Towards a Multi Meta-modelling Approach for Developing Distributed Healthcare Applications

Fazle Rabbi^{1,2}, Yngve Lamo¹, Lars M. Kristensen¹ and Ingrid C. Yu²

- ¹ Department of Computing, Mathematics, and Physics Bergen University of Applied Sciences
- ² Department of Informatics University of Oslo

Healthcare Systems and IT

Involves the organisation of:

- People: healthcare personnel, patients, ...
- Institutions: hospitals, emergency services, doctor's office,...
- Resources: equipment, medical supplies, biological material,...

IT systems for healthcare services must:

- Integrate with external healthcare systems and services.
- Support electronic forms of capturing patient information.
- Adapt to different settings and the use of different services.
- Support workflows following prescribed standards.
- Be adaptable to changes in rules and regulations.

Blood Transfusion Application

 Application being developed in collaboration with Helse Bergen and Helse Vest IKT:

- **1.** Read identity of patients from wristbands.
- 2. Access Electronic Health Record (EHR) to determine blood type.
- **3. Print** tags for blood samples to be sent to the laboratory.
- 4. Order blood from blood bank based on patient identity or tags.
- 5. Send screening results from laboratory to the blood bank.
- 6. Match patient identity and blood samples (safety).
- 7. Record any complications related to blood transfusion.

 A distributed application required to support and conform to a highly regulated work process.

Model Driven Engineering

A model-centric approach to software engineering:

Meta-modelling:

Defining domain-specific

Model refinement, model

execution, code generation.

M2M/M2T transformations:

modelling languages.

Models

Distributed Healthcare Apps

- Modelling a distributed healthcare application requires multiple modelling languages:
 - Workflow modelling –

for modelling the underlying work process of the application.

- Data entity modelling for modelling the data and information being processed.
- Message passing modelling –

for modelling the exchange of data between processes.

Coordination^{*} for coherent linkage of models belonging to the different modelling languages.

Multi meta

modelling

Diagram Predicate Framework

- Formal foundation for meta-modelling, model coordination, and model transformation:
 - A graph-based diagrammatic approach to meta-modelling.
 - Conformance (typing) based on graph homomorphisms and on predicates expressing additional model constraints.

Supported by the DPF Workbench and WebDPF:

Eclipse EMP-based [<u>http://dpf.hib.no</u>]

Web-based [http://data2.hib.no:8080/dpf2.0/index.htm]

Overview: Multi Meta-modelling

Workflow Modelling

 DERF language^{*} extended with system locations, message passing, and condition predicates:

*A. Rutle, W. MacCaull, H. Wang, and Y. Lamo. A Meta-modelling Approach to Behavioural Modelling, In Proc. of BM-FA '12, pp. 5:1–10. ACM, 2012.

Workflow Modelling

Workflow routing

 DERF language extended with system locations, message passing, and condition predicates:

(bloodType) (sampleId) Collect Print Tag seq Sample seq @App @App <TypeNotFound, patientInfo> [xor] (patientId) (patientInfo) Scan Patients Get Patient Check blood Order for <TypeFound_bloodType> Wristband Info Type Blood [seq] [seq] @EHR @App @App *а*Арр

Workflow Execution

 Execution of the extended DERF workflow models is based on model transformations:

Entity Modelling

Subsystems may have different entity models
but rely on a common entity meta-model:

Message Passing

BERGEN UNIVERSITY COLLEGE

 Based on typed graphs matched against subsystem entity instance models:

Process Descriptions

- Dynamic logic programs are used to specify the detailed behaviour of processes.
- Example Checking blood type:

Conclusions and Future Work

- A multi-modelling approach for the development of distributed healthcare applications:
 - Workflow modelling and workflow execution.
 - Entity modelling and process descriptions.
 - Message passing and process locations.

Evaluation on a blood transfusion application.

• Ongoing and future work:

- Modelling language extensions: exception handling, timing constraints, modules and containments (abstraction).
- Simulation-based validation of the application design: process conformance and user experience.
- Formal verification: workflows and process descriptions.
- Code generation: interfaces for the application subsystems.

