Anna Maria Eilertsen, University of Bergen

WHAT CAN WE LEARN ABOUT

LOCATING R

AL IOORING

QPPOR VN

-ROM

G COMIPCOSING SUIF T VWARE

=5

FCI IR RLISERVIC ES

SIU/CAPES bilateral project "Modern Refactoring”

EX) AL T AN MIOVE ME TG

| O AT HNE BREEAL FCIRIHNG,
(IPPCIR A INE S

LI WVARE [CIRMPCISITICIN
PHOROISERVIC B

ME: PAS [-CURREN T

B.S. University of Bergen, computer science

M.S. joint University of Bergen & Western Norwegian University
of Applied Sciences (Volker Stolz)

PhD University of Bergen, Language / Processor Co-Evolution
(Anya Bagge)

currently on research stay at (the very empirical) Software
Engineering group at University of British Columbia, Canada

(Gail C. Murphy)

(EXTRACT AND) MOVE METHOD

(B2 BFRAL T AP) L DG RO D)

Extract method

P I

Move method

class A

class A class B

(B2 BFRAL T AP) L DG RO D)

3 public class Customer {

4
5€ public double getOwing(List<Invoice> invoices) {

6 double outstanding = 0;

7 for(Invoice invoice : invoices)

8 outstanding+=invoice.qgetOutstanding();

9 return outstanding +|outstanding * 0.2;

10 } E h d
11 3} xXtract metho

public class Customer {

3

4

5= public double getOwing(List<Invoice> invoices) {
6 double outstanding = 0;

7 for(Invoice invoice : invoices)

8 outstanding+=invoice.getOutstanding();

9 return outstanding + getInterest(outstanding);

10 }
11
12 private double getInterest(double outstanding) {
13 return outstanding x 0.2; Move methOd
14 }
15 }
'~
3 public class Customer { g publ;gu;{:s§u£2¥g:§§né - 0:
4 ’
5= public double getOwing(List<Invoice> invoices) { g_ public double getOutstanding() {
6 double outstanding = 0; 6 return outstanding;
7 for(Invoice invoice : invoices) 2 1 !
8 outstanding+=invoice.getOutstanding() g double getInterest() {
9 + invoice.getInterest(); | 9 return outstanding * 0.2;
10 return outstanding; 10 } e
L } 1}

4

FLAE A HNG REFAC T CIRING
OPPORTUNITIES

3 public class Customer {

4
5€ public double getOwing(List<Invoice> invoices) {

6 double outstanding = 0;

7 for(Invoice invoice : invoices)

8 outstanding+=invoice.qgetOutstanding();

9 return outstanding +|outstanding * 0.2;

10 } E h d
11 3} xXtract metho

public class Customer {

3

4

5= public double getOwing(List<Invoice> invoices) {
6 double outstanding = 0;

7 for(Invoice invoice : invoices)

8 outstanding+=invoice.getOutstanding();

9 return outstanding + getInterest(outstanding);

10 }
11
12 private double getInterest(double outstanding) {
13 return outstanding x 0.2; Move methOd
14 }
15 }
'~
3 public class Customer { g publ;gu;{:s§u£2¥g:§§né - 0:
4 ’
5= public double getOwing(List<Invoice> invoices) { g_ public double getOutstanding() {
6 double outstanding = 0; 6 return outstanding;
7 for(Invoice invoice : invoices) 2 1 !
8 outstanding+=invoice.getOutstanding() g double getInterest() {
9 + invoice.getInterest(); | 9 return outstanding * 0.2;
10 return outstanding; 10 } e
L } 1}

4

L OCATING REFACTORING
OPPORTUNITIES

When you delete a block
of code that you thought
was useless

VWHERN IO REFAC TOR

https://refactoring.guru/refactoring/catalog

FLAE A HNG REFAC T CIRING
OPPORTUNITIES

all possible
smell-reducing
machine learning

metrics-aware

heuristics

https://refactoring.guru/refactoring/catalog

L OCATING REFACTORING
OPPORTUNITIES

SE R SUISE ISL S

Use, Disuse, and Misuse of Automated Refactorings

Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P. Bailey, Ralph E. Johnson
University of lllinois at Urbana-Champaign
Urbana, IL 61801, USA
{mvakili2, nchen, snegara2, rajkumal, bpbailey, rjohnson}@illinois.edu

