Protocol Verification and State Space Methods

Wojciech Penczek Institute of Computer Science Polish Academy of Sciences, Warsaw, Poland Email: <u>penczek@ipipan.waw.pl</u>/Web: <u>www.ipipan.waw.pl/~penczek/</u>

Lars M. Kristensen Department of Computer Engineering Bergen University College, Bergen, Norway Email: <u>Imkr@hib.no</u> /Web: <u>www.hib.no/ansatte/Imkr</u>

Communication Protocols

 Communication protocols play an increasingly important role in our everyday life:

- Service to be provided by the protocol.
- Assumptions about the environment in which the protocol is executed.
- Vocabulary of messages used to implement the protocol.
- Encoding (format) of each message in the vocabulary.
- Procedure rules guarding the processing of messages.

Protocol Engineering

The development of protocols involves a number of activities [Liu'89]:

- It is important that protocols are working correctly from the very beginning.
- A key application domain for Petri nets, concurrency theory, and model checking technology.

Protocol Engineering Challenges

- The execution of a protocol may proceed in many different ways, e.g. depending on: Concurrency
 - Whether messages are lost during transmission.
 - The scheduling of processes (protocol entities).
 - The time at which input is received from the environment.
- Protocols often exhibit complex behaviour and have an infinite number of possible executions:
 - It is easy for the protocol engineer to miss important interaction patterns during design.
 - This may lead to gaps or malfunctions in the protocol design.
 - Makes testing and debugging difficult.

 Protocol for gateway configuration in mobile ad-hoc network:

- Combination of message loss and scheduling:
 - Inconsistent configuration.
 - Livelocks.

Specification of Protocols

 Based on the construction of formal executable models that can be analysed by computer tools:

 Modelling is beneficial for insight, completeness, and correctness of the protocol design.

From Models to Verification

 We would like to verify (guarantee) that the protocol is correct (has the desired properties).

State Space Methods

 One of the main approaches to verification of communication protocols:

Outline [www.hib.no/ansatte/Imkr/acpn2010/]

- Introduction to state space-based verification methods and model checking techniques. [WP]
- Formal modelling of protocols:
 - Petri Nets and Timed Automata. [WP]
 - Hierarchical Coloured Petri Nets and CPN Tools. [LMK]

Model checking and verification of protocols:

- Bounded Parametric Model Checking for Petri Nets. [WP]
- Explicit state space exploration of Coloured Petri Nets. [LMK]

 Examples of case studies and application of computer tools for modelling and verification:

- The VerICS Toolkit: A selection of smaller case studies. [WP]
- CPN Tools: Edge Router Discovery Protocol and the Generic Access Network Architecture. [LMK]

Classical References

- G.J. Holzmann: Design and Validation of Computer Protocols, Prentice Hall, 1991.
- J. Billington, M. Diaz, G. Rozenberg (Eds): Application of Petri Nets to Communication Networks, LNCS 1605, 1999.
- M.T. Liu: Protocol Engineering, Advances in Computers, Academic Press, pp. 79-195, 1989.
- A. Valmari: The State Explosion Problem. Lectures on Petri Nets I: Basic Models, LNCS 1491, pp. 429-528, 1998.