
SIMUTools’14 - 1

A Pragmatic Approach to
Model-driven Code Generation from
Coloured Petri Nets Simulation Models

Lars M. Kristensen

Department of Computing

Bergen University College, NORWAY

Email: lmkr@hib.no / WWW: www.hib.no/ansatte/lmkr

mailto:lmkr@hib.no
http://www.hib.no/ansatte/lmkr

SIMUTools’14 - 3

Concurrent Systems

 The vast majority of IT systems today can be
characterised as concurrent software systems:

 Structured as a collection of concurrently executing
software components and applications (parallelism).

 Operation relies on communication, synchronisation,
and resource sharing.

Multi-core platforms and
multi-threaded software

Embedded systems and
networked control systems

Internet and Web-based
applications, protocols

SIMUTools’14 - 4

Concurrent Systems

 Most software development projects are
concerned with concurrent software systems.

 The engineering of concurrent systems is
challenging due to their complex behaviour:

 Concurrently executing and independently scheduled
software components.

 Non-deterministic and asynchronous behaviour
(e.g., timeouts, message loss, external events, …).

 Almost impossible for software developers to have
a complete understanding of the system behaviour.

 Reproducing errors is often difficult.

 Techniques to support the engineering of
reliable concurrent systems are important.

SIMUTools’14 - 5

Coloured Petri Nets (CPNs)
 General-purpose graphical modelling language for

the engineering of concurrent systems.

 Combines Petri Nets and a programming language:

Petri Nets: [C.A. Petri’62]

 graphical notation

 concurrency

 communication

 synchronisation

 resource sharing

Idle

Worker

Worker.all ()

Waiting
Decision

Worker

CanCommitIn

Worker

In

VotesOut

WorkerxVote

Out

DecisionIn

WorkerxDecision

In

AcknowledgeOut

Worker

Out

Receive
CanCommit

Receive

Decision

w

if vote = Yes
then 1`w

else empty

w

w

if vote = No

then 1`w
else empty

w

(w,vote)

(w,decision)

w

1 1`wrk(1)

1 1`wrk(2)

1
1`wrk(1)

1
1`(wrk(2),Yes)

CPN ML (Standard ML):

data manipulation

compact modelling

parameterisable models

H
ig

h
-L

e
v
e
l P

e
tr

i N
e
t

SIMUTools’14 - 6

CPN Tools [www.cpntools.org]

 Editing and syntax check.

 Interactive- and automatic simulation.

 Application domain visualisation.

 Verification based on
state space exploration.

 Simulation-based
performance analysis.

 Practical use of CPNs is supported by CPN Tools:

http://www.cpntools.org/

SIMUTools’14 - 7

Application Areas

 Communication protocols and data networks.

 Distributed algorithms and software systems.

 Embedded systems and control software.

 Business processes and workflow modelling.

 Manufacturing systems.

 … [http://cs.au.dk/cpnets/industrial-use/]
1 2

http://cs.au.dk/cpnets/industrial-use/
http://cs.au.dk/cpnets/industrial-use/
http://cs.au.dk/cpnets/industrial-use/
http://cs.au.dk/cpnets/industrial-use/

SIMUTools’14 - 8

Examples of CPN Tools users
North America

Asia

Europe
 Boeing
 Hewlett-Packard
 Samsung Information

Systems
 National Semiconductor Corp.
 Fujitsu Computer Products
 Honeywell Inc.
 MITRE Corp.,
 Scalable Server Division
 E.I. DuPont de Nemours Inc.
 Federal Reserve System
 Bell Canada
 Nortel Technologies, Canada

 Mitsubishi Electric Corp., Japan
 Toshiba Corp., Japan
 SHARP Corp., Japan
 Nippon Steel Corp., Japan
 Hongkong Telecom Interactive Multimedia System

 Alcatel Austria
 Siemens Austria
 Bang & Olufsen, Denmark
 Nokia, Finland
 Alcatel Business Systems, France
 Peugeot-Citroën, France
 Dornier Satellitensysteme,

Germany
 SAP AG, Germany
 Volkswagen AG, Germany
 Alcatel Telecom, Netherlands
 Rank Xerox, Netherlands
 Sydkraft Konsult, Sweden
 Central Bank of Russia
 Siemens Switzerland
 Goldman Sachs, UK

1

SIMUTools’14 - 9

Most Recent CPN Book

 K. Jensen and L.M. Kristensen. Coloured
Petri Nets: Modelling and Validation of
Concurrent Systems, Springer, 2009.

 K. Jensen, L.M. Kristensen, L. Wells:
Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent
Systems. Intl. Journal on Software Tools for
Technology Transfer, Vol. 9, pp. 213-254,
Springer, 2007. www.hib.no/ansatte/lmkr/cpnbook/

http://www.hib.no/ansatte/lmkr/cpnbook/

SIMUTools’14 - 10

Outline of this Talk

 Part I: Coloured Petri Nets and CPN Tools

 Example: Two-phase commit transaction protocol

 Basic concepts of Coloured Petri Nets (CPNs)

 Short demonstration(s) of CPN Tools

 Part II: Automated Code Generation

 Case study: The IETF WebSocket Protocol

 Pragmatic-annotated CPN models

 Template-based code generation for protocol software

SIMUTools’14 - 11

Part I:
The Coloured Petri Nets Modelling
Language and CPN Tools

Based on:

Kurt Jensen (Aarhus University, Denmark) and Lars M. Kristensen:

Coloured Petri Nets - A Graphical Modelling Language for Formal Modelling

and Validation of Concurrent Systems. Submitted to Communications of the

ACM, February 2014.

