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FOREWORD 

In the second edition of his book. Dr. Hoerner has added two 
chapters on hydrodynamics; the title has been changed accordingly. 
It is certain that this expansion of scope will meet with approval from 
all who are working in the field of “fluid dynamics”. 

I see no reason for any material change in the foreword given in 
the first edition (“Aerodynamic Drag”, May 1951). What is said there, 
applies to the second edition with obvious minor modifications. I have, 
therefore, suggested that it be so revised and included as follows. 

When Dr. Hoerner asked me to read his manuscript and write this 
foreword, 1 consented to do so, but with some misgivings regarding 
the nature of a book carrying the title AERODYNAMIC DRAG. Al¬ 
though Dr. Hoerner is known as a highly competent aerodynamicist, 
it did not seem possible within the scope of the title to do much more 
than prepare another compilation of drag data. 

My first impression on reading the text was one of great surprise 
at the magnitude of the author’s achievement. He had succeeded in 
producing an outstanding treatment of the subject; so that we now have 
an entire book concerned with but one of the six components of the 
total aerodynamic force. And it is not just another book. It is an ex¬ 
ceptionally well written, systematic treatise showing a splendid balance 
between the theoretical and the experimental approach. The presen¬ 
tations are always made with great clarity, even in those cases where the 
author has had some obvious difficulties working in a new language. 

It is safe to predict that this volume will be well received, not only 
by aeronautical engineers but also by all who have any concern what¬ 
ever with aerodynamic or hydrodynamic drag. The whole field of trans¬ 
portation is involved, and many will find here for the first time a readily 
usable compilation of basic data. 

I take great pleasure in being the first to congratulate Dr. Hoerner 
on his contribution to aeronautical progress. 

Only those who have tried to evaluate, to compile, and to corre¬ 
late data in the form as it has been done in this book, can fully appre¬ 
ciate Dr. Hoerner’s effort. 

WASHINGTON, D. C.-August 1957 WALTER S. DIEHL 
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AUTHOR’S PREFACE 

In 1951, the author introduced the first edition of his book, entitled 
“Aerodynamic Drag”, in part as follows: 

It is the author’s objective in this book, to present information on drag 
or fluid-dynamic resistance in a comprehensive, generally-valid and in¬ 
telligible manner to students, engineers and researchers. The text is 
not always a “handbook”, however, giving ready results. The reader 
is expected to work out the desired information himself, considering 
cause and effect involved in the problem he wants to solve. 

It is primarily the aeronautical engineer who is interested in aero¬ 
dynamic drag problems, so that he can predict and possibly improve 
the performance of airplanes. The principles of aerodynamic drag, many 
detailed data, and some special sections in this book should, however, 
find interested readers in several other fields of engineering as well — in 
the design of automobiles, in shipbuilding, in the construction of chim¬ 
neys (wind loads), in the design of high-speed railroad trains, in ma¬ 
chines applying aerodynamic or hydrodynamic forces, and finally in the 
design of ventilation systems. 

“Aerodynamic Drag” was originally written in 1945 and 1946, as a re¬ 
sult of the author’s experience in German research- and industrial or¬ 
ganizations (such as Junkers and Messerschmitt). Many additional and 
more recent data have been added, however, during the translation in 
the following years. Subsequently, the technical publishing houses in 
New York City were not found to be confident enough to bring out a 
book as specialized as this one. The author, therefore, decided to do the 
publishing himself. 

The following information is now added on “Fluid-Dynamic Drag”: 

Progress in aerodynamics is rapid in these years. The volume of infor¬ 
mation published during the last five years is very large. A second edi¬ 
tion of “Aerodynamic Drag” could, therefore, not very well be a reprint. 
Instead, every section of the text has been worked over and numerous 
improvements and additions have been made, in an effort to keep the 
publication up to date. This is particularly true in compressive and su¬ 
personic aerodynamics, which are now presented in three chapters. 



Besides air, the medium of water is most predominant in practical ap¬ 
plications of fluid dynamics. The author was happy, therefore, to have 
the opportunity during the last years in New York City, to participate 
in research and design of ships and hydrofoil boats — and to acquire in 
this way personal experience in water flow too. As a result, two chapters 
on hydrodynamic resistance have been added to the essentially aerody¬ 
namic content of the first edition. The title of the second edition has 

been adapted accordingly. 

