
Protocol Verification and State Space Methods

Lars M. Kristensen1 and Wojtek Penczek2

Department of Computer Engineering
Bergen University College, NORWAY

Institute of Computer Science, PAS, and University of Podlasie, Poland

Advanced Course on Petri Nets, Rostock, September 2010

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 1 / 47

Outline

1 Lecture 2: Introduction to model checking

2 Lecture 3a: Specification and model checking of Time Petri
Nets and Timed Automata

3 Lecture 3b: CPN, modules, and data types

4 Lecture 4a: Parametric model checking for PN

5 Lecture 4b: Model checking CPN

6 Lecture 5a: Case studies using VerICS

7 Lecture 5a: Case studies using CPN Tools

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 2 / 47

Lecture 2

Introduction to model checking
Outline

Standard non-symbolic model checking algorithms for CTL and
LTL.
Partial order reductions for LTL−X and CTL−X.
Introduction to symbolic model checking for CTL.
BDD- and SAT-based model checking.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 3 / 47

Lecture 2

Introduction to model checking
Outline

Standard non-symbolic model checking algorithms for CTL and
LTL.
Partial order reductions for LTL−X and CTL−X.
Introduction to symbolic model checking for CTL.
BDD- and SAT-based model checking.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 3 / 47

Lecture 2

Introduction to model checking
Outline

Standard non-symbolic model checking algorithms for CTL and
LTL.
Partial order reductions for LTL−X and CTL−X.
Introduction to symbolic model checking for CTL.
BDD- and SAT-based model checking.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 3 / 47

Lecture 2

Introduction to model checking
Outline

Standard non-symbolic model checking algorithms for CTL and
LTL.
Partial order reductions for LTL−X and CTL−X.
Introduction to symbolic model checking for CTL.
BDD- and SAT-based model checking.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 3 / 47

Lecture 2

Introduction to model checking
Outline

Standard non-symbolic model checking algorithms for CTL and
LTL.
Partial order reductions for LTL−X and CTL−X.
Introduction to symbolic model checking for CTL.
BDD- and SAT-based model checking.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 3 / 47

Lecture 2

Introduction to model checking
Outline

Standard non-symbolic model checking algorithms for CTL and
LTL.
Partial order reductions for LTL−X and CTL−X.
Introduction to symbolic model checking for CTL.
BDD- and SAT-based model checking.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 3 / 47

Lecture 2

Introduction to model checking

Standard non-symbolic model checking
algorithms for CTL and LTL.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 4 / 47

Model checking for Kripke models

Model checking problem

?
M ∣= '

a Kripke model a modal formula

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 5 / 47

Syntax of CTL*

Syntax
S1. every member of PV is a state formula,
S2. if ' and are state formulas, then so are ¬' and ' ∧ ,
S3. if ' is a path formula, then A' and E', are state formulas,
P1. any state formula ' is also a path formula,
P2. if ', are path formulas, then so are ' ∧ and ¬',
P3. if ', are path formulas, then so is X', G', and 'U .

CTL* consists of the set of all state formulae.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 6 / 47

Variety of sublogics of CTL∗

Definition
LTL ⊂ CTL∗ is the fragment of CTL∗ in which all modal formulas
are of the form A', where ' does not contain the state modalities
A,E.
CTL ⊂ CTL∗ is the fragment of CTL∗ in which A,E, and the path
modalities U and G may only appear paired: AX, EX, AU, EU, AG,
and EG.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 7 / 47

Semantics of CTL∗

M = (G, �,Π,V) - a model and � = g0a0g1 ⋅ ⋅ ⋅ - an infinite path of G.
�i denotes the suffix giaigi+1 ⋅ ⋅ ⋅ of �

S1. g ∣= q iff q ∈ V (g), for q ∈ PV ,
S2. g ∣= ¬' iff not g ∣= ',

g ∣= ' ∧ iff g ∣= ' and g ∣= ,
S3. g ∣= A' iff � ∣= ' for every path � starting at g,

g ∣= E' iff � ∣= ' for some path � starting at g,
P1. � ∣= ' iff g0 ∣= ' for any state formula ',
P2. � ∣= ¬' iff not � ∣= ',

� ∣= ' ∧ iff � ∣= ' and � ∣= ,
P3. � ∣= X' iff �1 ∣= ',

� ∣= G' iff �j ∣= ' for all j ≥ 0,
� ∣= 'U iff there is an i ≥ 0 such that �i ∣= and �j ∣= ' for all
0 ≤ j < i .

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 8 / 47

Semantics in Examples

�start

�

�

�

M, start ∣= EG�

�start

�

�

�

M, start ∣= E�U�

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 9 / 47

Semantics in Examples

start

�

M, start ∣= EX�

start

�

M, start ∣= EF�

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 10 / 47

Model checking CTL by state labeling

State labelling
If we do not bother about the size of a model, then the simplest
approach to CTL model checking, called state labelling, can be used.

Algorithm
We show a deterministic algorithm, based on state labelling, for
determining whether a CTL formula ' is true at a state s ∈ S in a finite
model M = ((S, s0,→),V), of time complexity O(∣'∣×(∣S∣+ ∣→∣)).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 11 / 47

Model checking CTL by state labeling

State labelling
If we do not bother about the size of a model, then the simplest
approach to CTL model checking, called state labelling, can be used.

Algorithm
We show a deterministic algorithm, based on state labelling, for
determining whether a CTL formula ' is true at a state s ∈ S in a finite
model M = ((S, s0,→),V), of time complexity O(∣'∣×(∣S∣+ ∣→∣)).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 11 / 47

Model checking CTL by state labeling

Algorithm
The algorithm is designed so that when it finishes, each state s of M is
labelled with the subformulas of ' which are true at s.

The algorithm operates in stages.
The i-th stage handles all subformulas of ' of length i for i ≤ ∣'∣.
Thus, at the end of the last stage each state will be labelled with
all subformulas of ' which are true at it.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 12 / 47

Model checking CTL by state labeling

Algorithm
The algorithm is designed so that when it finishes, each state s of M is
labelled with the subformulas of ' which are true at s.

The algorithm operates in stages.
The i-th stage handles all subformulas of ' of length i for i ≤ ∣'∣.
Thus, at the end of the last stage each state will be labelled with
all subformulas of ' which are true at it.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 12 / 47

Model checking CTL by state labeling

Algorithm
The algorithm is designed so that when it finishes, each state s of M is
labelled with the subformulas of ' which are true at s.

The algorithm operates in stages.
The i-th stage handles all subformulas of ' of length i for i ≤ ∣'∣.
Thus, at the end of the last stage each state will be labelled with
all subformulas of ' which are true at it.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 12 / 47

Model checking CTL by state labeling

Algorithm
The algorithm is designed so that when it finishes, each state s of M is
labelled with the subformulas of ' which are true at s.

The algorithm operates in stages.
The i-th stage handles all subformulas of ' of length i for i ≤ ∣'∣.
Thus, at the end of the last stage each state will be labelled with
all subformulas of ' which are true at it.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 12 / 47

Model checking CTL by state labeling

CTL operators
Each of the operators of CTL can be expressed in terms of the three
operators EX,EG, and EU.

Five cases
So, only 5 cases have to be considered, where ' is:
¬ ,
 1 ∧ 2,
EX ,
E(1U 2), or
EG .

