
Post-processing data with Matlab®
Best Practice

TMR7 - 31/08/2015 - Valentin Chabaud
valentin.chabaud@ntnu.no

• Cleaning data

• Filtering data

• Extracting data’s frequency content

mailto:valentin.chabaud@ntnu.no

Introduction

• A trade-off between do-it-yourself philosophy, time spent on side tasks and
quality of the results

• Keeping data as is and default settings while filtering / computing the
power spectral density leads to inaccurate, or even misleading results
which are hard to comment on. Fault is often mistakenly taken back to
measurement uncertainties.

• Many possibilities in Matlab (various toolboxes and built-in functions of
various complexity and flexibility)

 The following is only a suggestion of efficient methods to save time. Help
will be preferably provided for those methods. You are however free to
choose your own as long as you keep a critical eye on the underlying
uncertainties.

Cleaning data
• Equipment limitations (especially in MC lab) lead to:

• Erroneous data: Infinite (very large) or NaN (not a number).
• Missing data: 0. Can occur for a somewhat long period of time and thus

affects the results even if the mean value is small, even 0.

• Acquired data should be already uniformly sampled (constant step
size). However for safety, run the function:

Which also cuts the data to the desired time span.

t=tstart:dt:tend

x=interp1(t0,x0,t)

Raw data and time arrays

Selected time array

Uniformly sampled
selected data

• The data can be cleaned by the function:

• Home made function. Tested on a limited number of time series only. Yet, always check the
results! Modifications and suggestions are welcome.

• Smoothen x using smooth(x,round(fs/fx)+1) if sampled at fx<fs (stair-like signal)

• clean_data function is found in the Resource-section of the TMR7 webpage and at the
end of this presentation

Cleaning data cont.

xclean=clean_data(x’,CrtSTD,CrtCONV)

Cleaned data, row vector

Original data (uniformly sampled), row vector.

Iterative outlier criterion Convergence criterion

Play around with these criteria to get the desired result

How clean_data works

𝑥𝑖 − 𝜇𝑥 ≥ 𝐶𝑟𝑡𝑆𝑇𝐷 ∗ 𝜎𝑥

ሶ𝑥𝑖 ≥ 𝐶𝑟𝑡𝑆𝑇𝐷 ∗ 𝜎 ሶ𝑥

ሶ𝑥𝑖 ≤
𝜎 ሶ𝑥

10 ∗ 𝐶𝑟𝑡𝑆𝑇𝐷

Or

Or

Then
2)

1)
If

Replace 𝑥𝑖 by a linear interpolation
of the nearest valid points

3) Recompute 𝜇𝑥 and 𝜎𝑥 and
iterate until it has converged:

𝜎𝑥𝑛 − 𝜎𝑥𝑛−1
𝜎𝑥𝑛−1

≤ 𝐶𝑟𝑡𝐶𝑂𝑁𝑉

𝜇 : Mean value
𝜎 : Standard deviation

Less error is induced by
keeping corrupt points than
simply removing them!

Signal

Derivative

- CrtSTD > 1
- CrtSTD large when signal has uneven

amplitudes (if too small, cleaning can
affect valid parts of the signal)

Digital Butterworth filters:

• Most commonly used filters for this kind of application. One is already
in place in the data acquisition set up, removing very high frequencies.

• Described by a transfer function 𝐻 𝑧 =
𝑏 1 +𝑏 2 𝑧−1+⋯+𝑏(𝑛+1)𝑧−𝑛

1+𝑎 2 𝑧−1+⋯+𝑎(𝑛+1)𝑧−𝑛

• Designed by

[b,a]=butter(order,wstar,’ftype’)

𝑤∗ =
𝐶𝑢𝑡𝑜𝑓𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑁𝑦𝑞𝑢𝑖𝑠𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Order of the filter

Normalized cutoff frequency
Or interval of frequencies
(bandpasss filter)

’low’ low-pass filter filters frequencies > cutoff freq.
’high’ high-pass filter filters frequencies < cutoff freq.
’bandpass’ band-pass filter filters frequencies outside the

cutoff freq interval.

Filtering data

1

2 ∗ 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝

How does it work?
A function, called gain, attenuates some parts of the frequency content of the signal.

