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Data Analysis

Experimental Methods in Marine Hydrodynamics

Lecture in week 36

By Valentin Chabaud, post-doc in experimental methods, teaching assistant 

for this course in previous years. On behalf of Pr. Sverre Steen.

Objectives of this lecture:

• Give you an overview of the most important methods of data analysis in 

use in experimental marine hydrodynamics

• Give some examples of how to do data analysis using Matlab

Covers Chapter 10 in the Lecture Notes
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Contents

• Typical types of tests:

– 1. Static tests

– 2. Decay tests

– 3. Regular wave tests

– 4. Irregular wave tests

• Pre-processing data

• Filtering

• Spectral Analysis

– Fourier transform

– Power Spectral Density (PSD)

• Example 
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Static tests
• Tests expected to give a constant measured value

– Example: Ship resistance, propulsion and open water tests

• Only the mean value is used in further analysis

• Take care to avoid transient effects at start-up

• Notice that even for tests of stationary phenomena like ship resistance in 

calm water, there will be oscillations in the signal

– To create a reliable average at least ten oscillations should be included in the 

time window 

– If the signal is polluted by oscillations at a single low frequency, an entire

number of oscillations should be included in the time window
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Pre-processing data in Matlab (for all tests)
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Effect of the record length

• Sinusoidal wave 𝑥 = 𝐴 𝑠𝑖𝑛 𝜔𝑡 + B
• Theoretical mean value 𝜇𝑡ℎ = 𝐵

• Theoretical standard deviation 𝜎𝑡ℎ =
𝐴

2

• The error expectation (the actual error depends on the initial phase) is 0 

for entire numbers of cycles, else decreasing with number of cycles
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• Select the start and end times tstart and tend

• Interpolate to make data uniformly sampled

• Clean data. Equipment limitations (especially in MC lab) lead 

to:

– Erroneous data: Infinite (very large) or NaN (not a number). 

– Missing data: 0. Can occur for a somewhat long period of time and 

thus affects the results even if the mean value is small, even 0.

Pre-processing data in Matlab (for all tests)

t=tstart:dt:tend

x=interp1(t0,x0,t)

Raw data and time arrays

Selected time array

Uniformly sampled
selected data
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• The data can be cleaned by the function:

• Home made function. Tested on a limited number of time series only. Yet, 

always check the results! Modifications and suggestions are welcome.

• Smoothen x using smooth(x,round(fs/fx)+1) if sampled at fx<fs (stair-

like signal)

• clean_data function is found in the Resource-section of the TMR7 webpage 

and at the end of this presentation

xclean=clean_data(x’,CrtSTD,CrtCONV)

Cleaned data, row vector

Original data (uniformly sampled), row vector.

Iterative outlier criterion Convergence criterion

Play around with these criteria to get the desired result

Pre-processing data in Matlab (for all tests)
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How clean_data works

𝑥𝑖 − 𝜇𝑥 ≥ 𝐶𝑟𝑡𝑆𝑇𝐷 ∗ 𝜎𝑥

ሶ𝑥𝑖 ≥ 𝐶𝑟𝑡𝑆𝑇𝐷 ∗ 𝜎 ሶ𝑥

ሶ𝑥𝑖 ≤
𝜎 ሶ𝑥

10 ∗ 𝐶𝑟𝑡𝑆𝑇𝐷

Or

Or

Then
2)

1) 
If

Replace 𝑥𝑖 by a linear interpolation
of the nearest valid points

3)  Recompute 𝜇𝑥 and 𝜎𝑥 and iterate until it has converged:

𝜎𝑥𝑛 − 𝜎𝑥𝑛−1
𝜎𝑥𝑛−1

≤ 0.1

𝜇 : Mean value
𝜎 : Standard deviation

Less error is induced by 
keeping corrupt points than
simply removing them!

