Protocol Verification and State Space Methods

Lars M. Kristensen¹ and Wojtek Penczek²

Department of Computer Engineering Bergen University College, NORWAY

Institute of Computer Science, PAS, and University of Podlasie, Poland

Advanced Course on Petri Nets, Rostock, September 2010

Outline

Lecture 2: Introduction to model checking

- 2 Lecture 3a: Specification and model checking of Time Petri Nets and Timed Automata
- 3 Lecture 3b: CPN, modules, and data types
- 4 Lecture 4a: Parametric model checking for PN
- 5 Lecture 4b: Model checking CPN
- 6 Lecture 5a: Case studies using VerICS
- 2 Lecture 5a: Case studies using CPN Tools

Introduction to model checking

- Standard non-symbolic model checking algorithms for CTL and LTL.
- Partial order reductions for LTL_{-X} and CTL_{-X}.
- Introduction to symbolic model checking for CTL.
- BDD- and SAT-based model checking.

Introduction to model checking

- Standard non-symbolic model checking algorithms for CTL and LTL.
- Partial order reductions for LTL_{-X} and CTL_{-X}.
- Introduction to symbolic model checking for CTL.
- BDD- and SAT-based model checking.

Introduction to model checking

- Standard non-symbolic model checking algorithms for CTL and LTL.
- $\bullet~$ Partial order reductions for LTL_{-X} and $CTL_{-X}.$
- Introduction to symbolic model checking for CTL.
- BDD- and SAT-based model checking.

Introduction to model checking

- Standard non-symbolic model checking algorithms for CTL and LTL.
- $\bullet\,$ Partial order reductions for LTL_{-X} and $CTL_{-X}.$
- Introduction to symbolic model checking for CTL.
- BDD- and SAT-based model checking.

Introduction to model checking

- Standard non-symbolic model checking algorithms for CTL and LTL.
- $\bullet\,$ Partial order reductions for LTL_{-X} and $CTL_{-X}.$
- Introduction to symbolic model checking for CTL.
- BDD- and SAT-based model checking.

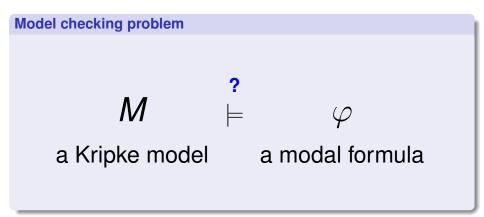
Introduction to model checking

- Standard non-symbolic model checking algorithms for CTL and LTL.
- $\bullet\,$ Partial order reductions for LTL_{-X} and $CTL_{-X}.$
- Introduction to symbolic model checking for CTL.
- BDD- and SAT-based model checking.

Introduction to model checking

Standard non-symbolic model checking algorithms for CTL and LTL.

Model checking for Kripke models



Syntax of CTL*

Syntax

- **S1.** every member of \mathcal{PV} is a state formula,
- **S2.** if φ and ψ are state formulas, then so are $\neg \varphi$ and $\varphi \land \psi$,
- **S3.** if φ is a path formula, then $A\varphi$ and $E\varphi$, are state formulas,
- **P1.** any state formula φ is also a path formula,
- **P2.** if φ , ψ are path formulas, then so are $\varphi \wedge \psi$ and $\neg \varphi$,
- **P3.** if φ , ψ are path formulas, then so is $X\varphi$, $G\varphi$, and $\varphi U\psi$.
- CTL* consists of the set of all state formulae.

Variety of sublogics of CTL*

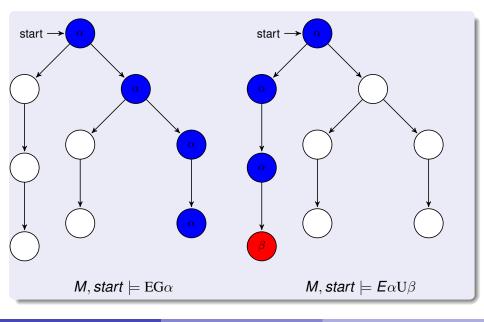
Definition

- LTL ⊂ CTL* is the fragment of CTL* in which all modal formulas are of the form Aφ, where φ does not contain the state modalities A, E.
- CTL ⊂ CTL* is the fragment of CTL* in which *A*, E, and the path modalities U and G may only appear paired: *A*X, EX, *A*U, EU, *A*G, and EG.

Semantics of CTL*

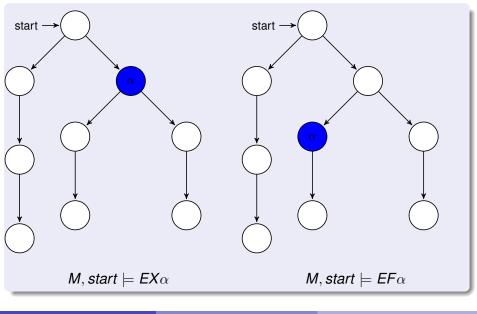
 $M = (G, \iota, \Pi, V)$ - a model and $\pi = g_0 a_0 g_1 \cdots$ - an infinite path of G. π_i denotes the suffix $g_i a_i g_{i+1} \cdots$ of π **S1.** $g \models q$ iff $q \in V(g)$, for $q \in PV$, **S2.** $g \models \neg \varphi$ iff not $g \models \varphi$, $a \models \varphi \land \psi$ iff $a \models \varphi$ and $a \models \psi$. **S3.** $g \models A\varphi$ iff $\pi \models \varphi$ for every path π starting at g, $q \models E\varphi$ iff $\pi \models \varphi$ for some path π starting at g, **P1.** $\pi \models \varphi$ iff $g_0 \models \varphi$ for any state formula φ , **P2.** $\pi \models \neg \varphi$ iff not $\pi \models \varphi$. $\pi \models \varphi \land \psi$ iff $\pi \models \varphi$ and $\pi \models \psi$. **P3.** $\pi \models X\varphi$ iff $\pi_1 \models \varphi$, $\pi \models G\varphi$ iff $\pi_i \models \varphi$ for all $j \ge 0$, $\pi \models \varphi U \psi$ iff there is an $i \ge 0$ such that $\pi_i \models \psi$ and $\pi_i \models \varphi$ for all 0 < i < i.

Semantics in Examples



L.M. Kristensen and W. Penczek (CS)

Semantics in Examples



L.M. Kristensen and W. Penczek (CS)

State labelling

If we do not bother about the size of a model, then the simplest approach to CTL model checking, called state labelling, can be used.

Algorithm

We show a deterministic algorithm, based on state labelling, for determining whether a CTL formula φ is true at a state $s \in S$ in a finite model $M = ((S, s^0, \rightarrow), V)$, of time complexity $O(|\varphi| \times (|S| + |\rightarrow|))$.

State labelling

If we do not bother about the size of a model, then the simplest approach to CTL model checking, called state labelling, can be used.

Algorithm

We show a deterministic algorithm, based on state labelling, for determining whether a CTL formula φ is true at a state $s \in S$ in a finite model $M = ((S, s^0, \rightarrow), V)$, of time complexity $O(|\varphi| \times (|S| + |\rightarrow|))$.

Algorithm

The algorithm is designed so that when it finishes, each state *s* of *M* is labelled with the subformulas of φ which are true at *s*.

- The algorithm operates in stages.
- The *i*-th stage handles all subformulas of φ of length *i* for $i \leq |\varphi|$.
- Thus, at the end of the last stage each state will be labelled with all subformulas of φ which are true at it.

Algorithm

The algorithm is designed so that when it finishes, each state *s* of *M* is labelled with the subformulas of φ which are true at *s*.

- The algorithm operates in stages.
- The *i*-th stage handles all subformulas of φ of length *i* for $i \leq |\varphi|$.
- Thus, at the end of the last stage each state will be labelled with all subformulas of φ which are true at it.

Algorithm

The algorithm is designed so that when it finishes, each state *s* of *M* is labelled with the subformulas of φ which are true at *s*.

- The algorithm operates in stages.
- The *i*-th stage handles all subformulas of φ of length *i* for $i \leq |\varphi|$.

 Thus, at the end of the last stage each state will be labelled with all subformulas of φ which are true at it.