Algorithm
The algorithm is discussed for the last two cases only, as the others
are straightforward.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 13 / 47

Model checking CTL by state labeling

CTL operators
Each of the operators of CTL can be expressed in terms of the three
operators EX,EG, and EU.

Five cases
So, only 5 cases have to be considered, where ' is:
¬ ,
 1 ∧ 2,
EX ,
E(1U 2), or
EG .

Algorithm
The algorithm is discussed for the last two cases only, as the others
are straightforward.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 13 / 47

Model checking CTL by state labeling

CTL operators
Each of the operators of CTL can be expressed in terms of the three
operators EX,EG, and EU.

Five cases
So, only 5 cases have to be considered, where ' is:
¬ ,
 1 ∧ 2,
EX ,
E(1U 2), or
EG .

Algorithm
The algorithm is discussed for the last two cases only, as the others
are straightforward.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 13 / 47

Model checking CTL by state labeling

Formula ' = E(1U 2)

The algorithm first finds all the states which are labelled with 2
and labels them with '.
It goes backwards using the relation→−1 and finds all the states
which can be reached by a path in which each state is labelled
with 1.
All such states are labelled with '.

Complexity
This step requires time O(∣S∣+ ∣→∣).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 14 / 47

Model checking CTL by state labeling

Formula ' = E(1U 2)

The algorithm first finds all the states which are labelled with 2
and labels them with '.
It goes backwards using the relation→−1 and finds all the states
which can be reached by a path in which each state is labelled
with 1.
All such states are labelled with '.

Complexity
This step requires time O(∣S∣+ ∣→∣).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 14 / 47

Model checking CTL by state labeling

Formula ' = E(1U 2)

The algorithm first finds all the states which are labelled with 2
and labels them with '.
It goes backwards using the relation→−1 and finds all the states
which can be reached by a path in which each state is labelled
with 1.
All such states are labelled with '.

Complexity
This step requires time O(∣S∣+ ∣→∣).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 14 / 47

Model checking CTL by state labeling

Formula ' = EG

The graph (S′,→′) is constructed, where S′ = {s ∈ S ∣ M, s ∣= }
and→′ =→∩ (S′ × S′).
(S′,→′) is partitioned into strongly connected components and
those states which belong to the components of size greater than
1 or with a self-loop are selected and labelled with '.
The algorithm goes backwards from these states using→−1 and
finds all those states which can be reached by a path in which
each state is labelled with . It labels these states with '.

Complexity
This step requires time O(∣S∣+ ∣→∣).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 15 / 47

Model checking CTL by state labeling

Formula ' = EG

The graph (S′,→′) is constructed, where S′ = {s ∈ S ∣ M, s ∣= }
and→′ =→∩ (S′ × S′).
(S′,→′) is partitioned into strongly connected components and
those states which belong to the components of size greater than
1 or with a self-loop are selected and labelled with '.
The algorithm goes backwards from these states using→−1 and
finds all those states which can be reached by a path in which
each state is labelled with . It labels these states with '.

Complexity
This step requires time O(∣S∣+ ∣→∣).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 15 / 47

Model checking CTL by state labeling

Formula ' = EG

The graph (S′,→′) is constructed, where S′ = {s ∈ S ∣ M, s ∣= }
and→′ =→∩ (S′ × S′).
(S′,→′) is partitioned into strongly connected components and
those states which belong to the components of size greater than
1 or with a self-loop are selected and labelled with '.
The algorithm goes backwards from these states using→−1 and
finds all those states which can be reached by a path in which
each state is labelled with . It labels these states with '.

Complexity
This step requires time O(∣S∣+ ∣→∣).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 15 / 47

Model checking CTL by state labeling

Formula ' = EG

The graph (S′,→′) is constructed, where S′ = {s ∈ S ∣ M, s ∣= }
and→′ =→∩ (S′ × S′).
(S′,→′) is partitioned into strongly connected components and
those states which belong to the components of size greater than
1 or with a self-loop are selected and labelled with '.
The algorithm goes backwards from these states using→−1 and
finds all those states which can be reached by a path in which
each state is labelled with . It labels these states with '.

Complexity
This step requires time O(∣S∣+ ∣→∣).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 15 / 47

Model checking CTL by state labeling

Example
Consider the model M shown below and the CTL formula
' = E(p1U(EGp2)).

M

p1

p2

s0

Figure: The model M.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 16 / 47

Model checking CTL by state labeling

Labelling M with ' = E(p1U(EGp2)); '′ = EGp2

s0

p2

p1

p1

p1

p2

p2

p1

p2

p2

p2

p2

p2

SCC3SCC2

SCC1

p2

p2

(a) (b)

s0

p2, '
′

p1

p1

p1

p2, '
′

p1

p2, '
′

p2, '
′p2, '

′

s0

p2, '
′, '

p1

p1, '

p2, '
′, '

p1, '

p2, '
′, '

p2, '
′, 'p2, '

′, '

p1, '

(c) (d)

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 17 / 47

References and other approaches

Reference
The original state labelling algoritm for CTL was introduced by Clarke,
Emerson, and Sistla in 1986.

Automata theoretic approaches
By checking non-emptiness of the product of the automaton
representing a system and an automaton accepting all the models
of the negation of a formula, via ...
A translation from CTL to alternating tree automata.
A translation from LTL to Buchi or Streett automata.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 18 / 47

References and other approaches

Reference
The original state labelling algoritm for CTL was introduced by Clarke,
Emerson, and Sistla in 1986.

Automata theoretic approaches
By checking non-emptiness of the product of the automaton
representing a system and an automaton accepting all the models
of the negation of a formula, via ...
A translation from CTL to alternating tree automata.
A translation from LTL to Buchi or Streett automata.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 18 / 47

References and other approaches

Reference
The original state labelling algoritm for CTL was introduced by Clarke,
Emerson, and Sistla in 1986.

Automata theoretic approaches
By checking non-emptiness of the product of the automaton
representing a system and an automaton accepting all the models
of the negation of a formula, via ...
A translation from CTL to alternating tree automata.
A translation from LTL to Buchi or Streett automata.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 18 / 47

Lecture 2

Introduction to model checking for knowledge and time

Partial order reductions for LTL−X and CTL−X.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 19 / 47

Networks of automata

W

T

A

G

R

W

T

A

Train1 Train2Controller

a1
a1a2

a2
a3

b1
b1b2

b2
b3

Figure: TC composed of two trains and the controler

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 20 / 47

Algorithm DFS-POR

DFS-POR
DFS-POR is used to compute paths of the reduced model.
A stack represents the path � = g0a0g1a1 ⋅ ⋅ ⋅ gn currently being visited.
For gn, the following three operations are computed in a loop:

1 The set en(gn) ⊆ Act of enabled actions is identified and
a subset E(gn) ⊆ en(gn) of possible actions is heuristically
selected.

2 For any action a ∈ E(gn) compute the successor state g′ of gn

such that gn
a→ g′, and add g′ to the stack.

Recursively proceed to explore the submodel originating at g′.

3 Remove gn from the stack.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 21 / 47

Algorithm DFS-POR

DFS-POR
DFS-POR is used to compute paths of the reduced model.
A stack represents the path � = g0a0g1a1 ⋅ ⋅ ⋅ gn currently being visited.
For gn, the following three operations are computed in a loop:

1 The set en(gn) ⊆ Act of enabled actions is identified and
a subset E(gn) ⊆ en(gn) of possible actions is heuristically
selected.