Another chapter has also been added, presenting wind loads on various 
types of structures, especially buildings. 

After acquiring some experience as his own publisher, the author could 
not resist repeating the procedure in the second edition. Appearance 
of the text and readability of the illustrations have been improved. The 
author feels much indebted to the typesetter, the printer and the book¬ 
binder — for having produced the book very skilfully. 

The 1965 edition differs from the preceding one, as followsy A num¬ 

ber of misprints and some mistakes have been eliminated. “Drag in 

cavitating flow’’, in Chapter X, has been rewritten. Hypersonic char¬ 

acteristics such as in missiles and re-entering vehicles, are presented 

in an added chapter. The “atmospheric properties’’ in Chapter XIX, 

have completely been rewritten. A section has been added, dealing 

with the aerodynamic drag of satellites. Chapter XX is also new. In¬ 

formation on various subjects of drag, ranging from base-vented 

hydrofoils to characteristics at supersonic speeds, has been collected 

in this chapter. 

NEW YORK CITY-AUGUST 1964 SIGHARD F. HOERNER 

THE AUTHOR studied mechanical engineering at the Institute of Technology in Miin- 
chen (Dipl.Ing.), he earned a degree as Dr.-Ing. in aerodynamics at the Institute of 
Technology in Braunschweig, and he obtained a degree as Dr.-Ing.habil. from the TH 
Berlin. He served at one time as research assistant at the Deutsche Versuchsanstalt fur 
Luftfahrt (DVL, near Berlin), as aerodynamicist in the Fieseler Corporation (working 
on the first STOL airplane, the "Stork”) and later for a time as head of design aerody¬ 
namics in the Junkers A.G. He was then research aerodynamicist at the Messerschmitt 
A.G. After World War II, the author was invited to come to the United States, where 
he worked in aerodynamics at Wright Field, Ohio. For some years he has been acting as 
specialist for aerodynamics and hydrodynamics in the field of naval architecture at Gibbs 
& Cox, Inc., New York City. 
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CHAPTER I - GENERAL INFORMATION 

This first chapter is intended to be a general intro¬ 

duction to FLUID-DYNAMIC DRAG, pointing out 

approach and philosophy in treating the subject. The 

chapter also presents necessary and/or useful infor¬ 

mation of a general nature, such as a notation and 

the physical properties of the fluids concerned. 

1. NOTATION - ABBREVIATIONS 

Most of the abbreviations and symbols used through¬ 

out the book are listed as follows. 

BIBLIOGRAPHICAL REFERENCES indicating 

the sources of theoretical methods or experimental 

results used or quoted throughout the text and in 

the illustrations, are presented in the form of "foot¬ 

notes'", placed at the bottom, usually of the odd-num¬ 

bered pages. Within the text, the references are 

usually referred to in parentheses. 

Documents. Technical reports (or memorandums) 

have been quoted extensively in the text, particularly 

those issued by NACA and NASA. Although the 

documents used are not classified, they may not 

readily be available to the public in general. The 

referenced German documents may be accessible 

through the Armed Services Information Agency in 

Dayton, Ohio. A source for more recent technical 

information is the Defense Documentation Center, 
Cameron Station, Alexandria, Virginia 22314. 

There are two methods available in order to find in¬ 

formation on a particular subject in this book. The 

first is by the Table of CONTENTS, beginning on 

page 0-7. The other way is through the use of the 

INDEX at the end of the book. 

Abbreviations, listed as follows, are employed within 

the footnotes quoting bibliographical references: 

NASA 

NACA 
T.Rpt 

T.Note 

W.Rpt 

T.Memo 

Transl 

R M 

ARC 

R M 

C. Paper 

A VA 

D VL 

Z WB 

FB 

U M 

D. Lufo 
Lufo 

Ing.Arch. 

ZAMM 

J.A.Sci. 

IAS 

AIAA 

ASME 

CAHI 

Ref 

Rpt(s) 
Trans 
Proc. 

Soc. 

T M B 

NAME 

Inst. 

