J

N
L &4
2N

A Pragmatic Approach for Transforming
Coloured Petri Net Models into Code

= A Case Study of the IETF WebSocket Protocol*

{ |

«mpo| M| b pp|m:

—>Crnconn)—]

Kent I.F. Simonsen'? and Lars M. Kristensen?
1Bergen University College “Technical University of Denmark

*pased on: Implementing the WebSocket Protocol based on Formal Modelling and Automated Code Generation. To
appear in at 14th Intl. IFIP Conference on Distributed Applications and Interoperable Systems (DAIS), June 2014.

H@GSKOLEN
| BERGEN DAIS’14 - 1

http://www.google.com/imgres?imgurl=http://proqramlasdirma.azeriblog.com/public/blogs/proqramlasdirma/2009/02/24/program_code_s.jpg&imgrefurl=http://proqramlasdirma.azeriblog.com/&usg=__d-EgDx9_F28VqLWjDdqzAUF0gNs=&h=319&w=319&sz=65&hl=da&start=2&zoom=1&um=1&itbs=1&tbnid=z8HWVQfelReKXM:&tbnh=118&tbnw=118&prev=/images?q=Program+code&um=1&hl=da&sa=N&rlz=1R2SUNC_enPT385&tbs=isch:1

Concurrent Systems

= The vast majority of IT systems today can be
characterised as concurrent software systems:

= Structured as a collection of concurrently executing
software components and applications.

= Operation relies inherently on communication,
synchronisation, and resource sharing.

4

Internet and Web-based Multi-core platforms and Embedded systems and
applications, protocols multi-threaded software networked control systems

"} HOGSKOLEN — ——
[BERGEN DAIS’14 - 2

Concurrent Systems

= The engineering of concurrent systems is
challenging due to their complex behaviour:

= Concurrently executing and independently scheduled
software components.

= Non-deterministic and asynchronous behaviour
(e.g., timeouts, message loss, external events, ...). @

= Almost impossible for software developers to have
. . CHALLENGES
a complete understanding of the system behaviour. AHEAD

= Reproducing errors is often difficult.

WARNING

= Techniques to support the engineering of
reliable concurrent systems are important.

HOGSKOLEN
| BERGEN DAIS’14 - 3

Coloured Petri Nets (CPNs)

= Graphical modelling language for the engineering
of concurrent systems.

= Combines Petri Nets and a programming language:

M) Petri Nets
worker.all () graphical notation
., I i) concurrency
W

@ » b i . communication
then 17w

wWorker Receive . else empty SynChl‘OhisatiOn
resource sharing

Programming language
data types
data manipulation
compact modelling
parameterisable models

I°N 1133d |oA97-YbIH

= Supported by CPN Tools [www.cpntools.orq]

"} HOGSKOLEN S
| BERGEN DAIS’14 - 4

http://www.cpntools.org/

Application of CPNs

= CPNs have been widely used for modelling and
validation of communication protocols:
= Application Layer Protocols: IOTP, SIP, WAP, ...
= Transport Layer Protocols: TCP, DCCP, SCTP, ...
= Routing Layer Protocols: DYMO, AODV, ERDP, ...

= It would be desirable to use CPN models more
directly for implementation of protocol software.

= Limited work on automatic code generation.

= This talk:

= A newly developed approach to structure-
based code generation from CPN models.

= Application to the IETF WebSocket Protocol.

& H@GSKOLEN
IBERGEN " DAIS’14 -5

Automated Code Generation

= It is difficult (in general) to recognize
programming language constructs in CPNs:

~
=
Warker.all ()
17 wrk(1)++)
Id|-e_-—-/ 1 rk ++
W

Worker

1
orker
@ w w if vote = No
h then 17w
worker Recaive alse empty)
CanCaommit
Coordinator WorkerxVote Workers [) e
wvote =
m@ then 17w

Ise empt
warkeniote L & i
Waiting
Decision
Warker

Worker=Decision

a [w,decision) ‘rw
WorkersDacision > "
eeeeee
Adinowledge w Decision
[Outhck led
Worker YT T lw J
YV ST 3

worker

= Conclusion: some additional syntactical
constraints and/or annotations are required.

& H@GSKOLEN
FE‘B.E.F‘QGENI " DAIS’14 -6

Main Requirements

1.

Platform independence:
= Enable code generation for multiple languages / platforms.

Integratebility of the generated code:

= Upwards integration: the generated code must expose an explicit
interface for service invocation.

= Downwards integration: ability for the generated code to invoke and
rely on underlying libraries.

Model checking and property verification:

= Code generation capability should not introduce complexity
problems for the verification of the CPN models.

