
Refactoring 
Lecture 6: 

Software Engineering
DAT159/H18 
Volker Stolz

�1

Supported by the bilateral SIU/CAPES 
project “Modern Refactoring” 2017/18



What do Developers Think?

• "A Field Study of Refactoring Challenges and 
Benefits”, 
FSE '12 Proceedings of the ACM SIGSOFT 20th Intl. Symp. on the 
Foundations of Software Engineering 
http://web.cs.ucla.edu/~miryung/Publications/fse2012-fieldrefactoring.pdf 
Miryung Kim, Thomas Zimmermann, Nachiappan Nagappan


• "An Empirical Study of Refactoring Challenges and 
Benefits at Microsoft” 
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 7, JULY 
2014 
https://ieeexplore.ieee.org/iel7/32/6848876/06802406.pdf  
(accessible from HVL network!) 

!2

http://web.cs.ucla.edu/~miryung/Publications/fse2012-fieldrefactoring.pdf
https://ieeexplore.ieee.org/iel7/32/6848876/06802406.pdf


Refactoring at Microsoft

• Surveyed…


• 1290 Microsoft engineers;


• that made changes with the keyword “refactor*”;


• in Windows Phone, Exchange, Windows, office 
communication and services (OCS), and Office

!3



Manual Refactoring
Many developers know about refactorings, but still do them 
manually:

!4



When do developers 
refactor?

Symptoms that prompt refactoring:

!5



Perceived Benefits
Various types of refactoring benefits that 
developers experienced:

!6



Risks

Risk factors associated with refactoring:

!7



Refactoring and Bugs
• High correlation between code churn and defects in 

Windows code base in general 
(Nagappan/Ball, ICSE 2005)


• Weak correlation between refactoring churn and defects: 
refactoring changes are less likely to lead to post release 
defects than regular changes

Code base Post Release Defects (Win7)
Top 20% modified 55 %

Top 20% refactored 42 %

Top 40% modified 77,2 %
Top 40% refactored 60,3 %

!8



Hypotheses

preferential refactoring— applying refactorings more frequently to a module, relative to the 
frequency of regular changes

!9



Modern Refactoring V.Stolz et al.

Refactoring Models

• Refactoring = Model Transformation


• Refactoring models — we’re working e.g. on 
UML diagrams.


• Refactoring through models — we don’t work on the 
source, but an intermediate representation. 
Example: class diagram derived from Java code.


• Refactoring metamodels and instances.

!10



Modern Refactoring V.Stolz et al.

Refactoring in Model-Driven 
Software Engineering 

• Based on Graph Theory


• Higher level of abstraction, hence simpler reasoning


• Refactorings as model-to-model transformations


• Applicable to general-purpose modelling languages 
(e.g. UML) and domain-specific modelling languages


• Applicable to low-level or big-scale refactoring 
(reverse engineering and modernisation)


• Easier specification and visualisation of results

!11



Modern Refactoring V.Stolz et al.

Reverse Engineering of 
Legacy Systems

!12

• Three-phase reengineering 
process (horseshoe)


Source: Erik Philippus

• MoDisco Text-to-Model 
transformations



Modern Refactoring V.Stolz et al.

Model-based Refactoring of 
Source Code

• Based on the analysis of annotated UML models


• Coordination of refactoring 
operations based on 
dependencies

• Variable accesses

• Method calls


T. Mens, G. Taentzer, O. Runge: "Analysing refactoring dependencies 
using graph transformation." Software and Systems Modeling, 2007

!13



Modern Refactoring V.Stolz et al.

Refactoring of General-
Purpose Languages

• Support in EMF through 
EMF Refactor


• Refactorings based on 
class diagrams 
(Ecore metamodels)


• Extensible framework 
for any EMF-based model


Source: eclipse.org

!14

http://eclipse.org


Modern Refactoring V.Stolz et al.

Refactoring of DSMLs

J. Zhang, Y. Lin, J. Gray: “Generic and domain-specific model 
refactoring using a model transformation engine”, 2005

!15



Modern Refactoring V.Stolz et al.

Refactoring of Metamodels 
and Their Instances

• AKA co-evolution AKA model migration


Mantz et al. “Co-evolving meta-models and their instance models: A 
formal approach based on graph transformation”, 2015

!16



Modern Refactoring V.Stolz et al.

Refactoring an UML 
Sequence Diagram

!17

[Li et al., Interactive Transformations from Object-
Oriented Models to Component-Based Models]



Modern Refactoring V.Stolz et al.

Refactorings = Model Transformation?

• Many existing approaches for graph (tree!) -based models


• AST = model


• Can use OCL and other MDD-tools 
to describe transformations


• Limitation:


• many syntactical elements 
→ complex transformations


• formal reasoning difficult


• refactoring always correct vs.  
instance of refactoring correct (with proof obligations)

!18



Summary

Refactoring

Bad Smells Metrics

Smell 
Detector

Metrics 
Calculation

Recipe/
Implementation



Modern Refactoring V.Stolz et al.

Interested?
• Refactorings are an 

important software  
engineering topic.


