Data Analysis

Experimental Methods in Marine Hydrodynamics
Lecture in week 36

By Valentin Chabaud, post-doc in experimental methods, teaching assistant
for this course in previous years. On behalf of Pr. Sverre Steen.

Objectives of this lecture:

* @Give you an overview of the most important methods of data analysis in
use 1n experimental marine hydrodynamics

* Give some examples of how to do data analysis using Matlab

Covers Chapter 10 in the Lecture Notes
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Typical types of tests:
Static tests
Decay tests
Regular wave tests
Irregular wave tests

Pre-processing data
Filtering
Spectral Analysis

— Fourier transform
— Power Spectral Density (PSD)

Example




Static tests

Tests expected to give a constant measured value
— Example: Ship resistance, propulsion and open water tests
Only the mean value 1s used in further analysis
Take care to avoid transient effects at start-up
Notice that even for tests of stationary phenomena like ship resistance in

calm water, there will be oscillations in the signal

— To create a reliable average at least ten oscillations should be included in the
time window

— If the signal is polluted by oscillations at a single low frequency, an entire
number of oscillations should be included in the time window
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Pre-processing data in Matlab (for all tests)
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Effect of the record length

Sinusoidal wave x = A sin(wt) + B
Theoretical mean value u;,, = B

. .o A
Theoretical standard deviation g5, = 5

The error expectation (the actual error depends on the 1nitial phase) is 0
for entire numbers of cycles, else decreasing with number of cycles
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Pre-processing data in Matlab (for all tests)

e Select the start and end times tstart and tend

 Interpolate to make data uniformly sampled

Selected time array t=tstart:dt:tend

Uniformly sampled x=1nterpl (t0, x0, t)
selected data

Raw data and time arrays

 Clean data. Equipment limitations (especially in MC lab) lead
to:
— Erroneous data: Infinite (very large) or NaN (not a number).

— Missing data: 0. Can occur for a somewhat long period of time and
thus affects the results even if the mean value 1s small, even 0.




Pre-processing data in Matlab (for all tests)

» The data can be cleaned by the function:
Original data (uniformly sampled), row vector.

xclean=clean data (x’,CrtSTD,CrtCONV)

Cleaned data, row vector Iterative outlier criterion Convergence criterion

Play around with these criteria to get the desired result

Home made function. Tested on a limited number of time series only. Yet,
always check the results! Modifications and suggestions are welcome.

Smoothen x using smooth (x, round (fs/fx) +1) if sampled at fx<fs (stair-
like signal)

clean data function is found in the Resource-section of the TMR7 webpage
and at the end of this presentation




Pre-processing data in Matlab (for all tests)

How clean data works

U : Mean value
o : Standard deviation 1)

If
< |x; — Uy| = CrtSTD * o,

N\

Tuning parameter

- CrtSTD>1

- CrtSTD should be large when signal has
uneven amplitudes (if too small, cleaning
can affect valid parts of the signal)

«——  |x;] = CrtSTD * oy
Or o, Less error is induced by
| < . )
|%;] < 10 = CriSTD kgeplng corru.pt points than
simply removing them!

Then
2) Replace x; by a linear interpolation
of the nearest valid points

Derivative

3) Recompute u, and g, and iterate until it has converged:
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Decay Tests

Model 1s oscillated and then
released, and response 1s
measured

Provides information about
natural period and linear and
quadratic damping terms

Very useful for lightly damped
degrees of freedom (system
dependent). For ships:

— Well suited: Natural period and
damping in roll, horizontal
motions

Difficult, but possible: pitch
Close to impossible: heave

Logaritmic decrement:

A= |n(x_i)

i+1
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AnaIYSiS ()f | ,_MOTION DECAY: YAW __File: Ip1120
decay tests

| ‘ | |
Linear IeEst-
squares curve fit

Relotive damping, P/Per — 1120

The damping ratio:
£ = p__ P
P, 2Mao,

For low damping ratios
(£<0.2): A =2mé

Quadratic damy

The logarithmic decrement: | 04 fosl L COMP. | |
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Alternative analysis of decay tests
- fitting of equivalent theoretical system
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Decay analysis in Matlab

« Use the function findpeaks to measure amplitudes and periods

Amplitudes Times

[PKS,LOCS] = findpeaks(x,t)
T=diff (LOCS)
Gamma=log (PKS (l:end-1) /PKS (2:end))

Periods
Decrement




Filtering

 Noise is undesirable in measurements

— Impairs accuracy at frequencies of interest by folding (aliasing) if

Noise frequency > Nyquist frequency =

Sampling frequency
2

— Impairs readability of time series

— Impairs accuracy of statistical properties of the signal (increases standard
deviation, modifies mean value for low frequency noise)

* Two types of noise

— Measurement noise: Unphysical noise specific to sensor (e.g. grid
frequency). Typically removed by low-pass filtering in the hardware, 1.e.
prior to data acquisition.

