Refactoring
Lecture ©;
Software Engineering

DAT159/H18
Volker Stolz

Hogskulen
paVestlandet

Supported by the bilateral SIU/CAPES \
project “Modern Refactoring” 2017/18




What do Developers Think?

 "A Field Study of Refactoring Challenges and

Benefits”,

FSE '12 Proceedings of the ACM SIGSOFT 20th Intl. Symp. on the
Foundations of Software Engineering
http://web.cs.ucla.edu/~miryung/Publications/fse2012-fieldrefactoring.pdf
Miryung Kim, Thomas Zimmermann, Nachiappan Nagappan

 "An Empirical Study of Refactoring Challenges and

Benefits at Microsoft”

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 7, JULY
2014

https://ieeexplore.ieee.org/iel7/32/6848876/06802406.pdf

(accessible from HVL network!)



http://web.cs.ucla.edu/~miryung/Publications/fse2012-fieldrefactoring.pdf
https://ieeexplore.ieee.org/iel7/32/6848876/06802406.pdf

Refactoring at Microsoft

e Surveyed...
e 1290 Microsoft engineers;

e that made changes with the keyword “refactor™”;

e in Windows Phone, Exchange, Windows, office
communication and services (OCS), and Office



Manual Refactoring

Many developers know about refactorings, but still do them

manually:

70.10%

56.40% 61.10%
. 0

61.10%

56.70% 53.90% 53.90%

58.30% 54.20% 58.30%
. 0

37.10%

siajowelred
13pioay

9|q1Issod
SEVEFEITN
2dA] aseg asn
POYI3Al Al0Yoe4
YIIM J03INJISU0)

2oe|day

umoq
SJIaqWI3Al ysnd

dn
SIdqWIBAl |Ind

POYIBIAl duljul

si9jowelsed
anowWwaY

9JBJI9ju| Joes}x3

Pleld
?je|nsdeouy

POYIaA 12e4IX3

aweuay



When do developers
refactor?

Symptoms that prompt refactoring:

20.25%
10.76%
9.18% 10.13% 8 54%
7.91% 6.65% * o
0, 0
3.48% 3.48% 1.90%
§ ® 83 5 £ 3E zT ®E °© 3
O = 3 o “ . » o =35 8 ®
Q S Q’ = 3 - o o g,o
o c oc a &’ 8 = -
.a g
=



Perceived Benefits

Various types of refactoring benefits that
developers experienced:

43.30%

29.90%

27.15%

26.80%

18.56%

12.03%

12.03%

5.50%

6.19%

4.12%

}a)Jew o3
awy painpai

Ajuie|npow
panoiduwi)

ainjea)

ppe 0} JaIsed

Avjiqeisay
uoyaINpal
apod ajeddnp

uoyanpai
az|s apod

duewopad
panoiduwi)
sanq Jamay
AJ|iqepeal
panosduwi

Ajjiqeuiejuiew
panosduw



Risks

Risk factors associated with refactoring:

75.41%

23.61%

18.69%

6.89%

11.15%

1.64%

M3IARJ 3POD
0} }noyip

3502 3unysa)

syse)}
1330 wouj
uaye} awy

S}2Iju0d
EYIELIT

$)eaiq pjinqg
pue s3nq

uoIssaidal

uinyd



Refactoring and Bugs

* High correlation between code churn and defects Iin

Windows code base in general
(Nagappan/Ball, ICSE 2005)

 Weak correlation between refactoring churn and defects:
refactoring changes are less likely to lead to post release
defects than regular changes

Code base Post Release Defects (Win7)
Top 20% modified 55 %
Top 20% refactored 42 %
Top 40% modified 77,2 %
Top 40% refactored 60,3 %




Hypotheses

Modularity H1.A: Refactoring was prefprenﬁallv applied to the modules with a large number of inter-module dependenripa. Confirmed

H1.B: Preferential refactoring is correlated to changes in the number of inter-module dependencies. Confirmed
Defect H2.A: Relactoring was nol pre[ewulldll\ applied to the modules with a large number ol post-release delects. Confirmed
H2.B: I'referential refactoring is correlated to reduction in the number of defects. Rejected

Complexity 113.A: Refactoring was preferentially made to the modules with high complexity. Rejected

H3.B: Preferential refactoring is correlated with reduction in complexity. Rejected
“Size H4.A: Refactoring was preferentially applied to the modules with large size and preferential refactoring is Rejected
correlaled wilh size reduclion.