Readability of the generated code:

= Enable code review of the automatically generated code.
= Enable performance enhancements (if required).
Scalability:

= Applicable to industrial-sized communication protocols.

HOGSKOLEN
| BERGEN DAIS’14 -

The IETF WebSocket Protocol

= Provides a bi-directional and message-oriented
service on top of the HTTP protocol:

client

HTTP
TCP open

v

HTTP request

HTTP response

TCP close

<
<

server

client

message
—

message
%

WebSocket
TCP open

»

»

HTTP upgrade-req

HTTP response

data/ping/pong
< >

TCP close

d
<«

server

message
%

_—
message

= Three main phases: connection establishment,
data transfer, and connection close.

HOGSKOLEN
[BERGEN

DAIS’14 - 8

Overview of Approach

= Modelling structure requiring the CPN model to be
organised into three levels:

1. Protocol system level specifying the protocol principals
and the communication channels between them.

2. Principal level reflecting the life-cycle and services
provided by each principal in the protocol system.

3. Service level specifying the behaviour of the services
provided by each principal.

= Annotate the CPN model elements with code
generation pragmatics to direct code generation.

= A template-based model-to-text transformation
for generating the protocol software.

& HBGSKOLEN e ——
Pt DAIS’14 - 9

S

Code Generation Pragmatics

= Syntactical annotations (name and attributes)
that can be associated with CPN model elements:
= Structural pragmatics designating principals and services.

= Control-flow pragmatics identifying control-flow elements and
control-flow constructs.

= Operation pragmatics identifying data manipulation.

= Template binding descriptors associating the
pragmatics and code generation templates:

= Bridges the gap between the platform independent CPN
simulation model and the target platform considered.

= Code can be generated for different platforms (Groovy, Clojure,
Java, Python) by changing the template binding descriptors.

|BERCGEN DAIS 14 - 10

WebSocket: Protocol System

= The complete CPN model consists of 19 modules,
136 places, and 84 transitions:

ClientToServer ClientToServer
Send Receive

EndPoint EndPoint

Client Channel Server
ServerTocnent ServerTOC”ent
Receive Send
[Client] EndPoint EndPoint [Server |

= The <<principal>> pragmatic is used on
substitution transitions to designate principals.

= The <<channel>> pragmatic is used to
designate channels connecting the principals.

& H@GSKOLEN
FE‘B.E.F‘%GVEN: " DAIS’14 - 11

Client: Principal Level

= Makes explicit the services provided and their
allowed order of invocation (API life-cycle):

<<service>> specifies
services that can be
invoked externally.

ClientSendMessage
<<service(msg)>>

<<internal>> specifies
services that are invoked
internally in the principal.

<<LCV>> specifies life-
cycle for services.

<<state>> specifies state
variables of the principal.

ServerToClient -

EndPoint

‘} HBGSKOLEN S
W |BERGEN DAIS’14 - 12

Client: MessageBroker Service

Receive
DataFrame
<<rnternal()>>

[true]

= Internal service started when the
client is in the OPEN state.

startRecieve

wait receive

Service entry point

4 <<ld>>
cp. if(IsLastFrame(frame)) H t I
(WSFRAME frame) receive Ihlenf[l <<| n er n a >>
:content) <<recieve(ch, message)>> else frames
<<mergeMessages(message, fragments,ClientClose)>> frames fragments -
P content) <<getOpCode(message, opCode)>> i Dljo
EndPoint <<validateMsg(message, fragments,ClientClose)>>
‘r Frasfes
[frame]™
frames frames
Service-local state is
<<lId(cond: '(data data) (pingpong pingpong) (close close) (nonFinal nonFinal)')>> <<dist(fragments)>>
[IsNonFinal(frame)] 1 f 1 d 1 t t
frame rame fame sSpecified using <<state=>>
[IsPingFrame(frame) orelse
IsPongFrame(frame)] [IsCloseFrame frame] \ [IsDataFrame frame]
dist(P oongaut) d (flosg frer) data
<<dist(pingPongBuffer)>> <<dist(closeBuffer)>> L
<<callinternal(RecievePingPong)>> <<callinternal(ServerClose)>> <<dist(inBuffer)>> . .
R oot Control-flow locations is
frames™[frame] frames rames
) @ frames frames™{frame] d I . . t . I D
Am g made explicit using <<ID>>
PingPongBuffer <<state>> l <
<<state>> @) .
inBuffer D t I
& pragmatic on places.
continue
<<ld>>
next

end dispatch

Service exit point
<<return>>

return
<<return>>

end
<<Id(cond: (isTrue OPEN)>>

terminated
<<ld>>

AN HOGSKOLEN — ——

<% IBERGEN " DAIS’14 - 13

H@GSKOLEN
$ | BERGEN DAIS’14 - 14

BERGEN UNIVERSITY COLLEGE

WebSocket Verification

= State space exploration prior to code generation
used to model check basic connection properties:

PO From the initial state it is possible to reach states in which the
WebSocket connection has been opened.