Signal

Derivative

Tuning parameter
- CrtSTD > 1
- CrtSTD should be large when signal has 

uneven amplitudes (if too small, cleaning
can affect valid parts of the signal)

Pre-processing data in Matlab (for all tests)
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Decay Tests

• Model is oscillated and then 

released, and response is 

measured

• Provides information about 

natural period and linear and 

quadratic damping terms

• Very useful for lightly damped 

degrees of freedom (system 

dependent). For ships:

– Well suited: Natural period and 

damping in roll, horizontal 

motions 

– Difficult, but possible: pitch

– Close to impossible: heave

Logaritmic decrement:

1
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Analysis of 

decay tests
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The damping ratio:

For low damping ratios 

(<0.2):

The logarithmic decrement:

Equivalent damping:

Λ = 2𝜋𝜉
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Alternative analysis of decay tests

- fitting of equivalent theoretical system

http://www.ivt.ntnu.no/imt/courses/tmr7/resources/decay.pdf
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• Use the function findpeaks to measure amplitudes and periods

Decay analysis in Matlab

[PKS,LOCS] = findpeaks(x,t)

T=diff(LOCS)

Gamma=log(PKS(1:end-1)/PKS(2:end))

Amplitudes Times

Decrement
Periods
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Filtering

• Noise is undesirable in measurements

– Impairs accuracy at frequencies of interest by folding (aliasing) if 

N𝑜𝑖𝑠𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 > 𝑁𝑦𝑞𝑢𝑖𝑠𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

2

– Impairs readability of time series

– Impairs accuracy of statistical properties of the signal (increases standard 

deviation, modifies mean value for low frequency noise)

• Two types of noise

– Measurement noise: Unphysical noise specific to sensor (e.g. grid 

frequency). Typically removed by low-pass filtering in the hardware, i.e. 

prior to data acquisition.

– Process noise: Undesired dynamics of the system 

• Transients: Decay of motion of undesired degrees of freedom. Typically low 

frequency: High-pass filter (also removes mean value)

• Structural vibrations: excitation of off-interest eigenfrequencies of the system. 

Typically high frequency: Low-pass filter

• Applied in the post-processing phase (by you!)
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Filtering, cont.

How does it work?
The gain of the filter’s transfer function attenuates some parts of the frequency 
content of the signal.

• In the frequency domain, no difference is made from 2 different processes 
having the same frequency

 In order for filtering to be successful, undesired processes should have 
a distinct frequency content from that of the studied process.

• 𝐺 𝜔 must be continuous for the IFFT to exist.

 The attenuation evolves gradually with the frequency. A sharp cut in 
the frequency content of a signal is not possible with low-order filters. 

𝑥𝑓𝑖𝑙𝑡 𝑡 = 𝔉 −1 𝐺 𝜔 ∗ 𝔉 𝑥 𝑡 𝜔 (𝑡)

FFT of the signalGainFiltered
signal

IFFT

𝐺 𝜔 = 𝐻 𝑗𝜔
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Various 

Filters
Amplitude

Ideal characteristic

Real characteristic

Low pass filter

High pass filter

Band pass filter

Frequency "Notch" filter
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Filtering, cont.

Digital Butterworth filters:

• Most commonly used filters for this kind of application. Hardware 
filter=Butterworth filter order 4

• Described by its transfer function (in practice in the discrete domain)

𝐻 𝑧 =
𝑏 1 +𝑏 2 𝑧−1+⋯+𝑏(𝑛+1)𝑧−𝑛

1+𝑎 2 𝑧−1+⋯+𝑎(𝑛+1)𝑧−𝑛

• Designed in Matlab by

[b,a]=butter(order,wstar,’ftype’)

𝑤∗ =
𝐶𝑢𝑡𝑜𝑓𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧)

𝑁𝑦𝑞𝑢𝑖𝑠𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Order of the filter

Normalized cutoff frequency
(Or interval of frequencies for bandpass filter)

’low’ low-pass filter filters frequencies > cutoff freq.
’high’ high-pass filter filters frequencies < cutoff freq.
’bandpass’ band-pass filter filters frequencies outside the

cutoff freq interval.

