
Kurt Jensen

 Lars M. Kristensen

1

Coloured Petri Nets

Department of Computer Science

Coloured Petri Nets
Modelling and Validation of Concurrent Systems

Kurt Jensen &
Lars Michael Kristensen

{kjensen,lmkristensen}
@cs.au.dk

Chapter 14: Industrial Applications

Bob Jones

Medicine cabinet

Nurse

Medicine tray

Patient

Kurt Jensen

 Lars M. Kristensen

2

Coloured Petri Nets

Department of Computer Science

Industrial projects

 We present four projects where CP-nets and their supporting
computer tools have been used for system development in an
industrial context.

 The projects illustrate that CP-nets can be used in many
different phases of system development – ranging from
requirement specification to design, validation, and
implementation.

 The CPN models have been constructed in joint projects
between our research group at Aarhus University and
industrial partners.

 More than 100 examples of documented industrial projects
can be found at:

 www.cs.au.dk/CPnets/industrialex

http://www.cs.au.dk/CPnets/industrialex

Kurt Jensen

 Lars M. Kristensen

3

Coloured Petri Nets

Department of Computer Science

The four projects

 Design of an edge router discovery protocol for mobile ad-hoc
networks (with Ericsson Telebit).

 Specification of business processes and requirements
engineering for a new IT system (with Systematic Software
Engineering and Aarhus County Hospital).

 Design of the BeoLink system (with Bang & Olufsen).

 Development of a planning tool for the Australian Defence
(with Australian Defence Science and Technology Organisation).

Kurt Jensen

 Lars M. Kristensen

4

Coloured Petri Nets

Department of Computer Science

Industrial project:
Protocol design at Ericsson Telebit
 Design of an Edge Router Discovery Protocol (ERDP) for mobile

ad-hoc networks.

 A CPN model was constructed constituting a formal executable
specification of the ERDP protocol.

 Simulation and message sequence charts were used for initial
investigations of the protocol’s behaviour.

 State space analysis was applied to conduct a formal verification
of key properties of ERDP.

 Both the modelling, simulation, and subsequent state space
analysis helped in identifying several omissions and errors in the
design – demonstrating the benefits of using formal techniques in
a protocol design process.

Kurt Jensen

 Lars M. Kristensen

5

Coloured Petri Nets

Department of Computer Science

Mobile ad-hoc network

 Collection of mobile nodes (devices), such as laptops, tablets,
and mobile phones, capable of establishing a communication
infrastructure for their common use.

 The nodes in an ad-hoc network
operate:

 in a fully self-configuring and
distributed manner,

 without any pre-existing
communication infrastructure
(such as designated base
stations and routers).

X

X

Kurt Jensen

 Lars M. Kristensen

6

Coloured Petri Nets

Department of Computer Science

Network architecture

 ERDP supports:

 gateways in discovering edge routers,

 edge routers in configuring gateways with a globally
routable IPv6 address prefix.

Edge routers

Gateways

Ad-hoc

Network

Ad-hoc

Network

Ad-hoc

Network

Ad-hoc

Network

Ad-hoc

Network

IPv6

Core Network

Wireless

communication

High-speed

network

Wireless

communication

Nodes may move:

– within the ad-hoc networks

– from one ad-hoc network to another

Wireless

communication

Kurt Jensen

 Lars M. Kristensen

7

Coloured Petri Nets

Department of Computer Science

Gateway Edge Router ER Buffer GW Buffer

Unsolicited RA

Unsolicited RA

Unsolicited RA

NoPrefixes

RS[]

RS[]

RS[]

Assign:P1

Solicited RA [P1]

Solicited RA [P1]

Solicited RA [P1]

Update:P1

Configuration of a gateway

Periodical multi-cast of

unsolicited router

advertisement (RA)

Unicast router

solicitation (RS)

New prefix

Currently no

assigned prefixes

Unicast solicited router

advertisement (RA)

Update prefixes

Prefixes have a limited lifetime

– must be refreshed

– otherwise they will expire

Kurt Jensen

 Lars M. Kristensen

8

Coloured Petri Nets

Department of Computer Science

Module hierarchy for ERDP model

Gateway

Edger

Router

Wireless communication

link between gateway and

edge router

Abstract

view

Kurt Jensen

 Lars M. Kristensen

9

Demo in CPN Tools

Coloured Petri Nets

Department of Computer Science

Kurt Jensen

 Lars M. Kristensen

10

Coloured Petri Nets

Department of Computer Science

ERDP module (most abstract view)

GW_ER_Link GW_ER_Link

EdgeRouter

EdgeRouter

Gateway

Gateway

EROut

IPv6Packet

ERIn

IPv6Packet

GWOut

IPv6Packet

GWIn

IPv6Packet

Gateway EdgeRouter

GW_ER_Link

Four

packet

buffers

 The colour set IPv6Pakcet is used to model packets sent
between the gateway and the edge router.

Three

substitution

transitions

Kurt Jensen

 Lars M. Kristensen

11

Coloured Petri Nets

Department of Computer Science

Colour sets for router solicitations

colset IPv6Addr = string;

 IPv6 addresses:

colset RSOption = union

 RS_SrcLinkAddr : NDLinkAddrOption +

 RS_PrefixInformation : NDPrefixInfoOption;

colset RSOptions = list RSOption;

colset RouterSolicitation = record Options : RSOptions *

 NU : NOTMOD;

 Router solicitations:

Protocol fields that do not affect the operation of

ERDP are modelled using the colour set NOTMOD

containing the single dummy value notmod

IPv6 addresses are modelled as strings

This makes it possible to use both

mnemonic names and standard

hexadecimal notation

Kurt Jensen

 Lars M. Kristensen

12

Coloured Petri Nets

Department of Computer Science

Colour sets for router advertisements

colset RAOption = union

 RA_SrcLinkAddr : NDLinkAddrOption +

 RA_MTU : NDMTUOption +

 RA_PrefixInformation : NDPrefixInfoOption;

colset RAOptions = list RAOption;

colset RouterAdvertisement = record CurHopLimit : UInt8 *

 M : Bit *

 O : Bit *

 RouterLifetime : UInt16 *

 ReachableTime : UInt32 *

 RetransTimer : UInt32 *

 Options : RAOptions;

INT

INT

Bool

Kurt Jensen

 Lars M. Kristensen

13

Coloured Petri Nets

Department of Computer Science

colset ICMPBody = union RS : RouterSolicitation +

 RA : RouterAdvertisement;

colset ICMPMessage = record Type : UInt8 *

 Code : UInt8 *

 Message : ICMPBody;

Colour sets for ICMP packets

 ERDP is based on the IPv6 Neighbour Discovery Protocol (NDP)
which uses Internet Control Message Protocol (ICMP) packets.