I N A 

STG 

AGARD 

W G L 

Nat’l Aeronautics Space Administration 

Nat’l Advisory Committe for Aeronautics 

Technical Report of the NACA 

Technical Note of the NACA 

Wartime Report of the NACA 

Technical Memorandum = Translation 

Translation (into English) 

Declassified Document by the NACA 

British Aeronautical Research Council 

Reports and Memorandums of the ARC 

Current Paper of the ARC 

Aerodynamische Versuchsanstalt Gottingen 

Deutsche Versuchsanstalt fur Luftfahrt 

Zentrale Tech.-Wi’schaftl. Berichtswesen 

Forschungs Bericht of the ZWB 

Untersuchungen-Mitteilungen of the ZWB 

Deutsche Luftfahrtforschung (Yearbook) 

Luftfahrtforschung (German periodical) 

Igenieur Archiv (German) 

Zeitschr. Angewandte Math. Mechanik 

Journal of the Aeronautical Sciences 

Institute of the Aeronautical Sciences 

Am Inst of Aeronautics and Astronautics 
Am. Society of Mechanical Engineers 

Central Aero-Hydrodynamic Inst. (Moscow) 

Reference = Footnote 

Report and Reports, respectively 

Transactions of a Society 

Proceedings of a Society 

Society (Engineering) 

David Taylor Model Basin 

Naval Architects and Marine Engineers 
Institute (or Institution) 

Institution of Naval Architects (England) 

Schiffbauteschnische Gesellschaft 

NATO Adv. Group Aeron’l Res. Devel. 

Wissenschaftl. Gesellschaft f.Luftfahrt 
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FLUID-DYNAMIC DRAG 

Fluid-Dynamic Coefficients 

SYMBOLS IN EQUATIONS AND GRAPHS. With 

some exceptions, the symbols employed throughout 

this book are those accepted or recommended by the 

NACA and the American Standards Association (1). 

“Fluid-Dynamic'’ Dimensions 

b wing span (or width of a body) 

c chord of airfoil section 
d diameter of a body of revolution 

8 total boundary-layer thickness 

h height of a body; also TE thickness 

k diameter of sand grain (also other meanings) 

1 length of a body (in x-direction) 

S area (“wing” area if without subscript) 

t maximum foil-section thickness 

$ momentum thickness of boundary layer 

x length of forebody (to max. thickness) 

x dimension in direction of flow 
y dimension transverse to flow direction 

z altitude above sea level 

“Fluid-Dynamic” Ratios and Factors 

A = b2 /S = aspect ratio of wings 

X = 1/A —= length ratio = “c”/b 

e indicating effective aspect ratio 

f/c camber ratio of foil sections 

k specific heat ratio in gasdynamics 
k constant or factor (used in many definitions) 

K constant or factor (used in many definitions) 

1/d fineness ratio of body of revolution 

<3 indicating solidity ratio 

t/c thickness ratio of sections 

Terms Associated With Speed 

V flow- or flight speed (between body and fluid) 

w local velocity at specified point of a body 

w downwash velocity (behind wings) 

w internal velocity (in ducts) 

M = V/’a’= Mach number, with ’a’= sonic speed 

R Reynolds number (always with subscript) 

q = ff/g = mass density of the fluid 

q dynamic pressure (see Chapter I) 

“q” impact pressure (see Chapters XV and XVI) 

“P” Prandtl factor (see chapter XV) 

P engine power (usually in HP) 

T absolute temperature (in degrees “Kelvin”) 

T thrust of propeller or jet engine 

p absolute static pressure in lb/ft2 

f vortex frequency (per second) 

“S” Strouhal number — f 1/V 

D drag (or resistance), in “x” direction 

“f” = D/q in ft2 — drag area 

cB on effective dynamic pressure (Chap. V) 

CDi for induced drag (of wings) 

CDs for profile or section drag (of wings) 

CD. based on frontal area of body 

C0o on circumscribed area 

CDwet on wetted surface area of a solid 

Of skin friction drag (on wetted area) 

L lift (in “y” or “z” direction) 

CL lift coefficient = L/q S 

Cdl f°r drag associated with lift 

Cp = Ap/q = pressure coefficient 
f — 0.5 CLV c = circulation about foil section 

f pressure-loss coefficient 

Geometrical and Other Angles 

ot angle of attack, especially of wings 

(2> angle of yaw or sideslip 

r angle of dihedral (of wings) 

A angle of sweep (of wings) 

8 angle of deflection of flaps 

£ half vertex angle of cone or wedge shapes 

fi Mach angle (see chapter on “supersonics”) 

In Shipbuilding and Vehicles 

1 water-line length of a ship 

1 average wetted length of planing surface 

b beam of the hull 

h draft or submergence 

D resistance — drag 

W weight (in lb) 

A displacement in long tons (2240 lb each) 

Cpr;& prismatic coefficient 

F Froude number (in the “hydrodynamics” chap.) 