• Tool support for 
refactoring always 
needs improvement.


• Related topics:


• compiler construction (to work with programs as input: syntax 
& semantics, grammars & parsing, ASTs, typing rules)


• logic/discrete maths (∀,∃,∊,… to read & write specifications)


• optional: static analysis (information flow analyses etc., 
also useful for security analysis)


• most of all: interest in coding!
!20



Modern Refactoring V.Stolz et al.

Bibliography (1)
Foundations: 
• W. F. Opdyke. Refactoring object-oriented frameworks. Technical Report GAX93-05645, University of Illinois at 

Urbana-Champaign, 1992.


• D. Roberts, J. Brant, and R. Johnson. A refactoring tool for SmallTalk. Theory and Practice of Object Systems, 
3(4):253–263, 1997. 


• M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley, 1999.


• E. Gamma, J. Helm, R. Johnson, R. Vlissides: “Design Patterns: Elements of Reusable Object-Oriented 
Software”, 1994


• J. Kerievsky: “Refactoring to patterns”, Addison-Wesley, 2005


• M.O’Keeffe and M.Ó.Cinnéide. Search-based refactoring: An empirical study. J. of Software Maintenance and 
Evolution, 20(5):345–364, 2008.


• P. Pirkelbauer, D. Dechev, B. Stroustrup: Source Code Rejuvenation Is Not Refactoring. SOFSEM 2010


• M. Kim, T. Zimmermann, N. Nagappan: A field study of refactoring challenges and benefits. Intl. Symp. on the 
Foundations of Softw. Eng. ACM, 2012


• G.C. Murphy, M. Kersten, L. Findlater: How are Java software developers using the Elipse IDE? IEEE Software 
23(4), 2006.


• E. Tempero, T. Gorschek, L. Angelis: Barriers to Refactoring. Communications of the ACM, Vol. 60 No. 10, 2017

!21



Modern Refactoring V.Stolz et al.

Bibliography (2)
“Modern” Reading: 
• M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R. E. Johnson. Use, disuse, and misuse of 

automated refactorings. In 34th Intl. Conf. on Software Engineering (ICSE 2012). IEEE, 2012.


• E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how we know it. Software Engineering, IEEE 
Transactions on, 38(1):5–18, 2012.


• J. Brant and F. Steimann. Refactoring tools are trustworthy enough and trust must be earned. IEEE Software, 32:80–
83, 2015.


• G. Soares, B. Catao, C. Varjao, S. Aguiar, R. Gheyi, T. Massoni: Analyzing Refactorings on Software Repositories. 
SBES 2011


• G. Soares, R. Gheyi, D. Serey, and T. Massoni. Making program refactoring safer. IEEE Software, 27(4):52–57, 2010.


• M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba. Making refactoring safer through impact analysis. SCP, 
93:39–64, 2014.


• T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies using graph transformation. Software & 
Systems Modeling, 6(3):269–285, 2007.


• M. Schäfer and O. de Moor. Specifying and implementing refactorings. In Object Oriented Programming: Systems, 
Languages, and Applications (OOPSLA) ’10. ACM, 2010.


• A. M. Eilertsen, A. H. Bagge, and V. Stolz. Safer refactorings. In Proc. of the Intl. Symp. On Leveraging Applications 
of Formal Methods, Verification and Validation (ISoLA), LNCS. Springer, Oct 2016.

!22



Modern Refactoring V.Stolz et al.

Bibliography (3)
• F. Medeiros, M. Ribeiro, R. Gheyi, S. Apel, C. Kästner, B. Ferreira, L. Carvalho, and B. Fonseca: 

Discipline Matters: Refactoring of Preprocessor Directives in the #ifdef Hell. Transactions on 
Software Engineering (2017).


• A. Garrido and R. Johnson. 2002. Challenges of Refactoring C Programs. In Proceedings of the 
5th International Workshop on Principles of Software Evolution. ACM, 6–14.


• A. Garrido and R. Johnson. 2013. Embracing the C Preprocessor during Refactoring. Journal of 
Software: Evolution and Process 25, 12 (2013), 1285–1304.


• H. Wright, D. Jasper, M. Klimek, C. Carruth, and Z. Wan. Large-scale automated refactoring using 
ClangMR. Intl. Conf. on Software Maintenance. IEEE, 2013.


• E.L.G. Alves, T. Massoni, P.D. de Lima Machado: Test coverage of impacted code elements for 
detecting refactoring faults: An exploratory study. J. Systems and Software 123, 2017. 


• D. Li, X. Li, Z. Liu, V. Stolz: Interactive Transformations from Object-Oriented Models to 
Component-Based Models. FACS 2011, LNCS, Springer 2011.


• F. Mantz, et al.: Co-evolving meta-models and their instance models: A formal approach based on 
graph transformation. Science of Computer Programming 104 (2015): 2-43.


• J. Zhang, Y. Lin, J. Gray: Generic and domain-specific model refactoring using a model 
transformation engine. Model-driven Software Development 23 (2005).

!23