Two kinds of

messages

Body

Kurt Jensen

 Lars M. Kristensen

14

Coloured Petri Nets

Department of Computer Science

colset IPv6Payload = union ICMP : ICMPMessage;

colset IPv6Header = record Version : Bit4 *

 TrafficClass : NOTMOD *

 Flowlabel : NOTMOD *

 PayloadLength : NOTMOD *

 NextHeader : Bit8 *

 HopLimit : Bit8 *

 SourceAddress : IPv6Addr *

 DestAddress : IPv6Addr;

colset IPv6Packet = record Header : IPv6Header *

 ExtHeaders : NOTMOD *

 Payload : IPv6Payload;

Colour sets for IPv6 packets

Header

Payload

Header

Payload

Kurt Jensen

 Lars M. Kristensen

15

Coloured Petri Nets

Department of Computer Science

ERDiscard
Prefixes

ERDiscardPrefixes

ProcessRS

ProcessRS

Send
UnsolicitedRA

SendUnsolicitedRA

Prefix
Assigned

ERPrefixAssigned PrefixCount

Config

ERConfig

ERIn In

IPv6Packet

EROut Out

IPv6Packet

OutIn

SendUnsolicitedRA

ProcessRS

ERDiscardPrefixes

PrefixCount

{ll_er = "ER link-local address",
 er_l2 ="ER link-addr"}

[] 1`1

1

1`[]

1

1`{ll_er="ER link-local address",er_l2
="ER link-addr"}

1

1`1

EdgeRouter module

Configuration

information

Input

buffer

Output

buffer

Prefixes

assigned

Number of

unassigned prefixes

 Three substitution transitions:

 Multi-cast of periodic unsolicited Router Advertisements.

 Reception and processing of unicast Router Solicitations.

 Expiration of prefixes on the edge router side.

Kurt Jensen

 Lars M. Kristensen

16

Coloured Petri Nets

Department of Computer Science

colset ERPrefixEntry = product IPv6Addr * IPv6Prefix;

colset ERPrefixAssigned = list ERPrefixEntry;

colset PrefixCount = int;

colset LinkAddr = string;

colset ERConfig = record

 ll_er : IPv6Addr * (* link-local address *)

 er_l2 : LinkAddr; (* link-addr (layer 2) *)

Colour sets for EdgeRouter module

No prefixes
assigned

One
unassigned
prefix

Link-local address
Link address

Initial marking:

ERDiscard
Prefixes

ERDiscardPrefixes

ProcessRS

ProcessRS

Send
UnsolicitedRA

SendUnsolicitedRA

Prefix
Assigned

ERPrefixAssigned PrefixCount

Config

ERConfig

ERIn In

IPv6Packet

EROut Out

IPv6Packet

OutIn

SendUnsolicitedRA

ProcessRS

ERDiscardPrefixes

PrefixCount

{ll_er = "ER link-local address",
 er_l2 ="ER link-addr"}

[] 1`1

1

1`[]

1

1`{ll_er="ER link-local address",er_l2
="ER link-addr"}

1

1`1

 1`{ll_er = "ER link-local address",

 er_l2 ="ER link-addr"}

Kurt Jensen

 Lars M. Kristensen

17

Coloured Petri Nets

Department of Computer Science

gwprefixassign

CreateUnsolicitedRA(erconfig)

erconfig

Send
UnsolicitedRA

[SendUnsolicitedRA(gwprefixassign,prefixleft)]

Prefix
Assigned

I/O

1`[]

1

ConfigI/O

{ll_er = "ER link-local address",
 er_l2 ="ER link-addr"}

ERConfig

IPv6Packet

I/O

PrefixCount

I/O EROut OutOut

prefixleft

ERPrefixAssigned

PrefixCountI/OI/O

1
1`[]

1

1`{ll_er="ER link-local address",
er_l2="ER link-addr"}

1

1`1

SendUnsolicitedRA module

Function checks

whether there are any

prefixes available

Function creates a

multi-cast packet

Kurt Jensen

 Lars M. Kristensen

18

Coloured Petri Nets

Department of Computer Science

gwprefixassign

CreateUnsolicitedRA(erconfig)

erconfig

Send
UnsolicitedRA

[SendUnsolicitedRA(gwprefixassign,prefixleft)]

Prefix
Assigned

I/O

1`[]

1

ConfigI/O

{ll_er = "ER link-local address",
 er_l2 ="ER link-addr"}

ERConfig

IPv6Packet

I/O

PrefixCount

I/O EROut OutOut

prefixleft

ERPrefixAssigned

PrefixCountI/OI/O

1
1`[]

1

1`{ll_er="ER link-local address",
er_l2="ER link-addr"}

1

1`{header={Version=6,TrafficClass=notmod,
Flowlabel=notmod,PayloadLenght=notmod,
NextHeader=1,HopLimit=255,
SourceAddress="ER link-local address",
DestinationAddress="all-nodes-multicast"},
extheaders=notmod,
payload=ICMP({Type=134,Code=0,
Message=RA({CurHopLimit=0,M=0,O=0,
RouterLifetime=300,ReachableTime=0,
RetransTimer=0,Options=[RA_SrcLinkAddr
({Type=1,Length=notmod,
LinkLayerAddress="ER link-addr"})]})})}

1

1`1

Module after occurrence of transition

DestinationAddress specifies

a multi-cast to all nodes

SourceAddress and

LinkLayerAddress are

copied from Config

Kurt Jensen

 Lars M. Kristensen

19

Coloured Petri Nets

Department of Computer Science

GW_ER_Link module

 Models the wireless communication link between edge router
and gateway.

ipv6packet

ipv6packet ipv6packet

LossERtoGW

ERtoGWGWInOut

IPv6Packet

EROut In

IPv6Packet

Loss of packet

Successful

transmission

 Transmission in the other direction is modelled analogously
(not shown).

Kurt Jensen

 Lars M. Kristensen

20

Coloured Petri Nets

Department of Computer Science

Development of CPN model

 The CPN model was developed:

 in cooperation with protocol engineers at Ericsson Telebit,

 in parallel with the development of the ERDP specification.

 70 man-hours were spent on CPN modelling.

 Protocol developers were given a 6 hour course on the CPN
modelling language.

 This enabled them to read and interpret the CPN models
– which were used as basis for discussions of the
protocol design.

Kurt Jensen

 Lars M. Kristensen

21

Coloured Petri Nets

Department of Computer Science

First round

 Development started with the creation of an initial ERDP
specification (in natural language).

 Based on this, a first version of the CPN model was created.

 While creating the initial CPN model and discussing it
(in Review 1) the group identified a number of:

 design errors,

 incompletenesses and ambiguities in the specification,

 ideas for simplifications and improvements of the
protocol design.

Kurt Jensen

 Lars M. Kristensen

22

Coloured Petri Nets

Department of Computer Science

Second and third round

 Based on the discoveries in Review 1, the ERDP specification
and the CPN model were revised and extended.

 Review 2 identified a number of new issues to be resolved.

 Once more, the ERDP specification and the CPN model were
revised and extended.

 In review 3, no further problems were discovered.

 Message sequence charts (MSCs) integrated with simulation
was used to investigate the detailed behaviour of ERDP.

 This presented the operation of the protocol in a form which
was well-known to the protocol developers.

Kurt Jensen

 Lars M. Kristensen

23

Coloured Petri Nets

Department of Computer Science

Problems identified

Errors in protocol specification/operation 2 7 9

Incompleteness and ambiguity in specification 3 6 9

Simplifications of protocol operation 2 0 2

Additions to the protocol operation 4 0 4

Total 11 13 24

Category Rev 1 Rev 2 Total

 The following number of issues were identified during:

 construction of the CPN model,

 single step execution of the CPN model,

 discussions of the CPN model among the project group
members.

Kurt Jensen

 Lars M. Kristensen

24

Coloured Petri Nets

Department of Computer Science

Two complementary descriptions

 We used an iterative process involving a:

 Conventional natural language specification.

 CPN model.

 Both are required:

 The implementers of the protocol are unlikely to be
familiar with CP-nets.

 Important parts of the ERDP specification are not reflected
in the CPN model (such as the layout of packets).

 Construction of CPN models was a thorough and systematic
way to review the protocol design.

 Effective way of integrating CPN technology into the
development of a protocol.