1

2 ∗ 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝
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The filtering effect is best described by Bode diagrams of the 

filter’s continuous transfer function

[b,a]=butter(order,wstar,’low’)

Figure()

Bode(d2c(tf(b,a,dt)))

Slope in gain reduction:

• = «filtering strength»

• Increasing with the order

• Increasing with frequency

(for a low-pass filter) from 

cut-off frequency

 The cut-off frequency

should be higher than the

undesired frequencies, but

lower than the frequencies of

interest.

Else the signal will be badly

filtered or the amplitude 

attenuated!

Filtering induces

a phase shift in 

the signal, 

increasing with

order and 

frequency

Cut-off frequency

Filtering, cont.
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• A so-called “spectral gap” is needed for efficient filtering  

= No energy in the spectrum around the cut-off frequency

If this is not the case, uncertainties will be introduced, take note of 
them!

• To avoid phase shift (improves readability in time domain plots), 
the time series are filtered first forward, then backward 
(symmetric or “zero-phase” filtering). This is not possible in real-
time.

In Matlab:

xfilt=filtfilt(b,a,x)

Filtered data

Original data 

(uniformly sampled)

Digital filter 

coefficients

Filtering, cont.
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Aims of analysis of regular wave tests

• Response amplitude

• Response amplitude operator (transfer function in 

frequency domain)

– Gain = Response amplitude/wave amplitude

– Phase angle (between wave at reference location and response) 

• Response frequencies

– In addition to wave frequency, nonlinear excitation of the natural 

frequencies of the system

Reminder: Take care to leave out transient response at the 

start of the time series!
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Analysis procedure for regular wave tests

Time-domain visual

analysis

Frequency-domain visual

analysis

Computing  Response

Amplitude

Computing Response

Phase

• Global assesment of the validity of the test

• First manual estimation of main period and amplitude

• Global assesment of the validity of the test

• Overview of response frequencies, estimation of the

noise level

• Design of possible filtering and checking filtering results

• Fourier series analysis. Gives both phase and amplitude 

at a specified frequency (wave frequency) and its

harmonics.

• Compared with incident wave: gives the total RAO 

(frequency-domain transfer function)

• Possible to extend to multiple frequencies (sum of sines)

• Divided by wave amplitude = Gain of RAO (Response

amplitude operator)

• From standard deviation of noise-free signal

• Average of peaks or 
𝑚𝑖𝑛+𝑚𝑎𝑥

2
are less accurate methods

Amp=sqrt(2)*std(x)
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Fourier series Analysis

• Goal: Extracting the linear component of the response to regular waves 

and deriving the gain and phase of the RAO at a given frequency (or 

period).

• A periodic signal with period T can be fully described by an infinite sum 

of harmonic components, called Fourier series:

0
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• Fit a Fourier Series to a time series in Matlab:
1. Open the Curve Fitting Toolbox (>> cftool) 

2. Choose Fourier from the model type list. 

3. Use Fit Options and number of terms to control the fit.

4. Check if frequency (given by w) is correct

5. Retrieve the 𝑎1 and 𝑏1 coefficients (linear terms).

6. Calculate gain and phase:

• Do it for both incident wave and response. Compute Gain and 

Phase of RAO by

Fourier series Analysis (cont.)

𝐺𝑎𝑖𝑛 = 𝑎1
2 + 𝑏1

2

𝑃ℎ𝑎𝑠𝑒 = 𝑎𝑡𝑎𝑛
𝑏1
𝑎1

𝐺𝑎𝑖𝑛𝑅𝐴𝑂 =
𝐺𝑎𝑖𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝐺𝑎𝑖𝑛𝑊𝑎𝑣𝑒

𝑃ℎ𝑎𝑠𝑒𝑅𝐴𝑂 = 𝑃ℎ𝑎𝑠𝑒𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 − 𝑃ℎ𝑎𝑠𝑒𝑊𝑎𝑣𝑒
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Example of accuracy of estimating 

amplitude from st.dev. in regular waves

0

0.5

1

1.5

2

2.5

3

3.5

8002 8004 8006 8000 8002 8005 8001 8002 8003 8006

sqrt(2)*stdev(Waveheight 1) Fourier analysis Waveheight 1

sqrt(2)*stdev(Acc1_FP) Fourier analysis Acc1_FP1

RAO Acc1_FP sqrt(2)*stdev RAO Acc1_FP Fourier
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Irregular wave tests

