
Kurt Jensen

 Lars M. Kristensen

1

Coloured Petri Nets

Department of Computer Science

Coloured Petri Nets
Modelling and Validation of Concurrent Systems

Kurt Jensen &
Lars Michael Kristensen

{kjensen,lmkristensen}@cs.au.dk

Chapter 7: State Spaces and Behavioural Properties

SP1

TP1+

SP1

SP2

SP2

TP1+

TP1-

SP1

TP1+
TP1-

RA2

SP1

RA2

SP1

TP1+
TP1-

TA2+

TA2-

TP1-

RP1

SP1

TA2+

TA2-

SP1

RP1

SP1

TP1+

TP1-

SP1

TP1+

TP1-

SP1

21
5:3

22
5:5

23
6:2

18
2:3

19
4:3

20
5:3

17
5:1

NextSend: 1`2

NextRec: 1`2

DataReceived: 1`"COL"

Limit: 3`()

NextSend: 1`2

NextRec: 1`2

DataReceived: 1`"COL"

Limit: 3`()

14
3:4

15
5:4

16
4:4

13
3:3

12
2:3

11
2:2

10
5:5

9
3:2

8
2:1

5
4:3

7
1:2

6
3:4

4
2:3

3
2:2

2
2:3

1
1:1 7

21 23

22

19

18

15

14

13

12

11

20

16

17

10

9

8

6

5

4

3

2 1

Kurt Jensen

 Lars M. Kristensen

2

Complex Behaviour

 A server controls access to databases which is to be
used by at most one client at a time:

server

Failure

clients clients

clients

Kurt Jensen

 Lars M. Kristensen

3

Verification

 Executable models can be automatically analysed by
computer tools:

Model

 Facilitates early error-detection and verification of
components and systems.

design

implementation

Model checking
computer tool

Yes (100 %)

No

(automatic error trace)

System

Property? (deadlocks, request-response, safety …)

Kurt Jensen

 Lars M. Kristensen

4

Coloured Petri Nets

Department of Computer Science

1

2

5

3

4

7

6

8

State spaces
 A state space is a directed graph with:

 A node for each reachable marking (state).
 An arc for each occurring binding element.

 State spaces can be used to investigate the behavioural
properties of the CPN model.

Terminating state:

- Marking with no enabled

 binding elements

Cycle:

- No guarantee for

 termination

Kurt Jensen

 Lars M. Kristensen

5

Coloured Petri Nets

Department of Computer Science

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

k n

if k=n
then k+1
else k

11`11 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Simple protocol

 SendPacket can occur an unlimited number of times
producing an unlimited number of tokens on place A.

 This means that the state space becomes infinite.

Kurt Jensen

 Lars M. Kristensen

6

Coloured Petri Nets

Department of Computer Science

if success
then empty
else 1`()

if success
then empty
else 1`()

()

()

k

if n=k
then k+1
else k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

Simple protocol for state space analysis

 We add a new place Limit, which limits the total number of
tokens on the buffer places A, B, C, and D.

 This makes the state space finite.

colset UNIT = unit;

Three

“uncoloured”

tokens

Kurt Jensen

 Lars M. Kristensen

7

Coloured Petri Nets

Department of Computer Science

1
1:1

NextSend: 1`1

NextRec: 1`1

DataReceived: 1`""

Limit: 3`()

NextSend: 1`1

NextRec: 1`1

DataReceived: 1`""

Limit: 3`()

State space

1

SP1 = (SendPacket, <n=1, d="COL">)

 Construction of the state space starts
with the processing of node 1 which
represents the initial marking.

 This gives us one new arc and one new node 2.

 Node 2 has one copy of data packet 1 on place A.

 Node 1 is now marked as processed (thick border line).

 Node 1 has one enabled binding element:

SP1
2

2:3

NextSend: 1`1

A: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

NextSend: 1`1

A: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

1
1:1

NextSend: 1`1

NextRec: 1`1

DataReceived: 1`""

Limit: 3`()

NextSend: 1`1

NextRec: 1`1

DataReceived: 1`""

Limit: 3`()

1 2

Kurt Jensen

 Lars M. Kristensen

8

Coloured Petri Nets

Department of Computer Science

State space

SP1 = (SendPacket, <n=1, d="COL">)

TP1+ = (TransmitPacket, <n=1, d="COL", success=true>)

TP1– = (TransmitPacket, <n=1, d="COL", success=false>)

 Next we process node 2.

 It has three enabled
binding elements:

 This gives us three new arcs and two new nodes 3 and 4.

 Node 3 has one copy of data packet 1 on place B.

 Node 4 has two copies of data packet 1 on place A.

 Node 2 is now marked as processed (thick border line).

SP1

TP1+

TP1-

SP1
4

2:3

NextSend: 1`1

A: 2`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

NextSend: 1`1

A: 2`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

3
2:2

NextSend: 1`1

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

NextSend: 1`1

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

2
2:3

NextSend: 1`1

A: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

NextSend: 1`1

A: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

1
1:1 2 1 4

3

Kurt Jensen

 Lars M. Kristensen

9

Coloured Petri Nets

Department of Computer Science

State space

 Next we choose one of the
unprocessed nodes: 3.

 It has two enabled binding
elements:

 This gives us two new arcs and two new nodes 5 and 6.

 Node 5 has one copy of acknowledgement 2 on place C.

 Node 6 has one copy of packet 1 on place A and another on place B.

 Node 3 is now marked as processed (thick border line).

SP1 = (SendPacket, <n=1, d="COL">)

RP1 = (ReceivePacket,

 <n=1, d="COL", k=1, data = "">)

SP1

RP1

SP1

TP1+

TP1-

SP1

5
4:3

NextSend: 1`1

NextRec: 1`2

DataReceived: 1`"COL"

C: 1`2

Limit: 2`()

NextSend: 1`1

NextRec: 1`2

DataReceived: 1`"COL"

C: 1`2

Limit: 2`()

6
3:4

NextSend: 1`1

A: 1`(1,"COL")

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

NextSend: 1`1

A: 1`(1,"COL")

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

4
2:3

3
2:2

NextSend: 1`1

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

NextSend: 1`1

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

2
2:3

1
1:1

3

2 1

6

5

4

Kurt Jensen

 Lars M. Kristensen

10

Coloured Petri Nets

Department of Computer Science

State space

 Next we choose one of the
unprocessed nodes: 4.

 It has three enabled binding
elements:

 This gives us a three new arcs and one new node 7.

 Node 7 has three copies of data packet 1 on place A.

 Node 4 is now marked as processed (thick border line).

SP1 = (SendPacket, <n=1, d="COL">)

TP1+ = (TransmitPacket, <n=1, d="COL", success=true>)

TP1– = (TransmitPacket, <n=1, d="COL", success=false>)

SP1

RP1

SP1

TP1+

TP1-

SP1

TP1+

TP1-

SP1

5
4:3

7
1:2

NextSend: 1`1

A: 3`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

NextSend: 1`1

A: 3`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

6
3:4

NextSend: 1`1

A: 1`(1,"COL")

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

NextSend: 1`1

A: 1`(1,"COL")

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

4
2:3

NextSend: 1`1

A: 2`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

NextSend: 1`1

A: 2`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

3
2:2

2
2:3

1
1:1

3

4 2 1 7

5

6

Kurt Jensen

 Lars M. Kristensen

11

Coloured Petri Nets

Department of Computer Science

State space

 Next we choose one of the
unprocessed nodes: 5.