& cavitation number (see “hydrodynamics”) 

V displacement (volume) in ft5 

General Subscripts and Exponents 

amb indicating ambient condition 

av indicating mean “average” 

crit critical (Reynolds or Mach number) 

eff or “e” = “effective” 

min indicating “minimum” 

n a general exponent 

o original condition 

opt = optimum, as defined in text 

x or “max” for “maximum” 

x for distance from L’edge or nose 
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Specific Subscripts 

a indicating "added” or “attached” 

b indicating reference area b2 

B for “base” (also propeller blade) 

c indicating reference area c2 

comp = compressible or compressive 

A indicating displacement 

f for “frictional” (also for “fuselage”) 

H for horizontal tail 

i indicating “induced” (also “effective”) 

inc indicating “incompressible” 

lam = laminar (boundary layer) 

lat for “lateral” forces 

m indicating main body (also as exponent) 

M for momentum (internal flow) 

N indicating “normal” force 

O on “developed” parachute area 

p for pressure, also indicated by “P” 

t indicating reference area t^ 

turb = turbulent (boundary layer) 

w pertaining to speed “w” 

W indicating “weight” or “wave” 

wet — wetted area (in contact with fluid) 

x or “ext” for external 

• indicating frontal area of body 

□ on circumscribed area 

The Reynolds number “R” and the Froude number 

“F” usually carry a subscript, indicating the dimen¬ 

sion upon which they are based. Angles are usually 

presented in degrees, and marked correspondingly. 

Without such notation, they are usually meant to in¬ 

dicate a ratio. Some other symbols and subscripts 

are used and defined within the text, or they are un¬ 

derstandable without explanation. 

Abbreviations. The author has taken the liberty of 

using some abbreviations throughout the text and/or 

in the illustrations, respectively: 

BL = boundary layer 

LE = leading edge 

TE = trailing edge 

Ref = reference (footnote) 

Equ = equation 

Also “Reynolds number” is sometimes abbreviated 

to “R’number”, Mach number to “M’number”, 

“boundary layer” to “B’layer” and “aspect ratio” to 

“A’ratio”. Instead of the laborious phrase “approx¬ 

imately equal to”, the author has very often substi¬ 

tuted the symbol 

2. GLOSSARY OF TERMS AND NAMES 

There are many specific terms partly developed dur¬ 

ing the last 50 or more years, used and understood by 

every specialist in the field of fluid dynamics. For 

the benefit of readers from other fields of science or 

engineering, the more important ones of these terms 

are briefly explained as follows. 

“Airfoil” is a lifting surface, either a wing or one of 

the tail surfaces of an airplane or any other, usually 

profiled surface producing lift or a force in any other 

direction normal to the direction of flow. In water, 

the same type of surface is called a hydrofoil; and the 

common short word is “foil”. In contradistinction, 

“wing” is that airfoil which essentially carries the 

weight of an airplane. 

Boundary Layer is a comparatively thin sheet of de¬ 

celerated fluid originating through friction along the 

surface of solids. The “B’layer” can have either a 

laminar flow pattern (at small Reynolds numbers); 

or it may be turbulent (at higher R’numbers). Pres¬ 

ence of the boundary layer can cause flow separation 

(see under that heading). Proper consideration of the 

boundary layer (4) has opened the way to theoretical 

treatment of certain flow patterns. 

Cavitation. Voids or cavities are formed in water (or 

in other liquids) when and where the static pressure 

is reduced below the vapor pressure. The water then 

vaporizes thus forming bubbles as in boiling water. 

Cavities comparable to those in water are also formed 

in air; namely at hypersonic speeds where a vacuum 

can be obtained behind bluff obstacles. It seems that 

lightning is an example of this sort; the thunder being 

the result of the collapsing cavity. — Cavitation must 

not be confused with “separation” (see later). A phe¬ 

nomenon similar to cavitation is “ventilation” (see 

in the “hydrodynamic” chapter). 

Circulation (7) is the motion of a fluid “circulating” 

around a certain axis; it is the motion representing a 

vortex in non-viscous flow; its dimension is (ft^/sec). 