Abstract—Though refactoring tools have been available for
more than a decade, research has shown that programmers
underutilize such tools. However, little is known about why
programmers do not take advantage of these tools. We have
conducted a field study on programmers in their natural
settings working on their code. As a result, we collected a
set of interaction data from about 1268 hours of programming
using our minimally intrusive data collectors. Our quantitative
data show that programmers prefer lightweight methods of
invoking refactorings, usually perform small changes using
the refactoring tool, proceed with an automated refactoring
even when it may change the behavior of the program, and
rarely preview the automated refactorings. We also interviewed
nine of our participants to provide deeper insight about the
patterns that we observed in the behavioral data. We found
that programmers use predictable automated refactorings even
if they have rare bugs or change the behavior of the program.
This paper reports some of the factors that affect the use of
automated refactorings such as invocation method, awareness,
naming, trust, and predictability and the major mismatches
between programmers’ expectations and automated refactor-
ings. The results of this work contribute to producing more
effective tools for refactoring complex software.

Keywords-Software engineering; Software maintenance; Pro-

gramming environments; Human factors; User interfaces;
Human computer interaction

1. INTRODUCTION

Refactoring is defined as changing the design of soft-
ware without affecting its observable behavior [1]. Refactor-
ings rename, move, split, and join program elements such
as fields, methods, packages, and classes. Agile software
processes such as eXtreme Programming (XP) prescribe
refactoring [2], because it enables evolutionary software
design and is the key to modifiable and readable code [3].
Programmers refactor their code frequently [4], [5]. Some
refactorings are tedious and error-prone to perform manually.
Thus, automated refactorings were invented more than a
decade ago to make the process of refactoring more efficient
and reliable [6]. Today, modern Integrated Development
Environments (IDEs), such as Eclipse [7], NetBeans [8],
IntelliJ IDEA [9], Xcode [10], and ReSharper [11], support
many automated refactorings.

Recently, there has been much interest in improving the
reliability of existing automated refactorings and building
new ones to automate sophisticated program transforma-
tions [12]-[16]. This is not surprising, given the tedium

978-1-4673-1067-3/12/$31.00 © 2012 IEEE

233

and error-proneness of some refactorings and the perceived
benefits of their automation. In spite of the growing interest
in improving the usability of automated refactorings [17]-
[19], this aspect of refactoring has not received enough
attention. For example, the user interfaces of refactoring
tools have changed little since they were first introduced, and
recent studies suggest that programmers greatly underutilize
the existing refactoring tools [5]. We need to understand the
problems programmers have with today’s refactoring tools to
design future generations of these tools that fit programmers’
needs.

We conducted a study consisting of both quantitative
and qualitative data collection. We studied 26 developers
working in their natural settings on their code for a total of
1268 programming hours over three months, and collected
data about their interactions with automated refactorings.
‘We observed patterns of interaction in our quantitative data
and interviewed nine of our participants to take a more
detailed qualitative look at our behavioral data. Then, we
adapted a general framework of human-automation inter-
action [20] to frame the use, disuse, and misuse of au-
tomated refactorings. Use of automated refactorings refers
to pre s applying d refactorings to perform
code changes they might otherwise do manually. Disuse of
automated refactorings is programmers’ neglect or underuse
of automated refactorings. Misuse of automated refactorings
refers to programmers’ use of these tools in ways not
recommended by the designers.

Our empirical study sheds light on how users interact
with automated refactorings. First, we have found that a
single context-aware and lightweight method of invoking
refactorings accounts for a significant number of refactoring
invocations (See Section III). Second, we have found sev-
eral factors that lead to the underutilization of automated
refactorings such as need, awareness, naming, trust, pre-
dictability, and configuration (See Section IV). Third, we
have found that programmers usually continue an automated
refactoring that has reported some error or warning. This
finding casts doubt on the main property of automated
refactorings, namely, behavior-preservation. In addition, we
have observed some unjustified uses of the refactoring tool
(See Section V). Finally, we have proposed alternative ways
of designing refactoring tools based on the findings of our
study (See Subsections III-B, IV-G, and V-C).