Churn H4.B: Refactoring was preferentially applied to the modules where a large number of edits or commits, and Rejected
preferential refactoring is correlated with the decrease in churn measures.

Locality H41.C: Refactoring was preferentially applied to the modules where logical changes tend to be crosscutting and Rejected
scattered, and preferential refactoring is correlated with the decrease in the number of crosscutting changes.

Developer and Organization  H5.A: Refactoring was preferentially apphed to the modules touched by a large number of developers. Rejected
H5.B: Refactoring was preferentially applied to the modules that are not cohesive in terms of organizational  Confirmed
contributions.

115.C: Refactoring was preferentially applied to the modules that are diffused in terms of organizations and  Confirmed
developer contribution.
“Test Coverage Hé: Refactoring was preferentially applied to the modules with high test adequacy. Confirmed
“Tayer H7: Preferential refactoring is correlated with reduction in the Tayer number. Rejected

preferential refactoring— applying refactorings more frequently to a module, relative to the

frequency of regular changes



Refactoring Models

e Refactoring = Model Transformation

e Refactoring models — we’re working e.g. on
UML diagrams.

* Refactoring through models — we don’t work on the
source, but an intermediate representation.
Example: class diagram derived from Java code.

* Refactoring metamodels and instances.

Modern Refactoring 10 V.Stolz et al.



Refactoring in Model-Driven
Software Engineering

e Based on Graph Theory
e Higher level of abstraction, hence simpler reasoning
e Refactorings as model-to-model transformations

* Applicable to general-purpose modelling languages
(e.g. UML) and domain-specific modelling languages

 Applicable to low-level or big-scale refactoring
(reverse engineering and modernisation)

e Easier specification and visualisation of results

Modern Refactoring 11 V.Stolz et al.



Reverse Engineering of
Legacy Systems

e MoDisco Text-to-Model
transformations

Suppere for mudtipla
legacy technologies

1

Source code J ——
| )

Darabacec & ’/, E—
=7

- . >
Con’iguration —_
files
v
-~ '/ /

othersourses o

Modern Refactoring

Discoverers

Transformations

Models of the

)
o W
£ MoDisco

Eclipse Modeling 4P

Support for multiple
scenarios/results

Dot al on

sImpactanalysis
,//" P b
X =
v 2 Foa sModels
S —* a”s Nicwpoints
20 Q
o
& -, ~
8 =i / vlipgracke
«Mizraticn
S
Tea
- Metrics

* Three-phase reengineering

process (horseshoe)

Tranztormaticn PP
///
Baza Desired
arcieciue architecture
/
N
/ 5
e ok
Architeclure g N\ Archieciue
oprecentation £ 45 Cesgn XN reoregentaton
ratterns \ \
and syles
%] Function-lgvel Srogram }] Function-leve
% representation pans [J ] reprasentaticn
-1 W
8| Lotk structure NN Uode P Cedo stuciure
representation sylkes reprecentalion
Source text Legecy New 3ystem
) representalicn  source 8ouJrce

Source: Erik Philippus

Refineren-

\/.Stolz et al.



Model-based Refactoring of
Source Code

e Based on the analysis of annotated UML models

e (Coordination of refactoring
operations based on
dependencies

e \ariable accesses
e Method calls

Packet

Node

send(Packet p) {
calls this.accept(p) ;
accesses nextNode }

nextNode

_.77| Node receiver
- % Node sender

-
’
’
I
I

FileServer |,

Workstation l P[intSén'ler

.| save()

accept(Packet p) {
calls this.send(p) ;
calls this.save() ;

accesses Packet.receiver t

_{ pfint()

accept(Packet p) {

calls this.send(p) :

calls this.print();
accesses Packet.receiver

originate() {

updates Packet.sender }
accept(Packet p) {
calls this.send(p) ;
accesses Packet.sender

T. Mens, G. Taentzer, O. Runge: "Analysing refactoring dependencies
using graph transformation." Software and Systems Modeling, 2007

Modern Refactoring 13 V.Stolz et al.



Refactoring of General-
Purpose Languages

@ | modsl-efactoring.ecc New CHild b = B

e Support in EMF through |« & setomieoun s

4 # mocerefacto

EMF Refactor B | .

e Refactorings based on - -
class diagrams e X veite
(Ecore metamodels) i T

a [ P/.ixodepes -

EMF Refactor
O namre

e Extensible framework .