Algorithm

The algorithm is designed so that when it finishes, each state *s* of *M* is labelled with the subformulas of φ which are true at *s*.

- The algorithm operates in stages.
- The *i*-th stage handles all subformulas of φ of length *i* for $i \leq |\varphi|$.
- Thus, at the end of the last stage each state will be labelled with all subformulas of φ which are true at it.

CTL operators

Each of the operators of CTL can be expressed in terms of the three operators EX, EG, and EU.

Five cases

So, only 5 cases have to be considered, where φ is: $\neg \psi$, $\psi_1 \land \psi_2$, $EX\psi$, $E(\psi_1 U\psi_2)$, or $EG\psi$.

Algorithm

The algorithm is discussed for the last two cases only, as the others are straightforward.

L.M. Kristensen and W. Penczek (CS)

CTL operators

Each of the operators of CTL can be expressed in terms of the three operators EX, EG, and EU.

Five cases

So, only 5 cases have to be considered, where φ is: $\neg \psi$, $\psi_1 \land \psi_2$, $EX\psi$, $E(\psi_1U\psi_2)$, or $EG\psi$.

Algorithm

The algorithm is discussed for the last two cases only, as the others are straightforward.

CTL operators

Each of the operators of CTL can be expressed in terms of the three operators EX, EG, and EU.

Five cases

So, only 5 cases have to be considered, where φ is: $\neg \psi$, $\psi_1 \land \psi_2$, $EX\psi$, $E(\psi_1 U\psi_2)$, or $EG\psi$.

Algorithm

The algorithm is discussed for the last two cases only, as the others are straightforward.

L.M. Kristensen and W. Penczek (CS)

Introduction to model checking

Formula $\varphi = E(\psi_1 U \psi_2)$

• The algorithm first finds all the states which are labelled with ψ_2 and labels them with φ .

• It goes backwards using the relation \rightarrow^{-1} and finds all the states which can be reached by a path in which each state is labelled with ψ_1 .

All such states are labelled with φ .

Complexity

Formula $\varphi = E(\psi_1 U \psi_2)$

- The algorithm first finds all the states which are labelled with ψ₂ and labels them with φ.
- It goes backwards using the relation →⁻¹ and finds all the states which can be reached by a path in which each state is labelled with ψ₁.

All such states are labelled with φ .

Complexity

Formula $\varphi = E(\psi_1 U \psi_2)$

- The algorithm first finds all the states which are labelled with ψ₂ and labels them with φ.
- It goes backwards using the relation \rightarrow^{-1} and finds all the states which can be reached by a path in which each state is labelled with ψ_1 .

All such states are labelled with φ .

Complexity

Formula $\varphi = EG\psi$

• The graph (S', \rightarrow') is constructed, where $S' = \{s \in S \mid M, s \models \psi\}$ and $\rightarrow' = \rightarrow \cap (S' \times S')$.

 (S', →') is partitioned into strongly connected components and those states which belong to the components of size greater than 1 or with a self-loop are selected and labelled with φ.

 The algorithm goes backwards from these states using →⁻¹ and finds all those states which can be reached by a path in which each state is labelled with ψ. It labels these states with φ.

Complexity

Formula $\varphi = EG\psi$

- The graph (S', \rightarrow') is constructed, where $S' = \{s \in S \mid M, s \models \psi\}$ and $\rightarrow' = \rightarrow \cap (S' \times S')$.
- (S', →') is partitioned into strongly connected components and those states which belong to the components of size greater than 1 or with a self-loop are selected and labelled with φ.
- The algorithm goes backwards from these states using →⁻¹ and finds all those states which can be reached by a path in which each state is labelled with ψ. It labels these states with φ.

Complexity

This step requires time $O(|S| + |\rightarrow|)$.

L.M. Kristensen and W. Penczek (CS)

Formula $\varphi = EG\psi$

- The graph (S', \rightarrow') is constructed, where $S' = \{s \in S \mid M, s \models \psi\}$ and $\rightarrow' = \rightarrow \cap (S' \times S')$.
- (S', →') is partitioned into strongly connected components and those states which belong to the components of size greater than 1 or with a self-loop are selected and labelled with φ.
- The algorithm goes backwards from these states using →⁻¹ and finds all those states which can be reached by a path in which each state is labelled with ψ. It labels these states with φ.

Complexity

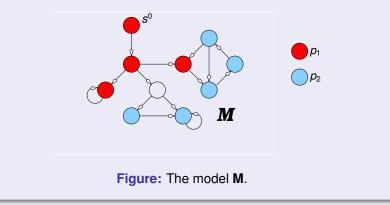
Formula $\varphi = EG\psi$

- The graph (S', \rightarrow') is constructed, where $S' = \{s \in S \mid M, s \models \psi\}$ and $\rightarrow' = \rightarrow \cap (S' \times S')$.
- (S', →') is partitioned into strongly connected components and those states which belong to the components of size greater than 1 or with a self-loop are selected and labelled with φ.
- The algorithm goes backwards from these states using →⁻¹ and finds all those states which can be reached by a path in which each state is labelled with ψ. It labels these states with φ.

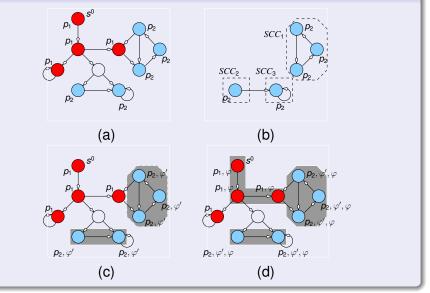
Complexity

Example

Consider the model **M** shown below and the CTL formula $\varphi = E(p_1U(EGp_2)).$



Labelling M with $\varphi = E(p_1U(EGp_2)); \varphi' = EGp_2$



L.M. Kristensen and W. Penczek (CS)

References and other approaches

Reference

The original state labelling algoritm for CTL was introduced by Clarke, Emerson, and Sistla in 1986.

Automata theoretic approaches

- By checking non-emptiness of the product of the automaton representing a system and an automaton accepting all the models of the negation of a formula, via ...
- A translation from CTL to alternating tree automata.
- A translation from LTL to Buchi or Streett automata.

References and other approaches

Reference

The original state labelling algoritm for CTL was introduced by Clarke, Emerson, and Sistla in 1986.

Automata theoretic approaches

- By checking non-emptiness of the product of the automaton representing a system and an automaton accepting all the models of the negation of a formula, via ...
- A translation from CTL to alternating tree automata.
- A translation from LTL to Buchi or Streett automata.

References and other approaches

Reference

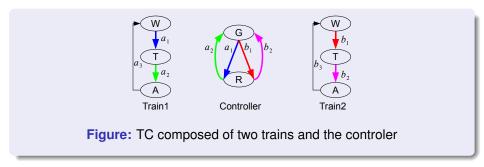
The original state labelling algoritm for CTL was introduced by Clarke, Emerson, and Sistla in 1986.

Automata theoretic approaches

- By checking non-emptiness of the product of the automaton representing a system and an automaton accepting all the models of the negation of a formula, via ...
- A translation from CTL to alternating tree automata.
- A translation from LTL to Buchi or Streett automata.

Introduction to model checking for knowledge and time Partial order reductions for LTL_{-X} and CTL_{-X} .

Networks of automata



DFS-POR

DFS-POR is used to compute paths of the reduced model. A stack represents the path $\pi = g_0 a_0 g_1 a_1 \cdots g_n$ currently being visited. For g_n , the following three operations are computed in a loop:

• The set $en(g_n) \subseteq Act$ of enabled actions is identified and a subset $E(g_n) \subseteq en(g_n)$ of possible actions is heuristically selected.

2 For any action a ∈ E(g_n) compute the successor state g' of g_n such that g_n ^a→ g', and add g' to the stack.
 Recursively proceed to explore the submodel originating at g'.

DFS-POR

DFS-POR is used to compute paths of the reduced model. A stack represents the path $\pi = g_0 a_0 g_1 a_1 \cdots g_n$ currently being visited. For g_n , the following three operations are computed in a loop:

The set *en*(*g_n*) ⊆ *Act* of enabled actions is identified and a subset *E*(*g_n*) ⊆ *en*(*g_n*) of possible actions is heuristically selected.