Kurt Jensen

 Lars M. Kristensen

25

Coloured Petri Nets

Department of Computer Science

State space analysis

 State space analysis was pursued after the three iterations of
modelling described above.

 The purpose was to conduct a more thorough investigation of
the operation of ERDP, including verification of its key
properties.

 The first step was to obtain a finite state space.

 The CPN model above can have an arbitrary number of tokens
on the packet buffers.

 As an example, the edge router may send an arbitrary
number of unsolicited router advertisements.

Kurt Jensen

 Lars M. Kristensen

26

Coloured Petri Nets

Department of Computer Science

Finite state space

 An upper integer bound of 1 was imposed on each of the four
packet buffers (GWIn, GWOut, ERIn, and EROut).

 This also prevents overtaking among the packets transmitted
across the wireless link.

 Furthermore, the number of tokens simultaneously on the four
packet buffers was limited to 2.

 We used the branching options in the CPN state space tool to
prevent the processing of enabled transitions which would
violate the limitations.

 Alternatively, we could have modified the CPN model.

Kurt Jensen

 Lars M. Kristensen

27

Coloured Petri Nets

Department of Computer Science

Key properties to verify

 The key property of ERDP is the proper configuration of the
gateway with prefixes:

 For a given prefix and state where the gateway has not yet
been configured with that prefix, the protocol must be able
to configure the gateway with the prefix.

 The edge router and the gateway should be consistently
configured, i.e., the assignment of a prefix must be recorded
in both entities.

Kurt Jensen

 Lars M. Kristensen

28

Coloured Petri Nets

Department of Computer Science

One prefix, no loss, no expiration

 State space: 46 nodes and 65 arcs.

 SCC-graph: 36 nodes and 48 arcs.

 A single dead marking.

 Inspection shows that the dead marking is inconsistently
configured.

 The edge router has assigned a prefix to the gateway.

 BUT, the gateway is not configured with the prefix.

 To locate the problem, query functions in the state space tool
were used to obtain a shortest counter example leading from
the initial marking to the dead marking.

 The error-trace was visualised by means of a message
sequence chart.

Kurt Jensen

 Lars M. Kristensen

29

Coloured Petri Nets

Department of Computer Science

MSC for error trace

 The edge router sends two
unsolicited RAs.

 The first one gets through and
we obtain a consistent
configuration with prefix P1.

 When the second reaches the
edge router there are no
unassigned prefixes available.

 A Solicited RA with the an
empty list of prefixes is sent.

 The gateway updates its
prefixes to be the empty list.

Kurt Jensen

 Lars M. Kristensen

30

Coloured Petri Nets

Department of Computer Science

One prefix, no loss, no expiration (rev)

 To fix the error, the protocol was modified such that the edge
router always replies with the list of all prefixes that it has
currently assigned to the gateway.

 State space: 34 nodes and 49 arcs.

 No dead markings.

 11 home markings (constituting a single terminal SCC).

 Inspection shows that all home markings are consistently
configured with the prefix. Hence we conclude:

 It is always possible to reach a consistently configured
state for the prefix.

 When such a state has been reached, the protocol entities
will remain consistently configured.

Kurt Jensen

 Lars M. Kristensen

31

Coloured Petri Nets

Department of Computer Science

One prefix, no loss, no expiration (rev)

 To verify that a consistently configured state will eventually be
reached, it was checked that the single terminal SCC was the
only non-trivial SCC.

 The protocol is not supposed to terminate.

 When the gateway is configured with a prefix it may (at any
time) send a router solicitation back to the edge router to have
its prefixes refreshed.

 Since we ignore expiration of prefixes, the edge router will
always refresh the prefix.

Kurt Jensen

 Lars M. Kristensen

32

Coloured Petri Nets

Department of Computer Science

More prefixes, no loss, no expiration

 With more than one prefix, the edge router may (at any time)
decide not to configure the gateway with additional prefixes.

 Hence, there is no guarantee to reach a state where all prefixes
are configured.

 Instead it was verified that there is a single terminal SCC
– where all markings are consistently configured for all prefixes.

 It is always possible to reach such a marking, after which all
protocol entities will remain consistently configured.

 It was also checked that all markings in each non-trivial SCC
represent states consistently configured for a subset of the
prefixes.

Kurt Jensen

 Lars M. Kristensen

33

Coloured Petri Nets

Department of Computer Science

One prefix, loss, no expiration

 The next step was to allow packet loss on the wireless link
between the edge routers and the gateway.

 State space: 40 nodes and 81 arcs.

 SCC-graph: 36 nodes and 48 arcs.

 A single dead marking (representing an undesired terminal
state with inconsistent configuration).

 To locate the problem, an error trace was found and visualised
by means of a message sequence chart.

Kurt Jensen

 Lars M. Kristensen

34

Coloured Petri Nets

Department of Computer Science

MSC for error trace

 The solicited RA containing
the prefix is lost.

 The edge router has assigned its
last prefix and is no longer
sending any unsolicited RAs.

 There are no timeouts to trigger
retransmission of the prefix to
the gateway.

 The problem was fixed by ensuring that the edge router
will resend an unsolicited RA to the gateway as long as it has
prefixes assigned to the gateway.

Kurt Jensen

 Lars M. Kristensen

35

Coloured Petri Nets

Department of Computer Science

One prefix, loss, no expiration (rev)

 State space: 68 nodes and 160 arcs.

 No dead markings and no home markings.

 Two terminal SCCs each containing 20 markings.

 In one of them, all markings are consistently configured
(with the single prefix P1).

 In the other, all markings are inconsistently configured.

 An error trace was obtained, the problem fixed and a new state
space produced.

 This time there was only one terminal SCC (containing 20
consistently configured markings).

Kurt Jensen

 Lars M. Kristensen

36

Coloured Petri Nets

Department of Computer Science

One prefix, loss, no expiration (rev)

 With packet loss there is no guarantee that the two protocol
entities will eventually be consistently configured
– since any number of packets can be lost on the wireless link.

 Each of the non-trivial SCCs were inspected using a
user-defined query to investigate the circumstances under
which the protocol entities would not eventually be
consistently configured.

 It was concluded that the absence of reaching a consistently
configured state is due to packet loss and nothing else. If only
finitely many packets are lost, a consistently configured state
for some prefix will eventually be reached.

Kurt Jensen

 Lars M. Kristensen

37

Coloured Petri Nets

Department of Computer Science

One prefix, loss, expiration

 State space: 173 nodes and 513 arcs.

 A single dead marking where:

 The edge router has no further prefixes to distribute and no
prefixes recorded for the gateway.

 The gateway is not configured with any prefix.

 This dead marking is OK – as we expect prefixes to eventually
expire.

 The single dead marking was also a home marking. The
protocol can always enter the expected terminal state.

Kurt Jensen

 Lars M. Kristensen

38

Coloured Petri Nets

Department of Computer Science

One prefix, loss, expiration

 When prefixes can expire there is no guarantee to reach a
consistently configured state.

 This is because a prefix may expire in the edge router before
the gateway has been configured with it.

 We can prove that for any state where a prefix still is available
in the edge router, it is possible to reach a consistently
configured state with this prefix.

Kurt Jensen

 Lars M. Kristensen

39

Coloured Petri Nets

Department of Computer Science

Iteration from simple to more complex

 Good idea to begin state space analysis from the simplest
possible configuration and then gradually lift the assumptions.

 As the assumptions are relaxed, the size of the state spaces
grows.

 For the ERDP protocol we did not encounter state explosion.

 The key properties could be verified for the number of prefixes
that are envisioned to appear in practice.