Every fluid particle moves about the vortex center 

basically in the same manner as the cars of a Ferris 

Wheel. Each of these cars remains in horizontal po¬ 

sition, while circling around the wheel’s axis. In other 

words, the non-viscous motion within a vortex is “ir- 
rotational”; see under “rotation”. 
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Compressibilty is the quality of a fluid, and of gases 

in particular, of reducing in volume when the static 

pressure is increased. In place of “compressible”, the 

word “compressive” has recently been proposed to 

indicate the active property of velocity or pressure in 

distinction from the passive quality of the fluid as 

such. Both of these terms are applied in this book 

(making the distinction as defined above, as far as 

possible). — Water does not have compressibility 

worthwhile to speak of. 

Downwash is (strictly speaking) the permanent down¬ 

ward component of the velocity behind lifting wings. 

This type of downwash is the resultant of the veloc¬ 

ities “induced” by the trailing vortex system of such 

wings. There are other downward and upward com¬ 

ponents around a wing which are also called “down- 

wash” or “upwash”, respectively. A downwash of this 

type (caused by the “bound vortex”) is found at the 

trailing edge of a wing; and a corresponding upwash 

exists ahead of the leading edge. 

Fluid Dynamics, also called “fluid mechanics’,’ is the 

all-encompassing term denoting the field of fluid 

motion. Subheadings are as follows: Hydrodynamics 

(meaning not only the subject of water flow but also 

fluid-dynamics of incompressible flow). Aerodynamics, 

describing characteristics in air (and in other gaseous 

fluids) from incompressible through hypersonic con¬ 

ditions. Gas dynamics, dealing with compressible 

gases from subsonic to supersonic speeds. With respect 

to compressibility, we have the field of subsonic flow, 

of transonic Mach numbers (roughly between M = 

0.9 and 1.5), supersonic conditions and finally hyper¬ 

sonic flow, meaning comparatively high Mach num¬ 

bers in connection with slender body shapes. The 

field of aerodynamics in rarefied gases is encountered 

in very high altitudes (by rockets and satellites). The 

extreme of this type of fluid dynamics is the free-mol¬ 

ecular flow, in which the gas molecules strike an 

obstacle individually, without interfering with each 

other. 

“Induced” is a word taken from the field of electricity. 

Magnetic forces are “induced” around a conductor 

carrying an electric current (8). In fluid dynamics, 

the velocity at any point within the field of a vortex is 

called the induced velocity due to its circulation. The 

word “induced” also is applied, however, to indicate 

velocity components and pressures caused by displace¬ 

ment. 

Lift is not directly a subject of this book. Drag is a 

function of lift, however, in several respects; so that 

lift must be considered too. One of the important 

characteristics of a lifting wing is the so-called lift- 

curve slope (dCL/do(), indicating the rate at which 

lift increases as a function of the angle of attack “cX”. 

However, a parameter sometimes more convenient 

than (dC|_/dcX), is the reversed value “dc*/dCL”; 

and this value is called in this book the “lift angle”. 

“Laminar”, derived from the latin word for “layer”, 

indicates a state of flow where the various fluid 

“sheets” do not mix with each other, where all stream 

tubes keep essentially parallel to each other and where 

their velocities are steady (although the velocity may 

very well have a gradient both in the direction of 

motion and between different stream tubes). 

Parasite Drag. If accepting the induced drag as some¬ 

thing necessarily connected with the useful generation 

of lift, the rest of the drag of an airplane can be called 

to be parasitic (because it represents a waste of fuel). 

Another terminology (10) denotes the parasite drag 

as “viscous”, thus stressing the fact that frictional drag 

as well as pressure drag (due to boundary-layer de¬ 

celeration or flow separation) are basically caused by 

viscosity. 

Pressure — Static. Usually, “pressure” is meant to be the 

ambient “static” pressure “p”(for example in lb/ft2) 

within a certain space or container. However, in 

applied aerodynamics, pressure differentials Ap = 

(PtocaL — Pamb) are verY often considered, rather 
than the absolute static pressure. The variation of the 

pressure along a surface is of importance for the de¬ 

velopment of the boundary-layer. A positive gradient, 

corresponding to a distribution in which the pressure 

increases in the direction of flow can lead to flow sep¬ 

aration. Therefore, such a gradient is also called “ad¬ 

verse”. Changes of the static pressure near, at and 

behind obstacles are the primary subject of super¬ 

sonic aerodynamics. 