 It has three enabled
binding elements:

 This gives us three new arcs and three new nodes 8, 9 and 10.

 Node 8 is identical to the initial marking except that NextRec
and Data Received have been changed.

 Node 5 is now marked as processed (thick border line).

SP1 = (SendPacket, <n=1, d="COL">)

TA2+ = (TransmitAck, <n=2, success=true>)

TA2– = (TransmitAck, <n=2, success=false>)

SP1

TA2+

TA2-

SP1

RP1

SP1

TP1+

TP1-

SP1

TP1+

TP1-

SP1

10
5:5

NextSend: 1`1

A: 1`(1,"COL")

NextRec: 1`2

DataReceived: 1`"COL"

C: 1`2

Limit: 1`()

NextSend: 1`1

A: 1`(1,"COL")

NextRec: 1`2

DataReceived: 1`"COL"

C: 1`2

Limit: 1`()

9
3:2

NextSend: 1`1

NextRec: 1`2

DataReceived: 1`"COL"

D: 1`2

Limit: 2`()

NextSend: 1`1

NextRec: 1`2

DataReceived: 1`"COL"

D: 1`2

Limit: 2`()

8
2:1

NextSend: 1`1

NextRec: 1`2

DataReceived: 1`"COL"

Limit: 3`()

NextSend: 1`1

NextRec: 1`2

DataReceived: 1`"COL"

Limit: 3`()

5
4:3

NextSend: 1`1

NextRec: 1`2

DataReceived: 1`"COL"

C: 1`2

Limit: 2`()

NextSend: 1`1

NextRec: 1`2

DataReceived: 1`"COL"

C: 1`2

Limit: 2`()

7
1:2

6
3:4

4
2:3

3
2:2

2
2:3

1
1:1

5

3

4 2 1

9

8

7

10

6

Kurt Jensen

 Lars M. Kristensen

12

Coloured Petri Nets

Department of Computer Science

State space

 Next we choose one of
the unprocessed nodes: 6.

 It has four enabled
binding elements:

 This gives us four new
arcs and two new nodes
11 and 12.

 Node 6 is now marked
as processed.

SP1 = (SendPacket, <n=1, d="COL">)

TP1+ = (TransmitPacket,

 <n=1, d="COL", success=true>)

TP1– = (TransmitPacket,

 <n=1, d="COL", success=false>)

RP1 = (ReceivePacket,

 <n=1, d="COL", k=1, data = "">)

TP1+

SP1

TP1-

RP1

SP1

TA2+

TA2-

SP1

RP1

SP1

TP1+

TP1-

SP1

TP1+

TP1-

SP1

12
2:3

NextSend: 1`1

A: 2`(1,"COL")

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

NextSend: 1`1

A: 2`(1,"COL")

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

11
2:2

NextSend: 1`1

B: 2`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

NextSend: 1`1

B: 2`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

10
5:5

NextSend: 1`1

A: 1`(1,"COL")

NextRec: 1`2

DataReceived: 1`"COL"

C: 1`2

Limit: 1`()

NextSend: 1`1

A: 1`(1,"COL")

NextRec: 1`2

DataReceived: 1`"COL"

C: 1`2

Limit: 1`()

9
3:2

8
2:1

5
4:3

7
1:2

6
3:4

4
2:3

3
2:2

NextSend: 1`1

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

NextSend: 1`1

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

2
2:3

1
1:1

5

6 3

4 2 1

9

8 10

12

11

7

Kurt Jensen

 Lars M. Kristensen

13

Coloured Petri Nets

Department of Computer Science

SP1

TP1+

SP1

SP2

SP2

TP1+

TP1-

SP1

TP1+
TP1-

RA2

SP1

RA2

SP1

TP1+
TP1-

TA2+

TA2-

TP1-

RP1

SP1

TA2+

TA2-

SP1

RP1

SP1

TP1+

TP1-

SP1

TP1+

TP1-

SP1

21
5:3

22
5:5

23
6:2

18
2:3

19
4:3

20
5:3

17
5:1

NextSend: 1`2

NextRec: 1`2

DataReceived: 1`"COL"

Limit: 3`()

NextSend: 1`2

NextRec: 1`2

DataReceived: 1`"COL"

Limit: 3`()

14
3:4

15
5:4

16
4:4

13
3:3

12
2:3

11
2:2

10
5:5

9
3:2

8
2:1

5
4:3

7
1:2

6
3:4

4
2:3

3
2:2

2
2:3

1
1:11 4

10 8 5

6 3

2

17

16 9

20

7

21 23

22

19

18

15

14

13

12

11

State space

 We continue to process
the nodes one by one.

 If the state space is finite
construction terminates
when all reachable markings
have been processed.

 Otherwise, we continue forever
– obtaining a larger and larger
part of the state space.

 This partial state space is
visualised using the
drawing facilities of the
CPN state space tool.

Packet no. 1 and its acknowledgement

have been successfully transmitted

Kurt Jensen

 Lars M. Kristensen

14

Coloured Petri Nets

Department of Computer Science

Directed path
 A directed path is an alternating

sequence of nodes and arcs.

 Each directed path in the
state space corresponds
to an occurrence sequence
where all steps contain a
single binding element.

 A directed path in the state
space corresponds to one
possible execution (simulation)
of the model.

SP1

TP1+

SP1

SP2

SP2

TP1+

TP1-

SP1

TP1+
TP1-

RA2

SP1

RA2

SP1

TP1+
TP1-

TA2+

TA2-

TP1-

RP1

SP1

TA2+

TA2-

SP1

RP1

SP1

TP1+

TP1-

SP1

TP1+

TP1-

SP1

21
5:3

22
5:5

23
6:2

18
2:3

19
4:3

20
5:3

17
5:1

14
3:4

15
5:4

16
4:4

13
3:3

12
2:3

11
2:2

10
5:5

9
3:2

8
2:1

5
4:3

7
1:2

6
3:4

4
2:3

3
2:2

2
2:3

1
1:1 7

23

22

19

18

15

14

13

12

11

21

3

2 1

20

16

10

6

17

8

4

5

9

Kurt Jensen

 Lars M. Kristensen

15

Coloured Petri Nets

Department of Computer Science

Strongly connected components

 A strongly connected component (SCC)
is a maximal subgraph in which all nodes
are reachable from each other.

 The SCCs are mutually disjoint.

 Each node is in exactly one SCC.

 SCC graph contains:

 A node for each SCC.

 An arc from Si to Sj for each
state space arc from a node
niSi to a node njSj (ij).

Terminal SCC

(no outgoing arcs)

Trivial SCC

(one node and

no arcs)

Initial SCC

(no ingoing arcs)

 The SCC graph is acyclic.

Kurt Jensen

 Lars M. Kristensen

16

Coloured Petri Nets

Department of Computer Science

State space (example)

 10 nodes and 16 arcs.

M2 M0

M1

M3

M4 M6 M8

M5 M7 M9

Kurt Jensen

 Lars M. Kristensen

17

Coloured Petri Nets

Department of Computer Science

Strongly connected components

 5 different SCCs.

Trivial SCC

(one node and

no arcs)

Non-trivial SCC

(due to the arc)

M2 M0

M1

M3

M4 M6
M8

M5 M7 M9

S0

S4

S3

S1

S2

Kurt Jensen

 Lars M. Kristensen

18

Coloured Petri Nets

Department of Computer Science

SCC graph

 5 nodes and 6 arcs.