Por any action a ∈ E(g_n) compute the successor state g' of g_n such that g_n ^A→ g', and add g' to the stack.
 Recursively proceed to explore the submodel originating at g'.

DFS-POR

DFS-POR is used to compute paths of the reduced model. A stack represents the path $\pi = g_0 a_0 g_1 a_1 \cdots g_n$ currently being visited. For g_n , the following three operations are computed in a loop:

- The set *en*(*g_n*) ⊆ *Act* of enabled actions is identified and a subset *E*(*g_n*) ⊆ *en*(*g_n*) of possible actions is heuristically selected.
- Por any action a ∈ E(g_n) compute the successor state g' of g_n such that g_n ^a→ g', and add g' to the stack. Recursively proceed to explore the submodel originating at g'.

DFS-POR

DFS-POR is used to compute paths of the reduced model. A stack represents the path $\pi = g_0 a_0 g_1 a_1 \cdots g_n$ currently being visited. For g_n , the following three operations are computed in a loop:

- The set $e_n(g_n) \subseteq Act$ of enabled actions is identified and a subset $E(g_n) \subseteq en(g_n)$ of possible actions is heuristically selected.
- 2 For any action $a \in E(g_n)$ compute the successor state g' of g_n such that $q_n \xrightarrow{a} q'$, and add q' to the stack. Recursively proceed to explore the submodel originating at q'.

Conditions

- C1 No action $a \in Act \setminus E(g)$ that is dependent on an action in E(g) can be executed before an action in E(g) is executed.
- C2 On every cycle in the constructed state graph there is at least one node g for which E(g) = en(g).
- **C3** Each action in E(g) is invisible, i.e., does not change V(g).

Conditions

- C1 No action $a \in Act \setminus E(g)$ that is dependent on an action in E(g) can be executed before an action in E(g) is executed.
- C2 On every cycle in the constructed state graph there is at least one node g for which E(g) = en(g).

C3 Each action in E(g) is invisible, i.e., does not change V(g).

Conditions

- C1 No action $a \in Act \setminus E(g)$ that is dependent on an action in E(g) can be executed before an action in E(g) is executed.
- C2 On every cycle in the constructed state graph there is at least one node g for which E(g) = en(g).
- **C3** Each action in E(g) is invisible, i.e., does not change V(g).

Conditions

- C1 No action $a \in Act \setminus E(g)$ that is dependent on an action in E(g) can be executed before an action in E(g) is executed.
- C2 On every cycle in the constructed state graph there is at least one node g for which E(g) = en(g).
- **C3** Each action in E(g) is invisible, i.e., does not change V(g).

Correctness

Theorem

Let M be a model and $M' \subseteq M$ be the reduced model generated by the DFS-POR algorithm. The following conditions hold:

a) If the choice of E(g) is given by **C1, C2, C3**, then $M \models \varphi$ iff $M' \models \varphi$, for any LTL_{-X} formula φ .

b) If the choice of E(g) is given by **C1, C2, C3** and **C4**, then $M \models \varphi$ iff $M' \models \varphi$, for any CTL^*_{-X} formula φ .

Correctness

Theorem

Let M be a model and $M' \subseteq M$ be the reduced model generated by the DFS-POR algorithm. The following conditions hold:

a) If the choice of E(g) is given by C1, C2, C3, then $M \models \varphi$ iff $M' \models \varphi$, for any LTL_{-X} formula φ .

b) If the choice of E(g) is given by **C1, C2, C3** and **C4**, then $M \models \varphi$ iff $M' \models \varphi$, for any CTL^*_{-X} formula φ .

Correctness

Theorem

Let M be a model and $M' \subseteq M$ be the reduced model generated by the DFS-POR algorithm. The following conditions hold:

- a) If the choice of E(g) is given by C1, C2, C3, then $M \models \varphi$ iff $M' \models \varphi$, for any LTL_{-X} formula φ .
- **b)** If the choice of E(g) is given by **C1**, **C2**, **C3** and **C4**, then $M \models \varphi$ iff $M' \models \varphi$, for any CTL^*_{-X} formula φ .

Experimental Results - Trains and controler (TC)

TC

Property: if the train 1 is in the tunnel, then no other train is in the tunnel at the same time:

$$AG(\text{in_tunnel}_1 \to \bigwedge_{i=2}^n \neg \text{in_tunnel}_i),$$

State spaces

F(n) - the size of the full state space. R(n) - the size of the reduced state space.

•
$$F(n) = c_n \times 2^{n+1}$$
, for some $c_n > 1$,

•
$$R(n) = 3 + 4(n-1)$$
.

The reduced state space is *exponentially smaller* than the original one, for both LTL_{-X} and CTL_{-X}^* .

Experimental Results - Trains and controler (TC)

TC

Property: if the train 1 is in the tunnel, then no other train is in the tunnel at the same time:

$$AG(\text{in_tunnel}_1 \to \bigwedge_{i=2}^n \neg \text{in_tunnel}_i),$$

State spaces

F(n) - the size of the full state space. R(n) - the size of the reduced state space.

•
$$F(n) = c_n \times 2^{n+1}$$
, for some $c_n > 1$,

•
$$R(n) = 3 + 4(n-1)$$
.

The reduced state space is *exponentially smaller* than the original one, for both LTL_{-X} and CTL_{-X}^* .

Experimental Results - Trains and controler (TC)

TC

Property: if the train 1 is in the tunnel, then no other train is in the tunnel at the same time:

$$AG(\text{in_tunnel}_1 \to \bigwedge_{i=2}^n \neg \text{in_tunnel}_i),$$

State spaces

F(n) - the size of the full state space. R(n) - the size of the reduced state space.

•
$$F(n) = c_n \times 2^{n+1}$$
, for some $c_n > 1$,

•
$$R(n) = 3 + 4(n-1)$$
.

The reduced state space is *exponentially smaller* than the original one, for both LTL_{-X} and CTL_{-X}^* .

Introduction to model checking

Introduction to symbolic model checking for CTL.

L.M. Kristensen and W. Penczek (CS)

Introduction to model checking

Course on PN 2010 25 / 47

Fixed-point verification for CTL

Introduction

Symbolic and non-symbolic model checking methods can exploit the fixed point characterization of CTL formulas.

Using fixpoints

Labelling the states with the subformulas or computation of OBDD representation of a formula uses the standard algorithms for computing the least and the greatest fixpoints as follows.

Fixed-point verification for CTL

Introduction

Symbolic and non-symbolic model checking methods can exploit the fixed point characterization of CTL formulas.

Using fixpoints

Labelling the states with the subformulas or computation of OBDD representation of a formula uses the standard algorithms for computing the least and the greatest fixpoints as follows.

Axioms for CTL

- $EG\varphi \equiv \varphi \wedge EXEG\varphi$,
- $E(\varphi U\psi) \equiv \psi \lor (\varphi \land EX(E(\varphi U\psi))),$

Fixed point characterization of CTL

Let $\llbracket \varphi \rrbracket = \{ s \in S \mid s \models \varphi \}.$

- $\llbracket \mathbf{E}\mathbf{G}\varphi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \mathbf{E}\mathbf{X}\mathbf{E}\mathbf{G}\varphi \rrbracket$,
- $\llbracket \mathbf{E}(\varphi \mathbf{U}\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \llbracket \mathbf{EXE}(\varphi \mathbf{U}\psi) \rrbracket)$

Pre-set

Let $pre(X) = \{s \in S \mid (\exists s' \in X) \ s \to s'\}$, for $X \subseteq S$.