ICSE 2012, Zurich, Switzerland

Our interviewees did not use automated refactorings that
they had found to have complex user interfaces and unclear
benefits. In general, if the benefits of automation are not
readily apparent, humans are less likely to use the automa-
tion because of the cognitive overhead involved in evaluating
and using the automation

On the other hand, programmers appreciate
the tools that propose applicable refactorings, and are willing
to use automated refactorings even when they may change
the program’s behavior.

ICSE 2012, Zurich, Switzerland

LARGE-SCALE REFAC TORING

A Field Study of Refactoring Challenges and Benefits

Miryung Kim* Thomas Zimmermann* Nachiappan Nagappan *
miryung@ece.utexas.edu tzimmer@microsoft.com nachin@microsoft.com

* The University of Texas at Austin, TX, USA
+ Microsoft Research, Redmond, WA, USA

ABSTRACT

It is widely believed that refactoring improves software qual-
ity and developer productivity. However, few empirical stud-
ies quantitatively assess refactoring benefits or investigate
developers’ perception towards these benefits. This paper
presents a field study of refactoring benefits and challenges
at Microsoft through three complementary study methods:

i s with professional soft-
and quantitative analysis of version history
data. Our survey finds that the refactoring definition in
practice is not confined to a rigorous definition of semantics-
preserving code transformations and that developers per-
ceive that refactoring involves substantial cost and risks.
We also report on interviews with a designated refactoring
team that has led a multi-year, centralized effort on refac-
toring Windows. The quantitative analysis of Windows 7
version history finds that the binary modules refactored by
this team experienced significant reduction in the number of
inter-module dependencies and post-release defects, indicat-
ing a visible benefit of refactoring.

Categories and Subject Descriptors:
D.2.7 [Software Engineering): Distribution, Maintenance, and
Enhancement—restructuring

General Terms: Measurement, Experimentation

Keywords: Refactoring; empirical study; software evolu-
tion; component dependencies; defects; churn.

1. INTRODUCTION

It is widely believed that refactoring improves software
quality and developer productivity by making it easier to
maintain and understand software systems [13]. Many be-
lieve that a lack of refactoring incurs technical debt to be
repaid in the form of increased maintenance cost [5]. For ex-
ample, eXtreme Programming claims that refactoring saves
development cost [4] and advocates the rule of refactor mer-
cilessly throughout the entire project life cycles. On the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSOFT/FSE’12 November 10 - 18 2012, Raleigh, NC, USA

Copyright 2012 ACM 978-1-4503-1614 ...510.00.

328 engineers participated in the survey.

L —

other hand, there exists a conventional wisdom that software
engineers often avoid refactoring, when they are constrained
by a lack of resources (e.g., right before major software re-
leases). Some also believe that refactoring does not provide
immediate benefit unlike new features or bug fixes.

Recent empirical studies show contradicting evidence on
the benefit of refactoring as well. Ratzinger et al. [29] found
that, if the number of refactoring edits increases in the pre-
ceding time period, the number of defects decreases. On
the other hand, WeiBgerber and Diehl found that a high
ratio of refactoring edits is often followed by an increasing
ratio of bug reports [34, 35] and that incomplete or incor-
rect refactorings cause bugs [14]. In our previous study. we
found similar evidence that refactoring edits have a strong
temporal and spatial correlation with bug fixes [18].

These contradicting findings motivated us to conduct a
field study of refactoring definition, benefits, and challenges
in a large software development organization and investi-
gate whether there is a visible benefit of refactoring a large
system. In this paper, we address the following research
questions: (1) What is the definition of refactoring from de-
velopers’ perspectives? By refactoring, do developers indeed
mean behavior-preserving code transformations or changes
to a program structure [23, 13]? (2) What is the develop-
ers’ perception about refactoring benefits and risks, and in
which contexts do developers refactor code? (3) As claimed
in the literature, are there visible refactoring benefits such
as reduction in the number of bugs, reduction in the average
size of code changes after refactoring, and reduction in the
number of component dependenc