M2 M0

M1

M3

M4 M6 M8

M5 M7 M9

S0

S4

S3

S1

S2

Two terminal SCCs

(no outgoing arcs)

Kurt Jensen

 Lars M. Kristensen

19

Coloured Petri Nets

Department of Computer Science

State space construction and analysis

 State spaces may be very large and hence we need
computer tools to construct and analyse them.

 Analysis of the state space starts with the generation of
the state space report.

 This is done totally automatic.

 The report contains a lot of useful information about the
behavioural properties of the CPN model.

 The report is excellent for locating errors or increase our
confidence in the correctness of the system.

Kurt Jensen

 Lars M. Kristensen

20

Coloured Petri Nets

Department of Computer Science

State space report

 The state space report contains information about standard
behavioural properties which make sense for all CPN models:

 Size of the state space and the time used to generate it.

 Bounds for the number of tokens on each place and
information about the possible token colours.

 Home markings.

 Dead markings.

 Dead and live transitions.

 Fairness properties for transitions.

Kurt Jensen

 Lars M. Kristensen

21

Demo of State Spaces in CPN Tools

http://cs.au.dk/~cpnbook/models/chapter7/7-2LimitProtocol.cpn

Coloured Petri Nets

Department of Computer Science

http://cs.au.dk/~cpnbook/models/chapter7/7-2LimitProtocol.cpn
http://cs.au.dk/~cpnbook/models/chapter7/7-2LimitProtocol.cpn
http://cs.au.dk/~cpnbook/models/chapter7/7-2LimitProtocol.cpn

Kurt Jensen

 Lars M. Kristensen

22

Coloured Petri Nets

Department of Computer Science

State space report: size and time

 State space contains more than 13.000 nodes and more
than 52.000 arcs.

 The state space was constructed in less than one minute
and it is full – i.e. contains all reachable markings.

 The SCC graph is smaller. Hence we have cycles.

 The SCC graph was constructed in 2 seconds.

State Space Statistics

 State Space Scc Graph

 Nodes: 13,215 Nodes: 5,013

 Arcs: 52,784 Arcs: 37,312

 Secs: 53 Secs: 2

 Status: Full

Kurt Jensen

 Lars M. Kristensen

23

Coloured Petri Nets

Department of Computer Science

Reachability
properties

 The standard query function
below checks whether marking
M17 is reachable from M1
– i.e. whether there is a
path from node 1 to node 17.

Reachable (1,17); true

Reachable (17,1); false

 We can also check whether
M1 is reachable from M17:

SP1

TP1+

SP1

SP2

SP2

TP1+

TP1-

SP1

TP1+
TP1-

RA2

SP1

RA2

SP1

TP1+
TP1-

TA2+

TA2-

TP1-

RP1

SP1

TA2+

TA2-

SP1

RP1

SP1

TP1+

TP1-

SP1

TP1+

TP1-

SP1

21
5:3

22
5:5

23
6:2

18
2:3

19
4:3

20
5:3

17
5:1

NextSend: 1`2

NextRec: 1`2

DataReceived: 1`"COL"

Limit: 3`()

NextSend: 1`2

NextRec: 1`2

DataReceived: 1`"COL"

Limit: 3`()

14
3:4

15
5:4

16
4:4

13
3:3

12
2:3

11
2:2

10
5:5

9
3:2

8
2:1

5
4:3

7
1:2

6
3:4

4
2:3

3
2:2

2
2:3

1
1:1 7

21 23

22

19

18

15

14

13

12

11

20

16

17

10

9

8

6

5

4

3

2 1

Kurt Jensen

 Lars M. Kristensen

24

Coloured Petri Nets

Department of Computer Science

Reachability
properties (SCC)

SP1

TP1+

SP1

SP2

SP2

TP1+

TP1-

SP1

TP1+
TP1-

RA2

SP1

RA2

SP1

TP1+
TP1-

TA2+

TA2-

TP1-

RP1

SP1

TA2+

TA2-

SP1

RP1

SP1

TP1+

TP1-

SP1

TP1+

TP1-

SP1

21
5:3

22
5:5

23
6:2

18
2:3

19
4:3

20
5:3

17
5:1

NextSend: 1`2

NextRec: 1`2

DataReceived: 1`"COL"

Limit: 3`()

NextSend: 1`2

NextRec: 1`2

DataReceived: 1`"COL"

Limit: 3`()

14
3:4

15
5:4

16
4:4

13
3:3

12
2:3

11
2:2

10
5:5

9
3:2

8
2:1

5
4:3

7
1:2

6
3:4

4
2:3

3
2:2

2
2:3

1
1:1 7

21 23

22

19

18

15

14

13

12

11

20

16

17

10

9

8

6

5

4

3

2 1

SccReachable (1,17); true

SccReachable (17,1); false

 It is also possible (and more
efficient) to check reachability
from the SCC graph.

 Then we check whether there
exists a path from the SCC
containing the first marking to
the SCC containing the second
marking.

Kurt Jensen

 Lars M. Kristensen

25

Coloured Petri Nets

Department of Computer Science

Desired terminal marking

fun DesiredTerminal n =

 ((Mark.Protocol’NextSend 1 n) == 1‘7) andalso

 ((Mark.Protocol’NextRec 1 n) == 1‘7) andalso

 ((Mark.Protocol’A 1 n) == empty) andalso

 ((Mark.Protocol’B 1 n) == empty) andalso

 ((Mark.Protocol’C 1 n) == empty) andalso

 ((Mark.Protocol’D 1 n) == empty) andalso

 ((Mark.Protocol’PacketsToSend 1 n) == AllPackets) andalso

 ((Mark.Protocol’DataReceived 1 n) == 1‘"COLOURED PETRI NET")

 The following predicate checks whether node n represents a
marking in which all data packets have been successfully received.

Predefined function:

- Returns the marking of DataReceived Instance number

State space node

Equality of two multisets Module Place Structure

Kurt Jensen

 Lars M. Kristensen

26

Coloured Petri Nets

Department of Computer Science

Reachability of desired terminal marking

ReachablePred DesiredTerminal;

 The following query checks whether the desired terminal marking
is reachable:

true

 It is also possible to find the node(s) which represent the
desired terminal marking:

PredAllNodes DesiredTerminal; [4868]

Standard query function:

- Searches through all nodes

- Returns a list with those that fulfil the predicate

Standard query function:

- Searches through all nodes

- Determines whether some of these fulfil the predicate

Kurt Jensen

 Lars M. Kristensen

27

Coloured Petri Nets

Department of Computer Science

State space report: reachability properties

 The state space report does not contain information about
reachability properties.

 The specific markings which it is of interest to investigate is
highly model dependent – and there are too many to
investigate all pairs.

 The statistics in the state space report for the protocol shows
that there are more than one SCC.

 This implies that not all nodes in the state space are mutually
reachable – as demonstrated above using standard query
functions.

Kurt Jensen

 Lars M. Kristensen

28

Coloured Petri Nets

Department of Computer Science

Integer bounds

 Integer bounds counts the number of tokens on a place.

 The best upper integer bound for a place is the maximal
number of tokens on the place in a reachable marking.

 The best lower integer bound for a place is the minimal
number of tokens on the place in a reachable marking.

 Places with an upper integer bound are bounded.

 Places with no upper integer bound are unbounded.

 0 is always a lower integer bound, but it may not be the best.