2 For any action a ∈ E(gn) compute the successor state g′ of gn

such that gn
a→ g′, and add g′ to the stack.

Recursively proceed to explore the submodel originating at g′.

3 Remove gn from the stack.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 21 / 47

Algorithm DFS-POR

DFS-POR
DFS-POR is used to compute paths of the reduced model.
A stack represents the path � = g0a0g1a1 ⋅ ⋅ ⋅ gn currently being visited.
For gn, the following three operations are computed in a loop:

1 The set en(gn) ⊆ Act of enabled actions is identified and
a subset E(gn) ⊆ en(gn) of possible actions is heuristically
selected.

2 For any action a ∈ E(gn) compute the successor state g′ of gn

such that gn
a→ g′, and add g′ to the stack.

Recursively proceed to explore the submodel originating at g′.

3 Remove gn from the stack.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 21 / 47

Algorithm DFS-POR

DFS-POR
DFS-POR is used to compute paths of the reduced model.
A stack represents the path � = g0a0g1a1 ⋅ ⋅ ⋅ gn currently being visited.
For gn, the following three operations are computed in a loop:

1 The set en(gn) ⊆ Act of enabled actions is identified and
a subset E(gn) ⊆ en(gn) of possible actions is heuristically
selected.

2 For any action a ∈ E(gn) compute the successor state g′ of gn

such that gn
a→ g′, and add g′ to the stack.

Recursively proceed to explore the submodel originating at g′.

3 Remove gn from the stack.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 21 / 47

Conditions for selection of E(g)

Conditions
C1 No action a ∈ Act ∖ E(g) that is dependent on an action in

E(g) can be executed before an action in E(g) is
executed.

C2 On every cycle in the constructed state graph there is at
least one node g for which E(g) = en(g).

C3 Each action in E(g) is invisible, i.e., does not change
V (g).

C4 If E(g) ∕= en(g), then E(g) is a singleton.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 22 / 47

Conditions for selection of E(g)

Conditions
C1 No action a ∈ Act ∖ E(g) that is dependent on an action in

E(g) can be executed before an action in E(g) is
executed.

C2 On every cycle in the constructed state graph there is at
least one node g for which E(g) = en(g).

C3 Each action in E(g) is invisible, i.e., does not change
V (g).

C4 If E(g) ∕= en(g), then E(g) is a singleton.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 22 / 47

Conditions for selection of E(g)

Conditions
C1 No action a ∈ Act ∖ E(g) that is dependent on an action in

E(g) can be executed before an action in E(g) is
executed.

C2 On every cycle in the constructed state graph there is at
least one node g for which E(g) = en(g).

C3 Each action in E(g) is invisible, i.e., does not change
V (g).

C4 If E(g) ∕= en(g), then E(g) is a singleton.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 22 / 47

Conditions for selection of E(g)

Conditions
C1 No action a ∈ Act ∖ E(g) that is dependent on an action in

E(g) can be executed before an action in E(g) is
executed.

C2 On every cycle in the constructed state graph there is at
least one node g for which E(g) = en(g).

C3 Each action in E(g) is invisible, i.e., does not change
V (g).

C4 If E(g) ∕= en(g), then E(g) is a singleton.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 22 / 47

Correctness

Theorem

Let M be a model and M ′ ⊆ M be the reduced model generated by the
DFS-POR algorithm. The following conditions hold:

a) If the choice of E(g) is given by C1, C2, C3, then
M ∣= ' iff M ′ ∣= ', for any LTL−X formula '.

b) If the choice of E(g) is given by C1, C2, C3 and C4, then
M ∣= ' iff M ′ ∣= ', for any CTL∗−X formula '.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 23 / 47

Correctness

Theorem

Let M be a model and M ′ ⊆ M be the reduced model generated by the
DFS-POR algorithm. The following conditions hold:

a) If the choice of E(g) is given by C1, C2, C3, then
M ∣= ' iff M ′ ∣= ', for any LTL−X formula '.

b) If the choice of E(g) is given by C1, C2, C3 and C4, then
M ∣= ' iff M ′ ∣= ', for any CTL∗−X formula '.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 23 / 47

Correctness

Theorem

Let M be a model and M ′ ⊆ M be the reduced model generated by the
DFS-POR algorithm. The following conditions hold:

a) If the choice of E(g) is given by C1, C2, C3, then
M ∣= ' iff M ′ ∣= ', for any LTL−X formula '.

b) If the choice of E(g) is given by C1, C2, C3 and C4, then
M ∣= ' iff M ′ ∣= ', for any CTL∗−X formula '.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 23 / 47

Experimental Results - Trains and controler (TC)

TC
Property: if the train 1 is in the tunnel, then no other train is in the
tunnel at the same time:

AG(in_tunnel1 →
n⋀

i=2

¬in_tunneli),

State spaces
F (n) - the size of the full state space.
R(n) - the size of the reduced state space.

F (n) = cn × 2n+1, for some cn > 1,
R(n) = 3 + 4(n − 1).

The reduced state space is exponentially smaller than the original one,
for both LTL−X and CTL∗−X.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 24 / 47

Experimental Results - Trains and controler (TC)

TC
Property: if the train 1 is in the tunnel, then no other train is in the
tunnel at the same time:

AG(in_tunnel1 →
n⋀

i=2

¬in_tunneli),

State spaces
F (n) - the size of the full state space.
R(n) - the size of the reduced state space.

F (n) = cn × 2n+1, for some cn > 1,
R(n) = 3 + 4(n − 1).

The reduced state space is exponentially smaller than the original one,
for both LTL−X and CTL∗−X.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 24 / 47

Experimental Results - Trains and controler (TC)

TC
Property: if the train 1 is in the tunnel, then no other train is in the
tunnel at the same time:

AG(in_tunnel1 →
n⋀

i=2

¬in_tunneli),

State spaces
F (n) - the size of the full state space.
R(n) - the size of the reduced state space.

F (n) = cn × 2n+1, for some cn > 1,
R(n) = 3 + 4(n − 1).

The reduced state space is exponentially smaller than the original one,
for both LTL−X and CTL∗−X.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 24 / 47

Lecture 2

Introduction to model checking

Introduction to symbolic model checking for CTL.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 25 / 47

Fixed-point verification for CTL

Introduction
Symbolic and non-symbolic model checking methods can exploit the
fixed point characterization of CTL formulas.

Using fixpoints
Labelling the states with the subformulas or computation of OBDD
representation of a formula uses the standard algorithms for computing
the least and the greatest fixpoints as follows.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 26 / 47

Fixed-point verification for CTL

Introduction
Symbolic and non-symbolic model checking methods can exploit the
fixed point characterization of CTL formulas.

Using fixpoints
Labelling the states with the subformulas or computation of OBDD
representation of a formula uses the standard algorithms for computing
the least and the greatest fixpoints as follows.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 26 / 47

Fixed points approach

Axioms for CTL
EG' ≡ ' ∧ EXEG',
E('U) ≡ ∨ (' ∧ EX(E('U))),

Fixed point characterization of CTL

Let J'K = {s ∈ S ∣ s ∣= '}.

JEG'K = J'K ∩ JEXEG'K,
JE('U)K = J K ∪ (J'K ∩ JEXE('U)K)

Pre-set
Let pre(X) = {s ∈ S ∣ (∃s′ ∈ X) s → s′}, for X ⊆ S.