Characterization

- $\llbracket EG\varphi \rrbracket = \llbracket \varphi \rrbracket \cap pre(\llbracket EG\varphi \rrbracket),$
- $\llbracket E(\varphi U\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap pre(\llbracket E(\varphi U\psi) \rrbracket)).$

L.M. Kristensen and W. Penczek (CS)

Introduction to model checking

Axioms for CTL

- $EG\varphi \equiv \varphi \wedge EXEG\varphi$,
- $E(\varphi U\psi) \equiv \psi \lor (\varphi \land EX(E(\varphi U\psi))),$

Fixed point characterization of CTL

Let $\llbracket \varphi \rrbracket = \{ s \in S \mid s \models \varphi \}.$

- $\llbracket \mathbf{E}\mathbf{G}\varphi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \mathbf{E}\mathbf{X}\mathbf{E}\mathbf{G}\varphi \rrbracket$,
- $\llbracket \mathbf{E}(\varphi \mathbf{U}\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \llbracket \mathbf{EXE}(\varphi \mathbf{U}\psi) \rrbracket)$

Pre-set

Let $pre(X) = \{s \in S \mid (\exists s' \in X) \ s \to s'\}$, for $X \subseteq S$.

Characterization

- $\llbracket EG\varphi \rrbracket = \llbracket \varphi \rrbracket \cap pre(\llbracket EG\varphi \rrbracket),$
- $\llbracket E(\varphi U\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap pre(\llbracket E(\varphi U\psi) \rrbracket)).$

L.M. Kristensen and W. Penczek (CS)

Introduction to model checking

Axioms for CTL

- $EG\varphi \equiv \varphi \wedge EXEG\varphi$,
- $E(\varphi U\psi) \equiv \psi \lor (\varphi \land EX(E(\varphi U\psi))),$

Fixed point characterization of CTL

 $\mathsf{Let}\,[\![\varphi]\!]=\{\pmb{s}\in\pmb{S}\mid\pmb{s}\models\varphi\}.$

- $\llbracket EG\varphi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket EXEG\varphi \rrbracket$,
- $\llbracket \mathbf{E}(\varphi \mathbf{U}\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \llbracket \mathbf{EXE}(\varphi \mathbf{U}\psi) \rrbracket)$

Pre-set

Let $\textit{pre}(X) = \{ s \in S \mid (\exists s' \in X) \; s
ightarrow s' \}$, for $X \subseteq S$.

Characterization

- $\llbracket EG\varphi \rrbracket = \llbracket \varphi \rrbracket \cap pre(\llbracket EG\varphi \rrbracket),$
- $\llbracket E(\varphi U\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap pre(\llbracket E(\varphi U\psi) \rrbracket)).$

Axioms for CTL

- $EG\varphi \equiv \varphi \wedge EXEG\varphi$,
- $E(\varphi U\psi) \equiv \psi \lor (\varphi \land EX(E(\varphi U\psi))),$

Fixed point characterization of CTL

 $\mathsf{Let}\,[\![\varphi]\!]=\{\pmb{s}\in\pmb{S}\mid\pmb{s}\models\varphi\}.$

- $\llbracket EG\varphi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket EXEG\varphi \rrbracket$,
- $\llbracket E(\varphi U\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \llbracket EXE(\varphi U\psi) \rrbracket)$

Pre-set

Let $pre(X) = \{ s \in S \mid (\exists s' \in X) \ s \to s' \}$, for $X \subseteq S$.

Characterization

- $\llbracket EG\varphi \rrbracket = \llbracket \varphi \rrbracket \cap pre(\llbracket EG\varphi \rrbracket),$
- $\llbracket E(\varphi U\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap pre(\llbracket E(\varphi U\psi) \rrbracket)).$

Axioms for CTL

- $EG\varphi \equiv \varphi \wedge EXEG\varphi$,
- $E(\varphi U\psi) \equiv \psi \lor (\varphi \land EX(E(\varphi U\psi))),$

Fixed point characterization of CTL

 $\mathsf{Let}\,[\![\varphi]\!]=\{\pmb{s}\in\pmb{S}\mid\pmb{s}\models\varphi\}.$

- $\llbracket EG\varphi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket EXEG\varphi \rrbracket$,
- $\llbracket E(\varphi U\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \llbracket EXE(\varphi U\psi) \rrbracket)$

Pre-set

Let
$$\textit{pre}(X) = \{ s \in S \mid (\exists s' \in X) \ s \rightarrow s' \}, \text{ for } X \subseteq S.$$

Characterization

- $\llbracket EG\varphi \rrbracket = \llbracket \varphi \rrbracket \cap pre(\llbracket EG\varphi \rrbracket),$
- $\llbracket E(\varphi U\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \textit{pre}(\llbracket E(\varphi U\psi) \rrbracket)).$

L.M. Kristensen and W. Penczek (CS)

Introduction to model checking

Axioms for CTL

- $EG\varphi \equiv \varphi \wedge EXEG\varphi$,
- $E(\varphi U\psi) \equiv \psi \lor (\varphi \land EX(E(\varphi U\psi))),$

Fixed point characterization of CTL

 $\mathsf{Let}\,[\![\varphi]\!]=\{\pmb{s}\in\pmb{S}\mid\pmb{s}\models\varphi\}.$

- $\llbracket EG\varphi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket EXEG\varphi \rrbracket$,
- $\llbracket E(\varphi U\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \llbracket EXE(\varphi U\psi) \rrbracket)$

Pre-set

Let
$$pre(X) = \{ s \in S \mid (\exists s' \in X) \ s \to s' \}$$
, for $X \subseteq S$.

Characterization

- $\llbracket EG\varphi \rrbracket = \llbracket \varphi \rrbracket \cap \textit{pre}(\llbracket EG\varphi \rrbracket),$
- $\llbracket \mathbf{E}(\varphi \mathbf{U}\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \mathbf{pre}(\llbracket \mathbf{E}(\varphi \mathbf{U}\psi) \rrbracket)).$

Axioms for CTL

- $EG\varphi \equiv \varphi \wedge EXEG\varphi$,
- $E(\varphi U\psi) \equiv \psi \lor (\varphi \land EX(E(\varphi U\psi))),$

Fixed point characterization of CTL

 $\mathsf{Let}\,[\![\varphi]\!]=\{\pmb{s}\in\pmb{S}\mid\pmb{s}\models\varphi\}.$

•
$$\llbracket EG\varphi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket EXEG\varphi \rrbracket$$
,

• $\llbracket E(\varphi U\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \llbracket EXE(\varphi U\psi) \rrbracket)$

Pre-set

Let
$$pre(X) = \{s \in S \mid (\exists s' \in X) \ s \to s'\}$$
, for $X \subseteq S$.

Characterization

- $\llbracket EG\varphi \rrbracket = \llbracket \varphi \rrbracket \cap \textit{pre}(\llbracket EG\varphi \rrbracket),$
- $\llbracket E(\varphi U\psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap pre(\llbracket E(\varphi U\psi) \rrbracket)).$

Functions

Define two functions on 2^S , which fixed points are equal to respectively $[EG\varphi]$ and $[E(\varphi U\psi)]$.

Computing fixed points

- $[EG\varphi]$ is the greatest fixpoint of $\tau_{EG\varphi}(X)$, so it can be computed as $\tau_{EG\varphi}^{k}(S)$ for some finite *k*.
- [[E(φUψ)]] is the least fixpoint of τ_{E(φUψ)}(X), so it can be computed as τ^I_{E(φUψ)}(Ø) for some finite *I*.

Functions

Define two functions on 2^S , which fixed points are equal to respectively $[EG\varphi]$ and $[E(\varphi U\psi)]$.

$$1 \quad \tau_{\mathrm{EG}\varphi}(X) = \llbracket \varphi \rrbracket \cap \textit{pre}(X),$$

 $2 \tau_{\mathrm{E}(\varphi \mathrm{U}\psi)}(X) = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \textit{pre}(X))$

Computing fixed points

• $[EG\varphi]$ is the greatest fixpoint of $\tau_{EG\varphi}(X)$, so it can be computed as $\tau_{EG\varphi}^{k}(S)$ for some finite *k*.

[E(φUψ)] is the least fixpoint of τ_{E(φUψ)}(X), so it can be computed as τ^I_{E(φUψ)}(Ø) for some finite *I*.