Kurt Jensen

 Lars M. Kristensen

29

Coloured Petri Nets

Department of Computer Science

State space report: integer bounds

 PacketsToSend has exactly 6 tokens in all reachable
markings.

 DataReceived, NextSend and NextRec have exactly one
token each in all reachable markings.

 The remaining five places have between 0 and 3 tokens
each in all reachable markings.

Best Integers Bounds Upper Lower

 PacketsToSend 6 6

 DataReceived 1 1

 NextSend, NextRec 1 1

 A, B, C, D 3 0

 Limit 3 0

Kurt Jensen

 Lars M. Kristensen

30

Coloured Petri Nets

Department of Computer Science

More general integer bounds

 It is also possible to find integer bounds for a set of places.

 As an example, we might investigate how many tokens we
have simultaneously on places A and B.

fun SumMarkings n =

 (Mark.Protocol’A 1 n) ++

 (Mark.Protocol’B 1 n);

3 UpperInteger SumMarkings;

LowerInteger SumMarkings;

Standard query

functions

Argument must be a function mapping from a

state space node into a multiset type: ’a ms

0

Calculates the marking of

A and B in marking n

Kurt Jensen

 Lars M. Kristensen

31

Coloured Petri Nets

Department of Computer Science

More general integer bounds

 It is also possible to investigate integer bounds which
consider only certain token colours and places.

 As an example, we will investigate the minimal and maximal
number of tokens with the colour (1,"COL") that can
simultaneously reside on the places A and B:

fun SumFirstDataPacket n =

 (List.filter

 (fn p => p = (1,"COL"))

 (SumMarkings n));

Standard list function:

- Takes a predicate and

 a list as arguments

- Returns those elements

 that fulfil the predicate

Marking of places A and B

3 UpperInteger SumFirstDataPacket;

LowerInteger SumFirstDataPacket; 0

CPN tools represents multisets as lists

Kurt Jensen

 Lars M. Kristensen

32

Coloured Petri Nets

Department of Computer Science

Multiset bounds

 The best lower multiset bound for a place is a multiset over
the colour set of the place.

 The coefficient for a colour c is the minimal number of
occurrences of tokens with colour c in a reachable marking.

 Integer bounds count the number of tokens ignoring the
token colours.

 Multiset bounds provide information about the possible token
colours.

 The best upper multiset bound for a place is a multiset over
the colour set of the place.

 The coefficient for a colour c is the maximal number of
occurrences of tokens with colour c in a reachable marking.

Kurt Jensen

 Lars M. Kristensen

33

Coloured Petri Nets

Department of Computer Science

State space report: upper multiset bounds

Best Upper Multiset Bounds

 PacketsToSend 1‘(1,"COL")++1‘(2,"OUR")++1‘(3,"ED ")++

 1‘(4,"PET")++1‘(5,"RI ")++1‘(6,"NET")

 DataReceived 1‘""++1‘"COL"++1‘"COLOUR"++1‘"COLOURED "++

 1‘"COLOURED PET"++1‘"COLOURED PETRI "++

 1‘"COLOURED PETRI NET"

 NextSend, NextRec 1‘1++1‘2++1‘3++1‘4++1‘5++1‘6++1‘7

 A, B 3‘(1,"COL")++3‘(2,"OUR")++3‘(3,"ED ")++

 3‘(4,"PET")++3‘(5,"RI ")++3‘(6,"NET")

 C, D 3‘2++3‘3++3‘4++3‘5++3‘6++3‘7

 Limit 3‘()

 The upper bound for DataReceived is a multiset with seven
elements although the place always has exactly one token.

Kurt Jensen

 Lars M. Kristensen

34

Coloured Petri Nets

Department of Computer Science

State space report: lower multiset bounds

Best Lower Multiset Bounds

 PacketsToSend 1‘(1,"COL")++1‘(2,"OUR")++1‘(3,"ED ")++

 1‘(4,"PET")++1‘(5,"RI ")++1‘(6,"NET")

 DataReceived empty

 NextSend, NextRec empty

 A, B, C, D empty

 Limit empty

 The lower bound for DataReceived is empty although the
place always has exactly one token.

Kurt Jensen

 Lars M. Kristensen

35

Coloured Petri Nets

Department of Computer Science

More general multiset bounds

 Upper and lower multiset bounds can be generalised to
sets of places in a similar way as described for integer bounds.

3‘(1,"COL") ++ 3‘(2,"OUR") ++ 3‘(3,"ED ") ++

3‘(4,"PET") ++ 3‘(5,"RI ") ++ 3‘(6,"NET")

UpperMultiSet SumMarkings;

LowerMultiSet SumMarkings;

Standard query

functions

Argument must be a function mapping from a

state space node into a multiset type: ’a ms

empty

Kurt Jensen

 Lars M. Kristensen

36

Coloured Petri Nets

Department of Computer Science

More general multiset bounds

 Upper and lower multiset bounds can also be generalised to
specific token colours residing on a set of places in a similar
way as described for integer bounds.

3‘(1,"COL") UpperMultiSet SumFirstDataPacket;

LowerMultiSet SumFirstDataPacket; empty

Standard query

functions

Argument must be a function mapping from a

state space node into a multiset type ’a ms

Kurt Jensen

 Lars M. Kristensen

37

Coloured Petri Nets

Department of Computer Science

Integer and multiset bounds

 The two kinds of bounds supplement each other and
provides different kinds of information.

DataReceived 1‘""++1‘"COL"++1‘"COLOUR"++1‘"COLOURED "++

 1‘"COLOURED PET"++1‘"COLOURED PETRI "++

 1‘"COLOURED PETRI NET"

DataReceived 1

 Tells us that DataReceived can have seven different token
colours, but not whether they can be present simultaneously.

 Tells us that DataReceived has at most one token, but gives
us no information about the token colours.

Kurt Jensen

 Lars M. Kristensen

38

Coloured Petri Nets

Department of Computer Science

Home marking

 A home marking is a marking Mhome which can be reached from
any reachable marking.

Initial
marking

Arbitrary
reachable marking

Home
marking

 The home property tells that it is possible to reach Mhome.

 However, there is no guarantee that this will happen.

 This means that it is impossible to have an occurrence sequence
which cannot be extended to reach Mhome.

M0 M Mhome

Kurt Jensen

 Lars M. Kristensen

39

Coloured Petri Nets

Department of Computer Science

State space report: home markings

 There is a single home marking represented by node
number 4868.

 The marking of this node can be shown in the
CPN simulator.

Home Properties

 Home Markings: [4868]

Kurt Jensen

 Lars M. Kristensen

40

Coloured Petri Nets

Department of Computer Science

Home marking

 Successful completion of transmission.

if not success
then 1`()
else empty

if not success
then 1`()
else empty

()

()

k

if n=k
then k+1
else k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

3 3`() 11`71 1`7

11`"COLOURED PETRI NET"6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

All packets have been received

in the correct order

Sender is

ready to send

packet no. 7

All buffer places

are empty

Receiver is waiting

for packet no. 7

http://images.google.dk/imgres?imgurl=http://www.lingocomic.com/gfx/goodies/smiley-big.png&imgrefurl=http://www.lingocomic.com/gfx/goodies/%3FM%3DD&h=490&w=490&sz=42&hl=da&start=3&tbnid=NulRmafrvFp_wM:&tbnh=130&tbnw=130&prev=/images%3Fq%3Dsmiley%26svnum%3D10%26hl%3Dda%26lr%3D%26sa%3DG

Kurt Jensen

 Lars M. Kristensen

41

Coloured Petri Nets

Department of Computer Science

Home space

 A home space is a set of markings M*
home such that at least one

marking in M*
home can be reached from any reachable marking.