• Direct representation of the full scale sea condition

• Typically wanted results:

– Response spectra

– Response spectrum parameters: 

• Spectral moments

• Standard deviation

• Peak period

– Response amplitude operator (RAO)

– Statistical results:

• Max and min values, 

• Information about statistical distribution

• Extreme value statistics (extrapolation using the statistical 
distribution)

• Weibull plots etc.
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Properties of  stochastic processes

• Stationary: - Statistical properties constant with time

• Homogeneous: - Statistical properties constant in space

• Ergodic: - Time can be replaced by space as primary variable without 

changing the statistical properties

• The wave environment is commonly assumed to be a stationary, 

ergodic process

• This assumption greatly simplifies the analysis, and is a necessity for 

all established analysis methods

• It is not exactly true in a towing tank  

– Viscous damping: wave amplitude decreasing with distance to the wave 

maker, transmission of energy between frequencies. Significant for long 

towing tanks.

– Wave reflection: Non-homogeneous and non-stationary effects.
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Autocorrelation function

0

1
( ) ( ) ( )

T

xx

Limit
R x t x t dt

T T
 

 
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 


Figures from Newland (1984)

 is the standard deviation and m is the average value
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Cross-correlation function

0

1
( ) ( ) ( )

T

xy

Limit
R x t y t dt

T T
 

 
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 


Figures from Newland (1984)

Cross-correlation function for 

two sine waves with y(t) lagging 

x(t) by an angle 
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Fourier transform

• In practice in the discrete (digital) domain: The continuous

and ergodic signal 𝑓(𝑡) is sampled (assumed uniformly) over 

the record duration T at a rate 𝑓𝑠 (in Hz), giving the time 

series 𝑓𝑘 with

𝑘 = 0,1,… ,𝑁 − 1; 𝑁 = 𝑇𝑓𝑠
• The nth component of the Discrete Fourier Transform (DFT) 

of 𝑓𝑘 reads

• 𝑓𝑘 can then be exactly retrieved by the Inverse DFT:

1
i(2 n )

0

1ˆ
N

k N

n k

k

f f e
N







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𝑓𝑘 = ෍

𝑛=0

𝑁−1

መ𝑓𝑛𝑒
𝑖
2𝜋𝑛𝑘
𝑁
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Fast Fourier Transform (FFT)

• FFT is a computer algorithm for calculation of DFT. It is a 

core function of all digital data analysis.

• Conventional Discrete Fourier Transform (DFT) can also be 

implemented in a computer

– DFT requires n2 multiplications

– FFT requires n·log(n) multiplications

– FFT is more accurate (due to fewer multiplications)

• FFT requires that N is a power of 2. Two solutions:

– Truncate the signal to the nearest, lower power of 2

– Augment the signal to the nearest, higher power of 2 by adding L zeros 

(or samples equal to mean value if non zero-mean signal). 

• Recommended for more accuracy. 

• Corrections must be applied to the output

• Automatically done in the function fft in Matlab
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Spectral Density

• Frequency-domain representation of the correlation.

– Fourier Transform of Autocorrelation = Power Spectral Density (PSD), key tool

to represent the frequency content (in terms of energy) of a signal

– Fourier Transform of Cross-correlation = Cross Spectral Density (CSD)

• Time series are in theory of infinite length and aperiodic. A direct FT is ill-

defined. The frequency content can only be obtained through FTs of

correlation functions instead, leading to PSDs and CSDs.