• In the frequency domain, no difference is made from 2 different processes having the same frequency

 In order for filtering to be successful, undesired processes should have a distinct frequency content from
that of the studied process.

• 𝐺 𝜔 must be continuous for the IFFT to exist.

 The attenuation evolves gradually with the frequency. A sharp cut in the frequency content is not possible
with low order filters.

Filtering data cont.

𝑥𝑓𝑖𝑙𝑡 𝑡 = 𝔉 −1 𝐺 𝜔 ∗ 𝔉 𝑥 𝑡 𝜔 (𝑡)

FFT of the signalGainFiltered signal IFFT

The filtering effect is best described by Bode diagrams of the filter’s
continuous transfer function

Filtering data cont.

[b,a]=butter(order,wstar,’low’)

Figure()

Bode(d2c(tf(b,a,dt)))
Slope in gain reduction:
• = «filtering strength»
• Increasing with the order
• Increasing with frequency (for a

low-pass filter) from cut-off
frequency

 The cut-off frequency should be
higher than the undesired
frequencies, but lower than the
frequencies of interest.
Else the signal will be badly filtered
or the amplitude attenuated!

Filtering induces a phase
shift in the signal, increasing
with the order

Cut-off frequency

• A so-called “spectral gap” is needed for efficient filtering

= No energy in the spectrum around the cut-off frequency

If this is not the case, uncertainties will be introduced, take note of
them!

• To avoid phase shift (improves readability in time domain plots), use:

Filtering data cont.

xfilt=filtfilt(b,a,x)

Filtered data

Original data (uniformly sampled)

Digital filter coefficients

Extracting PSD (Power Spectral Density)

2 approaches:

• Upper: pcov function and variants. Sensitive to signal manipulations.

• Lower: pwelch function and variants. Sensitive to signal length. In
practice, using directly the fft function squared and smoothening
manually is more computationally efficient.

𝑅 𝑥𝑥(𝜏) = න
−∞

+∞

𝑥 𝑡 ҧ𝑥 𝑡 − 𝜏 𝑑𝑡 𝑆 𝑥𝑥(𝑓) = න
−∞

+∞

𝑅 𝑥𝑥 𝜏 𝑒−𝑗2𝜋𝑥𝜏 𝑑𝜏

𝑆 𝑥𝑥(𝑓) = 𝔉𝑥 (𝑓)
2

𝔉𝑥 𝑓 = න
−∞

+∞

𝑥 𝑡 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

Autocorrelation in time-domain

FFT

PSD

FFT Square

pwelch is the standard. However default values often lead to inaccurate
results, it may excessively computationally demanding and hard to tune.

Extracting PSD cont.

Sxx=2*pwelch(x,Window,Noverlap,f,fs)

PSD
Array 1xlength(f)

Time series. Uniformly sampled.
Preferably minus mean value.

Number of overlapping samples between windows. Does
not have a big influence. Window/10 is a good start.

Frequencies (Hz) at which you want the PSD to be computed.
Caution: Use uniform step size in frequency. If you want better accuracy at low frequencies
without being too computationally demanding, use a smaller step but scale the PSD at all freqs
according to a reference step size. Else it will not reflect properly the amplitude when plotted!

The signal is segmented into «windows». The FFT is computed segment by segment
which are then assembled to give the PSD.
The broader the window, the finer the spectrum. The narrower, the smoother. Adjust
it to get a readable yet accurate spectrum (Use values from NFFT/2 to NFFT/10).

Sampling frequency (Hz)

Change from two-sided to one-sided PSD

Extracting PSD cont.
• pwelch may give inaccurate results for short signals with transients

(oscillations in low frequencies). Try to play around with the Noverlap
parameter.

• psd_fft is a home made function computing the PSD directly from the
Fourier transform. It is more computationally efficient and user friendly than
pwelch. A similar syntax is kept.