To investigate the definition of refactoring in practice and
the value perception toward refactoring, we conducted a sur-
vey with over three hundred engineers whose check-in com-
ments included a keyword “refactor*” in the last two years.
From our survey participants, we also came to know about a
multi-year refactoring effort on Windows. Because Windows
is one of the largest, long-surviving software systems within
Microsoft and a designated team led an intentional effort
of system-wide refactoring, we focused on the case study of
Windows. We interviewed the refactoring team and then
assessed the impact of the team’s refactoring on reduction
of inter-module dependencies and post-release defects using
Windows 7 version history.

Our field study found the following results:

e The refactoring definition in practice seems to differ
from a rigorous academic definition of beh pre:
serving program transformations. Our survey partic-
ipants perceived that refactoring involves substantial

|
|

—*—‘

“The value of refactoring is difficult to measure. How do
you measure the value of a bug that never existed, or the
time saved on a later undetermined feature? How does this
value bubble up to management? Because there’s no way
to place immediate value on the practice of refactoring, it
makes it difficult to justify to management.”

“These (Fowler’s refactoring types or refactoring types sup-
ported by Visual Studio) are the small code transforma-
tion tasks often performed, but they are unlikely to be
performed alone. There’s usually a bigger architectural
change behind them.”

“I'd love a tool that could estimate the benefits of refac-
toring.

FSE’I2 November 10 - 18 2012, Raleigh, NC, USA

S W ARE DIECCOINIELISETICTN

S W ARE DIECCOINIELISETICTN

“Finding, or creating, ‘'seams’ in your code base”

- Michael Feathers,VWorking Effectively with Legacy Code

SENORGIF.COM

PHLCREISERVICES

Clear areas of responsibility
Strong encapsulation

Individually deployable

FIEC COMPLISING IICINC L FIES 1)
PHCEROSERVICES

S000 SO0800
s mesees

SSO8888
SO88a8a8
OOoaaaa

clustering

>

Top:Yarygina2018 Bottom: Mazlami2017

ECOMPCOISECON 1O
PHEROSERVICES

2017 IEEE 24th International Confere

Extraction of Microservices from Monol

Genc Mazlami, Jiirgen Cito, P
Software Evolution and Arch
Department of Inform
University of Zuric
{firstname.lasmame} @i

Ab: t—Driven by such as mobile com- analys
puting, cloud computing infrastructure, DevOps and elastic and of
computing, the microservice architectural style has emerged the ex
as a new alternative to the monolithic style for designing large In this
software systems. Monolithic legacy applications in industry n thig
undergo a migration to microservice-oriented architectures. A tion p
key challenge in this context is the extraction of microservices forma
from existing monolithic code bases. While informal migration cluster
patterns and techniques exist, there is a lack of formal models informn
and automated support tools in that area. This paper tackles N
that challenge by presenting a formal microservice extraction repres
model to allow algorithmic recommendation of microservice by the
candidates in a refactoring and migration scenario. The formal potent
model is implemented in a web-based prototype. A performance Furthe

i -ates that the provides

evalua

The ion quality is eval- th ¥
uated quantitatively by custom microservice-specific metrics. s © g
The results show that the produced microservice candidates gives
lower the average development team size down to half of the define
original size or lower. Furthermore, the size of recommended the ch

microservice conforms with microservice sizing reported by res

by) . spec

empirical surveys and the domain-specific redundancy among i
different microservices is kept at a low rate. sectig}
itation

Keywords-microservices; extraction; coupling; graph-based
clustering;

Dec
1. INTRODUCTION
branch

In recent years, the software engineering community has tractin
seen a tendency towards cloud computing [1]. The changing ary fo
infrastructural circumstances pose a demand for architec- Parnas
tural styles that leverage the opportunities given by cloud tigate
infrastructure and tackle the challenges of building cloud- systen
native applications. An architectural style that has drawn on the
a substantial amount of attention in the industry in this presen
context — as for instance in [2], [3] — is the microservices from
architecture. note t
Microservices come with several benefits such as the fact legacy
that services are independently developed and ind ly andth
deployable, enabling more flexible horizontal scaling in satisfa
TaaS environments and more efficient team structures among that is
developers. It is therefore no surprise that big internet cessin
industry players like Google and eBay [4], Netflix [5] uses b
and many others have undertaken serious efforts for mov- servic
ing from initially monolithic architectures to microservice- Mic
oriented application landscapes. The common problem in the id
these efforts is that identifying components of monolithic ticular
applications that can be turned into cohesive, standalone condu
services is a tedious manual effort that encompasses the classif