— Process noise: Undesired dynamics of the system

Transients: Decay of motion of undesired degrees of freedom. Typically low
frequency: High-pass filter (also removes mean value)

Structural vibrations: excitation of off-interest eigenfrequencies of the system.
Typically high frequency: Low-pass filter

Applied in the post-processing phase (by you!)




Filtering, cont.

How does 1t work?

The gain of the filter’s transfer function attenuates some parts of the frequency
content of the signal.

G(w) = |H(jw)|

X (6) = § “HG (@) * F(O}@)I(®)
1 T ! T

Filtered IFFT Gain FFT of the signal
signal

* In the frequency domain, no difference is made from 2 different processes
having the same frequency

=» In order for filtering to be successful, undesired processes should have
a distinct frequency content from that of the studied process.

e G (w) must be continuous for the IFFT to exist.

=» The attenuation evolves gradually with the frequency. A sharp cut in
the frequency content of a signal is not possible with low-order filters.




Ideal characteristic
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Filtering, cont.

Digital Butterworth filters:

* Most commonly used filters for this kind of application. Hardware
filter=Butterworth filter order 4

* Described by its transfer function (in practice in the discrete domain)

— b(W)+b(2)z" +-+b(n+1)z"
H(z) = 1+a(2)z" 1+ --+a(n+1)z—"n

* Designed in Matlab by

"low’ low-pass filter filters frequencies > cutoff freq.
"high’ high-pass filter filters frequencies < cutoff freq.
"bandpass’ band-pass filter filters frequencies outside the

cutoff freq interval.
Order of the filter

[b,a]=butter (order,wstar,’ ftype’)

. _ Cutoff frequency (Hz) 1
~ Nyquist frequency 2 x time step

Normalized cutoff frequency
(Or interval of frequencies for bandpass filter)




Filtering, cont.

The filtering effect 1s best described by Bode diagrams of the
filter’s continuous transfer function

[b,a]=butter (order,wstar,’ low’)

Figure ()
Bode (d2c (tf (b, a, dt))) Cut-off frequency

/

Bods Diag,fam Slope in gain reduction:
R » = «filtering strengthy
— * Increasing with the order
order 4 * Increasing with frequency
| (for a low-pass filter) from
cut-off frequency

[

n
=
T

Magnitude (dB)

Filtering induces

a phase shift in =>» The cut-off frequency

. should be higher than the

’Fhe SIgI?al’ . undesired frequencies, but
increasing with T e lower than the frequencies of
order and roqueney (a0 interest.

frequency Else the signal will be badly
filtered or the amplitude
attenuated!




Filtering, cont.

* A so-called “spectral gap” 1s needed for efficient filtering
= No energy in the spectrum around the cut-off frequency

If this 1s not the case, uncertainties will be introduced, take note of
them!

* To avoid phase shift (improves readability in time domain plots),
the time series are filtered first forward, then backward
(symmetric or “zero-phase” filtering). This is not possible in real-
time.

Original data

In Matlab: )
/ (uniformly sampled)
xfilt=fi1ltfilt (b, a, x)

. / V
Filtered data Digital filter
coefticients




Aims of analysis of regular wave tests

* Response amplitude

* Response amplitude operator (transfer function in
frequency domain)
— Gain = Response amplitude/wave amplitude
— Phase angle (between wave at reference location and response)

« Response frequencies

— In addition to wave frequency, nonlinear excitation of the natural
frequencies of the system

Reminder: Take care to leave out transient response at the
start of the time series!




Analysis procedure for regular wave tests

Time-domain visual
analysis

A 4

Frequency-domain visual
analysis

Computing Response
Amplitude

A 4

Computing Response
Phase

Global assesment of the validity of the test
First manual estimation of main period and amplitude

Global assesment of the validity of the test

Overview of response frequencies, estimation of the
noise level

Design of possible filtering and checking filtering results

Divided by wave amplitude = Gain of RAO (Response
amplitude operator)
From standard deviation of noise-free signal

Amp=sqgrt (2) *std (x)

min+max
Average of peaks or —, are less accurate methods

Fourier series analysis. Gives both phase and amplitude
at a specified frequency (wave frequency) and its
harmonics.