 The home property tells that it is possible to reach a
marking in M*

home.

 However, there is no guarantee that this will happen.

 This means that it is impossible to have an occurrence sequence
which cannot be extended to reach a marking in M*

home.

Initial
marking

Arbitrary
reachable marking

Home space

M0 M

M13 M24

M57 M456

M5278

M*home

Kurt Jensen

 Lars M. Kristensen

42

Coloured Petri Nets

Department of Computer Science

Home predicate

 A home predicate is a predicate on markings Predhome such that
at least one marking satisfying Predhome can be reached from
any reachable marking.

 The home property tells that it is possible to reach a
marking satisfying Predhome.

 However, there is no guarantee that this will happen.

 This means that it is impossible to have an occurrence sequence
which cannot be extended to reach a marking satisfying Predhome.

Initial
marking

Arbitrary
reachable marking Markings

satisfying Predhome

M0 M

M23 M47

M517 M816

Kurt Jensen

 Lars M. Kristensen

43

Coloured Petri Nets

Department of Computer Science

Use of home predicate

 Instead of inspecting node 4868 in the CPN simulator we can
check whether DesiredTerminal is a home predicate:

HomePredicate DesiredTerminal; true

Standard query function Argument must be a predicate on markings

fun DesiredTerminal n =

 ((Mark.Protocol’NextSend 1 n) == 1‘7) andalso

 ((Mark.Protocol’NextRec 1 n) == 1‘7) andalso

 ((Mark.Protocol’A 1 n) == empty) andalso

 ((Mark.Protocol’B 1 n) == empty) andalso

 ((Mark.Protocol’C 1 n) == empty) andalso

 ((Mark.Protocol’D 1 n) == empty) andalso

 ((Mark.Protocol’PacketsToSend 1 n) == AllPackets) andalso

 ((Mark.Protocol’DataReceived 1 n) == 1‘"COLOURED PETRI NET")

Kurt Jensen

 Lars M. Kristensen

45

Coloured Petri Nets

Department of Computer Science

Home markings and SCCs

 Only one terminal SCC:

 All markings in the terminal SCC
are home markings.

 No other markings are home
markings.

 The existence of home markings can be determined from the
number of terminal SCCs.

 More than one terminal SCC:

 No home markings.

S3 S4

S0

S1 S2

S0

S1 S2

S3

Kurt Jensen

 Lars M. Kristensen

46

Coloured Petri Nets

Department of Computer Science

Single terminal SCC

 All markings in the terminal
SCC S2 are home markings.

 No other markings are home
markings.

M2

M0

M1 M3

M4

M6 M5

S0

S1

S2

Kurt Jensen

 Lars M. Kristensen

47

Coloured Petri Nets

Department of Computer Science

More than one
terminal SCC

 No home markings.

 When one of the terminal
SCCs S2 and S3 has been
reached, it is impossible to
leave it again.

M2

M0

M1 M3

M4

M6 M5

M7

S0

S1

S2
S3

Kurt Jensen

 Lars M. Kristensen

48

Coloured Petri Nets

Department of Computer Science

Single SCC

 All reachable markings are
home markings.

 They are mutually reachable
from each other.

M2

M0

M1 M3

M4

M6 M5

M7

S0

Kurt Jensen

 Lars M. Kristensen

49

Coloured Petri Nets

Department of Computer Science

Calculation of home markings

fun ListHomeMarkings () =

 let

 val Terminal_Sccs = PredAllSccs SccTerminal;

 in

 case Terminal_Sccs of

 [scc] => SccToNodes scc

 | _ => []

end;

Returns the state space nodes in the

strongly connected component scc

 The CPN state space tool uses the following query to
calculate the set of all home markings:

Standard query function:

- Searches through all

 nodes in the SCC graph

- Returns those which

 fulfil the predicate

Checks whether an SCC is terminal

Exactly one

terminal SCC

Kurt Jensen

 Lars M. Kristensen

50

Coloured Petri Nets

Department of Computer Science

Home spaces and SCCs

 A set of markings is a home space
if and only if it contains a node
from each terminal SCC.

 Home spaces must have at least
as many elements as there are
terminal SCCs.

 The size of home spaces can be determined from the number
of terminal components in the SCC graph.

 Each home marking is a home space with only one element.

 A system may have home spaces without having home
markings.

S3 S4

S0

S1 S2

Kurt Jensen

 Lars M. Kristensen

51

Coloured Petri Nets

Department of Computer Science

Liveness properties – being dead

 A marking M is dead if M has no enabled transitions.

 A transition t is dead if t never can occur – i.e. is disabled in
all reachable markings.

 Generalisations:

 A binding element is dead if it can never become enabled.

 A set of binding elements is dead if none of the binding
elements can become enabled.

 A set of transitions is dead if the union of their binding
elements is dead.

Kurt Jensen

 Lars M. Kristensen

52

Coloured Petri Nets

Department of Computer Science

State space report: being dead

 There is a single dead marking represented by node
number 4868.

 Same marking as home marking.

 There are no dead transitions.

Liveness Properties

 Dead Markings: [4868]

 Dead Transitions: None

 Live Transitions: None

Kurt Jensen

 Lars M. Kristensen

53

Coloured Petri Nets

Department of Computer Science

Marking no 4868

 We have seen that marking M4868 represents the state in which
we have achieved successful completion of the transmission.

 M4868 is the only dead marking.

 Tells us that the system is partially correct. If execution
terminates we will have the correct result.

 M4868 is a home marking.

 Tells us that it always is possible to reach the correct result
– independently of the number of losses and overtakings.

Kurt Jensen

 Lars M. Kristensen

54

Coloured Petri Nets

Department of Computer Science

Being dead

 It is straightforward to check whether markings, transitions
and binding elements are dead.

 A transition is dead if it does not appear on an arc in the
state space.

 A marking is dead if the corresponding state space node
has no outgoing arcs.

 A binding element is dead if it does not appear on an arc in
the state space.

 A set of binding elements is dead if no binding element in
the set appears on an arc in the state space.

 A set of transitions is dead if none of their binding elements
appear on an arc in the state space.

Kurt Jensen

 Lars M. Kristensen

55

Coloured Petri Nets

Department of Computer Science

Calculation of dead markings

fun ListDeadMarkings () =

 PredAllNodes (fn n => (OutArcs n) = []);

Checks whether the set of

output arcs is empty

Standard query function:

- Searches through all

 nodes in the state space

- Returns a list with those

 that fulfil the predicate

 The CPN state space tool uses the following query to
calculate the set of all dead markings:

Maps a state space node

into its outgoing arcs

Kurt Jensen

 Lars M. Kristensen

56

Coloured Petri Nets

Department of Computer Science

Calculation of dead transitions

 The CPN state space tool uses the following query to check
whether a transition instance is dead:

fun TransitionInstanceDead ti =

 (PredAllArcs (fn a => ArcToTI a = ti)) = [];

Maps a state space arc into

its transition instance

Checks whether the arc a has the

transition instance ti in its label

Standard query function:

- Searches through all

 arcs in the state space

- Returns a list with those

 that fulfil the predicate

Kurt Jensen

 Lars M. Kristensen

57

Coloured Petri Nets

Department of Computer Science

Calculation of dead binding elements

 We want to check whether the Sender can receive an
acknowledgement with sequence number 1.