Characterization
JEG'K = J'K ∩ pre(JEG'K),
JE('U)K = J K ∪ (J'K ∩ pre(JE('U)K)).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 27 / 47

Fixed points approach

Axioms for CTL
EG' ≡ ' ∧ EXEG',
E('U) ≡ ∨ (' ∧ EX(E('U))),

Fixed point characterization of CTL

Let J'K = {s ∈ S ∣ s ∣= '}.

JEG'K = J'K ∩ JEXEG'K,
JE('U)K = J K ∪ (J'K ∩ JEXE('U)K)

Pre-set
Let pre(X) = {s ∈ S ∣ (∃s′ ∈ X) s → s′}, for X ⊆ S.

Characterization
JEG'K = J'K ∩ pre(JEG'K),
JE('U)K = J K ∪ (J'K ∩ pre(JE('U)K)).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 27 / 47

Fixed points approach

Axioms for CTL
EG' ≡ ' ∧ EXEG',
E('U) ≡ ∨ (' ∧ EX(E('U))),

Fixed point characterization of CTL

Let J'K = {s ∈ S ∣ s ∣= '}.

JEG'K = J'K ∩ JEXEG'K,
JE('U)K = J K ∪ (J'K ∩ JEXE('U)K)

Pre-set
Let pre(X) = {s ∈ S ∣ (∃s′ ∈ X) s → s′}, for X ⊆ S.

Characterization
JEG'K = J'K ∩ pre(JEG'K),
JE('U)K = J K ∪ (J'K ∩ pre(JE('U)K)).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 27 / 47

Fixed points approach

Axioms for CTL
EG' ≡ ' ∧ EXEG',
E('U) ≡ ∨ (' ∧ EX(E('U))),

Fixed point characterization of CTL

Let J'K = {s ∈ S ∣ s ∣= '}.

JEG'K = J'K ∩ JEXEG'K,
JE('U)K = J K ∪ (J'K ∩ JEXE('U)K)

Pre-set
Let pre(X) = {s ∈ S ∣ (∃s′ ∈ X) s → s′}, for X ⊆ S.

Characterization
JEG'K = J'K ∩ pre(JEG'K),
JE('U)K = J K ∪ (J'K ∩ pre(JE('U)K)).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 27 / 47

Fixed points approach

Axioms for CTL
EG' ≡ ' ∧ EXEG',
E('U) ≡ ∨ (' ∧ EX(E('U))),

Fixed point characterization of CTL

Let J'K = {s ∈ S ∣ s ∣= '}.

JEG'K = J'K ∩ JEXEG'K,
JE('U)K = J K ∪ (J'K ∩ JEXE('U)K)

Pre-set
Let pre(X) = {s ∈ S ∣ (∃s′ ∈ X) s → s′}, for X ⊆ S.

Characterization
JEG'K = J'K ∩ pre(JEG'K),
JE('U)K = J K ∪ (J'K ∩ pre(JE('U)K)).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 27 / 47

Fixed points approach

Axioms for CTL
EG' ≡ ' ∧ EXEG',
E('U) ≡ ∨ (' ∧ EX(E('U))),

Fixed point characterization of CTL

Let J'K = {s ∈ S ∣ s ∣= '}.

JEG'K = J'K ∩ JEXEG'K,
JE('U)K = J K ∪ (J'K ∩ JEXE('U)K)

Pre-set
Let pre(X) = {s ∈ S ∣ (∃s′ ∈ X) s → s′}, for X ⊆ S.

Characterization
JEG'K = J'K ∩ pre(JEG'K),
JE('U)K = J K ∪ (J'K ∩ pre(JE('U)K)).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 27 / 47

Fixed points approach

Axioms for CTL
EG' ≡ ' ∧ EXEG',
E('U) ≡ ∨ (' ∧ EX(E('U))),

Fixed point characterization of CTL

Let J'K = {s ∈ S ∣ s ∣= '}.

JEG'K = J'K ∩ JEXEG'K,
JE('U)K = J K ∪ (J'K ∩ JEXE('U)K)

Pre-set
Let pre(X) = {s ∈ S ∣ (∃s′ ∈ X) s → s′}, for X ⊆ S.

Characterization
JEG'K = J'K ∩ pre(JEG'K),
JE('U)K = J K ∪ (J'K ∩ pre(JE('U)K)).

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 27 / 47

Fixed points

Functions

Define two functions on 2S, which fixed points are equal to respectively
JEG'K and JE('U)K.

1 �EG'(X) = J'K ∩ pre(X),
2 �E('U)(X) = J K ∪ (J'K ∩ pre(X))

Computing fixed points
JEG'K is the greatest fixpoint of �EG'(X), so it can be computed as
� k

EG'(S) for some finite k .
JE('U)K is the least fixpoint of �E('U)(X), so it can be computed
as � l

E('U)(∅) for some finite l .

The above characterization can be now used for defining a model
checking algorithm mchk for the formulas of CTL.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 28 / 47

Fixed points

Functions

Define two functions on 2S, which fixed points are equal to respectively
JEG'K and JE('U)K.

1 �EG'(X) = J'K ∩ pre(X),
2 �E('U)(X) = J K ∪ (J'K ∩ pre(X))

Computing fixed points
JEG'K is the greatest fixpoint of �EG'(X), so it can be computed as
� k

EG'(S) for some finite k .
JE('U)K is the least fixpoint of �E('U)(X), so it can be computed
as � l

E('U)(∅) for some finite l .

The above characterization can be now used for defining a model
checking algorithm mchk for the formulas of CTL.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 28 / 47

Fixed points

Functions

Define two functions on 2S, which fixed points are equal to respectively
JEG'K and JE('U)K.

1 �EG'(X) = J'K ∩ pre(X),
2 �E('U)(X) = J K ∪ (J'K ∩ pre(X))

Computing fixed points
JEG'K is the greatest fixpoint of �EG'(X), so it can be computed as
� k

EG'(S) for some finite k .
JE('U)K is the least fixpoint of �E('U)(X), so it can be computed
as � l

E('U)(∅) for some finite l .

The above characterization can be now used for defining a model
checking algorithm mchk for the formulas of CTL.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 28 / 47

Fixed points

Functions

Define two functions on 2S, which fixed points are equal to respectively
JEG'K and JE('U)K.

1 �EG'(X) = J'K ∩ pre(X),
2 �E('U)(X) = J K ∪ (J'K ∩ pre(X))

Computing fixed points
JEG'K is the greatest fixpoint of �EG'(X), so it can be computed as
� k

EG'(S) for some finite k .
JE('U)K is the least fixpoint of �E('U)(X), so it can be computed
as � l

E('U)(∅) for some finite l .

The above characterization can be now used for defining a model
checking algorithm mchk for the formulas of CTL.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 28 / 47

Fixed points

Functions

Define two functions on 2S, which fixed points are equal to respectively
JEG'K and JE('U)K.

1 �EG'(X) = J'K ∩ pre(X),
2 �E('U)(X) = J K ∪ (J'K ∩ pre(X))

Computing fixed points
JEG'K is the greatest fixpoint of �EG'(X), so it can be computed as
� k

EG'(S) for some finite k .
JE('U)K is the least fixpoint of �E('U)(X), so it can be computed
as � l

E('U)(∅) for some finite l .

The above characterization can be now used for defining a model
checking algorithm mchk for the formulas of CTL.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 28 / 47

Fixed points

Functions

Define two functions on 2S, which fixed points are equal to respectively
JEG'K and JE('U)K.