Compared with incident wave: gives the total RAO
(frequency-domain transfer function)

Possible to extend to multiple frequencies (sum of sines)
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Run 00615: Circ C. T=18s H=0.40 d2

Min.=-197.9 Max.=76.25 Mean=—48,.65 St.dev.=34.54
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Fourier series Analysis "\ "\ -~
N !

r

Goal: Extracting the linear component of the response to regular waves
and deriving the gain and phase of the RAO at a given frequency (or
period).

A periodic signal with period T can be fully described by an infinite sum
of harmonic components, called Fourier series:

ft)=a,+)> a, cos(sztj+bk sin (Zthj
=) T T

T

[ f (t)dt

Q
3
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— ot

[ £ (t) cos

QD
-
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With coefficients defined as:
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Fourier series Analysis (cont.)

« Fit a Fourier Series to a time series in Matlab:
1. Open the Curve Fitting Toolbox (>> cftool)
Choose Fourier from the model type list.
Use Fit Options and number of terms to control the fit.
Check if frequency (given by w) 1s correct
Retrieve the a; and b, coefficients (linear terms).
Calculate gain and phase:

Gain = /a% + b?

=)
Phase = atan| —
a

« Do it for both incident wave and response. Compute Gain and
Phase of RAO by

GalnResponse
GainWave
Phasegyg = PhaseResponse — Phaseyqpe

GainRAO =




-
4\ Curve Fitting Tool

File Fit View Tools Desktep Window Help A
w o @[5 @ 2 |[EE) 2 HDOAB <0
3

Fit name: | untitled fit 1 Fourier Auto fit

H data: Time_tr MNumber of terms: |2 7

Y data: Accl_FP_tr Equation: a0 + al*cos(x*w) + b1*sin(}*w) + a2 cos(2""w)+b2...

7 data: {none) Center and scale

Weights: | (none) Fit Opticns...

Results

i, Cenverting non-double values to double valu I I
o . untitled fit 1
s Accl_FP_trvs. Time_tr 1

‘ | :

General model Fourier 2:
f(x) = al +a1%cos{x®w) + b1%sin(x™w) +
a2*cos(2%0"w) + b2%sin(2%%w)
Coefficients (with 95% confidence bounds):
all = 0.007129 (0.004191, 0.01007)
al= 1794 (1753, 1.825)
bi= -1.698 (-1.73, -1.665)
a2 = 0.1213 (0.1166,0.128)
b2 = 0.06069 (0.05473, 0.06666)
w= 0,9321 (0.9321, 0.9321)

Accl FP tr

Goodness of fit:
S5E: 28.85
R-square: 0.9974
Adjusted R-square: 0.9974
RMSE: 0,08973

480 500 520 540 560 580
Time_tr




Example of accuracy of estimating
amplitude from st.dev. in regular waves

3.5 -

3 |

2.5

2 |

1.5 -

1 - - : + 1

L0 A P L

8004 8006 8000 8002 8005 8001 8002 8003

m sqrt(2)*stdev(Waveheight 1) ™ Fourier analysis Waveheight 1
W sqrt(2)*stdev(Accl FP) Fourier analysis Accl FP1
RAO Accl FP sqrt(2)*stdev ®m RAO Accl FP Fourier




Irregular wave tests

* Direct representation of the full scale sea condition

» Typically wanted results:
— Response spectra

— Response spectrum parameters:
* Spectral moments
» Standard deviation
» Peak period
— Response amplitude operator (RAO)

— Statistical results:
* Max and min values,
» Information about statistical distribution

« Extreme value statistics (extrapolation using the statistical
distribution)

Weibull plots etc.




Properties of stochastic processes

Stationary: - Statistical properties constant with time

Homogeneous: - Statistical properties constant in space

Ergodic: - Time can be replaced by space as primary variable without
changing the statistical properties

The wave environment 1s commonly assumed to be a stationary,
ergodic process

This assumption greatly simplifies the analysis, and is a necessity for
all established analysis methods

[t 1s not exactly true in a towing tank

— Viscous damping: wave amplitude decreasing with distance to the wave
maker, transmission of energy between frequencies. Significant for long
towing tanks.

— Wave reflection: Non-homogeneous and non-stationary effects.




Autocorrelation function
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Cross-correlation

unction

.

