Refactoring
Lecture 4-:
Code Smells

DAT159/H18
Volker Stolz

Hogskulen

project “Modern Refactoring” 2017/18 péVestlande‘t

Supported by the bilateral SIU/CAPES \ ,




Why Refactor?

Refactoring improves the design of software
Refactoring makes software easier to understand
Refactoring helps you find bugs

Refactoring helps you program faster
(Counter-intuitive? See first two items up there!)



Quizz

What does a “better design” mean?

You’ve now seen a few examples of refactoring already.
Give an example each for two of the refactorings how
they can improve the design!

What influences our understanding of code?

Find an example where refactoring makes understanding
the code easier!

Problem: Both “design” and “understanding” may be
subjective - can we quantify/formalize that?



When To Refactor?

e Don’t make “Refactoring” part of your schedule:

“Refactoring is something you do all the time in little
bursts.” [Fowler]

e “Three strikes and you refactor”
e Refactor...

e ...when you add function

e ...when you need to fix a bug

e ...as you do a code review



Bad Smells in Code

“If it stinks, change it”
—Grandma Beck

22 Bad Smells in [Fowler]...

...plus 72 suggestions how to tackle them
with refactoring.

Still subjective “feeling” about code,
but based on lots of experience.



Smell Common Refactorings
Alternative Classes Rename Method (273), Move Method (142)

with Different
Interfaces, p. 85

Comments, p. 87

Extract Method (110), Introduce Assertion (267)

Data Class, p. 86

Move Method (142), Encapsulate Field (206),
Encapsulate Collection (208) '

Data Clumps, p. 81

Extract Class (149), Introduce Parameter Object
(295), Preserve Whole Object (288)

Divergent Change,
p. 79

Extract Class (149)

Duplicated Code,
p. 76

Extract Method (110), Extract Class (149), Pull Up
Method (322), Form Template Method (345)

Feature Envy, p. 80

Move Method (142), Move Field (146), Extract
Method (110)

Inappropriate
Intimacy, p. 85

Move Method (142), Move Field (146), Change
Bidirectional Association to Unidirectional (200),
Replace Inheritance with Delegation (352), Hide
Delegate (157)

Incomplete Library
Class, p. 86

Introduce Foreign Method (162), Introduce Local
Extension (164)

Large Class, p. 78

Extract Class (149), Extract Subclass (330), Extract
Interface (341), Replace Data Value with Object
(175)

Lazy Class, p. 83

Inline Class (154), Collapse Hierarchy (344)

Long Method, p. 76

Extract Method (110), Replace Temp with Query
(120), Replace Method with Method Object (135),
Decompose Conditional (238)

6

[Fowler, 1999]



Smells (2/2)

p.78

Smell Common Refactorings
Long Parameter List, | Replace Parameter with Method (292), Introduce

Parameter Object (295), Preserve Whole Object
(288)

Message Chains,
p. 84

Hide Delegate (157)

Middle Man, p. 85

Remove Middle Man (160), Inline Method (117),
Replace Delegation with Inheritance (355)

Parallel Inheritance
Hierarchies, p. 83

Move Method (142), Move Field (146)

Primitive Obsession,
p. 81

Replace Data Value with Object (175), Extract
Class (149), Introduce Parameter Object (295),
Replace Array with Object (186), Replace Type
Code with Class (218), Replace Type Code with
Subclasses (223), Replace Type Code with State/
Strategy (227)

Refused Bequest,
p. 87

Replace Inheritance with Delegation (352)

Shotgun Surgery,
p. 80

Move Method (142), Move Field (146), Inline Class
(154)

Speculative
| Generality, p. 83

Collapse Hierarchy (344), Inline Class (154),
Remove Parameter (277), Rename Method (273)

Switch Statements,
p. 82

Replace Conditional with Polymorphism (255),
Replace Type Code with Subclasses (223),
Replace Type Code with State/Strategy (227),
Replace Parameter with Explicit Methods (285),
Introduce Null Object (260)

Temporary Field,
p. 84

Extract Class (149), Introduce Null Object (260)

[Fowler, 1999]



Smells to Refactorings
— JTake Two

e Alternative list:
https://www.industriallogic.com/blog/smells-to-refactorings-cheatsheet/

* Note: don’t take refactorings as prescriptive

(“if you see X you must do Y”) - use your own judgement
and experience!

e | ook carefully at those two lists. There will be a test...


https://www.industriallogic.com/blog/smells-to-refactorings-cheatsheet/

Duplicated Code

No.1 smell in the stink parade!
Same expression in two methods of the same class
Extract Method to the rescue!

Same code in sibling classes?
Extract Method & Pull Up Method

What about code in unrelated classes?
Think about who should be the owner or
extract a new class!



Long Method

You can only see/understand what fits on the screen.
Method calls don’t really have much overhead anymore.
Small methods allow you to choose good names.

Code size not only criterion: also “semantic distance”
Extract Method, Replace Temp, Decompose Conditional

Q: How do the last two affect the size?

10



Large Class

Result of trying to put too much functionality into one
class (in principle we could program everything with just
one class, but...)

Most likely many instance variables
Extract Class/Subclass to break it down

Worst case: God Class



Feature Envy

Method more interested in other classes’ data than its own:
X = a.getFool()
vy = a.doBar ()
Zz = T (xX,V);

Move Method!

Or extract the part that needs to be moved first.
Exception: Certain design patterns (Strategy, Visitor)

Q: What happens to £ () above?

Q: What are the conditions on the type of a?



Feature Envy: Example

e Can you smell it in Fowler’s Movie Store Example?

o After you have extracted the switch-statement, is there an
obvious candidate to move the method to?

e What is the optimal number of arguments to this method?
Explain which other refactoring you could have applied
first that would reduce the number of parameters.



Comments

Comments = sweet smell! W

.
s

But: Like deodorant :-)
Have you tried showering instead?

ECHT KOLNISCH WASSER
ORIGINAL EAU DE COLOGNE

Good code speaks for itself,
bad code needs lots of comments.

After refactoring, comments may
become superfluous