1 �EG'(X) = J'K ∩ pre(X),
2 �E('U)(X) = J K ∪ (J'K ∩ pre(X))

Computing fixed points
JEG'K is the greatest fixpoint of �EG'(X), so it can be computed as
� k

EG'(S) for some finite k .
JE('U)K is the least fixpoint of �E('U)(X), so it can be computed
as � l

E('U)(∅) for some finite l .

The above characterization can be now used for defining a model
checking algorithm mchk for the formulas of CTL.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 28 / 47

Algorithm

Model checking algorithm based of fixpoint characterization

mchk(M, ') {
if ' ∈ PV , then return V−1('),
if ' = ¬ , then return S ∖mchk(M,),
if ' = '1 ∨'2, then return mchk(M, '1)∪mchk(M, '2),
if ' = EX , then return mchkEX(M,),
if ' = EG , then return mchkEG(M,),
if ' = E(1U 2), then return mchkEU(M, 1, 2),
}

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 29 / 47

Algorithm: Model checking procedures

mchkEX(M,){
X := mchk(M,);

Y := pre(X);

return Y };

mchkEG(M,){
X := mchk(M,);

Y := S;

Z := ∅;
while (Z ∕= Y){
Z := Y ;

Y := X ∩ pre(Y)}
return Y };

mchkEU(M, 1, 2){
X := mchk(M, 1);

Y := mchk(M, 2);

Z := ∅;
W := S;

while (Z ∕= W){
W := Z ;

Z := Y ∪ (X ∩ pre(Z))}
return Z };

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 30 / 47

Algorithm: Model checking procedures

mchkEX(M,){
X := mchk(M,);

Y := pre(X);

return Y };

mchkEG(M,){
X := mchk(M,);

Y := S;

Z := ∅;
while (Z ∕= Y){
Z := Y ;

Y := X ∩ pre(Y)}
return Y };

mchkEU(M, 1, 2){
X := mchk(M, 1);

Y := mchk(M, 2);

Z := ∅;
W := S;

while (Z ∕= W){
W := Z ;

Z := Y ∪ (X ∩ pre(Z))}
return Z };

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 30 / 47

Introduction to OBDDs

OBDD
OBDD (Ordered Binary Dicision Diagrams) are used for succint
represenation of Boolean functions.
Consider a Boolean function:

f : {0,1}n −→ {0,1}

A function can be represented by the results of all the valuations of
some propositional formula over n propositional variables.

Example
For example the function f (x1, x2) = x1 ∗ x2 is represented by the
formula p1 ∧ p2.
Each Boolean function can be represented by an OBDD.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 31 / 47

Introduction to OBDDs

OBDD
OBDD (Ordered Binary Dicision Diagrams) are used for succint
represenation of Boolean functions.
Consider a Boolean function:

f : {0,1}n −→ {0,1}

A function can be represented by the results of all the valuations of
some propositional formula over n propositional variables.

Example
For example the function f (x1, x2) = x1 ∗ x2 is represented by the
formula p1 ∧ p2.
Each Boolean function can be represented by an OBDD.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 31 / 47

Introduction to OBDDs

Figure: BDD representing the boolean function f (source: Wikipedia)

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 32 / 47

Introduction to OBDDs

Figure: Canonical OBDD representing the boolean function f (source:
Wikipedia)

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 33 / 47

Introduction to OBDDs

Figure: OBDD with a bad variable ordering (source: Wikipedia)

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 34 / 47

Introduction to OBDDs

Figure: OBDD with a good variable ordering (source: Wikipedia)

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 35 / 47

Introduction to OBDDs

Operations on OBDDs
The following operations can be implemented by polynomial-time
graph manipulation algorithms:

disjunction,
conjunction,
negation,
implication,
equivalence.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 36 / 47

Introduction to OBDDs

Operations on OBDDs
The following operations can be implemented by polynomial-time
graph manipulation algorithms:

disjunction,
conjunction,
negation,
implication,
equivalence.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 36 / 47

Introduction to OBDDs

Operations on OBDDs
The following operations can be implemented by polynomial-time
graph manipulation algorithms:

disjunction,
conjunction,
negation,
implication,
equivalence.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 36 / 47

Introduction to OBDDs

Operations on OBDDs
The following operations can be implemented by polynomial-time
graph manipulation algorithms:

disjunction,
conjunction,
negation,
implication,
equivalence.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 36 / 47

Introduction to OBDDs

Operations on OBDDs
The following operations can be implemented by polynomial-time
graph manipulation algorithms:

disjunction,
conjunction,
negation,
implication,
equivalence.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 36 / 47

Introduction to OBDDs

Operations on OBDDs
The following operations can be implemented by polynomial-time
graph manipulation algorithms:

disjunction,
conjunction,
negation,
implication,
equivalence.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 36 / 47

OBBD-based model checking for CTLK

Fixed point algorithms on OBDD
The algorithms computing for each formula ' the set of states J'K in
which ' holds, can operate on the OBDD representations of the states.

Encoding
This requires to encode the states and the transition relation of a
model M by propositional formulas, and then to represent these
formulas by OBDDs.

Model checking

M, s0 ∣= ' is translated to checking whether s0 ∈ J'K.

OBDD({s0}) ∧OBDD(J'K)
?
= OBDD(∅)

OBDD(S) denotes the OBDD representing the set of states S.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 37 / 47

OBBD-based model checking for CTLK

Fixed point algorithms on OBDD
The algorithms computing for each formula ' the set of states J'K in
which ' holds, can operate on the OBDD representations of the states.

Encoding
This requires to encode the states and the transition relation of a
model M by propositional formulas, and then to represent these
formulas by OBDDs.

Model checking

M, s0 ∣= ' is translated to checking whether s0 ∈ J'K.

OBDD({s0}) ∧OBDD(J'K)
?
= OBDD(∅)

OBDD(S) denotes the OBDD representing the set of states S.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 37 / 47

OBBD-based model checking for CTLK

Fixed point algorithms on OBDD
The algorithms computing for each formula ' the set of states J'K in
which ' holds, can operate on the OBDD representations of the states.

Encoding
This requires to encode the states and the transition relation of a
model M by propositional formulas, and then to represent these
formulas by OBDDs.

Model checking

M, s0 ∣= ' is translated to checking whether s0 ∈ J'K.

OBDD({s0}) ∧OBDD(J'K)
?
= OBDD(∅)

OBDD(S) denotes the OBDD representing the set of states S.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 37 / 47

SAT solvers

Complexity
Problem: is a propositional formula satisfiable?
Theoretical complexity: NP-complete (Cook, 1971),
Practical and efficient SAT solvers: only in the last decade,
Many competing algorithms: DPLL scheme is the most
successful,
A general idea: search efficiently for a satisfying assignment.

Efficiency
A SAT-solver is a heuristics only, but it can be very “clever”.
Modern SAT-solvers can decide formulas composed of hundreds of
thousands of propositional variables in a reasonable time.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 38 / 47

SAT solvers

Complexity
Problem: is a propositional formula satisfiable?
Theoretical complexity: NP-complete (Cook, 1971),
Practical and efficient SAT solvers: only in the last decade,
Many competing algorithms: DPLL scheme is the most
successful,
A general idea: search efficiently for a satisfying assignment.