978-1-5386-0752-7/17 $31.00 © 2017 IEEE 524
DOI 10.1109/ICWS.2017.61

Re-architecting OO

into Microserv
A Quality-Centred A

Anfel Selmadji®, Abdelhak-Djamel Seri:
Christophe Dony, and Rahina Ou

LIRMM, CNRS and University of Montpel
{selmadji,seriai,bouziane,dm
rahina.oumarou-mahamane@etu.ur

Abstract. Due to its tremendous advantages
style has become an essential element for the ¢
deployed on the cloud and for those adopt:
Migrating existing applications to microserv
from these advantages. Thus, in this paper
to automatically identify microservices from
roach is based on a quality function that me
and behavioral validity of microservices and t!
existing works, ours is based on a well-defin
quality of microservices and use the source ¢
information.

Keywords: Object-Oriented - Microservices
Migration - Identification

1 Introduction

Recently, microservice architectural style has b
the development of applications deployed on the
DevOps practices [5,10]. In this style, an applic
services which are independently deployable. Usu
manage its own data [10,12]. These services col
mechanisms and they are deployed using contair

For the cloud, microservices facilitate the re
according to the changes that may occur at run
related to cloud resources (e.g. resource allocatic
scalability guarantees, etc.) or any other event |
microservices facilitate a continuous integrat:
tasks [5].

Besides the adoption of microservice architec
of new applications, the migration of existing mo
© IFIP International Federation for Information Processing
Published by Springer Nature Switzerland AG 2018. All Rig

K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 65
https://doi.org/10.1007 /978-3-319-99819-0_5

Service Cutter: A Systema
to Service Decompc

Michael Gysel', Lukas Kélbener', Wo
and Olaf Zimmermann"'

! University of Applied Sciences of Eastern S
Oberseestrasse 10, 8640 Rapperswil
{michael. gysel, lukas. koelbener}@
ozimmerm@hsr. ch

2 Ziihlke Engineering AG, Wiesenstrasse 10a, 8¢
wolfgang. giersche@zueh!

Abstract. Decomposing a software system into sm
challenge in software engineering. It is particularly
systems into loosely coupled and highly cohes
architectures and their microservices deployments ta
but remain vague on how to cut a system
network-accessible services. In this paper, we prog
approach to service decomposition based on 16 col
the literature and industry experience. These coupli
Service Cutter, our method and tool framework fo
the Service Cutter approach, coupling information
engineering artifacts such as domain models and us¢
undirected, weighted graph to find and score dens
resulting candidate service cuts promise to reduce
mote high cohesion within services. In our validatic
prototyping, action research and case studies, we st
sample applications with acceptable performance;
narios resulted in appropriate service cuts. These n
back from members of the target audience in industi
our coupling criteria catalog and tool-supported sery
have the potential to assist a service architect’s desi
practical manner.

Keywords: Functional partitioning - Loose
management - Microservices - Service interface (
granularity - Service quality

1 Introduction

In 1972, D. L. Parnas reflected “On the Criteria to B¢
into Modules” [11]. Since then, functional decompos
topic in software engineering. As software systems g
software engineers started to distribute modules and p

© IFIP International Federation for Information Processing 20
Published by Springer International Publishing Switzerland 20
M. Aiello et al. (Eds.): ESOCC 2016, LNCS 9846, pp. 185-2
DOI: 10.1007/978-3-319-44482-6_12

r

2016-2018

Microservices Identification through Interface
Analysis

Luciano Baresi!, Martin Garriga', and Alan De Renzis®

! Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Italy
{luciano.baresi,martin.garriga}@polimi.it
* Faculty of Informatics, National University of Comahue, Argentina
alanderenzis@fi.uncoma.edu.ar