Kurt Jensen

 Lars M. Kristensen

40

Coloured Petri Nets

Department of Computer Science

|P| No loss/No expire Loss/No expire Loss/Expire

Statistics for state space analysis

1 34 49 68 160 173 531

2 72 121 172 425 714 2,404

3 110 193 337 851 2,147 7,562

4 148 265 582 1,489 5,390 19,516

5 186 337 926 2,390 11,907 43,976

6 224 409 1,388 3,605 23,905 89,654

7 262 481 1,987 5,185 44,450 169,169

8 300 553 2,742 7,181 78,211 300,072

9 338 625 3,672 9,644 130,732 505,992

10 376 697 4,796 12,625 209,732 817,903

 When a state space has been generated, the verification of the
key properties can be done in a few seconds.

Kurt Jensen

 Lars M. Kristensen

41

Coloured Petri Nets

Department of Computer Science

State spaces cover all cases

 Without state space analysis, the inconsistent configurations
would probably not have been discovered until a first
implementation of ERDP was operational.

 To discover these problems you need to consider subtle
execution sequences of the protocol, and there are too many
of these to do it manually.

 The state space analysis covers all execution sequences in a
systematic way.

Kurt Jensen

 Lars M. Kristensen

42

Coloured Petri Nets

Department of Computer Science

Conclusions from ERDP project

 The application of CPN technology in the development of ERDP
was successful.

 The CPN modelling language and computer tools were powerful
enough to handle a real-world communication protocol and
could easily be integrated in the conventional protocol
development process.

 Modelling, simulation and state space analysis identified several
non-trivial design problems which otherwise might not have
been discovered until implementation/test/deployment.

 Only 100 man-hours were used for CPN modelling and analysis.
This is a relatively small investment compared to the many
problems that were identified and resolved early in the
development.

Kurt Jensen

 Lars M. Kristensen

43

Coloured Petri Nets

Department of Computer Science

Second industrial project:
Requirements engineering at Systematic

 Specification of workflows (business processes) at
Aarhus County Hospital and their support by a new
Pervasive Health Care IT System.

 Behavioural visualisation driven by a CPN model was used
to engineer requirements through discussions with nurses
and doctors who were not familiar with the CPN modelling
language.

 This provided valuable input for the system requirements.

Kurt Jensen

 Lars M. Kristensen

44

Coloured Petri Nets

Department of Computer Science

Pervasive health care system

 The aim of the Pervasive Health Care System (PHCS) is to
improve the Electronic Patient Record (EPR) deployed at
hospitals in Aarhus, Denmark.

 EPR is a huge IT system with a budget of approximately
15 million US dollars. It will eventually have 8,000-10,000
users.

 EPR solves obvious problems with paper-based patient
records such as:

 being not always up-to-date,

 only present in one location at a time,

 misplaced and sometimes even lost.

Kurt Jensen

 Lars M. Kristensen

45

Coloured Petri Nets

Department of Computer Science

Electronic patient record

 The EPR system is based on desktop PCs. This induces at
least two problems for the users:

 Immobility
An electronic patient record accessed only from desktop PCs
is difficult/impossible to transport.

 Time-consuming login and navigation
EPR requires login (to ensure data security), and to use
the system for clinical work, a user must navigate
(to find a specific document for a given patient).

 The problems are aggravated because nurses and doctors
often are:

 Away from their offices and hence their PCs.

 Interrupted during their work.

Kurt Jensen

 Lars M. Kristensen

46

Coloured Petri Nets

Department of Computer Science

Possible solutions

 In the ideal world, users should have access to the
IT system wherever they need it, and it should be easy to
resume an interrupted work process.

 Use of personal digital assistants (PDAs) is a possible
solution to the immobility problem.

 Unfortunately, this creates new problems due to the small
screens and limited memory.

 Moreover it does not fully solve the time-consuming login
and navigation problems.

 PHCS is a more ambitious solution which takes advantage
of the possibilities of modern pervasive computing.

Kurt Jensen

 Lars M. Kristensen

47

Coloured Petri Nets

Department of Computer Science

Basic principles of PHCS
 The system is context-aware.

Nurses, patients, beds, medicine trays, and other items are
equipped with radio frequency identity (RFID) tags,
enabling the presence of such items to be detected
automatically by nearby computers.

 The system makes qualified guesses.
As an example, detection of a nurse or medicine tray may
result in automatic generation of buttons in the task-bar of
a computer (for easy navigation).

 The system is non-intrusive.
It does not interfere or interrupt hospital work processes in
an undesired way. As an example, nurses may use the
buttons in a task bar (by clicking on them), but they may
also completely ignore the buttons.

Kurt Jensen

 Lars M. Kristensen

48

Coloured Petri Nets

Department of Computer Science

User interface (simplified)

Nurse Jane Brown is present

in the medicine room

The medicine tray for patient,

Tom Smith, stands close to

the computer.

Jane Brown is pouring medicine

for patient Bob Jones to be given

at 12 a.m.

The medicine plan shows which

medicine has been:

– prescribed (Pr),

– poured (Po),

– given (G).

Kurt Jensen

 Lars M. Kristensen

49

Coloured Petri Nets

Department of Computer Science

Module hierarchy for PHCS model

Abstract

view

 Complex graph structure.

 How many instances do we have of each module?

1

1

1

1

1

1

2 2

2

2

3

We will now take

a closer look at

this module

 CPN model focus on the medicine administration work process.

Kurt Jensen

 Lars M. Kristensen

50

Coloured Petri Nets

Department of Computer Science

PourCheckTrays module

(compid,display,
removeLoginButton nurse taskbar,
addUser nurse users)

(compid,display,
 taskbar,users)

if loggedin nurse (compid,display,taskbar,users) then
 (compid, blank, removeMedicineCabinetButtons nurse taskbar, removeUser nurse users)
else
 (compid, display, removeMedicineCabinetButtons nurse taskbar, users)

(compid,display, addMedicineCabinetButtons nurse taskbar, users)

(compid,display,taskbar,users)

(compid,display,taskbar,users)

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

PourCheck
Tray

PourCheckTray

Enter EPR via
Login Button

[loginAllowed nurse
(compid,display,
taskbar,users)]

Leave Medicine
Cabinet

Approach
Medicine Cabinet

Medicine
Cabinet

Computer
I/O

1`(1,blank,noButtons,noUsers)

COMPUTER

TRAY

By Medicine
Cabinet

NURSE

Ready

1`(janeBrown,noTrays)++
1`(maryGreen,noTrays)

NURSE

I/O

PourCheckTray

Trays by
Medicine Cabinet

I/OI/O

1

1`(1,blank,noButtons,noUsers)

2

1`(janeBrown,noTrays)++
1`(maryGreen,noTrays)

4-tuple

Initial

marking

Pair

Initial

marking

Kurt Jensen

 Lars M. Kristensen

51

Coloured Petri Nets

Department of Computer Science

ApproachMedicineCabinet transition

(compid,display,
removeLoginButton nurse taskbar,
addUser nurse users)

(compid,display,
 taskbar,users)

if loggedin nurse (compid,display,taskbar,users) then
 (compid, blank, removeMedicineCabinetButtons nurse taskbar, removeUser nurse users)
else
 (compid, display, removeMedicineCabinetButtons nurse taskbar, users)

(compid,display, addMedicineCabinetButtons nurse taskbar, users)

(compid,display,taskbar,users)

(compid,display,taskbar,users)

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

PourCheck
Tray

PourCheckTray

Enter EPR via
Login Button

[loginAllowed nurse
(compid,display,
taskbar,users)]