Functions

Define two functions on 2^S , which fixed points are equal to respectively $[EG\varphi]$ and $[E(\varphi U\psi)]$.

$$T_{\mathrm{E}(\varphi \cup \psi)}(X) = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \mathsf{pre}(X))$$

Computing fixed points

- $[EG\varphi]$ is the greatest fixpoint of $\tau_{EG\varphi}(X)$, so it can be computed as $\tau_{EG\varphi}^{k}(S)$ for some finite *k*.
- [[E(φUψ)]] is the least fixpoint of τ_{E(φUψ)}(X), so it can be computed as τ^I_{E(φUψ)}(Ø) for some finite *I*.

Functions

Define two functions on 2^S , which fixed points are equal to respectively $[EG\varphi]$ and $[E(\varphi U\psi)]$.

$$\ \, \bullet \ \, \tau_{\mathrm{EG}\varphi}(X) = \llbracket \varphi \rrbracket \cap \textit{pre}(X),$$

$$2 \tau_{\mathrm{E}(\varphi \mathrm{U}\psi)}(X) = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap \textit{pre}(X))$$

Computing fixed points

- $[EG\varphi]$ is the greatest fixpoint of $\tau_{EG\varphi}(X)$, so it can be computed as $\tau_{EG\varphi}^{k}(S)$ for some finite *k*.
- [E(φUψ)] is the least fixpoint of τ_{E(φUψ)}(X), so it can be computed as τ^I_{E(φUψ)}(Ø) for some finite *I*.

Functions

Define two functions on 2^S , which fixed points are equal to respectively $[EG\varphi]$ and $[E(\varphi U\psi)]$.

Computing fixed points

- $[EG\varphi]$ is the greatest fixpoint of $\tau_{EG\varphi}(X)$, so it can be computed as $\tau_{EG\varphi}^{k}(S)$ for some finite *k*.
- [[E(φUψ)]] is the least fixpoint of τ_{E(φUψ)}(X), so it can be computed as τ^I_{E(φUψ)}(Ø) for some finite *I*.

Functions

Define two functions on 2^S , which fixed points are equal to respectively $[EG\varphi]$ and $[E(\varphi U\psi)]$.

Computing fixed points

- $[EG\varphi]$ is the greatest fixpoint of $\tau_{EG\varphi}(X)$, so it can be computed as $\tau_{EG\varphi}^{k}(S)$ for some finite *k*.
- [[E(φUψ)]] is the least fixpoint of τ_{E(φUψ)}(X), so it can be computed as τ^I_{E(φUψ)}(Ø) for some finite *I*.

Algorithm

Model checking algorithm based of fixpoint characterization

$$\begin{split} & \textit{mchk}(M,\varphi) \; \{ \\ & \text{if } \varphi \in \textit{PV}, \text{ then return } \textit{V}^{-1}(\varphi), \\ & \text{if } \varphi = \neg \psi, \text{ then return } \textit{S} \setminus \textit{mchk}(M,\psi), \\ & \text{if } \varphi = \varphi_1 \lor \varphi_2, \text{ then return } \textit{mchk}(M,\varphi_1) \cup \textit{mchk}(M,\varphi_2), \\ & \text{if } \varphi = \text{EX}\psi, \text{ then return } \textit{mchk}_{\text{EX}}(M,\psi), \\ & \text{if } \varphi = \text{EG}\psi, \text{ then return } \textit{mchk}_{\text{EG}}(M,\psi), \\ & \text{if } \varphi = \text{E}(\psi_1 \text{U}\psi_2), \text{ then return } \textit{mchk}_{\text{EU}}(M,\psi_1,\psi_2), \\ \\ & \} \end{split}$$

Algorithm: Model checking procedures

 $mchk_{EX}(M, \psi)$ { $X := mchk(M, \psi)$; Y := pre(X); return Y };

 $mchk_{EG}(M, \psi) \{$ $X := mchk(M, \psi);$ Y := S; $Z := \emptyset;$ while $(Z \neq Y) \{$ Z := Y; $Y := X \cap pre(Y) \}$ return Y $\};$

 $mchk_{EU}(M, \psi_1, \psi_2) \{$ $X := mchk(M, \psi_1);$ $Y := mchk(M, \psi_2);$ $Z := \emptyset;$ W := S;while $(Z \neq W) \{$ W := Z; $Z := Y \cup (X \cap pre(Z)) \}$ return Z $\};$

L.M. Kristensen and W. Penczek (CS)

Algorithm: Model checking procedures

 $mchk_{EX}(M,\psi)$ { $X := mchk(M, \psi);$ Y := pre(X);return Y }; $mchk_{EG}(M,\psi)$ { $X := mchk(M, \psi);$ Y := S: $Z := \emptyset$: while $(Z \neq Y)$ { Z := Y: $Y := X \cap pre(Y) \}$ return Y };

 $\begin{aligned} & \mathsf{mchk}_{\mathrm{EU}}(M,\psi_1,\psi_2) \{ \\ & X := \mathsf{mchk}(M,\psi_1); \\ & Y := \mathsf{mchk}(M,\psi_2); \\ & Z := \emptyset; \\ & W := S; \\ & \mathsf{while} \ (Z \neq W) \{ \\ & W := Z; \\ & Z := Y \cup (X \cap \mathsf{pre}(Z)) \} \\ & \mathsf{return} \ Z \ \}; \end{aligned}$

L.M. Kristensen and W. Penczek (CS)

Introduction to OBDDs

OBDD

OBDD (Ordered Binary Dicision Diagrams) are used for succint representation of Boolean functions. Consider a Boolean function:

$$f: \{0,1\}^n \longrightarrow \{0,1\}$$

A function can be represented by the results of all the valuations of some propositional formula over *n* propositional variables.

Example

For example the function $f(x_1, x_2) = x_1 * x_2$ is represented by the formula $p_1 \land p_2$. Each Boolean function can be represented by an OBDD.

OBDD

OBDD (Ordered Binary Dicision Diagrams) are used for succint representation of Boolean functions. Consider a Boolean function:

$$f: \{0,1\}^n \longrightarrow \{0,1\}$$

A function can be represented by the results of all the valuations of some propositional formula over *n* propositional variables.

Example

For example the function $f(x_1, x_2) = x_1 * x_2$ is represented by the formula $p_1 \land p_2$. Each Boolean function can be represented by an OBDD.

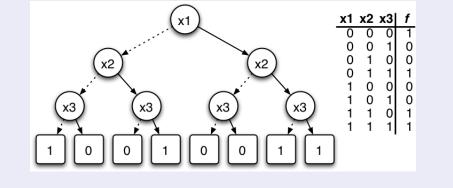


Figure: BDD representing the boolean function *f* (source: Wikipedia)

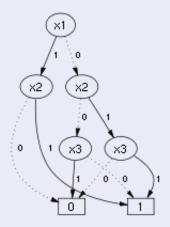


Figure: Canonical OBDD representing the boolean function *f* (source: Wikipedia)

L.M. Kristensen and W. Penczek (CS)

Introduction to model checking

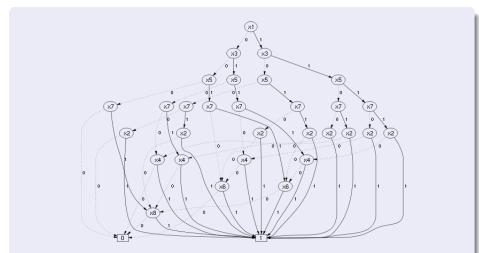


Figure: OBDD with a bad variable ordering (source: Wikipedia)

L.M. Kristensen and W. Penczek (CS)

1 10

Figure: OBDD with a good variable ordering (source: Wikipedia)

L.M. Kristensen and W. Penczek (CS)

Introduction to model checking

Operations on OBDDs

- o disjunction,
- onjunction,
- negation,
- implication,
- equivalence.

Operations on OBDDs

- disjunction,
- onjunction,
- negation,
- implication,
- equivalence.

Operations on OBDDs

- disjunction,
- conjunction,
- negation,
- implication,
- equivalence.

Operations on OBDDs

- disjunction,
- conjunction,
- negation,
- implication,
- equivalence.

Operations on OBDDs

- disjunction,
- conjunction,
- negation,
- implication,
- equivalence.

Operations on OBDDs

- disjunction,
- conjunction,
- negation,
- implication,
- equivalence.