BEsDead ([Bind.Protocol’ReceiveAck (1,{k=1,n=1}),

 Bind.Protocol’ReceiveAck (1,{k=2,n=1}),

 Bind.Protocol’ReceiveAck (1,{k=3,n=1}),

 Bind.Protocol’ReceiveAck (1,{k=4,n=1}),

 Bind.Protocol’ReceiveAck (1,{k=5,n=1}),

 Bind.Protocol’ReceiveAck (1,{k=6,n=1}),

 Bind.Protocol’ReceiveAck (1,{k=7,n=1})],1);

Binding Initial

Marking
Instance Module

Constructor

Transition Structure

true

Standard

query

function

List of

binding

elements

Not possible to receive such acknowledgments.

Returns the specified binding element

Kurt Jensen

 Lars M. Kristensen

58

Coloured Petri Nets

Department of Computer Science

Liveness properties – being live

 Liveness tells that it is possible for t to occur.

 However, there is no guarantee that this will happen.

 A transition t is live if we from any reachable marking can find
an occurrence sequence containing t.

t

Initial
marking

Arbitrary
reachable marking

Marking where
t is enabled

M0 M1 M2

Kurt Jensen

 Lars M. Kristensen

59

Coloured Petri Nets

Department of Computer Science

Liveness is a strong property

 If the live transition t occurs in the marking M2 we reach another
reachable marking.

 We can use the new marking as M1 and hence t is able to occur
once more, and so on.

 This means that there exists infinite occurrence sequences in
which t occurs infinitely many times.

t

Initial
marking

Arbitrary
reachable marking

Marking where
t is enabled

M0 M1 M2

 It is possible to be non-dead without being live.

Kurt Jensen

 Lars M. Kristensen

60

Coloured Petri Nets

Department of Computer Science

State space report: being live

 There are no live transitions

 Trivial consequence of the existence of a dead marking.

Liveness Properties

 Dead Markings: [4868]

 Dead Transitions: None

 Live Transitions: None

Kurt Jensen

 Lars M. Kristensen

61

Coloured Petri Nets

Department of Computer Science

Generalisations of liveness

 A binding element is live if it can always become enabled.

 A set of binding elements is live if it is always possible to
enable at least one binding element in the set.

 A set of transitions is live if the union of their binding
elements is live.

Kurt Jensen

 Lars M. Kristensen

62

Coloured Petri Nets

Department of Computer Science

Liveness properties and SCCs

 Liveness can be determined
from the SCC graph.

S3 S4

S0

S1 S2

 A transition/binding element is live if and only if it appears
on at least one arc in each terminal SCC.

 A set of transitions/binding elements is live if and only if
each of the terminal SCCs contains at least one arc with a
transition/binding element from the set.

Kurt Jensen

 Lars M. Kristensen

63

Coloured Petri Nets

Department of Computer Science

Single terminal SCC

 A transition is live if it
appears on an arc in the
terminal SCC S2.

M2

M0

M1 M3

M4

M6 M5

S0

S1

S2

Kurt Jensen

 Lars M. Kristensen

64

Coloured Petri Nets

Department of Computer Science

More than one
terminal SCC

 A transition is live if it
appears on an arc in each
terminal SCC.

 No live transitions.

 S3 is terminal and trivial.

 M7 is a dead marking.

M2

M0

M1 M3

M4

M6 M5

M7

S0

S1

S2
S3

Kurt Jensen

 Lars M. Kristensen

65

Coloured Petri Nets

Department of Computer Science

Single SCC

 A transition is live if it
appears on an arc in the SCC.

 In this case we have:

 A transition is live if and only
is it is non-dead.

M2

M0

M1 M3

M4

M6 M5

M7

S0

Kurt Jensen

 Lars M. Kristensen

66

Coloured Petri Nets

Department of Computer Science

Fairness properties

 A transition t is impartial if t occurs infinitely often in all
infinite occurrence sequences.

t

M0 M1
’ M2

” M3
’ M4

”

M1
” M2

’

t

M3
”

t

M4
’

t

Kurt Jensen

 Lars M. Kristensen

67

Coloured Petri Nets

Department of Computer Science

 SendPacket and TransmitPacket are impartial.

 If one of these are removed (or blocked by the guard false)
the protocol will have no infinite occurrence sequences.

 The other three transitions are not impartial.

Fairness Properties

 Impartial Transitions: [SendPacket 1,TransmitPacket 1]

State space report: fairness properties

 If we remove the Limit place only SendPacket will be impartial.

 Adding the Limit place has changed the behavioural properties.

Instance no Instance no

Kurt Jensen

 Lars M. Kristensen

68

Coloured Petri Nets

Department of Computer Science

Generalisations of impartial

 A binding element is impartial if it occurs infinitely often in
all infinite occurrence sequences.

 A set of binding elements is impartial if binding elements
from the set occurs infinitely often in all infinite occurrence
sequences.

 A set of transitions is impartial if the union of their binding
elements is impartial.

Kurt Jensen

 Lars M. Kristensen

69

Coloured Petri Nets

Department of Computer Science

Fairness properties and SCCs

 Impartiality of a set of transitions/binding elements is checked
in a similar way.

 Construct the pruned state space in which all arcs
with X are removed.

 Construct the SCC graph of the pruned state space.

 X is impartial if and only if the two graphs have the
same size (are isomorphic).

 Impartiality of a transition/binding element X can be checked
by means of an SCC graph:

Kurt Jensen

 Lars M. Kristensen

70

Coloured Petri Nets

Department of Computer Science

Use of fairness properties

 As an example, we will investigate whether the set of binding
elements corresponding to loss of data packets and
acknowledgements is impartial.

 If the protocol does not terminate we expect this to be
because the network keeps losing packets, and we therefore
expect this set of binding elements to be impartial.

Kurt Jensen

 Lars M. Kristensen

71

Coloured Petri Nets

Department of Computer Science

Use of fairness properties

BEsImpartial

 (List.map

 (fn (n,d) =>

 Bind.StateSpaceProtocol’TransmitPacket

 (1,{n=n,d=d,success=false}))

 AllPackets)

 ^^

 (List.map

 (fn (n,_) =>

 Bind.StateSpaceProtocol’TransmitAck

 (1,{n=n+1,success=false}))

 AllPackets);

Binding elements which

lose a data packet

Binding elements which

lose an acknowledgement

Standard query

function

List

concatenation

true

Kurt Jensen

 Lars M. Kristensen

72

Coloured Petri Nets

Department of Computer Science

State space report / query functions

 The state space report contains information about standard
behavioural properties which make sense for all CPN models.

 Non-standard behavioural properties can be investigated by means

of queries.

 For some purposes it is sufficient to provide arguments to a
predefined query function – e.g. to check whether a set of
markings constitute a home space.

 For other more special purposes it is necessary to write your own
query functions using the CPN ML programming language.

Kurt Jensen

 Lars M. Kristensen

73

Coloured Petri Nets

Department of Computer Science

Example of user-defined query function

 We want to check whether the protocol obeys the stop-and-wait
strategy – i.e. that the sender always sends the data packet
expected by the receiver (or the previous one).

fun StopWait n =

 let

 val NextSend = ms_to_col (Mark.Protocol’NextSend 1 n);

 val NextRec = ms_to_col (Mark.Protocol’NextRec 1 n);

 in

 (NextSend = NextRec) orelse (NextSend = NextRec - 1)

 end;

val SWviolate = PredAllNodes (fn n => not (StopWait n));

We check whether some states

violate the property.

