
DAT159 
Refactoring (Introduction)

Volker Stolz1, with contributions by: 
Larissa Braz2, Anna M. Eilertsen3, 

Fernando Macías1, Rohit Gheyi2

Supported by the bilateral SIU/CAPES 
project “Modern Refactoring” 2017/18

Western Norway University of Applied Sciences, 
Universidade Federal de Campina Grande, 

University of Bergen, Norway

DAT159 Refactoring V.Stolz/H18

Overview: Refactoring

• What are refactorings?

• Common refactorings for
different languages.

• Why refactor? What are source
code metrics?

• What can go wrong?

• How to implement refactorings?

!2

DAT159 Refactoring V.Stolz/H18

Overview

• 6+1 lectures

• 3 labs

• 1 oblig

!3

Please bring your laptop! 
(at least 1/group)

IDEs: Eclipse, IntelliJ

Languages: mostly Java, some C

DAT159 Refactoring V.Stolz/H18

Overview

• Guest lectures from Brazil! 
(SIU/CAPES project “Modern Refactoring”) 
(see changed schedule)

• Possible Bachelor projects…

• …and Master theses.

!4

https://espresso.siu.no/projects/?5&project=UTF-2016-CAPES-SIU/10032

DAT159 
Refactoring (Introduction)

Volker Stolz1, with contributions by: 
Larissa Braz2, Anna M. Eilertsen3, 

Fernando Macías1, Rohit Gheyi2

Supported by the bilateral SIU/CAPES 
project “Modern Refactoring” 2017/18

Western Norway University of Applied Sciences, 
Universidade Federal de Campina Grande, 

University of Bergen, Norway

DAT159 Refactoring V.Stolz/H18

Overview

• What are refactorings? What are they good for?

• Examples in common IDEs

• Examples in common languages (Java, C/C++, …)

• Impact on software quality metrics

• Implementation of refactorings

• Formal treatment of refactorings

!6

DAT159 Refactoring V.Stolz/H18

It seems kinda important…

!7

(Everybody’s doing it; you should as well!)

DAT159 Refactoring V.Stolz/H18

Refactoring: how to do it?
Why does everyone hate it?

!9

DAT159 Refactoring V.Stolz/H18

What is Refactoring? (1)
“A change made to the internal structure of software to
make it easier to understand and cheaper to modify without
changing its observable behaviour” [Fowler]

!10

Motivation:

• keep the code clean

• avoid technical debt

From mathematical term “factor”: 
finding multiple occurrences of similar code and factoring it
into a single reusable function

DAT159 Refactoring V.Stolz/H18

Motivation

!11

DAT159 Refactoring V.Stolz/H18

What is Refactoring? (2)

• Two different schools:

• anything goes (agile)

• behaviour preserving

• Corner cases:

• changing complexity class, e.g. replacing bubble sort
with quicksort still a refactoring?

!12

DAT159 Refactoring V.Stolz/H18

Refactoring Process
• Developer inspects code.

• She selects part of it…

• …and chooses refactoring
action from menu.

• Refactorings usually modify
the Abstract Syntax Tree
(AST) in memory…

• … and then synchronize the
source code file.

!13

DAT159 Refactoring V.Stolz/H18

Abstract Syntax Tree (AST)
• In-memory representation of parsed source code

• Semantic information available (Where was this variable
declared? What are the superclasses?)

!14

DAT159 Refactoring V.Stolz/H18

Refactoring: Origins
• Opdyke’s PhD thesis [1992]

• Smalltalk Refactoring Browser 
[Roberts, Brant, Johnson ’97]

• “Refactoring: improving the design of existing code” 
[Fowler ’99]

• 30% of changes are refactorings [Soares et al., 2011]

• Extract Method most popular — but performed manually
[Murphy et al., 2006] 

!15

DAT159 Refactoring V.Stolz/H18

Literature

!16

Refactoring: Improving the Design of
Existing Code 
Martin Fowler with Kent Beck, John Brant,
William Opdyke, Don Roberts 
 
Addison Wesley, 1999

DAT159 Refactoring V.Stolz/H18

Adoption of Refactorings

• Agile: fully embraced refactorings

• Developers usually sceptical of
automated changes

• Study: developers more confident
when they can predict changes

• Problem in OO languages: 
refactoring touches on multiple
contexts

!17

The agile workflow

DAT159 Refactoring V.Stolz/H18

Adoption: Software
Engineering Studies

• Kim et al. (FSE, 2012): survey on
more than 300 engineers who
had used refactoring during
Microsoft Windows development

• Tempero et al. (C.ACM, 2017):

• Survey on 3785 developers in

2009

• They understand benefits of

refactoring, but they see costs
and risks as well.