SIMUTools’14 - 12

11

1 2

1

2

2

1

1 2

1

2

2

1 2

1
1

1 2

1

2

2

1

Quick Recap: Petri Net Concepts
State modelling:

 Places (ellipses) that may
hold tokens.

 Marking (state): distribution
of tokens on the places.

 Initial marking: initial state.

Event (action) modelling:

 Transitions (rectangles)

 Directed arcs: connecting
places and transitions.

 Arc weights: specifying

tokens to be added/removed.

Execution (token game):

 Current marking

 Transition enabling

 Transition ocurrence

2

1

2

1

1

SIMUTools’14 - 13

Workers

Workers

Coordinator

Coordinator

Decision

WorkerxDecision

Acknowledge

Worker

Votes

WorkerxVote

CanCommit

Worker

Coordinator Workers

Example: Two-phase
Commit Transaction Protocol
 A concurrent system consisting of a coordinator

process and a number of worker processes:

{Commit,Abort}

CanCommit?

{Yes,No}

Acknowledge

P
h

a
s
e
 1

P

h
a
s
e
 2

SIMUTools’14 - 14

CPN Model: Top-level Module

Workers

Workers

Coordinator

Coordinator

Decision

WorkerxDecision

Acknowledge

Worker

Votes

WorkerxVote

CanCommit

Worker

Coordinator Workers

 The CPN model is comprised of four modules
hierarchically organised in three levels.

Substitution transition

(double-lined border)

Place (ellipse)

Name of submodule

associated with

substitution

transition

Colour set / type

SIMUTools’14 - 15

Colour Sets and Tokens
 The colour set (or type) of a place determines

the kinds of tokens that may reside on a place:

val W = 2;

colset Worker = index wrk with 1..W;

colset Vote = with Yes | No;

colset WorkerxVote = product Worker * Vote;

colset Decision = with Abort | Commit;

colset WorkerxDecision = product Worker * Decision;

 Colour sets are defined using the Standard ML
based programming language CPN ML.

wrk(1), wrk(2)

Yes, No

(wrk(1),Yes)

Abort, Commit

(wrk(1),Commit)

Example values Colour set definitions

CanCommit

Worker

Votes

WorkerxVote

Acknowledge

Worker

Decision

WorkerxDecision

SIMUTools’14 - 16

coefficient («of»)

Markings and Multi-sets
 A marking (state) is a distribution of tokens on

the places of the model.

 Each place may hold a multi-set of tokens over
the colour set of the place:

Workers

Workers

Coordinator

Coordinator

Decision

WorkerxDecision

Acknowledge

Worker

Votes

WorkerxVote

CanCommit

Worker

Coordinator Workers

3
2`wrk(1)++
1`wrk(2)

2

1`(wrk(1),No)++
1`(wrk(2),Yes)

1
1`wrk(1)

2`wrk(1) ++

1`wrk(2)

Multi-set notation

token colour

(value)

union («and»)

SIMUTools’14 - 17

workers

Worker.all ()

(c,workers)

()

()

()

CollectVotes

CollectVotes

Receive
Acknowledgements

SendCanCommit

Acknowledge In

Worker

Votes In

WorkerxVote

Decision Out

WorkerxDecision

CanCommit Out

Worker

Idle

1`()

UNIT

Waiting
Acknowledgements

CoordinatorxWorkers

Waiting
Votes

UNIT

Out

Out

In

In

CollectVotes

Coordinator Module

Port places: used for

exchanging tokens with the

upper-level module.

Initial marking: determines tokens in the initial state

Arc expressions: determine

the tokens added and removed

by occurrences of enabled

transitions.

UNIT: colour set with a single value () «unit»

SendCanCommit and

ReceiveAcknowledgement are

ordinary transitions.

