
Refactoring 
Lecture 5: 

Metrics
DAT159/H18 
Volker Stolz

Supported by the bilateral SIU/CAPES 
project “Modern Refactoring” 2017/18

�1

Smells Addendum

!2

JDeodorant: https://marketplace.eclipse.org/content/jdeodorant

https://marketplace.eclipse.org/content/jdeodorant

JDeodorant: Feature Envy

!3

Metrics

“If you can't measure it, you can't improve it.” -
Peter Drucker on management 

“Measure what is measurable, and 
make measurable what is not so” 
- Galileo(?)

!4

Object- 
oriented

Metrics for Software
Engineering?

Code metrics:

• (S)LOC

• Cyclomatic Complexity

• Depth of Inheritance

• Cohesion

• Coupling

Other metrics:

• Performance

• Test coverage

• Bugs (per LOC)

• Function Point Analysis

!5

SLOC Measurement
• SLOC is the traditional and the most popular sizing metric

• Excludes comments and blanks

• Includes headers, declarations,…

• Counts individual lines; doesn’t care about multiple
statements/line

• LLOC: logical LOC (statements only)

• Boehm: delivered source instructions (DSI)

• Q: How do the refactorings affect this metric?

!6

SLOC vs. LLOC

• SLOC: 5

• LLOC: 2 
(for, printf)

• What about ++?

• Neither cares about
structure…

for (i = 0;

 i < 100;

 i ++) {

 printf(“hello");

 }

/* An important loop */

Example:

!7

McCabe’s Cyclomatic
Complexity (MCC)

“Program Control Graph” G (now Control Flow Graph):

• node = block of code without jumps (N) 
(straight-line code, basic block)

• edge = branches (E)

• connected components (p)

• V(G) = E - N + p (variation: +2p; p usually 1, hence: +2)

• Relation to number of paths to tests

MAT101!

!8

MCC: Flowchart vs.
Flowgraph

Flowchart Flowgraph

[Agarwal, Tayal, Gupta: “Software Engineering & Testing”]
 9

MCC Example

• Set of independent paths:

• 1-11

• 1-2-3-4-5-10-1-11

• 1-2-3-6-8-9-10-1-11

• 1-2-3-6-7-9-10-1-11

• V(G) = 11 edges - 9 nodes + 2 = 4 (regions) 
Alternative: V(G) = 3 predicate nodes + 1 = 4

How many independent paths?

!10

Control Flow Graphs

Exercise — draw CFGs for Java’s constructs:

• if-then-else

• while() {}

• do {} while ()

• for() {}

(Bonus question: what about exceptions?)

!11

Cyclomatic
Complexity: Example

public static void bubbleSort(int[] numArray) {

 int n = numArray.length;

 int temp = 0;

 for (int i = 0; i < n; i++) {

 for (int j = 1; j < (n - i); j++) {

 if (numArray[j - 1] > numArray[j]) {

 temp = numArray[j - 1];

 numArray[j - 1] = numArray[j];

 numArray[j] = temp;

 }

 }

 }

}

int partition(int arr[], int left, int right)
{
 int i = left, j = right;
 int tmp;
 int pivot = arr[(left + right) / 2];

 while (i <= j) {
 while (arr[i] < pivot)
 i++;
 while (arr[j] > pivot)
 j--;
 if (i <= j) {
 tmp = arr[i];
 arr[i] = arr[j];
 arr[j] = tmp;
 i++;
 j--;
 }
 };
 return i;
}

void quickSort(int arr[], int left, int right) {
 int index = partition(arr, left, right);
 if (left < index - 1)
 quickSort(arr, left, index - 1);
 if (index < right)
 quickSort(arr, index, right);
}

!12

Cyclomatic Complexity (3)

• Independent of number of lines per function 
(number of blocks and branches, not size of a block)

• Does not depend on format/coding style

• Let’s ignore p for now!

• Reasonable values? 5? 10? More than 10?

• Q: How do the refactorings affect this metric?

• Applies to C and Java (no OO)

• Compare with Sonar’s Cognitive Complexity

!13

MCC in the Linux Kernel
Average cyclomatic complexity per function over time  
 Ayelet Israeli, Dror G. Feitelson: The Linux kernel as a case study in
software evolution. Journal of Systems and Software 83(3): 485-501 (2010)

!14

Depth of Inheritance

• Obvious [Chidamber & Kemerer], 
distance from superclass

• Effect on program understanding? 
“The deeper a class [..], the greater the number of
methods it is likely to inherit”

• Also: breadth of tree (“top-heavy”/“bottom-heavy”; 
former can indicate lack of reuse)

!15

Lack of Cohesion
• Cohesion promotes encapsulation

• Lack of cohesion can recommend splitting classes

• LCOM1-4 (LCOM5?)

• LCOM1 [Chidamber & Kemerer] 
Number of pairs of methods that do not share attributes 
(higher = worse) — getters/setters?

• LCOM4 [Hitz & Montazeri 1995]: number of "connected
components" in a class. A connected component is a set of related
methods (and class-level variables). There should be only one such
a component in each class. If there are 2 or more components, the
class should be split [..]

• Maybe you want to Extract Method first?

MAT101!!

!16

LCOM Example

Issue:

• Both cases are not that different: 

should be split into two classes.

• But: different LCOM score[Hitz/Montazeri]

!17

Coupling/CBO

• Coupling Between Object classes [Chidamber & Kemerer]

• Number of other classes to which a class is coupled

• Objects coupled, if methods of one use methods or
attributes of another

• High coupling = bad for reuse

!18

Example CBO (1)

• CBO for classes 
A/B/C?

• What about A➔B➔C,
is CBO associative?
Should it be?

!19

Example CBO (2)

?
?

!20

Types do not have to occur in import
statements or by name!

Tools for Metrics

• Install Metrics plugin from

• Eclipse Marketplace

• State-of-flow update site

• https://github.com/qxo/eclipse-metrics-plugin/raw/
master/updatesite/

!21

References:

• Thomas J. McCabe: 
“A Complexity Measure”. IEEE Trans. Software Eng. 2(4):
308-320 (1976)

• Shyam R. Chidamber, Chris F. Kemerer: 
“A Metrics Suite for Object Oriented Design”. IEEE Trans.
Software Eng. 20(6): 476-493 (1994)

• Agarwal, Tayal, Gupta: “Software Engineering & Testing”,
Jones and Bartlett Publishers, 2010, Ch. “Software
Measurement and Metrics”

!22

https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/32.295895