% _T([ X(t)y(t+ 7)dt

Cross-correlation function for
two sine waves with y(t) lagging
x(t) by an angle ¢

Figures from Newland (1984)




Fourier transform

 In practice in the discrete (digital) domain: The continuous
and ergodic signal f (t) is sampled (assumed uniformly) over
the record duration 7 at a rate f; (in Hz), giving the time
series {f,} with

k=01,.,N—1; N=Tf,

The n component of the Discrete Fourier Transform (DFT)
of {f } reads

N—
fn _ NZ .I:ke—l(27rnk/N)
k=0

e {fi} can then be exactly retrieved by the Inverse DFT:




Fast Fourier Transform (FFT)

FFT is a computer algorithm for calculation of DFT. It 1s a
core function of all digital data analysis.

Conventional Discrete Fourier Transform (DFT) can also be
implemented in a computer

— DFT requires n° multiplications

— FFT requires n-log(n) multiplications

— FFT 1s more accurate (due to fewer multiplications)

FFT requires that N 1s a power of 2. Two solutions:
— Truncate the signal to the nearest, lower power of 2
— Augment the signal to the nearest, higher power of 2 by adding L zeros
(or samples equal to mean value if non zero-mean signal).
« Recommended for more accuracy.

« Corrections must be applied to the output
« Automatically done in the function f ft in Matlab




Spectral Density

* Frequency-domain representation of the correlation.

— Fourier Transform of Autocorrelation = Power Spectral Density (PSD), key tool
to represent the frequency content (in terms of energy) of a signal

— Fourier Transform of Cross-correlation = Cross Spectral Density (CSD)
Time series are in theory of infinite length and aperiodic. A direct FT is 1ll-

defined. The frequency content can only be obtained through FTs of
correlation functions instead, leading to PSDs and CSDs.

In the discrete domain and over a finite record time 7, the periodicity
requirement can be lifted. SDs are then in practice not computed using their

original definition (i.e. from autocorrelation), but from the product of FFTs
— Complex conjugate

ngn(wn) — fn Jn

2Tn

for each frequency w,, = rais 0,1,..,N—1. f =g givesPSD

From circular to linear frequency: S(f) = 2nS(w)




Meaning of spectral moments

The n’th moments of the spectrum is defined as:

m. :Ia)”S(a))da)
0

Standard deviation of response:  _ _ Jm

Significant value of response:

Average period of response:

Average zero crossing period :




Accuracy and resolution of PSDs

e The accuracy of the SD computation can be written as (Newland, 1984):

Moving average smoothing with the n

Standard deviation and previous and n following frequencies

mean value of PSDat > O 1

freque@‘lﬁse&e&> — = %

records of length T K 2n+1
Assuming //T 1s much lower (>5 -10 times) than f

n determines the smoothness of the
spectrum. Increasing smoothness increases
accuracy, but decreases resolution.

o
o0

Assuming % sufficiently small wrt £, the

o
o))

accuracy 1s not dependent on 7; nor on f'!
Increasing T increases resolution and
enables the study of lower frequencies.
The effect of the record length on the
standard deviation of sine waves can be
applied to frequency components of PSDs

Error expectation [-]
o




PSD in Matlab

* Many functions, hard to tune because complex underlying mathematics

 psd fft 1sahome made function computing the PSD directly from

the Fourier transform. o .
Number of points in moving average = 2n + 1

Signal (cleaned, Sampling frequency (Hz)
uniformly sampled) /
W
Sxx=psd fft(x,Ns,f,fs)

A \

PSD (in unit(x)?. Hz™1) Frequencies at which you want the
PSD to be computed

* Designed from: An introduction to Random Vibrations and Spectral

Analysis, by D.E. Newland and The Mathworks website
http://se.mathworks.com/help/signal/ug/psd-estimate-using-fft.html

 psd fft.mis found in the Resource-section of the TMR7 webpage
and in this presentation (next slide)




psd fft.m

function [S,Sraw]=psd fft(x,Ns, f,fs)

$Calculate PSD from raw fft and smoothing. From Newland: “An introduction to
random vibrations and spectral analysis” and The Nathworks website
http://se.mathworks.com/help/signal/ug/psd-estimate-using-fft.html
signal
Number of points in moving average (=2*n+1l, odd number)