• psd_fft.m is found in the Resource-section of the TMR7 webpage and at
the end of this presentation

Sxx=psd_fft(x,N,f,fs)

Smooting parameter (number of points in smoothing parameter).
Typical value: sampling frequency in Hz/10

Example: Irregular wave elevation

Generated from JONSWAP spectrum. The following is artificially added:
• Erroneous and missing data

• Measurement noise

• Transients

• Mean offset

Example cont. : Matlab script
load(‘data.mat',‘x‘,’time’) %Load wave elevation and time from file

duration=200;

dt=0.1;

t=0:dt:duration;

Nt=length(t);

xint=interp1(time,x,t); %Interpolate data

xclean=clean_data(xint,3,0.001); %Clean data

cutoff=[0.3 4]/(2*pi); %Cut-off frequencies

fnyq=1/(2*dt); %Nyquist frequency

[b,a]=butter(4,cutoff/fnyq,'bandpass'); %Get filter coefficients

xfilt=filtfilt(b,a,xclean); %Zero-phase filtering

df1=0.01;

df2=0.1;

f1=0.01:df1:0.99; %Small frequency step for low frequencies

f2=1:df2:10; %Large frequency step for high frequencies

f=[f1 f2];

Sxx=psd_fft(xint-mean(xint),10,f,1/dt); %PSD of unfiltered data

Sxx_filt=psd_fft(xfilt-mean(xfilt),10,f,1/dt); %PSD of filtered data

figure(1)

plot(t,[x0 xint xclean xfilt]) %x0: original data generated from JONSWAP

figure(2)

plot(w,jonswap,f*2*pi,Sxx/(2*pi),f*2*pi,Sxx_filt /(2*pi))

Example cont. : time and frequency domain plots

Large spectral gaps allowing
efficient filtering of the noise

Noise

Uncertainties due to
short time series

Transients

Uncomplete spectral gap:
slightly uncertain filtering of
the transients

Cut-off frequencies
Outlier

Period of missing data

Band-pass filtering removes
hig and low (including offset =

0 rad/s) frequencies

Questions?

Now or later on, about this or anything related to the course, don’t hesitate.

valentin.chabaud@ntnu.no

Office G2.130

mailto:valentin.chabaud@ntnu.no

while abs((std(x)-std_prev)/std_prev)>CrtCONV

flag=0;

ind=[];

for i=1:length(x)

if abs(x(i)-mx)>sx*CrtSTD || abs(d(i))>sd*CrtSTD ||

abs(d(i))<sd/CrtSTD*0.1

if flag==0

flag=1;

ind=[ind;[i 0]];

end

else

if flag==1

ind(end,2)=i;

flag=0;

end

end

end

if(ind(end,end))==0

ind(end,end)=length(x);

end

y=[ones(N,1)*x(1);x;ones(N,1)*x(end)];

for i=1:size(ind,1)

inttot=(1:length(y))';

intrem=ind(i,1)+N:ind(i,2)+N;

intfit=setdiff(inttot,intrem);

z=y(intfit);

% f = fit(intfit, z, 'smoothingspline','SmoothingParam',

0.1);

% y(intrem)=feval(f,intrem);

y(intrem)=interp1(intfit,y(intfit),intrem);

x=y(N+(1:length(x)));

end

std_prev=std(x);

end

x=x';

clean_data.m
function x=clean_data(data,CrtSTD,CrtCONV)

%Written by Valentin Chabaud. v3 - August 2015

%Removes erroneous values and outsiders from time series

x=data';

sx=std(x);

mx=mean(x);

d=diff(x);

sd=std(d);

d=[d;d(end)];

% figure(3)

% plot([data';d])

std_prev=std(x)/CrtSTD;

N=10;

function [S,Sraw]=psd_fft(x,N,f,fs)

%Calculate PSD from raw fft and smoothing

%x: signal

%N: smoothing parameters (number of points in moving average)

%f: desired output frequencies

%fs: sampling frequency

%S: PSD @ frequencies f

%Sraw: Structure with field S=PSD and field f=frequencies as defined by fft

Nt=floor(size(x,1)/2)*2;

S=fft(x);

dt=1/fs;

S=2*dt/Nt*abs(S(1:Nt/2+1,:)).^2;

fS = 1/dt*(0:(Nt/2))/Nt;

for i=1:size(x,2)

S(:,i)=[S(1,i)/2;smooth(S(2:end,i),N)];

end

Sraw.S=S;

Sraw.f=fS;

S=interp1(fS,S,f);

psd_fft.m