Efficiency
A SAT-solver is a heuristics only, but it can be very “clever”.
Modern SAT-solvers can decide formulas composed of hundreds of
thousands of propositional variables in a reasonable time.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 38 / 47

SAT solvers

Complexity
Problem: is a propositional formula satisfiable?
Theoretical complexity: NP-complete (Cook, 1971),
Practical and efficient SAT solvers: only in the last decade,
Many competing algorithms: DPLL scheme is the most
successful,
A general idea: search efficiently for a satisfying assignment.

Efficiency
A SAT-solver is a heuristics only, but it can be very “clever”.
Modern SAT-solvers can decide formulas composed of hundreds of
thousands of propositional variables in a reasonable time.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 38 / 47

SAT solvers

Complexity
Problem: is a propositional formula satisfiable?
Theoretical complexity: NP-complete (Cook, 1971),
Practical and efficient SAT solvers: only in the last decade,
Many competing algorithms: DPLL scheme is the most
successful,
A general idea: search efficiently for a satisfying assignment.

Efficiency
A SAT-solver is a heuristics only, but it can be very “clever”.
Modern SAT-solvers can decide formulas composed of hundreds of
thousands of propositional variables in a reasonable time.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 38 / 47

SAT solvers

Complexity
Problem: is a propositional formula satisfiable?
Theoretical complexity: NP-complete (Cook, 1971),
Practical and efficient SAT solvers: only in the last decade,
Many competing algorithms: DPLL scheme is the most
successful,
A general idea: search efficiently for a satisfying assignment.

Efficiency
A SAT-solver is a heuristics only, but it can be very “clever”.
Modern SAT-solvers can decide formulas composed of hundreds of
thousands of propositional variables in a reasonable time.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 38 / 47

SAT solvers

Complexity
Problem: is a propositional formula satisfiable?
Theoretical complexity: NP-complete (Cook, 1971),
Practical and efficient SAT solvers: only in the last decade,
Many competing algorithms: DPLL scheme is the most
successful,
A general idea: search efficiently for a satisfying assignment.

Efficiency
A SAT-solver is a heuristics only, but it can be very “clever”.
Modern SAT-solvers can decide formulas composed of hundreds of
thousands of propositional variables in a reasonable time.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 38 / 47

SAT-solvers

Details
Efficient data representation,
Heuristics for deducing and learning information,
Heuristics: frequently efficient in practice,
CNF: conjunctive normal form, conjunction of disjunctions of
literals,

(¬p1) ∧ (p1 ∨ p4 ∨ ¬p5) ∧ (¬p2 ∨ p3) ∧ (p4 ∨ p5)

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 39 / 47

SAT-solvers

Details
Efficient data representation,
Heuristics for deducing and learning information,
Heuristics: frequently efficient in practice,
CNF: conjunctive normal form, conjunction of disjunctions of
literals,

(¬p1) ∧ (p1 ∨ p4 ∨ ¬p5) ∧ (¬p2 ∨ p3) ∧ (p4 ∨ p5)

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 39 / 47

SAT-solvers

Details
Efficient data representation,
Heuristics for deducing and learning information,
Heuristics: frequently efficient in practice,
CNF: conjunctive normal form, conjunction of disjunctions of
literals,

(¬p1) ∧ (p1 ∨ p4 ∨ ¬p5) ∧ (¬p2 ∨ p3) ∧ (p4 ∨ p5)

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 39 / 47

SAT-solvers

Details
Efficient data representation,
Heuristics for deducing and learning information,
Heuristics: frequently efficient in practice,
CNF: conjunctive normal form, conjunction of disjunctions of
literals,

(¬p1) ∧ (p1 ∨ p4 ∨ ¬p5) ∧ (¬p2 ∨ p3) ∧ (p4 ∨ p5)

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 39 / 47

Two fragments of CTL

Syntax of ACTL

The logic ACTL is the restriction of CTL such that it consists of the
formulas of the form: AX�, A(�U�), AG�.
So, the formulas are only in the universal form (no negation applied to
modalities).

Syntax of ECTL

The language of ECTL is defined as {¬' ∣ ' ∈ACTL}
After ’pushing’ negation down the formula, we have the formulas only
in the existential form (no negation applied to modalities): EX�,
E(�U�), EG�.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 40 / 47

Two fragments of CTL

Syntax of ACTL

The logic ACTL is the restriction of CTL such that it consists of the
formulas of the form: AX�, A(�U�), AG�.
So, the formulas are only in the universal form (no negation applied to
modalities).

Syntax of ECTL

The language of ECTL is defined as {¬' ∣ ' ∈ACTL}
After ’pushing’ negation down the formula, we have the formulas only
in the existential form (no negation applied to modalities): EX�,
E(�U�), EG�.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 40 / 47

Idea of Bounded Model Checking BMC

BMC
BMC: to prove that an ECTL formula holds or that an
ACTL formula does not hold in M

1 ★ If ∈ ACTL, take negation ' := ¬
★ If ∈ ECTL, ' :=

2 Take a fragment M ′ of the model M
(preserving ', i.e., M ′ ∣= ' implies M ∣= '),

3 Translate M ′ ∣= ' to a Boolean formula [M ′] ∧ [']M′ ,
(M ′ ∣= ' iff [M ′] ∧ [']M′ is satisfiable),

4 Check the satisfiability of [M ′] ∧ [']M′ with SAT-solvers.

Conclusion:
If [M

′
] ∧ [']M′ is satisfiable, then M ∣= '.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 41 / 47

Idea of Bounded Model Checking BMC

BMC
BMC: to prove that an ECTL formula holds or that an
ACTL formula does not hold in M

1 ★ If ∈ ACTL, take negation ' := ¬
★ If ∈ ECTL, ' :=

2 Take a fragment M ′ of the model M
(preserving ', i.e., M ′ ∣= ' implies M ∣= '),

3 Translate M ′ ∣= ' to a Boolean formula [M ′] ∧ [']M′ ,
(M ′ ∣= ' iff [M ′] ∧ [']M′ is satisfiable),

4 Check the satisfiability of [M ′] ∧ [']M′ with SAT-solvers.

Conclusion:
If [M

′
] ∧ [']M′ is satisfiable, then M ∣= '.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 41 / 47

Idea of Bounded Model Checking BMC

BMC
BMC: to prove that an ECTL formula holds or that an
ACTL formula does not hold in M

1 ★ If ∈ ACTL, take negation ' := ¬
★ If ∈ ECTL, ' :=

2 Take a fragment M ′ of the model M
(preserving ', i.e., M ′ ∣= ' implies M ∣= '),

3 Translate M ′ ∣= ' to a Boolean formula [M ′] ∧ [']M′ ,
(M ′ ∣= ' iff [M ′] ∧ [']M′ is satisfiable),

4 Check the satisfiability of [M ′] ∧ [']M′ with SAT-solvers.

Conclusion:
If [M

′
] ∧ [']M′ is satisfiable, then M ∣= '.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 41 / 47

Idea of Bounded Model Checking BMC

BMC
BMC: to prove that an ECTL formula holds or that an
ACTL formula does not hold in M

1 ★ If ∈ ACTL, take negation ' := ¬
★ If ∈ ECTL, ' :=

2 Take a fragment M ′ of the model M
(preserving ', i.e., M ′ ∣= ' implies M ∣= '),

3 Translate M ′ ∣= ' to a Boolean formula [M ′] ∧ [']M′ ,
(M ′ ∣= ' iff [M ′] ∧ [']M′ is satisfiable),

4 Check the satisfiability of [M ′] ∧ [']M′ with SAT-solvers.

Conclusion:
If [M

′
] ∧ [']M′ is satisfiable, then M ∣= '.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 41 / 47