SIMUTools’14 - 18

Initial Marking
 The initial marking (state) is obtained by

evaluating the initial marking expressions:

workers

Worker.all ()

(c,workers)

()

()

()

CollectVotes

CollectVotes

Receive
Acknowledgements

SendCanCommit

Acknowledge In

Worker

Votes In

WorkerxVote

Decision Out

WorkerxDecision

CanCommit Out

Worker

Idle

1`()

UNIT

Waiting
Acknowledgements

CoordinatorxWorkers

Waiting
Votes

UNIT

Out

Out

In

In

CollectVotes

workers

Worker.all ()

(c,workers)

()

()

()

CollectVotes

CollectVotes

Receive
Acknowledgements

SendCanCommit

Acknowledge In

Worker

Votes In

WorkerxVote

Decision Out

WorkerxDecision

CanCommit Out

Worker

Idle

1`()

UNIT

Waiting
Acknowledgements

CoordinatorxWorkers

Waiting
Votes

UNIT

Out

Out

In

In

CollectVotes

1 1`()

1`() Coordinator is

initially Idle

SIMUTools’14 - 19

Transition Enabling
 A transition is enabled is there are sufficient

tokens on each input place:

Worker.all ()

()

()

SendCanCommit CanCommit Out

Worker

Idle

1`()

UNIT

Waiting
Votes

UNIT

1 1`()

1`()

 The required tokens are
determined by evaluating
the input arc expressions.

 Enabling condition: the multi-set
of tokens obtained must be
contained in the multi-set of
tokens present on the
corresponding input place.

≤

SIMUTools’14 - 20

Transition Occurrence

Worker.all ()

()

()

SendCanCommit CanCommit Out

Worker

Idle

1`()

UNIT

Waiting
Votes

UNIT

1 1`()

Worker.all ()

()

()

SendCanCommit CanCommit Out

Worker

Idle

1`()

UNIT

Waiting
Votes

UNIT

2

1`wrk(1)++
1`wrk(2)

1 1`()

 An enabled transition may occur changing the
current marking (state) of its connected places:

 Tokens removed from input
places: determined by evaluating
the input arc expressions.

 Tokens added to output places:
determined by evaluating the
output arc expressions.

1`()

1`() 1`wrk(1) ++

1`wrk(2)

Coordinator is now Waiting for Votes

A message to each worker

asking whether they

CanCommit.

SIMUTools’14 - 21

Port and Socket Places
 Tokens added (removed) on a port place are

added (removed) on the associated socket place:

Workers

Workers

Coordinator

Coordinator

Decision

WorkerxDecision

Acknowledge

Worker

Votes

WorkerxVote

CanCommit

Worker

Coordinator Workers

2

1`wrk(1)++
1`wrk(2)

Worker.all ()

()

()

SendCanCommit CanCommit Out

Worker

Idle

1`()

UNIT

Waiting
Votes

UNIT

2

1`wrk(1)++
1`wrk(2)

1 1`()

Coordinator module Top-level module

 Associated port and
socket places constitute
a compound place.

SIMUTools’14 - 22

Workers Module

w

(w,decision)

(w,vote)

w if vote = No
then 1`w
else empty

w

w

if vote = Yes
then 1`w
else empty

w

Receive
Decision

Receive
CanCommit

AcknowledgeOut

Worker

DecisionIn

WorkerxDecision

VotesOut

WorkerxVote

CanCommitIn

Worker

Waiting
Decision

Worker

Idle

Worker.all ()

Worker
In

Out

In

Out

2

1`wrk(1)++
1`wrk(2)

2
1`wrk(1)++
1`wrk(2)

Workers

Workers

Coordinator

Coordinator

Decision

WorkerxDecision

Acknowledge

Worker

Votes

WorkerxVote

CanCommit

Worker

Coordinator Workers

2

1`wrk(1)++
1`wrk(2)

Top-level module Workers module

 The Workers module
models the behaviour
of all workers.

SIMUTools’14 - 23

Transition Variables
 The arc expressions on the arcs of a transition

may contain free variables:

(w,vote)

w if vote = No
then 1`w

else empty

if vote = Yes
then 1`w

else empty

w

Receive

CanCommit

VotesOut

WorkerxVote

CanCommitIn

Worker

Waiting

Decision

Worker

Idle

Worker.all ()

Worker
2

1`wrk(1)++

1`wrk(2)
2

1`wrk(1)++

1`wrk(2)

val W = 2;

colset Worker = index wrk with 1..W;

var w : Worker;

colset Vote = with Yes | No;

var vote : Vote;

if-then-else expressions with

free variables vote and w.

 Transition ReceiveCanCommit has two free
variables: vote and w.

Variable declarations

SIMUTools’14 - 24

Transition Bindings
 Variables must be bound to values for a transition

to be enabled and occur:

(w,vote)

w if vote = No
then 1`w

else empty

if vote = Yes
then 1`w

else empty

w

Receive

CanCommit

VotesOut

WorkerxVote

CanCommitIn

Worker

Waiting

Decision

Worker

Idle

Worker.all ()

Worker
2

1`wrk(1)++

1`wrk(2)
2

1`wrk(1)++

1`wrk(2)

val W = 2;

colset Worker = index wrk with 1..W;

var w : Worker;

colset Vote = with Yes | No;

var vote : Vote;

Possible bindings

b1Y = < w = wrk(1),vote = Yes >

 The bindings correspond to possible enabling and
occurrence modes of the transition.

b1N = < w = wrk(1),vote = No >

b2Y = < w = wrk(2),vote = Yes >

b2Y = < w = wrk(2),vote = No >

SIMUTools’14 - 25

Enabling: Transition Bindings

(w,vote)

w if vote = No
then 1`w

else empty

if vote = Yes
then 1`w

else empty

w

Receive

CanCommit

VotesOut

WorkerxVote

CanCommitIn

Worker

Waiting

Decision

Worker

Idle

Worker.all ()

Worker
2

1`wrk(1)++

1`wrk(2)
2

1`wrk(1)++

1`wrk(2)

 A transition binding is enabled if there are
sufficient tokens on each input place:

 Tokens required on input places
are determined by evaluating
the input arc expressions in the
binding under consideration.