Leave Medicine
Cabinet

Approach
Medicine Cabinet

Medicine
Cabinet

Computer
I/O

1`(1,blank,noButtons,noUsers)

COMPUTER

TRAY

By Medicine
Cabinet

NURSE

Ready

1`(janeBrown,noTrays)++
1`(maryGreen,noTrays)

NURSE

I/O

PourCheckTray

Trays by
Medicine Cabinet

I/OI/O

1

1`(1,blank,noButtons,noUsers)

2

1`(janeBrown,noTrays)++
1`(maryGreen,noTrays)

Buttons are added to

the task bar

One of the nurses moves

to the medicine cabinet

Kurt Jensen

 Lars M. Kristensen

52

Coloured Petri Nets

Department of Computer Science

Interaction graphics
D

e
p

a
rt

m
e
n

t
M

e
d

ic
in

e
 r

o
o

m

W
a
rd

Bath

Bath

Ward

Ward Ward

 Ward Team room

Medicine room

Bob Jones

Provide Trays

Pour/check Trays

Give Medicine

Take Tray

Leave Medicine Room

Patient list: Jane Brown

Login: Jane Brown

Medicine cabinet
Computer

screen

Computer

screen

Nurse
PC PC

Nurse

Medicine
tray

Two buttons
for Jane Brown

Patient

User has four choices
(corresponding to four enabled
transitions in the CPN model)

Blank

screen

Kurt Jensen

 Lars M. Kristensen

53

Coloured Petri Nets

Department of Computer Science

Project organisation
 The PHCS project started with:

 Domain analysis in the form of ethnographic field work.

 A series of vision workshops with participation of nurses,
doctors, computer scientists, and an anthropologist.

 An outcome of this was natural-language descriptions of
work processes and their proposed computer support.

 The first version of the CPN model was based on these prose
descriptions.

 The CPN model and the interaction graphics were extended
and modified in a number of iterations – each version based
on feedback on the previous version.

 The interaction graphics allowed discussions in evaluation
workshops with participation of nurses.

Kurt Jensen

 Lars M. Kristensen

54

Coloured Petri Nets

Department of Computer Science

CPN model with interaction graphics

 The CPN model and the interaction graphics were effective for:

 Specification of requirements.
Requirements are specified by net-inscriptions of transitions
modelling the manipulation of the involved computers.

 Analysis of requirements.
Supported through trial-and-error simulations with visualisation
of various scenarios for the envisioned work process.

 Discovery of new requirements.
Interaction with the CPN model (which describe multiple
scenarios) raised many new ideas and questions.

 Negotiation of requirements.
CPN model constitutes a formal and unambiguous description
of the requirements.

Kurt Jensen

 Lars M. Kristensen

55

Coloured Petri Nets

Department of Computer Science

Examples of requirements

 From transitions in the PourCheck module we get the following
requirements:

 When a nurse enters the medicine room, the medicine
computer must add a login button and a patient list button for
the nurse (transition ApproachMedicineCabinet).

 When a logged-in nurse leaves the medicine room, the
medicine computer must return to a blank display, remove her
buttons from the task-bar, and log her out (transition
LeaveMedicineCabinet).

 When a nurse clicks her login button, she must be added as a
user of EPR, and the login button must be removed from the
task-bar of the computer (transition EnterEPRviaLoginButton).

Kurt Jensen

 Lars M. Kristensen

56

Coloured Petri Nets

Department of Computer Science

Examples of analysis questions

 What happens if two nurses are both close to the medicine
computer?

 The computer generates login buttons and patient list
buttons for both of them.

 What happens when a nurse with several medicine trays
approaches a bed?

 Only a medicine plan button for the patient in the bed is
generated.

 Is it possible for a nurse to acknowledge pouring of
medicine while another nurse simultaneously acknowledges
giving of medicine for the same patient?

 No, that would require a more fine-grained concurrency
control of the patient records.

Kurt Jensen

 Lars M. Kristensen

57

Coloured Petri Nets

Department of Computer Science

Revision of CPN model

 Questions and answers gave proposals/requests for
changes to be made to the CPN model.

 An example:

 In an early version of the CPN model, the leaving of any
nurse from the medicine room resulted in the computer
display being blanked off.

 To be compliant with the non-intrusive design principle,
the leaving of a nurse who is not logged in, should not
disturb another nurse in the room working at the
computer.

 Hence the CPN model had to be changed accordingly.

Kurt Jensen

 Lars M. Kristensen

58

Coloured Petri Nets

Department of Computer Science

Negotiation of requirements

 In large projects, negotiation about requirements inevitably
takes place during the project and may have strong
economical consequences (since they are an essential part
of a legal contract between the involved parties).

 It is important to be able to determine the requirements
included in the initial agreement.

 If the parties agree that medicine administration should be
supported and that the formal and unambiguous CPN model
is the authoritative description, many disagreements can
quickly be settled.

Kurt Jensen

 Lars M. Kristensen

59

Coloured Petri Nets

Department of Computer Science

Conclusions from PHCS project

 CPN models are able to support requirements engineering.

 The CPN model and the visualisation graphics was built
“on top” of prose descriptions (of work processes and the
intended computer support) – consolidated as a set of
UML use cases.

 The stakeholders of PHCS were already familiar with these
UML use cases via earlier work on EPR.

 The interaction graphics enabled users like nurses and
doctors to be actively engaged in specification analysis
– increasing the probability that a system is built that fits
the future users’ work processes.

Kurt Jensen

 Lars M. Kristensen

60

Coloured Petri Nets

Department of Computer Science

Third industrial project:
Embedded system at Bang & Olufsen

 Concerned with the design and analysis of the BeoLink
system which distributes audio and video sources (such as
radios, CD/DVD players, and TVs) to different rooms via a
dedicated network.

 A timed CPN model was developed for the lock management
subsystem which is responsible for the basic synchronisation
of devices in the BeoLink system.

 State spaces (including a number of advanced state space
methods) were used to verify the lock management system.

Kurt Jensen

 Lars M. Kristensen

61

Coloured Petri Nets

Department of Computer Science

Lock management protocol

 The protocol is used to grant devices exclusive access to
services in the system, such as being able to use the loud
speakers.

 To access services in the system, a device is required to
possess a key.

 When the system is switched on, exactly one key must be
generated by the devices in the system and this must
happen within 2 seconds.

 Special devices in the system called audio and video
masters are responsible for generating the key.

Kurt Jensen

 Lars M. Kristensen

62

Coloured Petri Nets

Department of Computer Science

MSC for a typical scenario

 A user wish to change CD track on Device1.

Broadcast

to devices

Device3 has the key

and transfers it
Acknowledgement of

successful key transfer

Request

for key

Key is

available

Kurt Jensen

 Lars M. Kristensen

63

Coloured Petri Nets

Department of Computer Science

Module hierarchy for BeoLink model

Different functional

blocks in the lock

management protocol

Abstract

view

Behaviour of device in the

lock management protocol

Kurt Jensen

 Lars M. Kristensen

64

Coloured Petri Nets

Department of Computer Science

Send
Buffer

DIDxTLG_LIST

Config

CONFIGS

Receive
Buffer

TLG_BUFFERS

Network

NetworkNetwork

Device
DeviceDevice

Device

Network

BeoLink module (most abstract view)

 The CPN model provides a folded representation of the devices
by encoding the identity of devices in the token colours (as
known from the protocol with multiple receivers).

 This makes the CPN model parametric and able to represent
any number of devices.