Idea of Bounded Model Checking BMC

BMC
BMC: to prove that an ECTL formula holds or that an
ACTL formula does not hold in M

1 ★ If ∈ ACTL, take negation ' := ¬
★ If ∈ ECTL, ' :=

2 Take a fragment M ′ of the model M
(preserving ', i.e., M ′ ∣= ' implies M ∣= '),

3 Translate M ′ ∣= ' to a Boolean formula [M ′] ∧ [']M′ ,
(M ′ ∣= ' iff [M ′] ∧ [']M′ is satisfiable),

4 Check the satisfiability of [M ′] ∧ [']M′ with SAT-solvers.

Conclusion:
If [M

′
] ∧ [']M′ is satisfiable, then M ∣= '.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 41 / 47

Idea of Bounded Model Checking BMC

BMC
BMC: to prove that an ECTL formula holds or that an
ACTL formula does not hold in M

1 ★ If ∈ ACTL, take negation ' := ¬
★ If ∈ ECTL, ' :=

2 Take a fragment M ′ of the model M
(preserving ', i.e., M ′ ∣= ' implies M ∣= '),

3 Translate M ′ ∣= ' to a Boolean formula [M ′] ∧ [']M′ ,
(M ′ ∣= ' iff [M ′] ∧ [']M′ is satisfiable),

4 Check the satisfiability of [M ′] ∧ [']M′ with SAT-solvers.

Conclusion:
If [M

′
] ∧ [']M′ is satisfiable, then M ∣= '.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 41 / 47

Idea of Bounded Model Checking BMC

BMC
BMC: to prove that an ECTL formula holds or that an
ACTL formula does not hold in M

1 ★ If ∈ ACTL, take negation ' := ¬
★ If ∈ ECTL, ' :=

2 Take a fragment M ′ of the model M
(preserving ', i.e., M ′ ∣= ' implies M ∣= '),

3 Translate M ′ ∣= ' to a Boolean formula [M ′] ∧ [']M′ ,
(M ′ ∣= ' iff [M ′] ∧ [']M′ is satisfiable),

4 Check the satisfiability of [M ′] ∧ [']M′ with SAT-solvers.

Conclusion:
If [M

′
] ∧ [']M′ is satisfiable, then M ∣= '.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 41 / 47

BMC for an ECTL formula '

Let ' be an ECTL formula,
Iterate for k := 1 to ∣M∣,
Select the k−model Mk (of the paths of length k),
Select the fk (')-submodels of Mk (of fk (') paths),
Translate the transition relation of the k−paths of Mk to a
propositional formula [M',�]k ,
Translate ' over all the fk (')-submodels to a propositional
formula [']Mk ,
Check the satisfiability of [M, ']k := [M',�]k ∧ [']Mk .

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 42 / 47

BMC for an ECTL formula '

Let ' be an ECTL formula,
Iterate for k := 1 to ∣M∣,
Select the k−model Mk (of the paths of length k),
Select the fk (')-submodels of Mk (of fk (') paths),
Translate the transition relation of the k−paths of Mk to a
propositional formula [M',�]k ,
Translate ' over all the fk (')-submodels to a propositional
formula [']Mk ,
Check the satisfiability of [M, ']k := [M',�]k ∧ [']Mk .

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 42 / 47

BMC for an ECTL formula '

Let ' be an ECTL formula,
Iterate for k := 1 to ∣M∣,
Select the k−model Mk (of the paths of length k),
Select the fk (')-submodels of Mk (of fk (') paths),
Translate the transition relation of the k−paths of Mk to a
propositional formula [M',�]k ,
Translate ' over all the fk (')-submodels to a propositional
formula [']Mk ,
Check the satisfiability of [M, ']k := [M',�]k ∧ [']Mk .

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 42 / 47

BMC for an ECTL formula '

Let ' be an ECTL formula,
Iterate for k := 1 to ∣M∣,
Select the k−model Mk (of the paths of length k),
Select the fk (')-submodels of Mk (of fk (') paths),
Translate the transition relation of the k−paths of Mk to a
propositional formula [M',�]k ,
Translate ' over all the fk (')-submodels to a propositional
formula [']Mk ,
Check the satisfiability of [M, ']k := [M',�]k ∧ [']Mk .

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 42 / 47

BMC for an ECTL formula '

Let ' be an ECTL formula,
Iterate for k := 1 to ∣M∣,
Select the k−model Mk (of the paths of length k),
Select the fk (')-submodels of Mk (of fk (') paths),
Translate the transition relation of the k−paths of Mk to a
propositional formula [M',�]k ,
Translate ' over all the fk (')-submodels to a propositional
formula [']Mk ,
Check the satisfiability of [M, ']k := [M',�]k ∧ [']Mk .

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 42 / 47

BMC for an ECTL formula '

Let ' be an ECTL formula,
Iterate for k := 1 to ∣M∣,
Select the k−model Mk (of the paths of length k),
Select the fk (')-submodels of Mk (of fk (') paths),
Translate the transition relation of the k−paths of Mk to a
propositional formula [M',�]k ,
Translate ' over all the fk (')-submodels to a propositional
formula [']Mk ,
Check the satisfiability of [M, ']k := [M',�]k ∧ [']Mk .

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 42 / 47

BMC for an ECTL formula '

Let ' be an ECTL formula,
Iterate for k := 1 to ∣M∣,
Select the k−model Mk (of the paths of length k),
Select the fk (')-submodels of Mk (of fk (') paths),
Translate the transition relation of the k−paths of Mk to a
propositional formula [M',�]k ,
Translate ' over all the fk (')-submodels to a propositional
formula [']Mk ,
Check the satisfiability of [M, ']k := [M',�]k ∧ [']Mk .

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 42 / 47

Function fk

Define the function fk :ECTL→ IN as follows:
fk (p) = fk (¬p) = 0, where p ∈ PV,
fk (� ∨ �) = max{fk (�), fk (�)},
fk (� ∧ �) = fk (�) + fk (�),
fk (EX�) = fk (�) + 1,
fk (EG�) = (k + 1) ⋅ fk (�) + 1,
fk (E(�U�)) = k ⋅ fk (�) + fk (�) + 1.

Intuition
The function fk (�) computes the number of symbolic paths (sufficient)
to represent submodels of Mk in the propositional translation of �.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 43 / 47

Function fk

Define the function fk :ECTL→ IN as follows:
fk (p) = fk (¬p) = 0, where p ∈ PV,
fk (� ∨ �) = max{fk (�), fk (�)},
fk (� ∧ �) = fk (�) + fk (�),
fk (EX�) = fk (�) + 1,
fk (EG�) = (k + 1) ⋅ fk (�) + 1,
fk (E(�U�)) = k ⋅ fk (�) + fk (�) + 1.

Intuition
The function fk (�) computes the number of symbolic paths (sufficient)
to represent submodels of Mk in the propositional translation of �.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 43 / 47

Function fk

Define the function fk :ECTL→ IN as follows:
fk (p) = fk (¬p) = 0, where p ∈ PV,
fk (� ∨ �) = max{fk (�), fk (�)},
fk (� ∧ �) = fk (�) + fk (�),
fk (EX�) = fk (�) + 1,
fk (EG�) = (k + 1) ⋅ fk (�) + 1,
fk (E(�U�)) = k ⋅ fk (�) + fk (�) + 1.