 Enabling condition: the multi-
set of tokens obtained must be
contained in the multi-set of
tokens present on the
corresponding input place.

b1Y = < w = wrk(1),vote = Yes >

1`wrk(1)

1`wrk(1)

SIMUTools’14 - 26

Occurrence: Transition Bindings

(w,vote)

w if vote = No
then 1`w

else empty

if vote = Yes
then 1`w

else empty

w

Receive

CanCommit

VotesOut

WorkerxVote

CanCommitIn

Worker

Waiting

Decision

Worker

Idle

Worker.all ()

Worker
2

1`wrk(1)++

1`wrk(2)
2

1`wrk(1)++

1`wrk(2)

(w,vote)

w if vote = No
then 1`w

else empty

if vote = Yes
then 1`w

else empty

w

Receive

CanCommit

VotesOut

WorkerxVote

CanCommitIn

Worker

Waiting

Decision

Worker

Idle

Worker.all ()

Worker

1
1`(wrk(1),Yes)

1
1`wrk(2)

1 1`wrk(1)

1 1`wrk(2)

 An enabled transition binding may occur
changing the current marking (state):

 Tokens removed from input places:
determined by evaluating the input
arc expression in the binding.

 Tokens added to output places:
determined by evaluating the output
arc expressions in the binding.

1`(wrk(1),Yes)

b1Y = < w = wrk(1),vote = Yes >

1`wrk(1)

1`wrk(1)

1`wrk(1)

empty

SIMUTools’14 - 27

Occurrence: Transition Bindings
 A transition may have several enabled bindings:

(w,vote)

w if vote = No
then 1`w

else empty

if vote = Yes
then 1`w

else empty

w

Receive

CanCommit

VotesOut

WorkerxVote

CanCommitIn

Worker

Waiting

Decision

Worker

Idle

Worker.all ()

Worker
2

1`wrk(1)++

1`wrk(2)
2

1`wrk(1)++

1`wrk(2)

(w,vote)

w if vote = No
then 1`w

else empty

if vote = Yes
then 1`w

else empty

w

Receive

CanCommit

VotesOut

WorkerxVote

CanCommitIn

Worker

Waiting

Decision

Worker

Idle

Worker.all ()

Worker

1
1`(wrk(1),Yes)

1
1`wrk(2)

1 1`wrk(1)

1 1`wrk(2)

(w,vote)

w if vote = No
then 1`w

else empty

if vote = Yes
then 1`w

else empty

w

Receive

CanCommit

VotesOut

WorkerxVote

CanCommitIn

Worker

Waiting

Decision

Worker

Idle

Worker.all ()

Worker

1
1`(wrk(1),No)

1
1`wrk(2)

2
1`wrk(1)++

1`wrk(2)
Bindings

b1Y = < w = wrk(1),vote = Yes >

b1N = < w = wrk(1),vote = No >

b2Y = < w = wrk(2),vote = Yes >

b2Y = < w = wrk(2),vote = No >

b1Y

b1N

SIMUTools’14 - 28

CPN Tools: Demo

 Simulation

 (Editing)

demo/simulationdemo.avi
demo/editingdemo.avi

SIMUTools’14 - 29

Verification and Model Checking

 Several advanced techniques available to
alleviate the inherent state explosion problem.

 Formal verification of CPN models can be
conducted using explicit state space exploration:

 A state space represents all
possible executions of the
CPN model.

 Standard behavioural
properties can be investigated
using the state space report.

 Model-specific properties can
be verified using queries and
temporal logic model
checking.

1
4:1

2
1:4

6
1:2

5
1:2

4
1:2

3
1:2

7
2:1

10
2:1

9
2:1

13
1:1

16
1:1

14
1:2

18
1:1

17
1:1

19
2:1

11
1:1

8
2:1

12
1:1

15
1:1

SendCanCommit

ReceiveCanCommit(1,Yes)

ReceiveCanCommit(1,No) Receive CanCommit(2,Yes)

Receive CanCommit(2,No)

Receive CanCommit(2,No)

ReceiveCanCommit(2,Yes)

ReceiveCanCommit(1,Yes)

ReceiveCanCommit(1,No)

CollectVotes

ReceiveCanCommit(2,Yes)

ReceiveCanCommit(2,No)

ReceiveDecision(2,abort)

ReceiveAcknowledgements

CollectVotes

ReceiveDecision(1,commit)ReceiveDecision(2,commit)

ReceiveDecision(2,commit)ReceiveDecision(2,commit)

ReceiveAcknowledgements

CollectVotes

ReceiveAcknowledgements

ReceiveCanCommit(1,Yes)

CollectVotes

ReceiveDecision(1,abort)

ReceiveAcknowledgements

ReceiveCanCommit(2,No)

SIMUTools’14 - 30

Waiting
Votes

Idle

1

CanCommit Out

Worker

SendCanCommit
Worker.all ()

@+7

1 1`()@7

2

1`wrk(1)@7+++
1`wrk(2)@7

Performance Analysis

 A global clock representing the
current model time.