Pressure — Dynamic. A pressure differential of partic¬ 

ular definition is the so-called dynamic pressure q 

= 0.5 V2. This quantity is thus a property of a 

fluid flow; it corresponds to the momentum of the 

fluid particles. In non-compressive fluid flow, this 

quantity appears in the form of a static-pressure in¬ 

crement that can directly be measured (for instance 

in lb/ft2) after the flow has been brought to rest 

(when and where V —*- 0, without having lost mo¬ 

mentum). The dynamic pressure is then the differ¬ 

ential between the “total” pressure as tested in the 

open end of a so-called Pitot tube and the ambient 

static pressure. There are instruments (the Pitot- 

static tube or the “Prandtl Rohr”) directly indicating 

the dynamic pressure differential. In many or most 

practical applications, fluid-dynamic forces are (at 

least approximately) proportional to the dynamic 

pressure. 
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Pressure — Total. The most important principle gov¬ 

erning non-compressive fluid flow, is the fact that un¬ 

der undisturbed and non-viscous conditions, the sum 

of static and dynamic pressure is always constant. This 

so-called Bernoulli law (13) can be utilized to explain 

basically the generation of drag (other than frictional). 

Speed and dynamic pressure of the fluid particles re¬ 

duce upon approaching an obstacle; the static pressure 

at the front of a solid is increased accordingly. In 

theoretical non-viscous flow, a corresponding ex¬ 

change between dynamic and static pressure would 

take place at the rear of the obstacle; and there would 

not be any drag (as found by d’Alambert in the 18th 

century). Actually, of course, there is viscous friction, 

boundary layer and separation. As a consequence, 

the flow pattern is changed as stated in Prandtl’s BL 

theory. The deceleration of the fluid particles upon 

approaching the “rear stagnation point”, and the 

corresponding pressure recovery do not completely 

take place. The resultant of increased pressure at the 

front end and a more or less deficient pressure at the 

rear side of the obstacle, is pressure drag. The total 

pressure (and/or momentum) of the stream tubes 

involved is reduced, accordingly. 

jRatios.There are many dimensional ratios, describing 

the shape of solid bodies exposed to fluid flow. We 

have, for example, the thickness ratio "t/c" of wing 

sections, the fineness ratio of rotationally-symmetric 

bodies, the aspect ratio of wings A = b2 /S = b/“c”, 

the length ratio \ — 1/A == “c”/b. Ratios of sec¬ 

ondary order are, for example, that of the location of 

maximum thickness with respect to chord or length, 

respectively. Related geometrical ratios are particu¬ 

larly used in the field of ship hydrodynamics (Chap¬ 

ter XI) describing, among others, magnitude and 

distribution of a hull’s displacement. 

(1) See Aeronautical Engineering Review 1953 p.4l. 
(4) Prandtl, Boundary-Layer Theory, established 1904. 
(7) See in books such as Prandtl's Fluid Dynamics”, (German 

1941) New York 1952; also in Lamb or Milne-Thomsen. 
(8) Glauert, "Aerofoil and Airscrew Theory”, 1926. 
(10) Weinblum, in his papers listed in Chapter XI. 
(13) Daniel Bernoulli, in "Hydrodynamica", 1738. 
(15) "Turbulence” as stated in TMB Rpt 670 (1948). 

Rotation means the motion of fluid particles around 

their own “center” or some other center in a manner 

similar to any part of a “rotating” solid wheel. Inso¬ 

far as each particle changes its angular position while 

going around, more or less facing the center of motion, 

this type of motion is basically different from the 

“Ferris-Wheel” motion mentioned under “circula¬ 

tion”. Every real vortex has a rotating core; while 

beyond a certain distance from the center, the circu¬ 

lation-type of flow pattern is found as indicated by 

theory (7). Rotation is also called “vorticity”. 

“Schlieren” is not the name of a man; it is the German 

word for “streaks” as they appear as a consequence 

of density differentials in the “shadow” of compressive 

and in particular of supersonic patterns of fluid flow. 

Separation. Because of the frictional losses within the 

boundary layer, separation of B’layer as well as of the 

adjoining external flow takes place, for example, from 

the rear of many “bluff” bodies. The region of flow 

following separation is sometimes called “dead space”. 