OBBD-based model checking for CTLK

Fixed point algorithms on OBDD

The algorithms computing for each formula φ the set of states $[\![\varphi]\!]$ in which φ holds, can operate on the OBDD representations of the states.

Encoding

This requires to encode the states and the transition relation of a model M by propositional formulas, and then to represent these formulas by OBDDs.

Model checking

 $M, s^0 \models \varphi$ is translated to checking whether $s^0 \in \llbracket \varphi \rrbracket$.

$OBDD(\{s^0\}) \land OBDD(\llbracket arphi rbracket)) \stackrel{?}{=} OBDD(\emptyset)$

OBDD(S) denotes the OBDD representing the set of states S.

OBBD-based model checking for CTLK

Fixed point algorithms on OBDD

The algorithms computing for each formula φ the set of states $\llbracket \varphi \rrbracket$ in which φ holds, can operate on the OBDD representations of the states.

Encoding

This requires to encode the states and the transition relation of a model M by propositional formulas, and then to represent these formulas by OBDDs.

Model checking

 $M, s^0 \models \varphi$ is translated to checking whether $s^0 \in \llbracket \varphi \rrbracket$.

$OBDD(\{s^0\}) \land OBDD(\llbracket \varphi \rrbracket) \stackrel{?}{=} OBDD(\emptyset)$

OBDD(S) denotes the OBDD representing the set of states S.

OBBD-based model checking for CTLK

Fixed point algorithms on OBDD

The algorithms computing for each formula φ the set of states $\llbracket \varphi \rrbracket$ in which φ holds, can operate on the OBDD representations of the states.

Encoding

This requires to encode the states and the transition relation of a model M by propositional formulas, and then to represent these formulas by OBDDs.

Model checking

 $M, s^0 \models \varphi$ is translated to checking whether $s^0 \in \llbracket \varphi \rrbracket$.

$OBDD(\{s^0\}) \land OBDD(\llbracket \varphi \rrbracket) \stackrel{?}{=} OBDD(\emptyset)$

OBDD(S) denotes the OBDD representing the set of states S.

Complexity

Problem: is a propositional formula satisfiable?

- Theoretical complexity: NP-complete (Cook, 1971),
- Practical and efficient SAT solvers: only in the last decade,
- Many competing algorithms: DPLL scheme is the most successful,
- A general idea: search efficiently for a satisfying assignment.

Efficiency

Complexity

- Problem: is a propositional formula satisfiable?
- Theoretical complexity: NP-complete (Cook, 1971),
- Practical and efficient SAT solvers: only in the last decade,
- Many competing algorithms: DPLL scheme is the most successful,
- A general idea: search efficiently for a satisfying assignment.

Efficiency

Complexity

- Problem: is a propositional formula satisfiable?
- Theoretical complexity: NP-complete (Cook, 1971),
- Practical and efficient SAT solvers: only in the last decade,
- Many competing algorithms: DPLL scheme is the most successful,
- A general idea: search efficiently for a satisfying assignment.

Efficiency

Complexity

- Problem: is a propositional formula satisfiable?
- Theoretical complexity: NP-complete (Cook, 1971),
- Practical and efficient SAT solvers: only in the last decade,
- Many competing algorithms: DPLL scheme is the most successful,
- A general idea: search efficiently for a satisfying assignment.

Efficiency

Complexity

- Problem: is a propositional formula satisfiable?
- Theoretical complexity: NP-complete (Cook, 1971),
- Practical and efficient SAT solvers: only in the last decade,
- Many competing algorithms: DPLL scheme is the most successful,
- A general idea: search efficiently for a satisfying assignment.

Efficiency

Complexity

- Problem: is a propositional formula satisfiable?
- Theoretical complexity: NP-complete (Cook, 1971),
- Practical and efficient SAT solvers: only in the last decade,
- Many competing algorithms: DPLL scheme is the most successful,
- A general idea: search efficiently for a satisfying assignment.

Efficiency

Details

- Efficient data representation,
- Heuristics for deducing and learning information,
- Heuristics: frequently efficient in practice,
- CNF: conjunctive normal form, conjunction of disjunctions of literals,

Details

- Efficient data representation,
- Heuristics for deducing and learning information,
- Heuristics: frequently efficient in practice,
- CNF: conjunctive normal form, conjunction of disjunctions of literals,

Details

- Efficient data representation,
- Heuristics for deducing and learning information,
- Heuristics: frequently efficient in practice,
- CNF: conjunctive normal form, conjunction of disjunctions of literals,

Details

- Efficient data representation,
- Heuristics for deducing and learning information,
- Heuristics: frequently efficient in practice,
- CNF: conjunctive normal form, conjunction of disjunctions of literals,

Two fragments of CTL

Syntax of ACTL

The logic ACTL is the restriction of CTL such that it consists of the formulas of the form: AX α , A(α U β), AG α .

So, the formulas are only in the universal form (no negation applied to modalities).

Syntax of ECTL

The language of ECTL is defined as $\{\neg \varphi \mid \varphi \in ACTL\}$ After 'pushing' negation down the formula, we have the formulas only in the existential form (no negation applied to modalities): EX α , E($\alpha U\beta$), EG α .

Two fragments of CTL

Syntax of ACTL

The logic ACTL is the restriction of CTL such that it consists of the formulas of the form: AX α , A(α U β), AG α .

So, the formulas are only in the universal form (no negation applied to modalities).

Syntax of ECTL

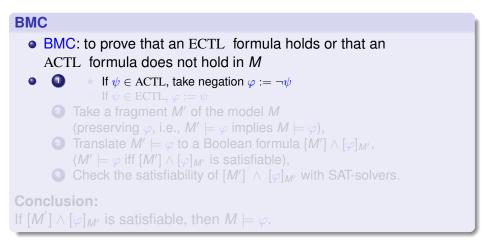
The language of ECTL is defined as $\{\neg \varphi \mid \varphi \in ACTL\}$ After 'pushing' negation down the formula, we have the formulas only in the existential form (no negation applied to modalities): EX α , E($\alpha U\beta$), EG α .

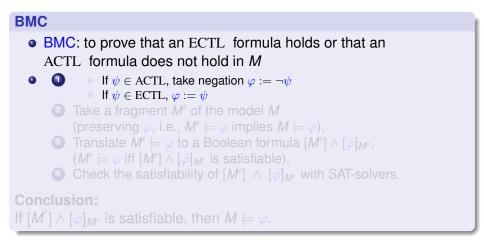
BMC

• BMC: to prove that an ECTL formula holds or that an ACTL formula does not hold in *M*

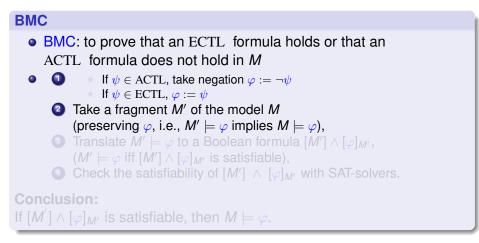
- If $\psi \in ACTL$, take negation $\varphi := \neg \psi$ If $\psi \in ECTL$, $\varphi := \psi$
 - 3 Take a fragment M' of the model M(preserving φ , i.e., $M' \models \varphi$ implies $M \models \varphi$)
 - 3 Translate $M' \models \varphi$ to a Boolean formula $[M'] \land [\varphi]_{M'}$, $(M' \models \varphi \text{ iff } [M'] \land [\varphi]_{M'}$ is satisfiable),
 - ④ Check the satisfiability of $[M'] \land [\varphi]_{M'}$ with SAT-solvers.

Conclusion: If $[M^{'}] \wedge [arphi]_{M^{'}}$ is satisfiable, then $M \models arphi$.