 Tokens carry time stamps describing
the earliest possible model time at
which they can be removed.

 Time inscriptions on transitions and
arcs are used to give time stamps to
the tokens produced on output
places.

 CPNs include a concept of time that can be
used to model the timed taken by activities:

Waiting
Votes

Idle

1

CanCommit Out

Worker

SendCanCommit
Worker.all ()

@+7

1 1`()@0

 Random distribution functions can be used in
arc expressions (delays, packet loss, …).

 Data collection monitors and batch simulations
can be used to compute performance figures.

SIMUTools’14 - 31

SIMUTools’14 - 32

Perspectives on CPNs

 Modelling language combining Petri Nets with a
programming language.

 The development has been
driven by an application-
oriented research agenda:

 Key characteristics:

 Few but still powerful and expressive modelling
constructs.

 Implicit concurrency inherited from Petri nets:
everything is concurrent unless explicit synchronised.

 Verification and performance analysis supported by the
same modelling language.

Tools and software

technology

Practical

applications

Theory

Education

SIMUTools’14 - 33

Part II:
Automated Code Generation from
CPN Simulation Models

Based on:

Kent I.F. Simonsen and Lars M. Kristensen:

Implementing the WebSocket Protocol based on Formal Modelling and

Automated Code Generation. To appear in Proc. of 14th Intl. Conference on

Distributed Applications and Interoperable Systems, Springer, 2014.

http://www.google.com/imgres?imgurl=http://proqramlasdirma.azeriblog.com/public/blogs/proqramlasdirma/2009/02/24/program_code_s.jpg&imgrefurl=http://proqramlasdirma.azeriblog.com/&usg=__d-EgDx9_F28VqLWjDdqzAUF0gNs=&h=319&w=319&sz=65&hl=da&start=2&zoom=1&um=1&itbs=1&tbnid=z8HWVQfelReKXM:&tbnh=118&tbnw=118&prev=/images?q=Program+code&um=1&hl=da&sa=N&rlz=1R2SUNC_enPT385&tbs=isch:1

SIMUTools’14 - 34

Motivation and Background

 CPNs have been widely used for modelling and
validation of communication protocols*:

 Application Layer Protocols: IOTP, SIP, WAP, …

 Transport Layer Protocols: TCP, DCCP, SCTP, …

 Routing Layer Protocols: DYMO, AODV, ERDP, …

 It would be desirable to use CPN models more
directly for implementation of protocol software.

 Limited work on automatic code generation.

 This part of the talk:

 A newly developed approach to structure-
based code generation from CPN models.

 Application to the IETF WebSocket Protocol.

SIMUTools’14 - 35

Automated Code Generation
 It is difficult (in general) to recognize

programming language constructs in CPNs:

 Conclusion: some additional syntactical
constraints and/or annotations are required.

Workers

Workers

Decision

WorkerxDecision

Acknowledge

Worker

WorkerxVote

CanCommit

Worker

Workers

Coordinator

CoordinatorCoordinator

Votes

w

w if vote = No

then 1`w
else empty

w

w

if vote = Yes

then 1`w

else empty

w

Receive

Decision

Receive

CanCommit

Acknowledge

Out
Worker

Decision

In
WorkerxDecision

Votes

Out

WorkerxVote

CanCommit

In

Worker

Worker

Waiting

Worker

Worker

Idle

Workers

Worker

In

Out

In

Out

(w,vote)

(w,decision)

2

1`wrk(1)++
1`wrk(2)

2

1`wrk(1)++
1`wrk(2)

SIMUTools’14 - 36

Requirements
1. Platform independence:

 Enable code generation for multiple languages / platforms.

2. Integratebility of the generated code:

 Upwards integration: the generated code must expose an
explicit interface for service invocation.

 Downwards integration: ability for the generated code to call
and rely on underlying libraries.

3. Model checking and property verification:

 Code generation capability should not introduce complexity
problems for the verification of the model.

4. Readability of the generated code:

 Enable code review of the automatically generated code.

 Enable performance enhancements (if required).

SIMUTools’14 - 37

Overview of Approach

 Modelling structure requiring the CPN model to be
organised into three levels:

1. Protocol system level specifying the protocol principals
and the communication channels between them.

2. Principal level reflecting the life-cycle and services
provided by each principal in the protocol system.

3. Service level specifying the behaviour of the services
provided by each principal.

 Annotate the CPN model elements with code
generation pragmatics to direct code generation.