• In the discrete domain and over a finite record time T, the periodicity

requirement can be lifted. SDs are then in practice not computed using their

original definition (i.e. from autocorrelation), but from the product of FFTs

𝑆𝑓𝑔𝑛
𝜔𝑛 = መ𝑓𝑛

∗
ො𝑔𝑛

for each frequency 𝜔𝑛 =
2𝜋𝑛

𝑇
, 𝑛 = 0,1, … ,𝑁 − 1. 𝑓 = 𝑔 gives PSD

• From circular to linear frequency: 𝑆 𝑓 = 2𝜋𝑆 𝜔

Complex conjugate
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Meaning of spectral moments

• The n’th moments of the spectrum is defined as:

• Standard deviation of response:

• Significant value of response:

• Average period of response:

• Average zero crossing period :

 dSm n

n 



0

)(

0m

1

0
1

m

m
T 

2

0
2

m

m
T 

031 4 mx 
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Accuracy and resolution of PSDs
• The accuracy of the SD computation can be written as (Newland, 1984):

𝜎

𝜇
≅

1

2𝑛 + 1

Standard deviation and 

mean value of PSD at 

frequency f in a set of

records of length T

Moving average smoothing with the n

previous and n following frequencies

• n determines the smoothness of the

spectrum. Increasing smoothness increases

accuracy, but decreases resolution. 

• Assuming
1

𝑇
sufficiently small wrt f, the

accuracy is not dependent on T, nor on f ! 

• Increasing T increases resolution and 

enables the study of lower frequencies.

• The effect of the record length on the

standard deviation of sine waves can be 

applied to frequency components of PSDs

Assuming 1/T is much lower (>5 -10 times) than f
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• Many functions, hard to tune because complex underlying mathematics

• psd_fft is a home made function computing the PSD directly from 

the Fourier transform. 

• Designed from: An introduction to Random Vibrations and Spectral

Analysis, by D.E. Newland and The Mathworks website

http://se.mathworks.com/help/signal/ug/psd-estimate-using-fft.html

• psd_fft.m is found in the Resource-section of the TMR7 webpage 

and in this presentation (next slide)

PSD in Matlab

Sxx=psd_fft(x,Ns,f,fs)

Sampling frequency (Hz)

Frequencies at which you want the

PSD to be computed
PSD (in 𝑢𝑛𝑖𝑡(𝑥)2. 𝐻𝑧−1)

Signal (cleaned, 

uniformly sampled)

Number of points in moving average = 2𝑛 + 1
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function [S,Sraw]=psd_fft(x,Ns,f,fs)

%Calculate PSD from raw fft and smoothing. From Newland: “An introduction to

% random vibrations and spectral analysis” and The Nathworks website 

% http://se.mathworks.com/help/signal/ug/psd-estimate-using-fft.html

%x: signal

%Ns: Number of points in moving average (=2*n+1, odd number)

%f: desired output frequencies

%fs: sampling frequency

%S: PSD @ frequencies f

%Sraw: Structure with field S=PSD and field f=frequencies as defined by fft

Nt=floor(size(x,1)/2)*2;

x=x(1:Nt,:);

dt=1/fs; %Step size

T=Nt*dt; %Record length

S=fft(x); %Compute dft by fft. fft specificities (added zeroes) are handled 

% internally.

S=2*dt/Nt*abs(S(1:Nt/2+1,:)).^2; %Compute PSD: one-sided (multiply by 2),

% distributed (divide by sampling freq) average of fft (divide by number of 

% points) squared

fS = 1/dt*(0:(Nt/2))/Nt; %Output frequencies, up to number of points/2 (higher

% frequencies only show a folded version of low frequencies)

for i=1:size(x,2)

S(:,i)=[S(1,i)/2;smooth(S(2:end,i),Ns)]; %Smoothing by moving average

end

Sraw.S=S;

Sraw.f=fS;

S=interp1(fS,S,f); %Interpolation to desired output frequencies

psd_fft.m
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pwelch is the standard built-in Matlab function for PSD calculation. 

• Default values often lead to inaccurate results. 

• Excessively computationally demanding for long time series

• More accurate than psd_fft for short time series, because moving 
average smoothing diffuses uncertainties of low frequencies onto 
frequencies of interest.