P1 All terminal states correspond to states in which the WebSocket
connection has been properly closed.

P2 From any reachable state, it is always possible to reach a state in
which the WebSocket connection has been properly closed.

ClientM ServerM #Nodes #Arcs Time (secs) #Terminal states

4 - 2,747 9,544 1

- + 2,867 9,956 2 2
+ + 39,189 177,238 246 4

& HOGSKOLEN ™o
e DAIS*14 - 15

Automated Code Generation

= Template-based code generation consisting of

three main steps:

Step 1 Step 2

Step 3

—

Send
“services
,_'; =

Partition l:a't Cc\n pleted

<partition= <=t a":L:'G returnz
5 FFFFFF Eﬁd Packet Packet Sent

:{5&1b¢er <send= EﬁdLDDp

def getMessage () {
ars: F TOKEN __:, message:]+/
def TOKEN___
def
/lge ge
if(inBuffer != null && inBuffer.size() > 0){
message = inBuffer.remove (0)
byte[] bArr = new byte[message.payload.size
for(int i = 0; i < bArr.length; i++){
bArr[i] = message.payLoad.get (1)
3
if (message.opCode == 1)
message = new String(bArr)
lelse if (message.opCode == 2) ({
message = DbArr
lelse |
message = null

}
return message

01

Computing Derived Abstract Template
Pragmatics Tree (ATT) Construction

”N HOGSKOLEN
[BERGEN

Pragmatics binding
and emitting code

DAIS’14 - 16

PetriCode | www.petricode.org]

= Command-line tool reading pragmatic-annotated
CPN models created with CPN Tools:

(Command Line Interface)

4)

a|npow
sonewbeud

(

11V

a|npow \

u0I12NJISU0D

~

\.
4

-

S|npowl
uolleJausn

~

(\/

ATT

N

Pragmatics

)

Access/CPN

Groovy

D
S
)

Pragmatic module: parses CPN models
and computes derived pragmatics.

ATT construction module: performs block
decomposition and constructs the ATT.

Code generation module: binds
templates to pragmatics and generates
source code via ATT traversal.

= Implemented in Groovy and uses the Groovy
template engine for code generation.

HOGSKOLEN
[BERGEN

DAIS’14 - 17

http://www.petricode.org/

Step 1: Derived Pragmatics

= Derived pragmatics computed for control-flow
constructs and for data (state) manipulation.

A DSL is used for specifying
<<atomic>> block pragmatic descriptors.

principal (origin: explicit,
constraints:

[levels: protocol,
connectedTypes:

<<startloop>

(Tcp, I if(1sL
(WSFRAME frame) then |
“:content) else frames

receive
<<recieve(ch, message)>>
fragment:

lientClose
<<getOpCode(message, opCode)>>
nnnnnnnnnnnnnnnnnnn

SubstitutionTransition])

nnnnnnn
Hdist(fragments)>>

! endloop (origin: derived,

derviationRules:

[new PNPattern (pragmatics: [Id],
minOutEdges: 2,
backLinks: 1)1,

T) e
e

pingpong
<<dist(pingPongBuffer)>>
g

constraints:
[levels: service,
connectedTypes:Place])

<<endloop>>

end
<<ld(cond: ‘(isTrue OPEN)>>

<<sequence>> control block

‘» HOGSKOLEN
e DAIS14 - 18

Step 2: Abstract Template Tree

= An intermediate syntax tree representation of

the pragmatic-annotated CPN model:

Protocol System A DSL for template bindings and

L linkage to the target platform.
Client classTemplate (
<<principal>> bpragmatic: ’'principal’,
., \ template: ’./groovy/mainClass.tmpl”’,
\ v Server isContainer: true)
. <<principal>> endloop (
messageBroker<<internal>> P . P pragmatic: ’endloop’,
template: ' ./groovy/endLoop.tmpl’)
. \ 4
<<l nter n al >> <<retu rn=>= <%import static org.kls.petriCode.generation.CodeGenerator.removePrags%>class ${name} {

<%
if(binding.variables.containsKey('lcvs')){

<<Sequence>> for(lcv in Icvs){

%>def ${removePrags(lcv.name.text)} ${Icv.initialMarking.asString() =="'()' ? '= true':

"Nn<%
.) }
<<atomic>> <<loop>> <<atomic>>
if(binding.variables.containsKey('fields'))X{
' for(field in fields){
/\ %>def ${removePrags(field.name.text)}<%
| }
<<startloop>> <<endloop>> b
! %%yield%%
v)