X

desired output frequencies

sampling frequency
PSD @ frequencies £

$Sraw: Structure with field S=PSD and field f=frequencies as defined by fft
Nt=floor (size(x,1)/2)*2;
x=x (1:Nt, :);

dt=1/fs; %Step size

T=Nt*dt; %Record length

S=fft(x); %Compute dft by fft. fft specificities (added zeroces) are handled
% internally.
S=2*dt/Nt*abs (S (1:Nt/2+1,:))."2; %Compute PSD: one-sided (multiply by 2),
distributed (divide by sampling freq) average of fft (divide by number of
points) squared
fsS = 1/dt*(0: (Nt/2)) /Nt; %Output frequencies, up to number of points/2 (higher
% frequencies only show a folded version of low frequencies)

for i=l:size(x,2)

S(:,1)=[S(1,1)/2;smooth(S(2:end,1),Ns)]; %$Smoothing by moving average

end
Sraw.S=S;
Sraw.f=£5S;
S=interpl (fS,S,f); S$Interpolation to desired output frequencies

A o° o© ° o° o° o°
Z
0]

» Hh H
N T

%
%




PSD 1n Matlab, cont.

pwelch i1s the standard built-in Matlab function for PSD calculation.

e Default values often lead to inaccurate results.

* Excessively computationally demanding for long time series

* More accurate than psd fft for short time series, because moving

average smoothing diffuses uncertainties of low frequencies onto
frequencies of interest.

Sxx=2*pwelch (x,Window, Noverlap, £, £s)

/ \

Change from two-sided to Number of overlapping samples between
one-sided PSD windows. Does not have a big influence.
Window/10 is a good start.

The signal is segmented into «windows». The FFT is
computed segment by segment which are then assembled
to give the PSD.
_ The broader the window, the finer the spectrum. The
i me w s  NArrower, the smoother. Adjust it to get a readable yet

- accurate spectrum (Use values from NFFT/2 to NFFT/10).




Transfer function 1n 1irregular waves
(equivalent to RAO 1n regula waves)

Magnitude:

S, (@)
S, ()

XX

H(o) =

Phase can be obtained
from CSD:

Sxy (w)

H(w) =3 (@)

IH(w)2

the input spectrum

multiplied by

the (response functicm)2

the output spectrum




Summary

Static tests and pre-processing

— The valid window of the time series to be analyzed must be
sufficiently long

— The data must be cleaned and uniformly sampled
Filtering
— Filter design in the frequency domain

— Need for a spectral gap
— Zero-phase filtering

Regular wave tests

— The amplitude should be calculated through the standard deviation
of filtered signals

— If the phase 1s desired, use Fourier Series

[rregular wave tests

— Spectral densities based on the Fourier transform are used for
frequency domain analysis

— Appropriate smoothing should be applied




Example of post-processing with Matlab:
Irregular wave elevation

Generated from JONSWAP spectrum.
The following 1s artificially added:

— Erroneous and missing data
— Measurement noise

— Transients

— Mean offset




Example cont.

load(‘data.mat', ‘x',’time’)
duration=200;

dt=0.1;

t=0:dt:duration;

Nt=length (t) ;

xint=interpl (time, x,t) ;

xclean=clean data(xint,3,0.001);
cutoff=[0.3 4]/ (2*pi);

fnyg=1/(2*dt) ;
[b,al=butter (4, cutoff/fnyqg, 'bandpass"') ;
xfilt=filtfilt (b, a,xclean);

df1=0.01;

df2=0.1;

£f1=0.01:df1:0.99;

£f2=1:df2:10;

frequencies

f=[f1 £2];

Sxx=psd fft (xint-mean(xint),10,£f,1/dt);

: Matlab script

$Load wave elevation and time from file

sInterpolate data

3Clean data

sCut-off frequencies
Nyquist frequency

$Get filter coefficients
%Zero-phase filtering

%Small frequency step for low frequencies
%$Large frequency step for high

$PSD of unfiltered data

Sxx filt=psd fft(xfilt-mean(xfilt),10,f,1/dt); $PSD of filtered data

figure (1)
plot(t, [x0 xint xclean xfilt])
from JONSWAP

figure (2)

¢}

%x0: original data generated

plot (w,jonswap, £*2*pi, Sxx/ (2*pi), £*2*pi, Sxx filt /(2*pi))




Example cont. : time and frequency domain plots

4 Cut-off frequencies ~ '

/ Outlier

‘ T T

i Janswap
! Sxx
| Swfilt

Transients

/

Uncertdinties due to
short time series

[radis)

Period of missing data Uncomplete spectral gap: Large spectral gaps

Band-pass filtering removes slightly uncertain filtering allowing efficient filtering

hig and low (including offset of the transients of the noise
= 0 rad/s) frequencies




Questions?