 A template-based model-to-text transformation
for generating the protocol software.

SIMUTools’14 - 38

Code Generation Pragmatics
 Syntactical annotations (name and attributes)

that can be associated with CPN model elements:

 Structural pragmatics designating principals and services.

 Control-flow pragmatics identifying control-flow elements and
control-flow constructs.

 Operation pragmatics identifying data manipulation.

 Template binding descriptors associating the
pragmatics and code generation templates:

 Bridges the gap between the platform independent CPN
simulation model and the target platform considered.

 Code can be generated for different platforms (Groovy, Clojure,
Java, Python) by changing the template binding descriptors.

SIMUTools’14 - 39

The IETF WebSocket Protocol

 Provides a bi-directional and message-oriented
service on top of the HTTP protocol:

HTTP WebSocket

client server
TCP open

HTTP request

HTTP response

TCP close

TCP open

HTTP upgrade-req

HTTP response

TCP close

message

message

data/ping/pong

message

message

client server

 Three main phases: connection establishment,
data transfer, and connection close.

SIMUTools’14 - 40

WebSocket: Protocol System

ClientToServer

Send

EndPoint

ServerToClient
Receive

EndPoint

ClientToServer
Receive

EndPoint

ServerToClient

Send

EndPoint

Server
<<principal>>

Server

Channel
<<channel>>

Channel

Client
<<principal>>

Client Channel ServerClient

 The <<principal>> pragmatic is used on
substitution transitions to designate principals.

 The <<channel>> pragmatic is used to
designate channels connecting the principals.

 The complete CPN model consists of 19 modules,
136 places, and 84 transitions:

SIMUTools’14 - 41

READY

<<LCV>>

()

OPEN

<<LCV>>

CLOSED

<<LCV>>
ServerToClient

In/Out EndPoint

ClientToServer In/Out

EndPoint

DataBuffer

<<state>>

Frames

[]

PingPongBuffer

<<state>>

Frames

[]

closeBuffer

<<state>>

Frames

[]

Close

()

OpenConnection

<<service(uri)>>

ClientEstablishWebSocketConnectionClientEstablishWebSocketConnection

ClientSendMessage

<<service(msg)>>

ClientSendMessageClientSendMessage

RecievePingPong

<<service()>>

ClientRecievePingPong

SendPingPong

<<service(ping)>>

ClientSendPingPongClientSendPingPong

ServerClose

<<internal()>>

ServerInitiated

ClientClose

<<service>>

ClientInitiated

getMessage

<<service()>>

ClientGetMessage

MessageBroker

<<internal>>
MessageBroker

ClientInitiated

ClientGetMessage

MessageBroker

ServerInitiated

ClientRecievePingPong

In/Out

In/Out

1 1`()

1 1`[] 1 1`[]

1

1`[]

1 1`()

Client: Principal Level
 Makes explicit the services provided and their

allowed order of invocation (API life-cycle):

<<state>> specifies state

variables of the principal.

<<service>> specifies

services that can be

invoked externally.

<<internal>> specifies

services that are invoked

internally in the principal.

<<LCV>> specifies life-

cycle variables for services.

SIMUTools’14 - 42

Client: MessageBroker Service

Control-flow locations is

made explicit using <<ID>>

pragmatic on places.

Service entry point

<<internal>>

Service exit point

<<return>>

OPEN

In/Out

ServerToClient

In/Out

EndPoint

In/Out

inBuffer
<<state>>

Out

Frames

wait receive
<<Id>>

continue
<<Id>>

dispatch
<<Id(cond: '(data data) (pingpong pingpong) (close close) (nonFinal nonFinal)')>>

Frame

closeBuffer
<<state>>

Out

Frames

PingPongBuffer
<<state>>

Out

Frames

startRecieve

()

end
<<Id(cond: '(isTrue OPEN)>>

terminated
<<Id>>

fragments
<<state>>

Frames

[]

Receive
DataFrame

<<rnternal()>>

[true]

data
<<dist(inBuffer)>>

[IsDataFrame frame]

pingpong
<<dist(pingPongBuffer)>>

<<callInternal(RecievePingPong)>>

[IsPingFrame(frame) orelse
IsPongFrame(frame)]

close
<<dist(closeBuffer)>>

<<callInternal(ServerClose)>>

[IsCloseFrame frame]

next

receive
<<recieve(ch, message)>>

<<mergeMessages(message, fragments,ClientClose)>>
<<getOpCode(message, opCode)>>

<<validateMsg(message, fragments,ClientClose)>>

end dispatch

return
<<return>>

nonFinal
<<dist(fragments)>>

[IsNonFinal(frame)]

(TCP,
(WSFRAME frame)
::content)

(TCP,content)

frame

frameframe frame

frames^^[frame]frames

frames^^[frame]
framesframes^^[frame] frames

frame

[frame]^^
frames

frames

if(IsLastFrame(frame))
then []
else frames

frames

Out
Out

Out

In/Out

1
1`[]

1 1`[]
1

1`[]

1 1`()

1 1`[]

 Internal service started when the
client is in the OPEN state.