Abstract. The microservices architectural style is gaining more and
more momentum for the development of applications as suites of small,
autonomous, and conversational services, which are then easy to under-
stand, deploy and scale. One of today’s problems is finding the adequate
granularity and cohesiveness of microservices, both when starting a new
project and when thinking of transforming, evolving and scaling exist-
ing applications. To cope with these problems, the paper proposes a
solution based on the semantic similarity of foreseen/available function-
ality described through OpenAPI spe ions. By leveraging a refer-
ence vocabulary, our approach identifies potential candidate micro
Vices, as fine-grained groups of cohesive operations (and associated r
sources). We compared our approach against a state-of-the-art tool, sam-
pled microservices-based applications and decomposed a large dataset of
Web APIs. Results show that our approach is able to find suitable de-
compositions in some 80% of the cases, while providing early insights
about the right granularity and cohesiveness of obtained microservices.

Keywords: Microservices, Microservice architecture, monolith decom-
position

1 Introduction

Microservi a novel architectural style that tries to overcome the shortcom-
ings of centralized, monolithic architectures [1,2], in which the application logic
is encapsulated in big deployable chunks. The most widely adopted definition of
a micro: architecture is “an approach for developing a single application
as a suite of small services, each running in its own process and communicating
with lightweight mechanisms, often a RESTful API” [3]. In contrast to mono-
liths, microservices foster independent deployability and scalability, and can be
developed using different technology stacks [4,5].

Although microservices can be seen as an evolution of Service-Oriented Ar-
chitectures (SOA), they are inherently different regarding sharing and reuse [6]:
given that service reuse has often been less than expected (7], instead of reusing

rvic

ECOMPCOISECON 1O
PHEROSERVICES

MVC-based [Levcovitz201 6]
resource based [Levcovitz2016, Mazlami2017, Gysel2016]

metrics-based, source code analysis (k-clustering)
[Mazlami2017, Gysel2016, Selmadji201 8]

team structure [Mazlami2017]

interface analysis (semantic) [Baresi201 7]

L OCATING REFACTORING
OPPOREUNEHES!

MVC-based [Levcovitz201 6]
resource based [Levcovitz2016, Mazlami2017, Gysel2016]

metrics-based, source code analysis (k-clustering)
[Mazlami2017, Gysel2016, Selmadji201 8]

team structure [Mazlami2017]

interface analysis (semantic) [Baresi201 7]

L OCATING REFACTORING
OPPOREUNERHES

clustering

Mazlami2017

REFACTOR MAN

Anna Maria Eilertsen THI6 CODE LOOKS

PRETTY MESSY

IT'S TIME FOR)

University of Bergen, Norway

https://annaei.github.io/

MANY HOURS LATER...
y@SOWh Oow OM, THE HORROF%!

anna.eilertsen@uib.no

MONKEYDSER.CoOM

https://annaei.github.io/
mailto:anna.eilertsen@uib.no

REFRREPING S

[Gysel2016]

Service Cutter: A Systematic Approach to Service Decomposition
Michael Gysel1, Lukas Kélbener1, Wolfgang Giersche2

and Olaf Zimmermann1

IFIP International Federation for Information Processing 2016

[Mazlami2017]

Extraction of Microservices from Monolithic Software Architectures
Genc Mazlami, Ju'rgen Cito, Philipp Leitner

2017 IEEE 24th International Conference on Web Services

[Selmad;ji2018]

Re-architecting OO Software into Microservices A Quality-Centred Approach

Anfel Selmadiji(B), Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Christophe Dony, and Rahina Oumarou Mahamane
IFIP International Federation for Information Processing 2018

[Baresi2017]

Microservices Identification through Interface Analysis
Luciano Baresi1, Martin Garrigal, and Alan De Renzis2
Conference Paper - September 2017

[Levcovitz2016]
Levcovitz, A., Terra, R., Valente, M.T.: Towards a technique for extracting microservices from monolithic enterprise systems. arXiv preprint (2016)

[Yarygina2018]
Yarygina, Tetiana. "Exploring Microservice Security." (2018).