Message

buffer
Message

buffer

DID = Device Identity

TLG: Telegram = Message

Kurt Jensen

 Lars M. Kristensen

65

Coloured Petri Nets

Department of Computer Science

(did,tlg_list3)

(did,tlg_list2)

tlgbuf

(did,fl_cmd_list)

(did,fl_cmd_list)

(did,fl_cmd_list^ [̂LOCK_MAN_KEY_RELEASE])

did@+(10+40*ran_0_1)

did

did@+(10+40*ran_0_1)

(did,KEY_IS_READY)

did

did

did

(did,fl_cmd_list^ [̂LOCK_MAN_KEY_WANTED])

ReleaseKey

GetKey

RequestKey

Send
Buffer

I/O

DIDxTLG_LIST

DIDxTLG_LIST

Receive
Buffer

I/O

TLG_BUFFERS

CommandsI/O

DIDxFL_CMD_LIST

StatusIn

DIDxFL_STATUS

UseKey

DID

Waiting

DID

Idle

DID

InI/O

I/O

I/O

FunctionLock
In

I/OI/O

3
1`(1,[])++
1`(2,[])++
1`(3,[])

1

1`[(1,[]),(2,[]),(3,[])]

3

1`(1,[])++
1`(2,[])++
1`(3,[])

3
1`1@500+++
1`2@500+++
1`3@500

3

1`(1,[])++
1`(2,[])++
1`(3,[])

KeyUser module (initial marking)

State of the devices

The markings of the five port

places are also changed by

the different submodules of

the lock management protocol

Buffer places

Three devices

Kurt Jensen

 Lars M. Kristensen

66

Coloured Petri Nets

Department of Computer Science

Device1 has obtained the key

(did,tlg_list3)

(did,tlg_list2)

tlgbuf

(did,fl_cmd_list)

(did,fl_cmd_list)

(did,fl_cmd_list^ [̂LOCK_MAN_KEY_RELEASE])

did@+(10+40*ran_0_1)

did

did@+(10+40*ran_0_1)

(did,KEY_IS_READY)

did

did

did

(did,fl_cmd_list^ [̂LOCK_MAN_KEY_WANTED])

ReleaseKey

GetKey

Send
Buffer

I/O

DIDxTLG_LIST

DIDxTLG_LIST

Receive
Buffer

I/O

TLG_BUFFERS

CommandsI/O

DIDxFL_CMD_LIST

StatusIn

DIDxFL_STATUS

UseKey

DID

Waiting

DID

Idle

DID

InI/O

I/O

I/O

FunctionLock
In

I/OI/ORequestKey

3
1`(1,[])++
1`(2,[])++
1`(3,[])

1

1`[(1,[]),(2,[]),(3,[])]

3

1`(1,[])++
1`(2,[])++
1`(3,[])

11`1@2050

2
1`2@500+++
1`3@500

3

1`(1,[])++
1`(2,[])++
1`(3,[])

 Devices2 and Device3
have requested but not
yet been granted the key.

Kurt Jensen

 Lars M. Kristensen

67

Coloured Petri Nets

Department of Computer Science

Validation and verification

 First the CPN model was validated by means of simulation.

 Then state spaces were used to verify the following
properties of the protocol:

 Mutual exclusion
At any time at most one key exists.

 Key generation
When the system is booted, a key is generated
within 2.0 seconds.

 Key access
Any given device always has the possibility of
obtaining the key.

Kurt Jensen

 Lars M. Kristensen

68

Coloured Petri Nets

Department of Computer Science

State space for BeoLink model

 The state space is infinite because:

 The system contains cycles.

 We have an absolute notion of time (in the global clock
and time stamps).

 As an example, consider the marking obtained when
all devices have had the key once (and are back to Idle).

 This marking is similar to the initial marking but have
different time stamps and a different value for the
global clock.

 The two markings are different and they are represented
by different state space nodes.

Kurt Jensen

 Lars M. Kristensen

69

Coloured Petri Nets

Department of Computer Science

Verification of key generation

 Key generation
When the system is booted, a key is generated
within 2.0 seconds.

 The property was verified by constructing a partial state
space obtained by not generating successors for
markings where:

 the key had been generated, or

 the model time had passed two seconds.

 It was then checked that in all markings for which
successor markings had not been generated, a key was
present in the system.

Kurt Jensen

 Lars M. Kristensen

70

Coloured Petri Nets

Department of Computer Science

Config Nodes

State space for initialisation phase

AM:3 1,839

AM:4 22,675

AM:5 282,399

VM:3 1,130

VM:4 13,421

VM:5 164,170

 To save memory the arcs in the state space were not stored
– since they are not needed for verifying the key generation
property.

One audio master

Total of 3-5 devices

One video master

Total of 3-5 devices

Kurt Jensen

 Lars M. Kristensen

71

Coloured Petri Nets

Department of Computer Science

State space for full BeoLink system

 Obtained by using the time equivalence method, which
factors out the absolute notion of time.

 Whenever the underlying untimed CPN model is finite, the
method yields a finite state space for the timed CPN model.

Config Nodes

AM:2 22,675

AM:3 282,399

VM:2 13,421

VM:3 164,170

One audio master

Total of 2-3 devices

One video master

Total of 2-3 devices

Kurt Jensen

 Lars M. Kristensen

72

Coloured Petri Nets

Department of Computer Science

Verification of the other properties

 Using the condensed state space it is now possible to verify
the remaining two properties.

 Mutual exclusion
At any time at most one key exists.

 Key access
Any given device always has the possibility of
obtaining the key.

 We use PredAllNodes to verify that place
UseKey never has more than one token.

 We use HomePred to verify that it is always
possible to reach a marking in which the device
is represented by a token on place UseKey.

Kurt Jensen

 Lars M. Kristensen

73

Coloured Petri Nets

Department of Computer Science

Symmetry method
 To be able to generate state spaces for more devices we

applied the symmetry method representing symmetric
markings and symmetric binding elements by means of
equivalence classes.

RequestKey : did=1

RequestKey : did=3

KeyWanted : did=2

RequestKey : did=3 RequestKey : did=2

KeyWanted : did=1

RequestKey : did=2

RequestKey : did=1

KeyWanted : did=3

RequestKey : did=3

RequestKey : did=1

RequestKey : did=2

10
1:2

8
2:3

9
1:2

5
2:3

6
2:3

7
1:2

2
1:3

3
1:3

4
1:3

1
0:31

4 3 2

7

6 8

9 10

5

 All devices are symmetric
(except for the Device1
which is the audio/video
master).

M2 can be obtained from M4

by swapping the identities

of Device2 and Device3

M7 can be obtained from M10

by swapping the identities

of Device2 and Device3

Kurt Jensen

 Lars M. Kristensen

74

Coloured Petri Nets

Department of Computer Science

RequestKey : did=3

KeyWanted : did=1

RequestKey : did=2 RequestKey : did=1

KeyWanted : did=3

RequestKey : did=3 RequestKey : did=1

9
1:2

5

2:3

6

2:3

7
1:2

2
1:3

3
1:3

1
0:3

{7,10}

{1}

{2,4}

{5} {6,8}

{9}

{3}

5
{7,10}

4
{5}

3
{3}

2
{2,4}

1
{1}

7
{9}

6
{6,8}

State space for symmetry method

This node represents

two markings M2 and M4

(which are symmetric)

This arc represents

two binding elements

(which are symmetric)

Kurt Jensen

 Lars M. Kristensen

75

Coloured Petri Nets

Department of Computer Science

Config

State Space
Nodes

Symmetry
Nodes

Node
Ratio

Time
Ratio

(n-1)!