Sxx=2*pwelch(x,Window,Noverlap,f,fs)

Number of overlapping samples between

windows. Does not have a big influence. 

Window/10 is a good start.

The signal is segmented into «windows». The FFT is 

computed segment by segment which are then assembled

to give the PSD.

The broader the window, the finer the spectrum. The 

narrower, the smoother. Adjust it to get a readable yet

accurate spectrum (Use values from NFFT/2 to NFFT/10).

Change from two-sided to 

one-sided PSD

PSD in Matlab, cont.
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Transfer function in irregular waves 

(equivalent to RAO in regula waves)

)(

)(
)(

2






xx

yy

S

S
H 

𝐻 𝜔 =
𝑆𝑥𝑦 𝜔

𝑆𝑥𝑥 𝜔

Phase can be obtained

from CSD:

Magnitude:
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Summary

• Static tests and pre-processing

– The valid window of the time series to be analyzed must be 
sufficiently long

– The data must be cleaned and uniformly sampled

• Filtering

– Filter design in the frequency domain

– Need for a spectral gap

– Zero-phase filtering

• Regular wave tests

– The amplitude should be calculated through the standard deviation 
of filtered signals

– If the phase is desired, use Fourier Series

• Irregular wave tests

– Spectral densities based on the Fourier transform are used for 
frequency domain analysis

– Appropriate smoothing should be applied
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Example of post-processing with Matlab: 

Irregular wave elevation

Generated from JONSWAP spectrum.

The following is artificially added:

– Erroneous and missing data

– Measurement noise

– Transients

– Mean offset
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Example cont. : Matlab script

load(‘data.mat',‘x‘,’time’) %Load wave elevation and time from file

duration=200; 

dt=0.1;

t=0:dt:duration;

Nt=length(t);

xint=interp1(time,x,t); %Interpolate data

xclean=clean_data(xint,3,0.001); %Clean data 

cutoff=[0.3 4]/(2*pi); %Cut-off frequencies

fnyq=1/(2*dt);                      %Nyquist frequency

[b,a]=butter(4,cutoff/fnyq,'bandpass'); %Get filter coefficients

xfilt=filtfilt(b,a,xclean); %Zero-phase filtering

df1=0.01;

df2=0.1;

f1=0.01:df1:0.99; %Small frequency step for low frequencies

f2=1:df2:10; %Large frequency step for high

frequencies

f=[f1 f2];

Sxx=psd_fft(xint-mean(xint),10,f,1/dt); %PSD of unfiltered data

Sxx_filt=psd_fft(xfilt-mean(xfilt),10,f,1/dt); %PSD of filtered data 

figure(1)

plot(t,[x0 xint xclean xfilt]) %x0: original data generated 

from JONSWAP

figure(2)

plot(w,jonswap,f*2*pi,Sxx/(2*pi),f*2*pi,Sxx_filt /(2*pi))
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Example cont. : time and frequency domain plots

Large spectral gaps 

allowing efficient filtering

of the noise

Noise

Uncertainties due to 

short time series

Transients

Uncomplete spectral gap: 

slightly uncertain filtering

of the transients

Cut-off frequencies
Outlier

Period of missing data

Band-pass filtering removes

hig and low (including offset 

= 0 rad/s) frequencies
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Questions?

Teaching assistant:

bhushan.taskar@ntnu.no

Office D2.235

About this course:

valentin.chabaud@ntnu.no

Office G2.130

mailto:bhushan.taskar@ntnu.no
mailto:valentin.chabaud@ntnu.no
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while abs((std(x)-std_prev)/std_prev)>CrtCONV

flag=0;

ind=[];

for i=1:length(x)

if abs(x(i)-mx)>sx*CrtSTD || 

abs(d(i))>sd*CrtSTD || abs(d(i))<sd/CrtSTD*0.1

if flag==0

flag=1;

ind=[ind;[i 0]];

end

else

if flag==1

ind(end,2)=i;

flag=0;

end

end

end

if(ind(end,end))==0

ind(end,end)=length(x);

end

y=[ones(N,1)*x(1);x;ones(N,1)*x(end)];

for i=1:size(ind,1)

inttot=(1:length(y))';

intrem=ind(i,1)+N:ind(i,2)+N;

intfit=setdiff(inttot,intrem);

z=y(intfit);