T mielah Debug As
for any EMF-based model & deme  Teom

« H CentedM Compare With b
o= entric: R cc With

4 [ ModeEe cpracc i
& eleme Wik Text
= conter FMF Maoce! Refactnrirgs b move

a [ MetaMod

Source: eclipse.org o name  Leadeource.
- - 4 g Entry Refresh

= trigge

Show Propzariies Vien

Modern Refactoring 14 V.Stolz et al.


http://eclipse.org

Thir

Refactoring of DSMLs

—@

h f‘-l"lg

()F_
- @ - Fairtang -
Chopsbck \ ':'lgl'.'-
@ T'u‘;']'{ ‘_ ©<
O
@_ [,,1?1-,'
l».n'n;x @ Fal
-«
A/ S— -
NAJ chobhic I
,Tﬂ_;r__) o _r_-Tn_L. o_>.%m7
O . O
E-J*”J [d‘”j
Fle } S

strategy freeStarvation()

{

dstList :modellList;

dstl ,dst2,p,q:model;

declare static num:Integer;

dstList :=findOutConnections () ;

assert (dstList.size ()==2);
dstl:=dstlList.get(0); dst2:= dstList.get(1);
p:=createModel ("InitMarker" ,"P"+intToStr (num)) ;
q:=createModel ("Place", "Q" + intToStr (num));

declare
declare

num:=num + 1;
addConnection(dstl,p);
addConnection(dst2,q);

addConnection(p,dst2);
addConnection(q,dstl);

J. Zhang, Y. Lin, J. Gray: “Generic and domain-specific model
refactoring using a model transformation engine”, 2005

Modern Refactoring

15

\/.Stolz et al.



Refactoring of Metamodels
and Their Instances

e AKA co-evolution AKA model migration

Stal i Transition Stat L 2 Sumona]Transition
ring ) gger String name: String —— - trioger: String
Hect Sting targe! .effect. String.
. N
[ Red requesl | Red request /slarlTimer
/beep ‘
Wait | Wait |
timeQut/ timeQut/bee
fstartTimer P
Green | Green

L/startTimerJ( e I P e

limeQul/ N/ timeQuf¥zteriTimer

Mantz et al. “Co-evolving meta-models and their instance models: A
formal approach based on graph transformation”, 2015

Modern Refactoring 16 V.Stolz et al.



Refactoring an UML
Sequence Diagram

sd | Cashdesk Seauence

sd Conlinter L Store Seauence

LC - C L.CasnuesL__Casndesk] IL.Saha__Sala ”_l
— startSale) ' sd L Cashdesk Seauence Art . C | Starp - CQM—L—S-tOD | lem - ltem
|
=3, |
loop enteritemicode. atv)
) LC S o LC , I
WROFRRem Ioi) find{code. ftrm) > find(cade. itm) |
stariSale [morelteml
aetPricelcode. prc) > :
hetPricel(code. ore) > '
loop ) enterltem(code I
[moreltem] t
finishSalel) ] |
addSale(sale) > |
undate() |
cashPavia. ¢) | finishSale i
cashPav(z I
uodate() >
[Li et al., Interactive Transfermations from Object-
Oriented Models to Component-Based Modgls]

Modern Refactoring 17 V.Stolz et al.



Modern Refactoring 18

Refactorings = Model Transformation?

Many existing approaches for graph (tree!) -based models
AST = model

Can use OCL and other MDD-tools Nlethodllarion

to describe transformations @i Bdl P 0)
Limitation: —— ,—
* many syntactical elements P
— complex transformations aicisdimocion (ualfizdName)
e formal reasoning difficult Uminies Gmam=s o

"I’ hiskxpression |

e refactoring always correct vs.
instance of refactoring correct (with proof obligations)

\/.Stolz et al.



Recipe/
Implementation

Refactoring

Bad Smells Metrics

Smell Metrics
Detector Calculation




Interested?

e Refactorings are an
Important software

:

engineering topic. B | dl:
&;
 Tool support for ® | g |
refactoring always 43“% "ig b ! 4
needs improvement. | L& ’ig‘.
. abdn, 1 R e AT
 Related topics: LD YO0 EIKE TEIKNEBWIMERE?

® compiler construction (to work with programs as input: syntax
& semantics, grammars & parsing, ASTs, typing rules)

® /ogic/discrete maths (v,3,e,... to read & write specifications)

® optional: static analysis (information flow analyses etc.,
also useful for security analysis)

® most of all: interest in coding!

Modern Refactoring 20 V.Stolz et al.