Symmetry method for initialisation

AM:3 1,839 968 1.9 1.0 2

AM:4 22,675 4,361 5.2 2.5 6

AM:5 282,399 15,865 17.8 10.0 24

AM:6 3,417,719 47,867 71.4 — 120

VM:3 1,130 594 1.9 1.0 2

VM:4 13,421 2,631 5.1 2.5 6

VM:5 164,170 9,328 17.6 10.0 24

VM:6 1,967,159 27,551 71.4 — 120

VM:7 22,892,208 68,683 333,3 — 720

Kurt Jensen

 Lars M. Kristensen

76

Coloured Petri Nets

Department of Computer Science

Config

Time Equiv
Nodes

Sym+TimeEquiv
Nodes

Node
Ratio

Time
Ratio

(n-1)!

Symmetry method for full system

AM:3 27,246 13,650 1.9 2.0 2

AM:4 12,422,637 2,074,580 5.9 — 6

VM:3 10,713 5,420 2.0 2.0 2

VM:4 3,557,441 594,092 6.0 — 6

Kurt Jensen

 Lars M. Kristensen

77

Coloured Petri Nets

Department of Computer Science

Sweep-line method

 Next we used the sweep-line method in which we have a
progress measure.

 This allows us to explore all reachable markings, while only
storing small fragments of the state space in memory at a
time – thereby reducing peak memory usage.

 The sweep-line method is aimed at on-the-fly verification of
safety properties, e.g., determining whether a reachable
marking exists satisfying a given state predicate.

 Hence, it can be used to verify key generation and mutual
exclusion but not key access.

Kurt Jensen

 Lars M. Kristensen

78

Coloured Petri Nets

Department of Computer Science

RequestKey : did=1

RequestKey : did=3

KeyWanted : did=2

RequestKey : did=3 RequestKey : did=2

KeyWanted : did=1

RequestKey : did=2

RequestKey : did=1

KeyWanted : did=3

RequestKey : did=3

RequestKey : did=1

RequestKey : did=2

10
1:2

8
2:3

9
1:2

5
2:3

6
2:3

7
1:2

2
1:3

3
1:3

4
1:3

1
0:3

Layer 1:
Global clock 500

Layer 0: Global clock 0

Progress measure
 We use the global clock as progress measure.

All markings

in a layer have

the same

clock value

Each marking has

successor markings in

the same layer or a

layer with more

progress

All arcs go downwards

or horizontal

 Layer 0

 Clock = 0

 Layer 1

 Clock = 500

The clock never goes

backwards

1

2 4 3

6

7

5

9 10

8

Kurt Jensen

 Lars M. Kristensen

79

Coloured Petri Nets

Department of Computer Science

Config

State Space
Nodes

Sweep-line
Peak nodes

Node
Ratio

Time
Ratio

Sweep-line method for initialisation

AM:3 1,839 1,839 1.0 1.0

AM:4 22,675 5,169 4.4 1.2

AM:5 282,399 35,017 8.1 2.5

VM:3 1,130 1,130 1.0 1.0

VM:4 13,421 5,167 2.6 0.9

VM:5 164,170 34,968 4.7 2.2

Kurt Jensen

 Lars M. Kristensen

80

Coloured Petri Nets

Department of Computer Science

Sweep-line method for full system

 To apply the sweep-line method for the full BeoLink system
we need to combine it with the time equivalence method
(otherwise the state space will be infinite).

 The use of the time equivalence method implies that the
global clock becomes zero in all markings (and hence we
cannot use the clock as progress measure).

 It is however possible to define a progress measure based
on the control flow of the devices and use this with the
generalised sweep-line method in which some regress arcs
(backwards arcs) are allowed.

Kurt Jensen

 Lars M. Kristensen

81

Coloured Petri Nets

Department of Computer Science

Config

Time Equiv
Nodes

Sweep-line
Nodes Explored

Time Equiv
Peak Nodes

Node
Ratio

Time
Ratio

Sweep-line method for full system

AM:2 346 355 65 5.3 0.5

AM:3 27,246 28,363 2,643 10.3 0.3

VM:2 274 283 41 6.7 0.5

VM:3 10,713 11,388 1,039 10.3 0.5

+

The time penalty was due to an inefficient implementation

of deletion of states in the sweep-line library.

A more efficient algorithm has now been developed

Kurt Jensen

 Lars M. Kristensen

82

Coloured Petri Nets

Department of Computer Science

Combination of advanced
state space methods

 Above we have seen that it is possible to combine
time condensed state spaces with both the symmetry
method and the sweep-line method.

 It is also possible to use the symmetry method and the
sweep-line method together.

 In all the combinations we get a better reduction than
when one method is used in isolation.

Kurt Jensen

 Lars M. Kristensen

83

Coloured Petri Nets

Department of Computer Science

Conclusions from BeoLink project

 CP-nets can be used to model and validate a real-time system
(in which the correctness depends on timing information).

 The construction of the CPN model was done in close
cooperation with engineers at Bang & Olufsen.

 The engineers were given a four day course on CP-nets
enabling them to construct large parts of the CPN model.

 Using advanced state space methods, we could verify larger
configurations (sometimes all configurations that are expected
to appear in practice).

 The advanced state space methods can be combined to get
better reduction than either method in isolation.

Kurt Jensen

 Lars M. Kristensen

84

Coloured Petri Nets

Department of Computer Science

Fourth industrial project:
Scheduling at Australian defence

 Development of a scheduling tool (called COAST).

 CPN modelling was used to conceptualise and formalise the
planning domain to be supported by the tool.

 A CPN model was extracted in executable form from CPN
Tools and embedded into the COAST server together with a
number of tailored state space analysis algorithms.

 We bridged the gap between the design (specified as a CPN
model) and the implementation of the system.

Kurt Jensen

 Lars M. Kristensen

85

Coloured Petri Nets

Department of Computer Science

Plans and task schedules

 A plan (also called a course of action) is a set of tasks.

 The COAST tool supports development and analysis of
military plans and their task schedules.

 CPN is used to model execution of tasks according to
their pre- and postconditions, the imposed
synchronisations, and the available resources.

 Possible task schedules are obtained by generating a
state space and extracting paths from it.

Kurt Jensen

 Lars M. Kristensen

86

Coloured Petri Nets

Department of Computer Science

Planning framework

 Tasks are the basic units in a plan and have associated
preconditions, effects, resources.

 Conditions are used to describe the logical dependencies
between tasks via preconditions and effects.

 Resources (such as planes, ships, and personnel) are used
by tasks during their execution. They may be available only
at certain times and may be lost.

 Synchronisations tell that a set of tasks must begin or end
simultaneously or that there has to be a specific amount of
time between them.

Kurt Jensen

 Lars M. Kristensen

87

Coloured Petri Nets

Department of Computer Science

Plan represented as a table

Task Preconditions Effects Resources Duration

T1 - E1 4‘R1 2

T2 E1 E2 2‘R2 ++ 2‘R3 4

T3 E1 E3 2‘R2 ++ 2‘R3 7

T4 E1 E4 1‘R2 ++ 1‘R3 -

T5 E2 E5 1‘R4 7

T6 E3 E6 1‘R5 7

Available resources:

4‘R1 ++ 3‘R2 ++ 3‘R3 ++ 1‘R4 ++ 1‘R5

{T5,T6} are begin-synchronised

{T4,T5,T6} are end-synchronised.