Service-local state is

specified using <<state>>

SIMUTools’14 - 43

WebSocket Verification
 State space exploration prior to code generation

used to model check basic connection properties:

P1 All terminal states correspond to states in which the WebSocket
connection has been properly closed.

P2 From any reachable state, it is always possible to reach a state in
which the WebSocket connection has been properly closed.

fun isProperClosed : state -> bool

List.all isProperClosed (ListTerminalStates ())

HomeSpace (PredAllNodes isProperClosed)

ClientM ServerM #Nodes #Arcs Time (secs) #Terminal states

+ - 2,747 9,544 1 2

- + 2,867 9,956 2 2

+ + 39,189 177,238 246 4

SIMUTools’14 - 44

Automated Code Generation
 Template-based code generation consisting of

three main steps:

Computing Derived

Pragmatics

Abstract Template

Tree (ATT) Construction

Pragmatics binding

and emitting code

OPEN

In/Out

ServerToClient

In/Out

EndPoint

In/Out

inBuffer
<<state>>

Out

Frames

wait receive
<<Id>>

continue
<<Id>>

dispatch
<<Id(cond: '(data data) (pingpong pingpong) (close close) (nonFinal nonFinal)')>>

Frame

closeBuffer
<<state>>

Out

Frames

PingPongBuffer
<<state>>

Out

Frames

startRecieve

()

end
<<Id(cond: '(isTrue OPEN)>>

terminated
<<Id>>

fragments
<<state>>

Frames

[]

Receive
DataFrame

<<rnternal()>>

[true]

data
<<dist(inBuffer)>>

[IsDataFrame frame]

pingpong
<<dist(pingPongBuffer)>>

<<callInternal(RecievePingPong)>>

[IsPingFrame(frame) orelse
IsPongFrame(frame)]

close
<<dist(closeBuffer)>>

<<callInternal(ServerClose)>>

[IsCloseFrame frame]

next

receive
<<recieve(ch, message)>>

<<mergeMessages(message, fragments,ClientClose)>>
<<getOpCode(message, opCode)>>

<<validateMsg(message, fragments,ClientClose)>>

end dispatch

return
<<return>>

nonFinal
<<dist(fragments)>>

[IsNonFinal(frame)]

(TCP,
(WSFRAME frame)
::content)

(TCP,content)

frame

frameframe frame

frames^^[frame]frames

frames^^[frame]
framesframes^^[frame] frames

frame

[frame]^^
frames

frames

if(IsLastFrame(frame))
then []
else frames

frames

Out
Out

Out

In/Out

1
1`[]

1 1`[]
1

1`[]

1 1`()

1 1`[]

Step 1 Step 2 Step 3

SIMUTools’14 - 45

PetriCode [www.petricode.org]

 Command-line tool reading pragmatic-annotated
CPN models created with CPN Tools:

Pragmatic module: parses CPN models
and computes derived pragmatics.

ATT construction module: performs block
decomposition and constructs the ATT.

Code generation module: binds
templates to pragmatics and generates
source code via ATT traversal.

 Implemented in Groovy and uses the Groovy
template engine for code generation.

1

SIMUTools’14 - 46

OPEN

In/Out

ServerToClient

In/Out

EndPoint

In/Out

inBuffer
<<state>>

Out

Frames

wait receive
<<Id>>

continue
<<Id>>

dispatch
<<Id(cond: '(data data) (pingpong pingpong) (close close) (nonFinal nonFinal)')>>

Frame

closeBuffer
<<state>>

Out

Frames

PingPongBuffer
<<state>>

Out

Frames

startRecieve

()

end
<<Id(cond: '(isTrue OPEN)>>

terminated
<<Id>>

fragments
<<state>>

Frames

[]

Receive
DataFrame

<<rnternal()>>

[true]

data
<<dist(inBuffer)>>

[IsDataFrame frame]

pingpong
<<dist(pingPongBuffer)>>

<<callInternal(RecievePingPong)>>

[IsPingFrame(frame) orelse
IsPongFrame(frame)]

close
<<dist(closeBuffer)>>

<<callInternal(ServerClose)>>

[IsCloseFrame frame]

next

receive
<<recieve(ch, message)>>

<<mergeMessages(message, fragments,ClientClose)>>
<<getOpCode(message, opCode)>>

<<validateMsg(message, fragments,ClientClose)>>

end dispatch

return
<<return>>

nonFinal
<<dist(fragments)>>

[IsNonFinal(frame)]

(TCP,
(WSFRAME frame)
::content)

(TCP,content)

frame

frameframe frame

frames^^[frame]frames

frames^^[frame]
framesframes^^[frame] frames

frame

[frame]^^
frames

frames

if(IsLastFrame(frame))
then []
else frames

frames

Out
Out

Out

In/Out

1
1`[]