Bibliography (1)

Foundations:

e W. F. Opdyke. Refactoring object-oriented frameworks. Technical Report GAX93-05645, University of lllinois at
Urbana-Champaign, 1992.

e D. Roberts, J. Brant, and R. Johnson. A refactoring tool for SmallTalk. Theory and Practice of Object Systems,
3(4):253-263, 1997.

e M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley, 1999.

e E. Gamma, J. Helm, R. Johnson, R. Vlissides: “Design Patterns: Elements of Reusable Object-Oriented
Software”, 1994

* J. Kerievsky: “Refactoring to patterns”, Addison-Wesley, 2005

* M.O’Keeffe and M.O.Cinnéide. Search-based refactoring: An empirical study. J. of Software Maintenance and
Evolution, 20(5):345-364, 2008.

e P. Pirkelbauer, D. Dechev, B. Stroustrup: Source Code Rejuvenation Is Not Refactoring. SOFSEM 2010

e M. Kim, T. Zimmermann, N. Nagappan: A field study of refactoring challenges and benefits. Intl. Symp. on the
Foundations of Softw. Eng. ACM, 2012

e G.C. Murphy, M. Kersten, L. Findlater: How are Java software developers using the Elipse IDE? IEEE Software
23(4), 2006.

E. Tempero, T. Gorschek, L. Angelis: Barriers to Refactoring. Communications of the ACM, Vol. 60 No. 10, 2017

Modern Refactoring 21 V.Stolz et al.



Bibliography (2)

“Modern” Reading:

M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R. E. Johnson. Use, disuse, and misuse of
automated refactorings. In 34th Intl. Conf. on Software Engineering (ICSE 2012). IEEE, 2012.

e E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how we know it. Software Engineering, IEEE
Transactions on, 38(1):5-18, 2012.

e J. Brant and F. Steimann. Refactoring tools are trustworthy enough and trust must be earned. IEEE Software, 32:80-
83, 2015.

e G. Soares, B. Catao, C. Varjao, S. Aguiar, R. Gheyi, T. Massoni: Analyzing Refactorings on Software Repositories.
SBES 2011

e G. Soares, R. Gheyi, D. Serey, and T. Massoni. Making program refactoring safer. IEEE Software, 27(4):52-57, 2010.

e M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba. Making refactoring safer through impact analysis. SCP,
93:39-64, 2014.

e T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies using graph transformation. Software &
Systems Modeling, 6(3):269-285, 2007.

e M. Schafer and O. de Moor. Specifying and implementing refactorings. In Object Oriented Programming: Systems,
Languages, and Applications (OOPSLA) ’10. ACM, 2010.

o A. M. Eilertsen, A. H. Bagge, and V. Stolz. Safer refactorings. In Proc. of the Intl. Symp. On Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA), LNCS. Springer, Oct 2016.

Modern Refactoring 22 V.Stolz et al.



Bibliography (3)

F. Medeiros, M. Ribeiro, R. Gheyi, S. Apel, C. Kastner, B. Ferreira, L. Carvalho, and B. Fonseca:
Discipline Matters: Refactoring of Preprocessor Directives in the #ifdef Hell. Transactions on
Software Engineering (2017).

e A. Garrido and R. Johnson. 2002. Challenges of Refactoring C Programs. In Proceedings of the
5th International Workshop on Principles of Software Evolution. ACM, 6-14.

e A. Garrido and R. Johnson. 2013. Embracing the C Preprocessor during Refactoring. Journal of
Software: Evolution and Process 25, 12 (2013), 1285-1304.

e H. Wright, D. Jasper, M. Klimek, C. Carruth, and Z. Wan. Large-scale automated refactoring using
ClangMR. Intl. Conf. on Software Maintenance. |IEEE, 2013.

e E.L.G. Alves, T. Massoni, P.D. de Lima Machado: Test coverage of impacted code elements for
detecting refactoring faults: An exploratory study. J. Systems and Software 123, 2017.

e D. Li, X. Li, Z. Liu, V. Stolz: Interactive Transformations from Object-Oriented Models to
Component-Based Models. FACS 2011, LNCS, Springer 2011.

k. Mantz, et al.: Co-evolving meta-models and their instance models: A formal approach based on
graph transformation. Science of Computer Programming 104 (2015): 2-43.

e J. Zhang, Y. Lin, J. Gray: Generic and domain-specific model refactoring using a model
transformation engine. Model-driven Software Development 23 (2005).

Modern Refactoring 23 V.Stolz et al.



