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Refactoring at Microsoft

e Surveyed...
e 1290 Microsoft engineers;

e that made changes with the keyword “refactor™”;

e in Windows Phone, Exchange, Windows, office
communication and services (OCS), and Office



Manual Refactoring

Many developers know about refactorings, but still do them

manually:
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When do developers
refactor?

Symptoms that prompt refactoring:
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Perceived Benefits

Various types of refactoring benefits that
developers experienced:
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Risks

Risk factors associated with refactoring:
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Refactoring and Bugs

* High correlation between code churn and defects Iin

Windows code base in general
(Nagappan/Ball, ICSE 2005)

 Weak correlation between refactoring churn and defects:
refactoring changes are less likely to lead to post release
defects than regular changes

Code base Post Release Defects (Win7)
Top 20% modified 55 %
Top 20% refactored 42 %
Top 40% modified 77,2 %
Top 40% refactored 60,3 %




Hypotheses

Modularity H1.A: Refactoring was prefprenﬁallv applied to the modules with a large number of inter-module dependenripa. Confirmed

H1.B: Preferential refactoring is correlated to changes in the number of inter-module dependencies. Confirmed
Defect H2.A: Relactoring was nol pre[ewulldll\ applied to the modules with a large number ol post-release delects. Confirmed
H2.B: I'referential refactoring is correlated to reduction in the number of defects. Rejected

Complexity 113.A: Refactoring was preferentially made to the modules with high complexity. Rejected

H3.B: Preferential refactoring is correlated with reduction in complexity. Rejected
“Size H4.A: Refactoring was preferentially applied to the modules with large size and preferential refactoring is Rejected
correlaled wilh size reduclion.

Churn H4.B: Refactoring was preferentially applied to the modules where a large number of edits or commits, and Rejected
preferential refactoring is correlated with the decrease in churn measures.

Locality H41.C: Refactoring was preferentially applied to the modules where logical changes tend to be crosscutting and Rejected
scattered, and preferential refactoring is correlated with the decrease in the number of crosscutting changes.

Developer and Organization  H5.A: Refactoring was preferentially apphed to the modules touched by a large number of developers. Rejected
H5.B: Refactoring was preferentially applied to the modules that are not cohesive in terms of organizational  Confirmed
contributions.

115.C: Refactoring was preferentially applied to the modules that are diffused in terms of organizations and  Confirmed
developer contribution.
“Test Coverage Hé: Refactoring was preferentially applied to the modules with high test adequacy. Confirmed
“Tayer H7: Preferential refactoring is correlated with reduction in the Tayer number. Rejected

preferential refactoring— applying refactorings more frequently to a module, relative to the

frequency of regular changes



Refactoring Models

e Refactoring = Model Transformation

e Refactoring models — we’re working e.g. on
UML diagrams.

* Refactoring through models — we don’t work on the
source, but an intermediate representation.
Example: class diagram derived from Java code.

* Refactoring metamodels and instances.

Modern Refactoring 10 V.Stolz et al.



Refactoring in Model-Driven
Software Engineering

e Based on Graph Theory
e Higher level of abstraction, hence simpler reasoning
e Refactorings as model-to-model transformations

* Applicable to general-purpose modelling languages
(e.g. UML) and domain-specific modelling languages

 Applicable to low-level or big-scale refactoring
(reverse engineering and modernisation)

e Easier specification and visualisation of results

Modern Refactoring 11 V.Stolz et al.



Reverse Engineering of
Legacy Systems

e MoDisco Text-to-Model
transformations

Suppere for mudtipla
legacy technologies
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Model-based Refactoring of
Source Code

e Based on the analysis of annotated UML models

e (Coordination of refactoring
operations based on
dependencies

e \ariable accesses
e Method calls

Packet

Node

send(Packet p) {
calls this.accept(p) ;
accesses nextNode }

nextNode

_.77| Node receiver
- % Node sender

-
’
’
I
I

FileServer |,

Workstation l P[intSén'ler

.| save()

accept(Packet p) {
calls this.send(p) ;
calls this.save() ;

accesses Packet.receiver t

_{ pfint()

accept(Packet p) {

calls this.send(p) :

calls this.print();
accesses Packet.receiver

originate() {

updates Packet.sender }
accept(Packet p) {
calls this.send(p) ;
accesses Packet.sender

T. Mens, G. Taentzer, O. Runge: "Analysing refactoring dependencies
using graph transformation." Software and Systems Modeling, 2007
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Refactoring of General-
Purpose Languages
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http://eclipse.org
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Refactoring of DSMLs
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strategy freeStarvation()

{

dstList :modellList;

dstl ,dst2,p,q:model;

declare static num:Integer;

dstList :=findOutConnections () ;

assert (dstList.size ()==2);
dstl:=dstlList.get(0); dst2:= dstList.get(1);
p:=createModel ("InitMarker" ,"P"+intToStr (num)) ;
q:=createModel ("Place", "Q" + intToStr (num));

declare
declare

num:=num + 1;
addConnection(dstl,p);
addConnection(dst2,q);

addConnection(p,dst2);
addConnection(q,dstl);

J. Zhang, Y. Lin, J. Gray: “Generic and domain-specific model
refactoring using a model transformation engine”, 2005

Modern Refactoring

15

\/.Stolz et al.



Refactoring of Metamodels
and Their Instances

e AKA co-evolution AKA model migration
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Mantz et al. “Co-evolving meta-models and their instance models: A
formal approach based on graph transformation”, 2015
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Refactoring an UML
Sequence Diagram
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[Li et al., Interactive Transfermations from Object-
Oriented Models to Component-Based Modgls]
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Refactorings = Model Transformation?

Many existing approaches for graph (tree!) -based models
AST = model

Can use OCL and other MDD-tools Nlethodllarion

to describe transformations @i Bdl P 0)
Limitation: —— ,—
* many syntactical elements P
— complex transformations aicisdimocion (ualfizdName)
e formal reasoning difficult Uminies Gmam=s o

"I’ hiskxpression |

e refactoring always correct vs.
instance of refactoring correct (with proof obligations)

\/.Stolz et al.



Recipe/
Implementation

Refactoring

Bad Smells Metrics

Smell Metrics
Detector Calculation




Interested?

e Refactorings are an
Important software

:

engineering topic. B | dl:
&;
 Tool support for ® | g |
refactoring always 43“% "ig b ! 4
needs improvement. | L& ’ig‘.
. abdn, 1 R e AT
 Related topics: LD YO0 EIKE TEIKNEBWIMERE?

® compiler construction (to work with programs as input: syntax
& semantics, grammars & parsing, ASTs, typing rules)

® /ogic/discrete maths (v,3,e,... to read & write specifications)

® optional: static analysis (information flow analyses etc.,
also useful for security analysis)

® most of all: interest in coding!

Modern Refactoring 20 V.Stolz et al.
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