
Refactoring 
Lecture 4: 

Code Smells
DAT159/H18 
Volker Stolz

�1

Supported by the bilateral SIU/CAPES 
project “Modern Refactoring” 2017/18

Why Refactor?

• Refactoring improves the design of software

• Refactoring makes software easier to understand

• Refactoring helps you find bugs

• Refactoring helps you program faster 
(Counter-intuitive? See first two items up there!)

!2

Quizz
• What does a “better design” mean?

• You’ve now seen a few examples of refactoring already.
Give an example each for two of the refactorings how
they can improve the design!

• What influences our understanding of code?

• Find an example where refactoring makes understanding
the code easier!

• Problem: Both “design" and “understanding" may be
subjective - can we quantify/formalize that?

!3

When To Refactor?
• Don’t make “Refactoring" part of your schedule: 

“Refactoring is something you do all the time in little
bursts.” [Fowler]

• “Three strikes and you refactor”

• Refactor…

• …when you add function

• …when you need to fix a bug

• …as you do a code review

!4

Bad Smells in Code

• “If it stinks, change it” 
—Grandma Beck

• 22 Bad Smells in [Fowler]…

• …plus 72 suggestions how to tackle them 
with refactoring.

• Still subjective “feeling” about code, 
but based on lots of experience.

!5

Smells (1/2)

!6

[Fowler, 1999]

Smells (2/2)

[Fowler, 1999]

!7

Smells to Refactorings  
— Take Two

• Alternative list: 
https://www.industriallogic.com/blog/smells-to-refactorings-cheatsheet/

• Note: don’t take refactorings as prescriptive 
(“if you see X you must do Y”) - use your own judgement
and experience!

• Look carefully at those two lists. There will be a test…

!8

https://www.industriallogic.com/blog/smells-to-refactorings-cheatsheet/

Duplicated Code

• No.1 smell in the stink parade!

• Same expression in two methods of the same class

• Extract Method to the rescue!

• Same code in sibling classes? 
Extract Method & Pull Up Method

• What about code in unrelated classes? 
Think about who should be the owner or 
extract a new class!

Long Method

• You can only see/understand what fits on the screen.

• Method calls don’t really have much overhead anymore.

• Small methods allow you to choose good names.

• Code size not only criterion: also “semantic distance”

• Extract Method, Replace Temp, Decompose Conditional

• Q: How do the last two affect the size?

!10

Large Class

• Result of trying to put too much functionality into one
class (in principle we could program everything with just
one class, but…)

• Most likely many instance variables

• Extract Class/Subclass to break it down

• Worst case: God Class

Feature Envy
• Method more interested in other classes’ data than its own: 

 x = a.getFoo();  
 y = a.doBar();  
 z = f(x,y);

• Move Method!

• Or extract the part that needs to be moved first.

• Exception: Certain design patterns (Strategy, Visitor)

• Q: What happens to f() above?

• Q: What are the conditions on the type of a?

Feature Envy: Example

• Can you smell it in Fowler’s Movie Store Example?

• After you have extracted the switch-statement, is there an
obvious candidate to move the method to?

• What is the optimal number of arguments to this method?
Explain which other refactoring you could have applied
first that would reduce the number of parameters.

Comments

• Comments = sweet smell!

• But: Like deodorant :-) 
Have you tried showering instead?

• Good code speaks for itself, 
bad code needs lots of comments.

• After refactoring, comments may 
become superfluous