!18

https://www.microsoft.com/en-us/research/publication/a-field-study-of-refactoring-challenges-and-benefits/
https://cacm.acm.org/magazines/2017/10/221318-barriers-to-refactoring/fulltext

DAT159 Refactoring V.Stolz/H18

Related Topics: Patterns

• “Design Patterns: Elements of Reusable Object-Oriented
Software” [Gamma, Helm, Johnson, Vlissides, 1994]

• “Refactoring to patterns” [Kerievsky, 2005]

!19

• “Anti-patterns” and “code smells”: 
indicators of design deficiencies

• Ignoring exceptions (AP), magic strings (AP), 
repeated code (CS), long functions (CS)

• Detection partially automated

• Refactoring to more structured solutions

DAT159 Refactoring V.Stolz/H18

Software Quality Metrics
• How “good” is your code?

• Often subjective, but some guidelines:

• high cohesion/low coupling between classes

• long method body

• class with too many methods

• Refactorings affect those metrics:

• Extract Method reduces length of method and
cyclometric complexity…

• …but obviously increases number of methods.

!20

DAT159 Refactoring V.Stolz/H18

Software Quality Metrics (2)
• Tools like Findbugs, Checkstyle, 

JDeodorant, SonarQube identify problems

• Developers still need to act on that info

• Problem with automation:

• large search-space

• often many (overlapping) possibilities

• Extract Method ↔ Inline Method 
“competing” against each other

• Our attempt: Kristensen/Stolz, “Search-
based composed refactorings”, NIK 2014

!21

DAT159 Refactoring V.Stolz/H18

Reducing Coupling

!22

• Coupling Between Object Classes (CBO) of class C improves from 4 to 3…

• …but sometimes introduces additional coupling into the receiving class!

DAT159 Refactoring V.Stolz/H18

Related Topics: Source
Code Rejuvenation

“Source Code Rejuvenation” 
[Pirkelbauer, Dechev, Stroustrup ’10]

• automated migration of legacy code

• leverages enhanced program language/library facilities

• “reverse (some forms of) (software) entropy”

• “preserves or improves a program’s behavior”

!23

DAT159 Refactoring V.Stolz/H18

Source Code Rejuvenation

!24

From: Pirkelbauer, Dechev, Stroustrup, SOFSEM 2010

DAT159 Refactoring V.Stolz/H18

Source Code Rejuvenation

!25

vector<int> vec;

// three consecutive push backs

vec.push_back(1);  
vec.push_back(2);  
vec.push_back(3);

// copying from an array  
int a[] = {1, 2, 3};  
vector<int> vec(a,a+sizeof(a)/sizeof(int));

// rejuvenated source code in C++0x

vector<int> vec = {1, 2, 3};

Inefficient!

Sizeof() what again?!

Now isn’t that pretty:

DAT159 Refactoring V.Stolz/H18

Refactoring in IDEs

• All major IDEs support some form of refactoring

• Here: C, C++, Java

• Special case: command line tools for scripting (Go?)

• Support for scripting languages like Python, JavaScript,
…

• Refactoring of UML models 
(semantical overlap with OO-refactoring)

!26

DAT159 Refactoring V.Stolz/H18

Tool Support for Java

• Common IDEs:

• Eclipse JDT

• IntelliJ (Android)

• NetBeans

• Other object-oriented languages similar:

• Visual Studio

!27

DAT159 Refactoring V.Stolz/H18

Refactoring: Common Java
Examples

Encapsulate Field: avoid direct field access 
 
1) introduce setter & getter methods; 
2) replace all field accesses with calls to new methods; 
3) make field private.

!28

DAT159 Refactoring V.Stolz/H18

Encapsulate Field

!29

Right-click on a field and find the “Refactor” menu.

DAT159 Refactoring V.Stolz/H18

Encapsulate Field

!30

IDEs will often have a helpful dialog, because further input is required.

DAT159 Refactoring V.Stolz/H18

Encapsulate Field

!31

Enjoy your result!

DAT159 Refactoring V.Stolz/H18

Encapsulate Field

!32

IDEs will even try to be helpful!

DAT159 Refactoring V.Stolz/H18

Refactoring: 
Common Java Examples

Encapsulate Field: avoid direct field access 
1) introduce setter & getter methods; 
2) replace all field accesses with calls to new methods; 
3) make field private.

Let’s assume you have to program this refactoring. 
Can you see what happens if you swap steps 2 & 3? 
We will come back later to that.

!33

DAT159 Refactoring V.Stolz/H18

Refactoring: 
Extract Local Variable

!34

Compute complex (expensive) expression only once.

DAT159 Refactoring V.Stolz/H18

Extract Local Variable:
Formally

!35