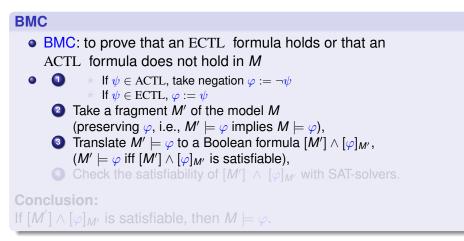


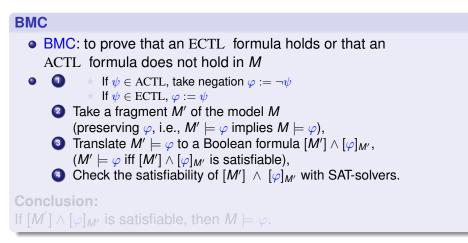


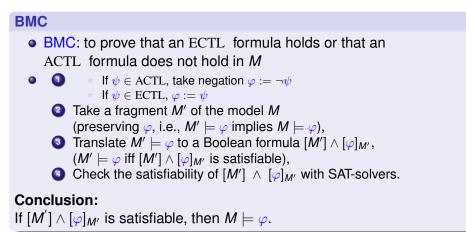
L.M. Kristensen and W. Penczek (CS)



L.M. Kristensen and W. Penczek (CS)







BMC for an ECTL formula φ

• Let φ be an ECTL formula,

- Iterate for k := 1 to |M|,
- Select the k-model M_k (of the paths of length k),
- Select the $f_k(\varphi)$ -submodels of M_k (of $f_k(\varphi)$ paths),
- Translate the transition relation of the *k*-paths of *M_k* to a propositional formula [*M^{φ,ι}*]_k,
- Translate φ over all the f_k(φ)-submodels to a propositional formula [φ]_{M_k},
- Check the satisfiability of $[M, \varphi]_k := [M^{\varphi, \iota}]_k \wedge [\varphi]_{M_k}$.

BMC for an ECTL formula φ

- Let φ be an ECTL formula,
- Iterate for k := 1 to |M|,
- Select the k-model M_k (of the paths of length k),
- Select the $f_k(\varphi)$ -submodels of M_k (of $f_k(\varphi)$ paths),
- Translate the transition relation of the *k*-paths of *M_k* to a propositional formula [*M^{φ,ι}*]_k,
- Translate φ over all the f_k(φ)-submodels to a propositional formula [φ]_{M_k},
- Check the satisfiability of $[M, \varphi]_k := [M^{\varphi, \iota}]_k \wedge [\varphi]_{M_k}$.

BMC for an ECTL formula φ

- Let φ be an ECTL formula,
- Iterate for k := 1 to |M|,
- Select the k-model M_k (of the paths of length k),
- Select the $f_k(\varphi)$ -submodels of M_k (of $f_k(\varphi)$ paths),
- Translate the transition relation of the *k*-paths of *M_k* to a propositional formula [*M^{φ,ι}*]_k,
- Translate φ over all the f_k(φ)-submodels to a propositional formula [φ]_{M_k},
- Check the satisfiability of $[M, \varphi]_k := [M^{\varphi, \iota}]_k \wedge [\varphi]_{M_k}$.

- Let φ be an ECTL formula,
- Iterate for k := 1 to |M|,
- Select the k-model M_k (of the paths of length k),
- Select the $f_k(\varphi)$ -submodels of M_k (of $f_k(\varphi)$ paths),
- Translate the transition relation of the *k*-paths of *M_k* to a propositional formula [*M^{φ,ι}*]_k,
- Translate φ over all the f_k(φ)-submodels to a propositional formula [φ]_{M_k},
- Check the satisfiability of $[M, \varphi]_k := [M^{\varphi, \iota}]_k \wedge [\varphi]_{M_k}$.

- Let φ be an ECTL formula,
- Iterate for k := 1 to |M|,
- Select the k-model M_k (of the paths of length k),
- Select the $f_k(\varphi)$ -submodels of M_k (of $f_k(\varphi)$ paths),
- Translate the transition relation of the *k*-paths of *M_k* to a propositional formula [*M^{φ,ι}*]_k,
- Translate φ over all the f_k(φ)-submodels to a propositional formula [φ]_{M_k},
- Check the satisfiability of $[M, \varphi]_k := [M^{\varphi, \iota}]_k \wedge [\varphi]_{M_k}$.

- Let φ be an ECTL formula,
- Iterate for k := 1 to |M|,
- Select the k-model M_k (of the paths of length k),
- Select the $f_k(\varphi)$ -submodels of M_k (of $f_k(\varphi)$ paths),
- Translate the transition relation of the *k*-paths of *M_k* to a propositional formula [*M^{φ,ι}*]_k,
- Translate φ over all the f_k(φ)-submodels to a propositional formula [φ]_{M_k},
- Check the satisfiability of $[M, \varphi]_k := [M^{\varphi, \iota}]_k \wedge [\varphi]_{M_k}$.

- Let φ be an ECTL formula,
- Iterate for k := 1 to |M|,
- Select the k-model M_k (of the paths of length k),
- Select the $f_k(\varphi)$ -submodels of M_k (of $f_k(\varphi)$ paths),
- Translate the transition relation of the *k*-paths of *M_k* to a propositional formula [*M^{φ,ι}*]_k,
- Translate φ over all the f_k(φ)-submodels to a propositional formula [φ]_{M_k},
- Check the satisfiability of $[M, \varphi]_k := [M^{\varphi, \iota}]_k \wedge [\varphi]_{M_k}$.

Define the function f_k :ECTL \rightarrow **I**N as follows:

•
$$f_k(p) = f_k(\neg p) = 0$$
, where $p \in \mathcal{PV}$,

- $f_k(\alpha \lor \beta) = max\{f_k(\alpha), f_k(\beta)\},\$
- $f_k(\alpha \wedge \beta) = f_k(\alpha) + f_k(\beta)$,

•
$$f_k(\mathrm{EX}\alpha) = f_k(\alpha) + 1$$
,

•
$$f_k(\mathrm{EG}\alpha) = (k+1) \cdot f_k(\alpha) + 1$$
,

•
$$f_k(\mathbf{E}(\alpha \mathbf{U}\beta)) = k \cdot f_k(\alpha) + f_k(\beta) + 1.$$

Intuition

The function $f_k(\alpha)$ computes the number of symbolic paths (sufficient) to represent submodels of M_k in the propositional translation of α .

Define the function f_k :ECTL $\rightarrow \mathbb{N}$ as follows:

•
$$f_k(p) = f_k(\neg p) = 0$$
, where $p \in \mathcal{PV}$,

•
$$f_k(\alpha \lor \beta) = max\{f_k(\alpha), f_k(\beta)\},\$$

- $f_k(\alpha \wedge \beta) = f_k(\alpha) + f_k(\beta)$,
- $f_k(\mathrm{EX}\alpha) = f_k(\alpha) + 1$,

•
$$f_k(\text{EG}\alpha) = (k+1) \cdot f_k(\alpha) + 1$$
,

• $f_k(\mathbf{E}(\alpha \mathbf{U}\beta)) = k \cdot f_k(\alpha) + f_k(\beta) + 1.$

Intuition

The function $f_k(\alpha)$ computes the number of symbolic paths (sufficient) to represent submodels of M_k in the propositional translation of α .

Define the function f_k :ECTL $\rightarrow \mathbb{N}$ as follows:

•
$$f_k(p) = f_k(\neg p) = 0$$
, where $p \in \mathcal{PV}$,

•
$$f_k(\alpha \lor \beta) = max\{f_k(\alpha), f_k(\beta)\},\$$

•
$$f_k(\alpha \wedge \beta) = f_k(\alpha) + f_k(\beta)$$
,

•
$$f_k(\mathrm{EX}\alpha) = f_k(\alpha) + 1$$
,

•
$$f_k(\text{EG}\alpha) = (k+1) \cdot f_k(\alpha) + 1$$
,

•
$$f_k(\mathbf{E}(\alpha \mathbf{U}\beta)) = k \cdot f_k(\alpha) + f_k(\beta) + 1.$$

Intuition

The function $f_k(\alpha)$ computes the number of symbolic paths (sufficient) to represent submodels of M_k in the propositional translation of α .