1 1`[]
1

1`[]

1 1`()

1 1`[]

principal(origin: explicit,

constraints:

[levels: protocol,

 connectedTypes:

 SubstitutionTransition])

endloop(origin: derived,

derviationRules:

[new PNPattern(pragmatics: [Id],

 minOutEdges: 2,

 backLinks: 1)],

constraints:

[levels: service,

 connectedTypes:Place])

OPEN

In/Out

wait receive
<<Id>>

continue
<<Id>>

dispatch

<<Id(cond: '(data data) (pingpong pingpong) (close close) (nonFinal nonFinal)')>>
Frame

startRecieve

()

end
<<Id(cond: '(isTrue OPEN)>>

terminated
<<Id>>

Receive

DataFrame

<<rnternal()>>

[true]

data

<<dist(inBuffer)>>

[IsDataFrame frame]

pingpong
<<dist(pingPongBuffer)>>

<<callInternal(RecievePingPong)>>

[IsPingFrame(frame) orelse
IsPongFrame(frame)]

close
<<dist(closeBuffer)>>

<<callInternal(ServerClose)>>

[IsCloseFrame frame]

next

receive
<<recieve(ch, message)>>

<<mergeMessages(message, fragments,ClientClose)>>

<<getOpCode(message, opCode)>>
<<validateMsg(message, fragments,ClientClose)>>

end dispatch

return
<<return>>

frame

frameframe frame

Step 1: Derived Pragmatics

 Derived pragmatics computed for control-flow
constructs and for data (state) manipulation.

A DSL is used for specifying

pragmatic descriptors.

<<sequence>> control block

<<loop>> block

<<atomic>> block

<<startloop>

<<endloop>>

<<branch>>

<<merge>>

<<atomic>> block

SIMUTools’14 - 47

Step 2: Abstract Template Tree
 An intermediate syntax tree representation of

the pragmatic-annotated CPN model:
A DSL for template bindings and

linkage to the target platform.
Protocol System

classTemplate(

pragmatic: ’principal’,

template: ’./groovy/mainClass.tmpl’,

isContainer: true)

endloop(

pragmatic: ’endloop’,

template: ’./groovy/endLoop.tmpl’)

<%import static org.k1s.petriCode.generation.CodeGenerator.removePrags%>class ${name} {

<%

 if(binding.variables.containsKey('lcvs')){

 for(lcv in lcvs){

 %>def ${removePrags(lcv.name.text)} ${lcv.initialMarking.asString() == '()' ? '= true' :

''}\n<%

 }

 }

 if(binding.variables.containsKey('fields')){

 for(field in fields){

 %>def ${removePrags(field.name.text)}<%

 }

 }

 %>

 %%yield%%

}

Client

<<principal>>

messageBroker<<internal>>

Server

<<principal>>

<<internal>>

<<sequence>>

<<return>>

<<atomic>> <<loop>> <<atomic>>

<<startloop>> <<endloop>>

SIMUTools’14 - 48

Step 3: Emitting Code
 Traversal of the ATT, invocation of code

generation templates, and code stitching:

<%import static org.k1s.petriCode.generation.CodeGenerator.removePrags%>class

${name} {

<%

 if(binding.variables.containsKey('lcvs')){

 for(lcv in lcvs){

 %>def ${removePrags(lcv.name.text)} ${lcv.initialMarking.asString() == '()' ? '=

true' : ''}\n<%

 }

 }

 if(binding.variables.containsKey('fields')){

 for(field in fields){

 %>def ${removePrags(field.name.text)}<%

 }

 }

 %>

 %%yield%%

}

SIMUTools’14 - 49

SIMUTools’14 - 50

Chat Application*
 WebSocket tutorial example provided with the

Java EE 7 GlassFish Application Server:

Web-based Chat Client [WebSocket Browser]

Chat Server [CPN WebSocket model]

Chat Client [CPN WebSocket model]

petricode-chattdemofull.mp4

SIMUTools’14 - 51

Autobahn Testsuite [autobahn.ws/testsuite/]

 Test-suite used by several industrial WebSocket
implementation projects (Google Chrome, Apache Tomcat,..).

 Errors encountered with the generated code:

 One global logical error related to the handling of
fragmented messages (CPN model change).

 Several local errors in the code-generation templates
were encountered (template change).

http://t.k1s.org/wsreport/

SIMUTools’14 - 52

Conclusions
 An approach allowing CPN simulation and

verification models to be used for code generation:

 Pragmatic annotations and enforcing modelling structure.

 Binding pragmatics to code generation templates.

 Implemented in the PetriCode tool to allow for
practical applications and initial evaluation.

 The approach has been evaluated via application to
the IETF WebSocket Protocol:

 State space verification was feasible for verifying some basic
connection properties prior to code generation.

 The implementation was tested for interoperability against a
comprehensive benchmark test-suite with promising results.

 A proof-of-concept on the scalability and feasibility of the
approach for the implementation of real protocols.

SIMUTools’14 - 53

