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About Me

I B.Sc. and M.Sc. from FHDW Hannover in Germany
I There DELTA was developed.

I 3 years in industry as a Software Engineer
I Since September 2017: PhD research fellow at Western Norway

University of Applied Sciences
I Topic: Interoperability in Model Driven Software Engineering (MDSE)
I Areas: MDSE, Bidirectional Transformations (BX), Co-Evolution
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Motivation

I Software refactoring is widely adopted and is performed
automatically...

I ... whereas database refactoring is not.
I Ambler/Sadalage „Database Refactoring“, 2006 [1]

Definition 1 (Ambler): Database refactoring

A simple change to a database schema that improves its design while
retaining both its behavioural and informational semantics.
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Distinction: code refactoring - database refactoring

What makes Database refactoring different ?

I deals with behavioural and informational aspects,

I affects actual stored data,

I requires manual effort,

I in general a database schema is shared between many different
applications.

Requirement 1: Transition periods

The database has to be accessible through the new and the old schema
after a refactoring for certain transition period because the different
dependent applications need time to adopt the changed schema.
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Further requirements

Requirement 2: Generated Migrations

As the manual development of migration procedures is error-prone and
there are recurring patterns of migrations the migration code itself shall
be generated.

Requirement 3: Revertible Migrations

As a refactoring must not change the behaviour of the data or cause
information loss the refactoring can be reverted. Therefore we require an
undo-feature for our migrations.

Requirement 4: Avoid downtimes

As long downtimes have negative impact and productivity and sale they
shall be avoided whilst applying refactorings.
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Maintaining compatibility

Trigger Old and new schema running in parallel, trigger replicate
changes back and forth.

Views Views, representing the old schema, provide backward
compatibility.

Batch Jobs Old and new schema running in parallel, Batch jobs
replicate changes back and forth on a regular basis.
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I Database schema represents an object-oriented-model, i. e. set of
related entities.

I Object-Relational-Mapping
I EntityType → Table with surrogate ID
I Attribute → Column
I *:1-Association → Foreign-Key-Constraint

I ⇒ Schema satisfies 2NF.
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Catalogue

I Rename Table

I Rename Column

I Introduce Calculated Column

I Merge and Split Columns

I Spin-Off Empty-Table

I Move Column

I Merge and Split Table

I Transcode Foreign-Key

I Compose Foreign-Keys
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Offline Batch-Migration

I Shut down database.

I Apply schema changes and migrate data.

I Restart database.

Advantages Disadvantages

Easy to implement May cause long downtimes on large data sets
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Refactoring Process
Refactoring Catalogue
Migration Strategies

Stepwise, Transactional Migration

I Create new schema (empty).

I Copy data to the new schema on-access or per batch.

I View layer on the new schema aggregates data from old and new
schema.

Advantages Disadvantages

Long downtimes avoided Higher complexity due to aggregation
Temporary trigger required
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Refactoring Process
Refactoring Catalogue
Migration Strategies

Two-Phase Migration

I Copy database.

I Apply schema changes to one copy (incl. data migration).

I Original schema receives triggers, which log every data
manipulation.

I The logged actions are applied to the new schema copy bit by bit.

I Eventually all data is migrated to the new schema.

Advantages Disadvantages

Long downtimes avoided Higher complexity due to merge
Concurrent migration Temporary trigger for logging required
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I Independent, encapsulated refactorings

I A refactorings is composed of Deltas

I Virtual preview of schema modification

I Goal in the long run: Merge of refactorings!
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Case study

Design Goals

I Independent, encapsulated refactorings

I A refactorings is composed of Deltas

I Virtual preview of schema modification

I Goal in the long run: Merge of refactorings!

DELTA:

I Tool for database migration (currently Oracle)

I Java 8

I JavaFX-GUI

I Three-Layer-Architecture

I 50 Deltas (9 "real"refactorings)
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Step 2: Split in natural and legal persons

I no support for multiple tenants
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Case study

Schritt 4: Concrete-Table-Inheritance →
Class-Table-Inheritance
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Case Study: Wrap-Up

I Extract entities: transformation of associations 1:1 → 1:* → *:*

I Split entities: Single-Table-Inheritance → Class-Table-Inheritance

I Extend models (multi-tenancy) with calculated columns

I Transformation of models (Merge, „Transcode“etc.):
Concrete-Table-Inheritance → Class-Table-Inheritance
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Existing tools

SQL Prompt VisualStudio-PlugIn, supports renaming and split-table

ApexSQL Only MS-SQL-Server, supports renaming, split-table and
introduce association-table.

Flyway Version control and management of migration scripts, no
implemented refactorings

Liquibase Same as Flyway but with SQL-Abstraction and some
built-in-refactorings (rename, split-table)
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Related research

I I. Skoulis et. al. Growing up with stability: How open-source
relational databases evolve [4]: study of the VCS-history to analyse
patterns in the development of the database model.

I C. Curino et. al. Graceful database schema evolution: the prism
workbench [5]. Similar approach to DELTA, based on SQL rewriting.

I M. Pereira et al. Evolution of databases using petri nets [6]. More
general approach on how to check dependencies between
refactorings.
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Conclusion

I Catalogue of database refactorings

I Backward-compatibility with Views and Instead-Of-Trigger

I Presentation of the different migration scenarios

I Open-Source-Tool: DELTA
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Outlook

I Evaluation of the prototype

I Support of the different migration scenarios

I Composition of refactorings

I Reordering of refactoring

THANK YOU FOR YOUR ATTENTION!
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