%         f = fit(intfit, z, 

'smoothingspline','SmoothingParam', 0.1);

%         y(intrem)=feval(f,intrem);

y(intrem)=interp1(intfit,y(intfit),intrem);

x=y(N+(1:length(x)));

end

std_prev=std(x);

end

x=x';

clean_data.m
function x=clean_data(data,CrtSTD,CrtCONV)

%Written by Valentin Chabaud. v3 - August 

2015

%Removes erroneous values and outsiders 

from time series

x=data';

sx=std(x);

mx=mean(x);

d=diff(x);

sd=std(d);

d=[d;d(end)];

% figure(3)

% plot([data';d])

std_prev=std(x)/CrtSTD;

N=10;
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Statistical distributions

• The probability distribution function, P(x), is the 

probability that a general value of  the process  x(t) is less 

than or equal to the value of x

• The probability density function:

• The probability that  a<x(t)<b is given by the probability 

density function  such that: 

( ) ( ( ) )P x P x t x 

( )
( )

dP x
p x

dx


( ( ) ) ( )

b

a

P a x t b p x dx   
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Probability distributions used in the 

study of wave generated responses

• The distribution of the process itself, e.g. the distribution 

of the wave elevation x(t) and the measured response y(t)

Gaussian distribution

• The distribution of amplitudes; e.g. distribution of the 

wave amplitudes xA and measured response amplitudes, yA

in the tests. 

Rayleigh distribution
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Rayleigh distribution of amplitudes

• Follows from the assumption that the elevation itself is 

Gaussian

• The cumulative distribution:

• Here is the mean or expected value of x(t) defined as: 

•  is the variance of x(t), defined as: 

2

1
( ) 1 exp

2

X

X

x
P x





  
     
   

  ( )X E x xp x dx



  

 
2 22 2

X X XE x E x          
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Rayleigh distribution

• For a measured time series with 

N samples the mean value and 

the variance are calculated as:

1

1 N

X i

i

x
N




 

2

1

1
( )

1

N

X i X

i

x
N

 


 


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Non-linear response

• The response y(t) follows a Rayleigh distribution only if it 

is a linear function of the wave elevation x(t)

• To describe non-linear response it is common to use the 

more general Weibull distribution:

– G=2 gives the Rayleigh distribution 

– G=1 gives the Exponential distribution

1
( ) 1 exp

G

A X
A

x
P x

G





  
    

   
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Weibull plots
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Significant values

• Significant maxima:

– the mean of the highest one-third of the crest-to-zero values of xA,  

• Significant minima:

– the mean of the highest one-third of the trough-to-zero values of xA, 

• Significant double amplitude:

– mean of the highest one-third of the maximum to minimum values of xA
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Maximum/Minimum Values

• Maximum Value:

– Measured maximum value in the record 

• Minimum Value:

– Measured minimum value in the record

• Largest double amplitude:

– Largest measured crest to trough value in the record 
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Examples of special analyses:

• Slamming

• Sea sickness incidence

• Ventilation and air injection to waterjets
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Slamming analysis

• Definition of slamming threshold value(s)

– Typically 50 kPa, but depends heavily on context

• Counting (automatically) the number of slams above 

different threshold levels

• Detailed analysis of the time series of each slam reveals 

properties of the slam, the transducer and the model 

dynamic response
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Sea sickness incidence

• Estimation of sea sickness incidence is based on:

– Measurement of motions and accelerations of the model/ship

– Measurement of motion sickness incidence MSI (percentage of 

people vomiting) to vertical accelerations of different frequency, 

amplitude and duration

• Empirical relations of motion sickness incidence (MSI) as 

function of frequency, RMS amplitude, and duration 

available in ISO standard ISO 2631 1-4
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