This is easier than checking

that all states fulfil the property.

Negation

Converts a multiset 1`x with

one element to the colour x

 The stop-and-wait strategy is
not satisfied (7020 violations).

Predefined search function

Kurt Jensen

 Lars M. Kristensen

74

Coloured Petri Nets

Department of Computer Science

Violation of stop-and-wait strategy
 Acknowledgements may overtake each other on C and D.

 This means that it is possible for the sender to receive an
old acknowledgement which decrements NextSend.

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

k n

if k=n
then k+1
else k

11`11 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Kurt Jensen

 Lars M. Kristensen

75

Coloured Petri Nets

Department of Computer Science

Shortest counterexample

 We want to construct a shortest counterexample – i.e. to find
one of the shortest occurrence sequences leading from the
initial marking to a marking where the predicate does not hold.

 The state space is generated in breadth-first order.

 Hence, we search for the lowest numbered node in the list
SWviolate.

Kurt Jensen

 Lars M. Kristensen

76

Coloured Petri Nets

Department of Computer Science

Lowest node in SWviolate

List.foldr

 Int.min

 (List.hd SWviolate)

 (List.tl SWviolate);
Predefined function:

- Takes 3 arguments

Combination function

Initial value

List

 The function iterates over the list.

 In each iteration the combination function is applied to the pair
consisting of the current element in the list and the value
returned by the previous application of the combination function.

 In the first iteration, the initial value plays the role of the result
from the previous application.

 557 Violating marking (as close to M0 as possible)

Can be expected in the simulator

Kurt Jensen

 Lars M. Kristensen

77

Coloured Petri Nets

Department of Computer Science

Shortest counterexample

ArcsInPath(1,557);

Predefined function:

- Returns the arcs in one of the

 shortest paths from 1 to 557

 The path can be visualised using the drawing facilities in the CPN
state space tool.

 This is the same drawing facilities that were used to visualise the
initial fragment of the state space (at the beginning of this
lecture).

[1,3,9,16,27,46,71,104,142

 201,265,362,489,652, 854

 1085,1354,1648]

18 arcs
Lowest numbered node

in the list SWviolate

Kurt Jensen

 Lars M. Kristensen

78

Coloured Petri Nets

Department of Computer Science

Bindings elements in counterexample

List.map (ArcToBE (ArcsInPath(1,557)));

 The binding elements in the shortest path can be obtained by
the following query:

Maps a state space arc

into its binding element

Shortest path with

counterexample

Kurt Jensen

 Lars M. Kristensen

79

Coloured Petri Nets

Department of Computer Science

Shortest counterexample
 1 (SendPacket, <d="COL",n=1>)

 2 (TransmitPacket, <n=1,d="COL",success=true>)

 3 (ReceivePacket, <k=1,data="",n=1,d="COL“>)

 4 (SendPacket, <d="COL",n=1>)

 5 (TransmitAck, <n=2,success=true>)

 6 (ReceiveAck, <k=1,n=2>)

 7 (SendPacket, <d="OUR",n=2>)

 8 (TransmitPacket, <n=1,d="COL",success=true>)

 9 (TransmitPacket, <n=2,d="OUR",success=true>)

10 (ReceivePacket, <k=2,data="COL",n=1,d="COL“>)

11 (ReceivePacket, <k=2,data="COL",n=2,d="OUR“>)

12 (TransmitAck, <n=3,success=true>)

13 (ReceiveAck, <k=2,n=3>)

14 (SendPacket, <d="ED ",n=3>)

15 (TransmitPacket, <n=3,d="ED ",success=true>)

16 (ReceivePacket, <k=3,data="COLOUR",n=3,d="ED “>)

17 (TransmitAck, <n=2,success=true>)

18 (ReceiveAck, <k=3,n=2>)

Packet no 1

and its ack

Packet no 2

and its ack

Retrans-

mission

NextSend = 2

Packet no 3

NextRec = 4

Kurt Jensen

 Lars M. Kristensen

80

Coloured Petri Nets

Department of Computer Science

if n<>k
then 1`()

else empty

()

() data

n if success

then 1`n

else empty

n

if n=k

then 1`(k+1)

else empty

(n,d)(n,d)

n if n=k
then data^d

else data

(n,d)

if success
then 1`(n,d)

else empty

(n,d)

Transmit

Ack

Receive
Packet

Transmit

Packet

Send

Packet

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data

Received

1`""

DATA

B

NOxDATA

Packets

To Send

AllPackets

NOxDATA

Receive

Ack

if success
then empty

else 1`()

if success
then empty

else 1`()

nk

if n=k

then k+1

else k

k

Revised protocol

 Now we only send an acknowledgement when an expected packet
is received.

 Is the
new protocol
correct?

 Are the
behavioural
properties
the same as
before?

Kurt Jensen

 Lars M. Kristensen

81

Coloured Petri Nets

Department of Computer Science

State space for revised protocol

 As before there is a single dead marking which corresponds
to the desired terminal marking, where all packets have
been successfully transmitted.

 The new protocol is partially correct.

 The state space contains 1,823 nodes and 6,829 arcs.

 Before we had 13,215 nodes and 52,874 arcs.

 Now there are no home markings.

 We can reach situations from which it is impossible to
reach the desired terminal marking.

http://images.google.dk/imgres?imgurl=http://www.dr.dk/NR/rdonlyres/20B9D94B-5896-477F-8B12-2D2540037BFE/193444/47f3a77c285d4251b520212fd837cc65_Sur_smiley_112757.jpg&imgrefurl=http://www.dr.dk/Nyheder/Penge/2006/01/18/093304.htm&h=180&w=190&sz=6&hl=da&start=1&tbnid=z1oDJ4RGk1nYYM:&tbnh=98&tbnw=103&prev=/images%3Fq%3Dsur%2Bsmiley%26ndsp%3D18%26svnum%3D10%26hl%3Dda%26lr%3D%26sa%3DN
http://images.google.dk/imgres?imgurl=http://www.lingocomic.com/gfx/goodies/smiley-big.png&imgrefurl=http://www.lingocomic.com/gfx/goodies/%3FM%3DD&h=490&w=490&sz=42&hl=da&start=3&tbnid=NulRmafrvFp_wM:&tbnh=130&tbnw=130&prev=/images%3Fq%3Dsmiley%26svnum%3D10%26hl%3Dda%26lr%3D%26sa%3DG

Kurt Jensen

 Lars M. Kristensen

82

Coloured Petri Nets

Department of Computer Science

Analysis of revised protocol
 The dead marking is no longer a home marking and hence

we must have one or more terminal SCCs from which we
cannot reach the dead marking.

 The result of the query is a list with six SCCs.

 The state space nodes in the six SCCs can be obtained
using the function SccToNodes.

 To get a shortest counterexample, we choose the lowest
numbered node which is node 12.

