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What do Developers Think?

• "A Field Study of Refactoring Challenges and 
Benefits”, 
FSE '12 Proceedings of the ACM SIGSOFT 20th Intl. Symp. on the 
Foundations of Software Engineering 
http://web.cs.ucla.edu/~miryung/Publications/fse2012-fieldrefactoring.pdf 
Miryung Kim, Thomas Zimmermann, Nachiappan Nagappan


• "An Empirical Study of Refactoring Challenges and 
Benefits at Microsoft” 
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 7, JULY 
2014 
https://ieeexplore.ieee.org/iel7/32/6848876/06802406.pdf  
(accessible from HVL network!) 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Refactoring at Microsoft

• Surveyed…


• 1290 Microsoft engineers;


• that made changes with the keyword “refactor*”;


• in Windows Phone, Exchange, Windows, office 
communication and services (OCS), and Office
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Manual Refactoring
Many developers know about refactorings, but still do them 
manually:
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When do developers 
refactor?

Symptoms that prompt refactoring:
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Perceived Benefits
Various types of refactoring benefits that 
developers experienced:
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Risks

Risk factors associated with refactoring:
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Refactoring and Bugs
• High correlation between code churn and defects in 

Windows code base in general 
(Nagappan/Ball, ICSE 2005)


• Weak correlation between refactoring churn and defects: 
refactoring changes are less likely to lead to post release 
defects than regular changes

Code base Post Release Defects (Win7)
Top 20% modified 55 %

Top 20% refactored 42 %

Top 40% modified 77,2 %
Top 40% refactored 60,3 %
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Hypotheses

preferential refactoring— applying refactorings more frequently to a module, relative to the 
frequency of regular changes
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Refactoring Models

• Refactoring = Model Transformation


• Refactoring models — we’re working e.g. on 
UML diagrams.


• Refactoring through models — we don’t work on the 
source, but an intermediate representation. 
Example: class diagram derived from Java code.


• Refactoring metamodels and instances.
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Refactoring in Model-Driven 
Software Engineering 

• Based on Graph Theory


• Higher level of abstraction, hence simpler reasoning


• Refactorings as model-to-model transformations


• Applicable to general-purpose modelling languages 
(e.g. UML) and domain-specific modelling languages


• Applicable to low-level or big-scale refactoring 
(reverse engineering and modernisation)


• Easier specification and visualisation of results
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Reverse Engineering of 
Legacy Systems
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• Three-phase reengineering 
process (horseshoe)


Source: Erik Philippus

• MoDisco Text-to-Model 
transformations
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Model-based Refactoring of 
Source Code

• Based on the analysis of annotated UML models


• Coordination of refactoring 
operations based on 
dependencies

• Variable accesses

• Method calls


T. Mens, G. Taentzer, O. Runge: "Analysing refactoring dependencies 
using graph transformation." Software and Systems Modeling, 2007
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Refactoring of General-
Purpose Languages

• Support in EMF through 
EMF Refactor


• Refactorings based on 
class diagrams 
(Ecore metamodels)


• Extensible framework 
for any EMF-based model


Source: eclipse.org
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Refactoring of DSMLs

J. Zhang, Y. Lin, J. Gray: “Generic and domain-specific model 
refactoring using a model transformation engine”, 2005
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Refactoring of Metamodels 
and Their Instances

• AKA co-evolution AKA model migration


Mantz et al. “Co-evolving meta-models and their instance models: A 
formal approach based on graph transformation”, 2015
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Refactoring an UML 
Sequence Diagram
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[Li et al., Interactive Transformations from Object-
Oriented Models to Component-Based Models]
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Refactorings = Model Transformation?

• Many existing approaches for graph (tree!) -based models


• AST = model


• Can use OCL and other MDD-tools 
to describe transformations


• Limitation:


• many syntactical elements 
→ complex transformations


• formal reasoning difficult


• refactoring always correct vs.  
instance of refactoring correct (with proof obligations)
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Summary

Refactoring

Bad Smells Metrics

Smell 
Detector

Metrics 
Calculation

Recipe/
Implementation
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Interested?
• Refactorings are an 

important software  
engineering topic.


• Tool support for 
refactoring always 
needs improvement.


• Related topics:


• compiler construction (to work with programs as input: syntax 
& semantics, grammars & parsing, ASTs, typing rules)


• logic/discrete maths (∀,∃,∊,… to read & write specifications)


• optional: static analysis (information flow analyses etc., 
also useful for security analysis)


• most of all: interest in coding!
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