Define the function f_k :ECTL $\rightarrow \mathbb{N}$ as follows:

•
$$f_k(p) = f_k(\neg p) = 0$$
, where $p \in \mathcal{PV}$,

•
$$f_k(\alpha \lor \beta) = max\{f_k(\alpha), f_k(\beta)\},\$$

•
$$f_k(\alpha \wedge \beta) = f_k(\alpha) + f_k(\beta)$$

•
$$f_k(\mathrm{EX}\alpha) = f_k(\alpha) + 1$$
,

•
$$f_k(\mathrm{EG}\alpha) = (k+1) \cdot f_k(\alpha) + 1$$
,

•
$$f_k(\mathbf{E}(\alpha \mathbf{U}\beta)) = k \cdot f_k(\alpha) + f_k(\beta) + 1.$$

Intuition

The function $f_k(\alpha)$ computes the number of symbolic paths (sufficient) to represent submodels of M_k in the propositional translation of α .

Define the function f_k :ECTL $\rightarrow \mathbb{N}$ as follows:

•
$$f_k(p) = f_k(\neg p) = 0$$
, where $p \in \mathcal{PV}$,

•
$$f_k(\alpha \lor \beta) = max\{f_k(\alpha), f_k(\beta)\},\$$

•
$$f_k(\alpha \wedge \beta) = f_k(\alpha) + f_k(\beta)$$

•
$$f_k(\mathrm{EX}\alpha) = f_k(\alpha) + 1$$
,

•
$$f_k(\mathrm{EG}\alpha) = (k+1) \cdot f_k(\alpha) + 1$$
,

•
$$f_k(\mathbf{E}(\alpha \mathbf{U}\beta)) = k \cdot f_k(\alpha) + f_k(\beta) + 1.$$

Intuition

The function $f_k(\alpha)$ computes the number of symbolic paths (sufficient) to represent submodels of M_k in the propositional translation of α .

Define the function f_k :ECTL $\rightarrow \mathbb{N}$ as follows:

•
$$f_k(p) = f_k(\neg p) = 0$$
, where $p \in \mathcal{PV}$,

•
$$f_k(\alpha \lor \beta) = max\{f_k(\alpha), f_k(\beta)\},\$$

•
$$f_k(\alpha \wedge \beta) = f_k(\alpha) + f_k(\beta)$$
,

•
$$f_k(\mathrm{EX}\alpha) = f_k(\alpha) + 1$$
,

•
$$f_k(\text{EG}\alpha) = (k+1) \cdot f_k(\alpha) + 1$$
,

•
$$f_k(\mathbf{E}(\alpha \mathbf{U}\beta)) = k \cdot f_k(\alpha) + f_k(\beta) + 1.$$

Intuition

The function $f_k(\alpha)$ computes the number of symbolic paths (sufficient) to represent submodels of M_k in the propositional translation of α .

Define the function f_k :ECTL $\rightarrow \mathbb{N}$ as follows:

•
$$f_k(p) = f_k(\neg p) = 0$$
, where $p \in \mathcal{PV}$,

•
$$f_k(\alpha \lor \beta) = max\{f_k(\alpha), f_k(\beta)\},\$$

•
$$f_k(\alpha \wedge \beta) = f_k(\alpha) + f_k(\beta)$$
,

•
$$f_k(\mathrm{EX}\alpha) = f_k(\alpha) + 1$$
,

•
$$f_k(\text{EG}\alpha) = (k+1) \cdot f_k(\alpha) + 1$$
,

•
$$f_k(\mathbf{E}(\alpha \mathbf{U}\beta)) = k \cdot f_k(\alpha) + f_k(\beta) + 1.$$

Intuition

The function $f_k(\alpha)$ computes the number of symbolic paths (sufficient) to represent submodels of M_k in the propositional translation of α .

Let $M = (K, \mathcal{V})$ be a model and $k \in \mathbb{N}_+$.

e A-model for M is a structure

 $M_k = ((\mathbf{G}, P_k, \iota), \mathcal{V}),$

where

- G a set of the global states,
- *P_k* is the set of all the paths of *M* of length *k*,
- \mathcal{V} a valuation function.

Let M = (K, V) be a model and $k \in \mathbb{N}_+$. The *k*-model for *M* is a structure

$$M_k = ((G, P_k, \iota), \mathcal{V}),$$

where

• G - a set of the global states,

• P_k is the set of all the paths of *M* of length *k*,

• \mathcal{V} - a valuation function.

Let M = (K, V) be a model and $k \in \mathbb{N}_+$. The *k*-model for *M* is a structure

$$M_k = ((G, P_k, \iota), \mathcal{V}),$$

where

- G a set of the global states,
- P_k is the set of all the paths of *M* of length *k*,
- \mathcal{V} a valuation function.

Let M = (K, V) be a model and $k \in \mathbb{N}_+$. The *k*-model for *M* is a structure

$$M_k = ((G, P_k, \iota), \mathcal{V}),$$

where

- G a set of the global states,
- *P_k* is the set of all the paths of *M* of length *k*,

• \mathcal{V} - a valuation function.

Let M = (K, V) be a model and $k \in \mathbb{N}_+$. The *k*-model for *M* is a structure

$$M_k = ((G, P_k, \iota), \mathcal{V}),$$

where

- G a set of the global states,
- *P_k* is the set of all the paths of *M* of length *k*,
- \mathcal{V} a valuation function.

$\boldsymbol{s} \models \mathbf{E} \mathbf{X} \alpha$	iff	$\exists \pi \in P_k \ (\pi(0) = s \text{ and } \pi(1) \models lpha),$
$\boldsymbol{s} \models \mathbf{E}\mathbf{G}\alpha$	iff	$\exists \pi \in P_k(\pi(0) = s \text{ and } f)$
		$\forall_{0 \leq j \leq k} \pi(j) \models \alpha \land loop(\pi) \neq \emptyset),$
$\boldsymbol{s} \models \mathrm{E}(\alpha \mathrm{U}\beta)$	iff	$(\exists \pi \in P_k) \ (\pi(0) = s \text{ and })$
		$\exists_{0 \leq j \leq k} (\pi(j) \models \beta \text{ and } \forall_{0 \leq i < j} \pi(i) \models \alpha)).$

Intuition

The bounded semantics for $s \models EG\alpha$ says that there is a *k*-path π , which starts at *s*, all its states satisfy α and π is a loop, which means that one of the states of π is a \rightarrow -successor of $\pi(k)$. *loop*(π) returns the indeces of such states.

$\boldsymbol{s} \models \mathbf{E} \mathbf{X} \alpha$	iff	$\exists \pi \in P_k \ (\pi(0) = s \text{ and } \pi(1) \models lpha),$
$\boldsymbol{s} \models \mathbf{E}\mathbf{G}\alpha$	iff	$\exists \pi \in P_k(\pi(0) = s \text{ and } f$
		$\forall_{0 \leq j \leq k} \pi(j) \models \alpha \land loop(\pi) \neq \emptyset),$
$\boldsymbol{s} \models \mathrm{E}(\alpha \mathrm{U}\beta)$	iff	$(\exists \pi \in P_k) \ (\pi(0) = s \text{ and } f$
		$\exists_{0 \leq j \leq k} (\pi(j) \models \beta \text{ and } \forall_{0 \leq i < j} \pi(i) \models \alpha)).$

Intuition

The bounded semantics for $s \models EG\alpha$ says that there is a *k*-path π , which starts at *s*, all its states satisfy α and π is a loop, which means that one of the states of π is a \rightarrow -successor of $\pi(k)$. *loop*(π) returns the indeces of such states.

Main references and next lecture

References

D. Peled.

All from one, one for all: On model checking using representatives. In *Proc. of CAV*, LNCS 697, p. 409–423, 1993.

R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to branching time logic model checking. *Information and Computation*, 150:132–152, 1999.

W. Penczek, A. Pólrola:

Advances in Verification of Time Petri Nets and Timed Automata: A Temporal Logic Approach.

Springer 2006.

Next lecture

Specification and model checking of Time Petri Nets and Timed Automata.

Main references and next lecture

References

D. Peled.

All from one, one for all: On model checking using representatives. In *Proc. of CAV*, LNCS 697, p. 409–423, 1993.

R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to branching time logic model checking. *Information and Computation*, 150:132–152, 1999.

W. Penczek, A. Pólrola:

Advances in Verification of Time Petri Nets and Timed Automata: A Temporal Logic Approach.

Springer 2006.

Next lecture

Specification and model checking of Time Petri Nets and Timed Automata.

Thank you