Intuition
The function fk (�) computes the number of symbolic paths (sufficient)
to represent submodels of Mk in the propositional translation of �.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 43 / 47

Function fk

Define the function fk :ECTL→ IN as follows:
fk (p) = fk (¬p) = 0, where p ∈ PV,
fk (� ∨ �) = max{fk (�), fk (�)},
fk (� ∧ �) = fk (�) + fk (�),
fk (EX�) = fk (�) + 1,
fk (EG�) = (k + 1) ⋅ fk (�) + 1,
fk (E(�U�)) = k ⋅ fk (�) + fk (�) + 1.

Intuition
The function fk (�) computes the number of symbolic paths (sufficient)
to represent submodels of Mk in the propositional translation of �.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 43 / 47

Function fk

Define the function fk :ECTL→ IN as follows:
fk (p) = fk (¬p) = 0, where p ∈ PV,
fk (� ∨ �) = max{fk (�), fk (�)},
fk (� ∧ �) = fk (�) + fk (�),
fk (EX�) = fk (�) + 1,
fk (EG�) = (k + 1) ⋅ fk (�) + 1,
fk (E(�U�)) = k ⋅ fk (�) + fk (�) + 1.

Intuition
The function fk (�) computes the number of symbolic paths (sufficient)
to represent submodels of Mk in the propositional translation of �.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 43 / 47

Function fk

Define the function fk :ECTL→ IN as follows:
fk (p) = fk (¬p) = 0, where p ∈ PV,
fk (� ∨ �) = max{fk (�), fk (�)},
fk (� ∧ �) = fk (�) + fk (�),
fk (EX�) = fk (�) + 1,
fk (EG�) = (k + 1) ⋅ fk (�) + 1,
fk (E(�U�)) = k ⋅ fk (�) + fk (�) + 1.

Intuition
The function fk (�) computes the number of symbolic paths (sufficient)
to represent submodels of Mk in the propositional translation of �.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 43 / 47

Function fk

Define the function fk :ECTL→ IN as follows:
fk (p) = fk (¬p) = 0, where p ∈ PV,
fk (� ∨ �) = max{fk (�), fk (�)},
fk (� ∧ �) = fk (�) + fk (�),
fk (EX�) = fk (�) + 1,
fk (EG�) = (k + 1) ⋅ fk (�) + 1,
fk (E(�U�)) = k ⋅ fk (�) + fk (�) + 1.

Intuition
The function fk (�) computes the number of symbolic paths (sufficient)
to represent submodels of Mk in the propositional translation of �.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 43 / 47

Bounded semantics for ECTLpK

Let M = (K ,V) be a model and k ∈ IN+.
The k−model for M is a structure

Mk = ((G,Pk , �),V),

where
G - a set of the global states,
Pk is the set of all the paths of M of length k ,
V - a valuation function.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 44 / 47

Bounded semantics for ECTLpK

Let M = (K ,V) be a model and k ∈ IN+.
The k−model for M is a structure

Mk = ((G,Pk , �),V),

where
G - a set of the global states,
Pk is the set of all the paths of M of length k ,
V - a valuation function.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 44 / 47

Bounded semantics for ECTLpK

Let M = (K ,V) be a model and k ∈ IN+.
The k−model for M is a structure

Mk = ((G,Pk , �),V),

where
G - a set of the global states,
Pk is the set of all the paths of M of length k ,
V - a valuation function.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 44 / 47

Bounded semantics for ECTLpK

Let M = (K ,V) be a model and k ∈ IN+.
The k−model for M is a structure

Mk = ((G,Pk , �),V),

where
G - a set of the global states,
Pk is the set of all the paths of M of length k ,
V - a valuation function.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 44 / 47

Bounded semantics for ECTLpK

Let M = (K ,V) be a model and k ∈ IN+.
The k−model for M is a structure

Mk = ((G,Pk , �),V),

where
G - a set of the global states,
Pk is the set of all the paths of M of length k ,
V - a valuation function.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 44 / 47

Bounded semantics for ECTL

s ∣= EX� iff ∃� ∈ Pk
(
�(0) = s and �(1) ∣= �

)
,

s ∣= EG� iff ∃� ∈ Pk
(
�(0) = s and

∀0≤j≤k�(j) ∣= � ∧ loop(�) ∕= ∅
)
,

s ∣= E(�U�) iff (∃� ∈ Pk)
(
�(0) = s and

∃0≤j≤k
(
�(j) ∣= � and ∀0≤i<j�(i) ∣= �

))
.

Intuition
The bounded semantics for s ∣= EG� says that there is a k -path �,
which starts at s, all its states satisfy � and � is a loop, which means
that one of the states of � is a→-successor of �(k).
loop(�) returns the indeces of such states.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 45 / 47

Bounded semantics for ECTL

s ∣= EX� iff ∃� ∈ Pk
(
�(0) = s and �(1) ∣= �

)
,

s ∣= EG� iff ∃� ∈ Pk
(
�(0) = s and

∀0≤j≤k�(j) ∣= � ∧ loop(�) ∕= ∅
)
,

s ∣= E(�U�) iff (∃� ∈ Pk)
(
�(0) = s and

∃0≤j≤k
(
�(j) ∣= � and ∀0≤i<j�(i) ∣= �

))
.

Intuition
The bounded semantics for s ∣= EG� says that there is a k -path �,
which starts at s, all its states satisfy � and � is a loop, which means
that one of the states of � is a→-successor of �(k).
loop(�) returns the indeces of such states.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 45 / 47

Main references and next lecture

References

D. Peled.
All from one, one for all: On model checking using representatives.
In Proc. of CAV, LNCS 697, p. 409–423, 1993.

R. Gerth, R. Kuiper, D. Peled, and W. Penczek.
A partial order approach to branching time logic model checking.
Information and Computation, 150:132–152, 1999.

W. Penczek, A. Pólrola:
Advances in Verification of Time Petri Nets and Timed Automata:
A Temporal Logic Approach.
Springer 2006.

Next lecture
Specification and model checking of Time Petri Nets and Timed
Automata.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 46 / 47

Main references and next lecture

References

D. Peled.
All from one, one for all: On model checking using representatives.
In Proc. of CAV, LNCS 697, p. 409–423, 1993.

R. Gerth, R. Kuiper, D. Peled, and W. Penczek.
A partial order approach to branching time logic model checking.
Information and Computation, 150:132–152, 1999.

W. Penczek, A. Pólrola:
Advances in Verification of Time Petri Nets and Timed Automata:
A Temporal Logic Approach.
Springer 2006.

Next lecture
Specification and model checking of Time Petri Nets and Timed
Automata.

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 46 / 47

THE END

Thank you

L.M. Kristensen and W. Penczek (CS) Introduction to model checking Course on PN 2010 47 / 47

	Lecture 2: Introduction to model checking
	Lecture 3a: Specification and model checking of Time Petri Nets and Timed Automata
	Lecture 3b: CPN, modules, and data types
	Lecture 4a: Parametric model checking for PN
	Lecture 4b: Model checking CPN
	Lecture 5a: Case studies using VerICS
	Lecture 5a: Case studies using CPN Tools