& HOGSKOLEN — i
FBFRGEN DAIS’14 - 19

P

Step 3: Emitting Code

= Traversal of the ATT, invocation of code
generation templates, and code stitching:

Protocol System

Client e —
<<principal>>

\

T €—<<internal>>

<<sequence>> —>

- €—<<atomic>> <<loop>> <<atomic>> —>

~<— <<startloop>> <<endloop>> —>

W

‘» HOGSKOLEN
[BERGEN

def getMessage () {

[_TOKEN_ _:,
def _ TOEEN_

def message
S SgetMessage
if (inBuffer

Srvars: message:] +/

'= null && inBuffer.size() = 0){

message = inBuffer.remove (0)
byte[] bArr = new byte[message.paylLoad.size ()]
for(int i = 0; i < bArr.length; i++){

bArr[i] = message.payload.get (1)

}
if (message.opCode == 1) {
message new String(bArr)
lelse if (message.opCode
message bArr
}
lalse/|
message

2) {

null

return message

def SendPingPong(ping){ ... }
def ClientClose (){ ... }

def getMessage(){ ... } |

}

DAIS’14 - 20

H@GSKOLEN
$ | BERGEN DAIS’14 - 21

BERGEN UNIVERSITY COLLEGE

Chat Application

= WebSocket tutorial example provided with the
Java EE 7 GlassFish Application Server:

.. WebSocket : Chat
< localhost + @ B~ javascripQ

WebSocket : Chat

Users Chat Log
Duke Dilldall: Hi
Dilldall Duke: Hello
Hello
Join Chat

Connected to ws://localhost:31337/chat/websocket
RECEIVED: Duke joined

RECEIVED: Dilldall joined

RECEIVED: Dilldall: Hi

RECEIVED: Duke: Hello

Web-based Chat Client [WebSocket Browser]

”» HOGSKOLEN
[BERGEN

eeeeee

Host: localhost

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: 0lVynPVTkdfh2eZy®RPz3PN8P5g=
Sec-WebSocket-Version: 13

HTTP/1.1 101 Web Socket Protocol Handshake

Server: PetriCode Automatically Generated WebSoket Server
Connection: Upgrade

Sec-WebSocket-Accept: SHFMiCNCr3JSmc8wcRD9ggWVqqM=
Upgrade: websocket

SHfMiCNCr33Smc8wcRD9ggWVqqM=
#: OPCODE: 1

RECIEVED: Dilldall joined

Hi

#: OPCODE: 1

RECIEVED: Dilldall: Hi
OPCODE: 1

RECIEVED: Duke: Hello

Chat Client [CPN WebSocket model]

DAIS’14 - 22

petricode-chattdemofull.mp4

Autobahn Testsuite ..

[NAutobahn

utobahn.ws/testsuite/]

= Test-suite used by several industrial WebSocket
implementation pI‘OjECtS (Google Chrome, Apache Tomcat,..).

= Errors encountered with the generated code:
= One protocol logical error related to the handling of

fragmented messages (CPN model change).

= Several local errors in the code-generation templates
were encountered (template change).

Tests Server Passed |Client Passed
1. Framing (text and binary messages) 16/16 16/16
2. Pings/Pongs 11/11 11/11
3. Reserved bits (i (FXi
4. Opcodes 10/10 10/10
5. Fragmentation 20/20 20,/20
6. UTF-8 handling 137/141 137/141
7. Close handling 38/38 38/38
9. Limits/Performance 54 /54 48 /54
10. Auto-Fragmentation 1/1 1/1

”N HOGSKOLEN
[BERGEN

http://t.k1s.org/wsreport/

DAIS’14 - 23

http://t.k1s.org/wsreport/
http://t.k1s.org/wsreport/

H@GSKOLEN
$ | BERGEN DAIS’14 - 24

BERGEN UNIVERSITY COLLEGE

Conclusions

= An approach enabling CPN models to be used for
code generation of protocol software:
= Pragmatic annotations and enforcing modelling structure.
= Binding of pragmatics to code generation templates.

= Implemented in the PetriCode tool to allow for
practical applications and initial evaluation.

= Scalability of the approach has been evaluated via
application to the IETF WebSocket Protocol:

= State space-based verification was feasible for verifying basic
connection properties prior to code generation.

= The implementation was tested for interoperability against a
comprehensive benchmark test-suite with promising results.

= A proof-of-concept on the scalability and feasibility of the
approach for the implementation of real protocols.

|N HOGSKOLEN ™=
C IB;RGEN DAIS’14 - 25

HHHHHHHHH — ,
EEEEEEE DAIS’14 - 26

