration procedures is error-prone and
there are recurring patterns of migrations the migration code itself shall
be generated.

Requirement 3: Revertible Migrations

As a refactoring must not change the behaviour of the data or cause
information loss the refactoring can be reverted. Therefore we require an
undo-feature for our migrations.

Requirement 4: Avoid downtimes

As long downtimes have negative impact and productivity and sale they
shall be avoided whilst applying refactorings.

15 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

About Me
Motivation

Further requirements

Requirement 2: Generated Migrations

As the manual development of migration procedures is error-prone and
there are recurring patterns of migrations the migration code itself shall
be generated.

Requirement 3: Revertible Migrations

As a refactoring must not change the behaviour of the data or cause
information loss the refactoring can be reverted. Therefore we require an
undo-feature for our migrations.

Requirement 4: Avoid downtimes

As long downtimes have negative impact and productivity and sale they
shall be avoided whilst applying refactorings.

16 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Maintaining compatibility

Trigger Old and new schema running in parallel, trigger replicate
changes back and forth.

Views Views, representing the old schema, provide backward
compatibility.

Batch Jobs Old and new schema running in parallel, Batch jobs
replicate changes back and forth on a regular basis.

17 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Maintaining compatibility

I Ambler and Sadalage suggest Trigger.

I We chose Views with Instead-Of-Trigger.

18 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Maintaining compatibility

I Ambler and Sadalage suggest Trigger.

I We chose Views with Instead-Of-Trigger.

19 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Maintaining compatibility

I Ambler and Sadalage suggest Trigger.

I We chose Views with Instead-Of-Trigger.

20 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Assumptions

I Database schema represents an object-oriented-model, i. e. set of
related entities.

I Object-Relational-Mapping
I EntityType → Table with surrogate ID
I Attribute → Column
I *:1-Association → Foreign-Key-Constraint

I ⇒ Schema satisfies 2NF.

21 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Assumptions

I Database schema represents an object-oriented-model, i. e. set of
related entities.

I Object-Relational-Mapping
I EntityType → Table with surrogate ID
I Attribute → Column
I *:1-Association → Foreign-Key-Constraint

I ⇒ Schema satisfies 2NF.

22 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Assumptions

I Database schema represents an object-oriented-model, i. e. set of
related entities.

I Object-Relational-Mapping
I EntityType → Table with surrogate ID
I Attribute → Column
I *:1-Association → Foreign-Key-Constraint

I ⇒ Schema satisfies 2NF.

23 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Catalogue

I Rename Table

I Rename Column

I Introduce Calculated Column

I Merge and Split Columns

I Spin-Off Empty-Table

I Move Column

I Merge and Split Table

I Transcode Foreign-Key

I Compose Foreign-Keys

24 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Introduce Calculated Column

25 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Merge and Split Columns

26 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Spin-Off Empty Table

27 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Move Column

28 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Merge and Split Table

29 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Transcode Foreing Key

30 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Compose Foreign Keys

31 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Offline Batch-Migration

I Shut down database.

I Apply schema changes and migrate data.

I Restart database.

Advantages Disadvantages

Easy to implement May cause long downtimes on large data sets

32 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Stepwise, Transactional Migration

I Create new schema (empty).

I Copy data to the new schema on-access or per batch.

I View layer on the new schema aggregates data from old and new
schema.

Advantages Disadvantages

Long downtimes avoided Higher complexity due to aggregation
Temporary trigger required

33 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Refactoring Process
Refactoring Catalogue
Migration Strategies

Two-Phase Migration

I Copy database.

I Apply schema changes to one copy (incl. data migration).

I Original schema receives triggers, which log every data
manipulation.

I The logged actions are applied to the new schema copy bit by bit.

I Eventually all data is migrated to the new schema.

Advantages Disadvantages

Long downtimes avoided Higher complexity due to merge
Concurrent migration Temporary trigger for logging required

34 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Design Goals

I Independent, encapsulated refactorings

I A refactorings is composed of Deltas

I Virtual preview of schema modification

I Goal in the long run: Merge of refactorings!

35 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Design Goals

I Independent, encapsulated refactorings

I A refactorings is composed of Deltas

I Virtual preview of schema modification

I Goal in the long run: Merge of refactorings!

36 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Design Goals

I Independent, encapsulated refactorings

I A refactorings is composed of Deltas

I Virtual preview of schema modification

I Goal in the long run: Merge of refactorings!

37 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Design Goals

I Independent, encapsulated refactorings

I A refactorings is composed of Deltas

I Virtual preview of schema modification

I Goal in the long run: Merge of refactorings!

38 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Design Goals

I Independent, encapsulated refactorings

I A refactorings is composed of Deltas

I Virtual preview of schema modification

I Goal in the long run: Merge of refactorings!

39 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Design Goals

I Independent, encapsulated refactorings

I A refactorings is composed of Deltas

I Virtual preview of schema modification

I Goal in the long run: Merge of refactorings!