PredAllSccs (fn scc => SccTerminal scc andalso

 not (SccTrivial scc));

 These terminal SCCs can be found by the following query
which returns all SCCs that are terminal but not trivial:

Standard query function:

- Searches through all nodes in the SCC graph

- Returns those which fulfil the predicate

Kurt Jensen

 Lars M. Kristensen

83

Coloured Petri Nets

Department of Computer Science

if n<>k
then 1`()

else empty

()

() data

n if success

then 1`n

else empty

n

if n=k

then 1`(k+1)

else empty

(n,d)(n,d)

n if n=k
then data^d

else data

(n,d)

if success
then 1`(n,d)

else empty

(n,d)

Transmit

Ack

Receive

Packet

Transmit

Packet

Send

Packet

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data

Received

1`""

DATA

B

NOxDATA

Packets

To Send

AllPackets

NOxDATA

Receive

Ack

if success
then empty

else 1`()

if success
then empty

else 1`()

nk

if n=k

then k+1

else k

k

3 3`() 11`21 1`1

11`"COL"6

1`(1,"COL")++

1`(2,"OUR")++
1`(3,"ED ")++

1`(4,"PET")++

1`(5,"RI ")++

1`(6,"NET")

Marking no 12

Sender is sending

packet no 1

Receiver has

received packet no 1

and is now waiting

for packet no 2

 All data packets will we “wrong”.

 No acknowledgements will be sent – no progress.

Acknowledgement

requesting packet

no 2 has been lost

http://images.google.dk/imgres?imgurl=http://www.dr.dk/NR/rdonlyres/20B9D94B-5896-477F-8B12-2D2540037BFE/193444/47f3a77c285d4251b520212fd837cc65_Sur_smiley_112757.jpg&imgrefurl=http://www.dr.dk/Nyheder/Penge/2006/01/18/093304.htm&h=180&w=190&sz=6&hl=da&start=1&tbnid=z1oDJ4RGk1nYYM:&tbnh=98&tbnw=103&prev=/images%3Fq%3Dsur%2Bsmiley%26ndsp%3D18%26svnum%3D10%26hl%3Dda%26lr%3D%26sa%3DN

Kurt Jensen

 Lars M. Kristensen

84

Coloured Petri Nets

Department of Computer Science

What is wrong

 The analysis of marking no 12 has told us what the problem is.

 The sender continues to send wrong packets and the receiver
never sends an acknowledgement which can correct the
problem.

 We might also want to know how we arrived at this unfortunate
situation.

 This is done by constructing an error trace / counterexample.

Kurt Jensen

 Lars M. Kristensen

85

Coloured Petri Nets

Department of Computer Science

Counterexample

 The query below returns a list with all the arcs in one of the
shortest paths from node 1 (initial marking) to node number 12:

ArcsInPath(1,12);

List.map (ArcToBE (ArcsInPath(1,12)));

 The binding elements in the shortest path can be obtained by
the following query:

Maps a state space arc

into its binding element

Kurt Jensen

 Lars M. Kristensen

86

Coloured Petri Nets

Department of Computer Science

Counterexample

 The result of the query is the following list of binding elements:

 1 (SendPacket, <d="COL", n=1>)

 2 (TransmitPacket, <d="COL",n=1,success=true>)

 3 (ReceivePacket, <d="COL",n=1,k=1, data="">)

 4 (TransmitAck, <n=2,success=false>)

 We see that data packet no 1 was sent, successfully
transmitted, and received.

 However, the acknowledgment requesting data packet no 2
was lost on the network.

Kurt Jensen

 Lars M. Kristensen

87

Coloured Petri Nets

Department of Computer Science

System configurations

 With state space analysis we always investigate a system for
a particular configuration of the system parameters.

 In practice it is often sufficient to consider a few rather small
configurations – although we cannot be totally sure that
larger configurations will have the same properties.

 As system parameters increase the size of the state space

increases – often in an exponential way.

 This is called state space explosion, and it is one of the most
severe limitations of the state space method.

Kurt Jensen

 Lars M. Kristensen

88

Coloured Petri Nets

Department of Computer Science

Limit Packets Nodes Arcs Limit Packets Nodes Arcs

1 10 81 110 5 1 217 760

1 20 161 220 5 2 2,279 10,645

1 50 401 550 5 3 17,952 97,963

1 100 801 1,100 5 4 82,260 483,562

1 600 4,801 6,600 5 5 269,680 1,655,021

2 1 26 53 7 1 576 2,338

2 5 716 1,917 7 2 11,280 64,297

2 10 3,311 9,062 7 3 148,690 1,015,188

2 20 14,276 39,402 10 1 1,782 8,195

2 50 93,371 258,822 10 2 76,571 523,105

3 1 60 159 12 1 3,276 15,873

3 5 7,156 28,201 12 2 221,117 1,636,921

3 10 70,131 286,746 13 1 4,305 21,294

3 15 253,656 1,047,716 13 2 357,957 2,737,878

Different system configurations

Kurt Jensen

 Lars M. Kristensen

89

Coloured Petri Nets

Department of Computer Science

Is it worthwhile?

 It may take days to verify the properties of a system by
means of state spaces.

 However, this is still a relatively small investment:

 compared to the total number of resources used in a
system development project.

 compared to the cost of implementing, deploying and
correcting a system with errors that could have been
detected in the design phase.

 State space analysis can be a time consuming process
where it takes many hours to generate the state spaces
and verify the desired properties.

 However, it is fully automatic and hence requires much
less human work than lengthy simulations and tests.

Kurt Jensen

 Lars M. Kristensen

90

Coloured Petri Nets

Department of Computer Science

Partial state spaces

 It is sometimes impossible to generate the full state
space for a given system configuration – either because it
is too big or takes too long time.

 This means that only a partial state space – i.e. a
fragment of the state space is generated.

 Partial state spaces cannot in general be used to verify
properties, but they may identify errors.

 As an example, an undesirable dead marking in a partial
state space will also be present in the full state space.

 Partial state spaces can in that sense be viewed as being
positioned between simulation and state spaces.

 The CPN state space tool has a number of parameters to
control the generation of partial state spaces.

Kurt Jensen

 Lars M. Kristensen

91

Coloured Petri Nets

Department of Computer Science

State spaces - summary

 State spaces are powerful and easy to use.

 Construction and analysis can be automated.

 The user do not need to know the mathematics behind
the analysis methods.

 The main drawback is the state explosion – i.e. the size of
the state space.

 The present CPN state space tool handles state spaces
with up to one million states.

 For many systems this is not sufficient.

 Efficient state space methods is an active area of
research and an abundance of sophisticated techniques
exists for alleviating the state explosion problem.

Kurt Jensen

 Lars M. Kristensen

92

Coloured Petri Nets

Department of Computer Science

Reduced state spaces

 Fortunately, it is often possible to construct reduced state
spaces – without losing analytic power.

 This is done by exploiting:

 Progress measure.

 Symmetries in the modelled system.

 Other kinds of equivalent behaviour.

 Concurrency between events.

 The reduction methods rely on complex mathematics.

Kurt Jensen

 Lars M. Kristensen

93

Coloured Petri Nets

Department of Computer Science

Questions

Kurt Jensen

 Lars M. Kristensen

94

Assignment 3 – Task 2

Task 2:

Use state spaces to analyse the Sliding Window Protocol from task 1.

 To obtain a finite state space you should introduce a Limit place as shown in the

lectures. Having done this you can construct the state space, the SCC graph, and
the state space report. Start by setting the Limit to 1 or 2. Later you should
increase it.

 Alternatively: consider a variant of the protocol with bounded retransmission of
data packets. Available via:

http://www.hib.no/ansatte/lmkr/StateSpacesBounded.xml

 Use the state space reports to investigate whether your protocol works correctly.
You should check that the bounds are ok and that the dead markings and home
markings/spaces are as expected.

Coloured Petri Nets

Department of Computer Science

http://www.hib.no/ansatte/lmkr/StateSpacesBounded.xml