Teaching assistant:

Office D2.235

About this course:

Office G2.130



mailto:bhushan.taskar@ntnu.no
mailto:valentin.chabaud@ntnu.no

clean data.m

function x=clean data(data,CrtSTD,CrtCONV)

$Written by Valentin Chabaud. v3 - August
2015

%Removes erroneous values and outsiders
from time series

x=data';

sx=std(x);
mx=mean (x) ;
d=diff (x);

sd=std(d) ;
d=[d;d(end)];

% figure (3)

% plot([data';d])

o

std prev=std(x)/CrtSTD;
N=10;

while abs((std(x)-std prev)/std prev)>CrtCONV
flag=0;
ind=[];
for i=1l:length (x)
if abs(x(i)-mx)>sx*CrtSTD ||
abs (d(i))>sd*CrtSTD || abs(d(i))<sd/CrtSTD*0.1
if flag==
flag=1;
ind=[ind; [i 0]1;
end
else
if flag==
ind(end, 2)=1i;
flag=0;
end
end
end
if (ind(end, end) )==0
ind(end, end)=length (x) ;
end
y=[ones (N, 1) *x(1l);x;ones (N, 1) *x(end)];
for i=1:size(ind, 1)
inttot=(1l:1length(y))';
intrem=ind (i, 1)+N:ind (1, 2) +N;
intfit=setdiff (inttot, intrem) ;
z=y (intfit);
f = fit(intfit, =z,
smoothingspline', 'SmoothingParam', 0.1);
y (intrem)=feval (f, intrem) ;
y(intrem)=interpl (intfit,y(intfit), intrem);
x=y (N+ (l:1length(x)))
end
std prev=std(x);




Statistical distributions

* The probability distribution function, P(x), 1s the
probability that a general value of the process x(?) 1s less
than or equal to the value of x

P(x) =P(x(t) < x)

dP(x)

* The probability density function: P(X) = dx

* The probability that a<x(?)<b is given by the probability
density function such that:

P(a < x(t) <b) = T o(x)dx




Probability distributions used 1n the
study of wave generated responses

« The distribution of the process itself, e.g. the distribution
of the wave elevation x(t) and the measured response y(t)

— (Gaussian distribution

 The distribution of amplitudes; e.g. distribution of the
wave amplitudes x, and measured response amplitudes, y ,
in the tests.

= Rayleigh distribution




Rayleigh distribution of amplitudes

Follows from the assumption that the elevation itself is
Gaussian

The cumulative distribution: P(X) =1-exp

Here 1s the mean or expected value of x(?) defined as:

iy = E[X] :j_i Xp(X)dx

o 1s the variance of x(?), defined as:




Rayleigh distribution

 For a measured time series with
N samples the mean value and
the variance are calculated as:




Non-linear response

The response y(?) follows a Rayleigh distribution only if 1t
1s a linear function of the wave elevation x(z)

To describe non-linear response it is common to use the
more general Weibull distribution:

1(X,— y
P(x,)=1-exp| - ( - ﬂxj
G o}

— G=2 gives the Rayleigh distribution

— G=1 gives the Exponential distribution




Weibull plots
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Significant values

« Significant maxima:

— the mean of the highest one-third of the crest-to-zero values of x4,
« Significant minima:

— the mean of the highest one-third of the trough-to-zero values of x,,,
 Significant double amplitude:

— mean of the highest one-third of the maximum to minimum values of x,




Maximum/Minimum Values

e Maximum Value:
— Measured maximum value in the record
e Minimum Value:

— Measured minimum value in the record

« Largest double amplitude:

— Largest measured crest to trough value in the record




Examples of special analyses:

« Slamming

 Sea sickness incidence




Slamming analysis

* Definition of slamming threshold value(s)
— Typically 50 kPa, but depends heavily on context

* Counting (automatically) the number of slams above
different threshold levels

Detailed analysis of the time series of each slam reveals
properties of the slam, the transducer and the model

dynamic response
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sSummary of slamming tests at forward speed in towing tank (0°, 1807)
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Sea sickness incidence

Estimation of sea sickness incidence is based on:
— Measurement of motions and accelerations of the model/ship
— Measurement of motion sickness incidence MSI (percentage of
people vomiting) to vertical accelerations of different frequency,
amplitude and duration
Empirical relations of motion sickness incidence (MSI) as
function of frequency, RMS amplitude, and duration
available in ISO standard ISO 2631 1-4




BIODYNAMIC EFFECTS: COMFORT AND FATIGUE
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