DELTA:

I Tool for database migration (currently Oracle)

I Java 8

I JavaFX-GUI

I Three-Layer-Architecture

I 50 Deltas (9 "real"refactorings)

40 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Starting point

I Address is part of Person

41 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Starting point

I Address is part of Person

42 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Step 1: Spin-Off the Address

I transition phase
I no distinction between legal and natural persons

43 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Step 1: Spin-Off the Address

I transition phase

I no distinction between legal and natural persons

44 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Step 1: Spin-Off the Address

I transition phase
I no distinction between legal and natural persons

45 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Step 2: Split in natural and legal persons

I no support for multiple tenants

46 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Step 2: Split in natural and legal persons

I no support for multiple tenants
47 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Step 3: Implement Multi-Tenancy

I transition phase

48 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Step 3: Implement Multi-Tenancy

I transition phase

49 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Company Merger

I bad design: insuranceId and liabilityInsuranceId are
disjoint

50 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Company Merger

I bad design: insuranceId and liabilityInsuranceId are
disjoint

51 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Schritt 4: Concrete-Table-Inheritance →
Class-Table-Inheritance

52 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Case Study: Wrap-Up

I Extract entities: transformation of associations 1:1 → 1:* → *:*

I Split entities: Single-Table-Inheritance → Class-Table-Inheritance

I Extend models (multi-tenancy) with calculated columns

I Transformation of models (Merge, „Transcode“etc.):
Concrete-Table-Inheritance → Class-Table-Inheritance

53 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Case Study: Wrap-Up

I Extract entities: transformation of associations 1:1 → 1:* → *:*

I Split entities: Single-Table-Inheritance → Class-Table-Inheritance

I Extend models (multi-tenancy) with calculated columns

I Transformation of models (Merge, „Transcode“etc.):
Concrete-Table-Inheritance → Class-Table-Inheritance

54 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Case Study: Wrap-Up

I Extract entities: transformation of associations 1:1 → 1:* → *:*

I Split entities: Single-Table-Inheritance → Class-Table-Inheritance

I Extend models (multi-tenancy) with calculated columns

I Transformation of models (Merge, „Transcode“etc.):
Concrete-Table-Inheritance → Class-Table-Inheritance

55 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Case study

Case Study: Wrap-Up

I Extract entities: transformation of associations 1:1 → 1:* → *:*

I Split entities: Single-Table-Inheritance → Class-Table-Inheritance

I Extend models (multi-tenancy) with calculated columns

I Transformation of models (Merge, „Transcode“etc.):
Concrete-Table-Inheritance → Class-Table-Inheritance

56 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Existing tools

SQL Prompt VisualStudio-PlugIn, supports renaming and split-table

ApexSQL Only MS-SQL-Server, supports renaming, split-table and
introduce association-table.

Flyway Version control and management of migration scripts, no
implemented refactorings

Liquibase Same as Flyway but with SQL-Abstraction and some
built-in-refactorings (rename, split-table)

57 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Related research

I I. Skoulis et. al. Growing up with stability: How open-source
relational databases evolve [4]: study of the VCS-history to analyse
patterns in the development of the database model.

I C. Curino et. al. Graceful database schema evolution: the prism
workbench [5]. Similar approach to DELTA, based on SQL rewriting.

I M. Pereira et al. Evolution of databases using petri nets [6]. More
general approach on how to check dependencies between
refactorings.

58 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Conclusion

I Catalogue of database refactorings

I Backward-compatibility with Views and Instead-Of-Trigger

I Presentation of the different migration scenarios

I Open-Source-Tool: DELTA

59 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Outlook

I Evaluation of the prototype

I Support of the different migration scenarios

I Composition of refactorings

I Reordering of refactoring

THANK YOU FOR YOUR ATTENTION!

60 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

Outlook

I Evaluation of the prototype

I Support of the different migration scenarios

I Composition of refactorings

I Reordering of refactoring

THANK YOU FOR YOUR ATTENTION!

61 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

[1] Scott W Ambler and Pramod J Sadalage
Refactoring databases: Evolutionary database design. Pearson
Education, 2006.

[2] Martin Fowler
Refactoring : improving the design of existing code. Addison-Wesley,
1999.

[3] Michael Löwe
Refactoring information systems - association folding and unfolding.
FHDW Hannover, 2013.

[4] Ioannis Skoulis, Panos Vassiliadis, Apostolos V. Zarras
Growing up with stability: How open-source relational databases
evolve. Information Systems,53:363-385, 2015

[5] Carlo A. Curino, Hyun J. Moon, Carlo Zaniolo
Graceful database schema evolution: the prism workbench.
Proceeding of the VLDB Endowment, 1:761-772, 2008

62 / 63



Introduction
Theory

Application
Related Work

Conclusion and Outlook

[6] Marcia Beatriz Carvalho Pereira, Jorge Rady de Almeida Junior,
Jose Reinaldo Silva
Evolution of databases using petri nets. Anais de XIX Congresso
Brasileiro de Automatica, CBA 2012

63 / 63


	Introduction
	About Me
	Motivation

	Theory
	Refactoring Process
	Refactoring Catalogue
	Migration Strategies

	Application
	Case study

	Related Work
	Conclusion and Outlook