Kurt Jensen

 Lars M. Kristensen

88

Coloured Petri Nets

Department of Computer Science

Graphical representation of plan

T1

T6

T5

T4

T3

T2

Kurt Jensen

 Lars M. Kristensen

89

Coloured Petri Nets

Department of Computer Science

Scheduling of tasks

 We want to calculate the possible task schedules
– the ways in which the set of tasks can be sequenced.

 Each schedule must respect effects and preconditions,
available resources, and synchronisation constraints.

T1

T3

T4

T5

T6

T2

Time
2 6 13 20

Possible schedule

0

Kurt Jensen

 Lars M. Kristensen

90

Coloured Petri Nets

Department of Computer Science

Architecture of scheduling tool

 Based on a client-server architecture.

 The client offers a domain-specific graphical user interface
for the specification of plans including their resources,
conditions, and synchronisations.

 To analyse a plan, the client invokes analysis algorithms in
the server (computing task schedules).

 The server also supports exploration and debugging of plans
(when analysis shows that no task schedules exists).

 Communication between the client and the server is based
on remote procedure calls in the Comms/CPN library.

Kurt Jensen

 Lars M. Kristensen

91

Coloured Petri Nets

Department of Computer Science

Construction of COAST server

COAST server

COAST

CPN Model

CPN Tools

Simulation

Image

Simulation

Image

SML
runtime
system

Model
Interface

Comms/

CPN

Analysis

Step 1:

Formalisation +

 discussions with

prospective users

Step 2:

Automatic extraction of

executable CPN model

Step 3:

Interfacing +

analysis algorithms

Planning
Domain

Parameterised with respect to tasks, conditions,
resources, and synchronisations

A given plan can be analysed by
changing the initial marking only

Kurt Jensen

 Lars M. Kristensen

92

Coloured Petri Nets

Department of Computer Science

E
d

it
in

g
 a

 p
la

n

Kurt Jensen

 Lars M. Kristensen

93

Coloured Petri Nets

Department of Computer Science

A
n

a
ly

s
in

g
 a

 p
la

n

Task ID: Task Name Start Time: End Time: Resources Used:

Kurt Jensen

 Lars M. Kristensen

94

Coloured Petri Nets

Department of Computer Science

Module hierarchy for COAST model
Abstract view

CPN model is timed to capture the

time taken by executing a task

Initialisation with a
concrete plan

Environment
(resource

management…)

Execution of
tasks

Kurt Jensen

 Lars M. Kristensen

95

Coloured Petri Nets

Department of Computer Science

colset Condition = product STRING * BOOL;

colset Conditions = list Condition;

Colour sets for conditions + resources

colset Resource = product INT * STRING;

colset ResourceList = list Resource;

colset AvailSpecification = union INT : INTxINT + FROM : INT;

colset Availability = list AvailSpecification;

colset ResourcexAvailability = product Resource * Availability;

colset ResourceSpecification = list ResourcexAvailability;

colset Resources = union IDLE : ResourceSpecification

 + LOST : ResourceSpecification;

Kurt Jensen

 Lars M. Kristensen

96

Coloured Petri Nets

Department of Computer Science

colset Task = record

 name : STRING *

 duration : Duration *

 normalpreconditions : Conditions *

 vanishingpreconditions : Conditions *

 sustainingpreconditions : Conditions *

 terminationpreconditions : Conditions *

 instanteffects : Conditions *

 posteffects : Conditions *

 sustainingeffect : Conditions *

 startresources : ResourceList *

 resourceloss : ResourceList;

Colour sets for tasks + synchronisations

colset BeginSynchronisation = list Task;

colset EndSynchronisation = list Task;

Name

Resources

Different kinds

of conditions

Duration

Kurt Jensen

 Lars M. Kristensen

97

Coloured Petri Nets

Department of Computer Science

CoastServer module (abstract view)

Execute

Execute

Environment

Environment

Executing
T

Task

Conditions

C

Conditions

Idle
T

Task

Resources
R

Resources Environment

Initialise

InitialisationInitialisation

Execute

3

1

1`[("C1",true),("C2",true),("C3",true),
("C4",false),("C5",false),("C6",false)]

3

2

Tasks Tasks

Two tokens:

– a list of idle resources

– a list describing lost resources

Kurt Jensen

 Lars M. Kristensen

98

Coloured Petri Nets

Department of Computer Science

Allocate module (part of Execute)

tasks

IDLE idleres conditions

Start

StartingOut

BeginSynchronisation

TasksIn

BeginSynchronisation

Resources
I/O

In

Out

[SatPreConditions(tasks,conditions),
 ResourcesAvailable (idleres,tasks)]

tasks

Resources Conditions
InstantEffects(tasks,conditions)

I/O
Conditions

I/OI/O

 Other modules model task execution and their effect on
conditions and resources. They have a similar complexity.

 The module represents the start of a set of
begin-synchronised tasks.

Guard checks:

– preconditions satisfied

– necessary resources
 available.

Begin-synchronised tasks are
moved from Tasks to Starting

Conditions are updated

Idle resources are put back
 (allocation is done in another module)

Kurt Jensen

 Lars M. Kristensen

99

Coloured Petri Nets

Department of Computer Science

Generation of task schedules

 We generate the state space for the plan to be analysed
(successors are not generated for states that qualify as
desired end-states).

 Then the task schedules are computed from paths in the
state space and divided into two classes:

 Complete schedules leading to desired end-states.

 Incomplete schedules leading to undesired end-states
(dead markings not satisfying the specification of the
plan).

 Users can investigate incomplete schedules by means of a
set of queries – allowing the planner to identify errors and
inconsistencies in the plan.

Kurt Jensen

 Lars M. Kristensen

100

Coloured Petri Nets

Department of Computer Science

State space for plan

T2 starts
at time 9

Initial
marking Thick arcs: start/end of tasks

Thin arcs: internal events

T2 ends at
time 13

Kurt Jensen

 Lars M. Kristensen

101

Coloured Petri Nets

Department of Computer Science

Algorithm for generation of schedules

 Generated by a breadth-first traversal of the state space
starting from the initial marking.

 For each marking we compute the schedules leading to it
(from the schedules of its predecessors).

 The algorithm exploits that:

 The state space of a plan is acyclic.

 All paths leading to a given marking in the state space
have the same length.

Kurt Jensen

 Lars M. Kristensen

102

Coloured Petri Nets

Department of Computer Science

Algorithm

Empty
schedule

T1 starts
at time 0

Branching
point

T1 ends
at time 2

Merging of two schedules from
node 7 and node 8

(with consistent start/end times)

Initial
marking

Two complete schedules
(leading to a desired end-state)

Many steps later we obtain:

Kurt Jensen

 Lars M. Kristensen

103

Coloured Petri Nets

Department of Computer Science

Planning problems

 Typical planning problems consist of 15-25 tasks resulting
in state spaces with:

 10,000-20,000 nodes.

 25,000-35,000 arcs.

 The state spaces are relatively small because the
conditions, resources, and synchronisations limit the
possible orders in which tasks can be executed.

Kurt Jensen

 Lars M. Kristensen

104

Coloured Petri Nets

Department of Computer Science

Conclusions from COAST project

 CPN modelling was used in the development and
specification of the planning framework.

 The CPN model was used to implement the COAST server
(closing the gap between design and implementation).

 State spaces were used to compute and analyse schedules.

 The project demonstrates the value of having a full
programming language environment in the form of the
Standard ML compiler integrated in CPN Tools.

Kurt Jensen

 Lars M. Kristensen

105

Coloured Petri Nets

Department of Computer Science

Questions