However, a “wake” is not necessarily the product of 

separation. Any loss of momentum (for example by 

friction) appears as a deficiency of dynamic pressure 

within the wake behind every obstacle. Separation 

and “detached” flow pattern can also be found along 

the sides and even in front of obstacles, wherever 

boundary-layer thickness and “adverse” pressure 

gradient are large enough to produce this phenom¬ 

enon. The opposite of “separated” is "attached”. 

Under certain conditions, a separated pattern may 

also become “re-attached”. Separation from sharp 

edges can also be understood and treated without 

considering viscosity. 

Streamlines. When replacing a small cross-sectional 

part of a fluid flow, for example by smoke — a single 

“line” becomes visible, called streamline. Upon giving 

the line a finite cross-sectional area (as indeed that 

smoke line has) we obtain a stream tube. A so-called 

streamline body or shape, is not a very logical appli¬ 

cation of that word. We have the word, however, not 

only in English (see Webster) but also in other lan¬ 

guages. The best explanation we can give for the ap¬ 

plication is the fact that most of the stream tubes 

continue past such a shape without crossing each other 

and without being disrupted and/or dissolved as they 

are in the flow field past a bluff obstacle. 
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Turbulence is a more or less irregular “eddying” mo¬ 

tion, a “state of commotion and agitation” (15), con¬ 

sisting of velocity fluctuations superimposed to the 

main flow, within boundary layers (at higher R’num- 

bers) and within the wake behind solid bodies. Tur¬ 

bulence should not be confused with separation. In 

fact, separation can be reduced and possibly avoided 

by forcing turbulence. Such “stimulation” of turbu¬ 

lence can be obtained through some disturbance of 

the laminar B’layer flow, such as surface roughness, 

stream turbulence (in wind tunnels), sound and/or 

mechanical vibrations (from aircraft engines, for ex¬ 

ample). The intensity of turbulent motion (expressed 

by the root-mean-square \[w2 of its components) de¬ 

creases as ~ 1/x, where x = distance behind the ob¬ 

ject producing turbulence. Besides their amplitude 

(in the order of 1% of main velocity in ordinary wind 

tunnels, for example) frequency is also of importance. 

Vortex. The flow pattern of a vortex in non-viscous 

fluid is mentioned under “circulation”. An impor¬ 

tant example is the “bound” vortex or “lifting line” 

(7) which is the fluid-dynamic equivalent of a physi¬ 

cal wing. Other examples are the “rolled-up” vortexes 

originating from the lateral ends of every wing or 

other lifting body, and the well organized rows of 

vortices found in alternating vortex “streets”. In free- 
surface hydrodynamics (as in ships) “trailing vortexes” 

appear in the form of waves; the motion of the fluid 

particles is called “orbital”. 

Vorticity. The words “vortex” and “vorticity” are 

also used in connection with the shear flow in bound¬ 

ary layers and in wakes (behind obstacles), where ro¬ 

tation is produced by viscous friction. The word 

“vorticity” is thus used to indicate the amount of 

rotation present in a flow pattern. Vorticity has the 

same dimension as “circulation” (ft2/sec). 

Wind Tunnel. Possibly a thousand wind tunnels have 

been built and used during the last 50 years, for the 

purpose of finding the aerodynamic characteristics not 

only of airplane wings, component parts of aircraft 

and of airships, but also of automobiles and stationary 

structures (bridges and buildings). The test section 

of such tunnels may be “closed” or “open-jet” type. 

Corrections (due to “blockage” or due to the finite 

size of the jet of air) are sometimes cumbersome. Be¬ 

cause of their excessive power requirements, most of 

the tunnels designed for supersonic speeds are com¬ 

paratively small in size, down to a few centimeters 

squared. Very large installations have, on the other 

hand, been built in order to test aircraft “full-scale”. 

— A number of water tunnels are also existing, pri¬ 

marily used for hydrodynamic purposes, as a supple¬ 

ment to towing tanks. 

Personalities In Fluid Dynamics. Among the many 

names found as authors of, and found quoted in fluid- 

dynamic publications, a few are particularly outstand¬ 

ing; and they are often referred to in the text of this 

book. We therefore present the list as follows: 

Froude, William (1810 to 1879 in England) not to be 

confused with his also famous son, is the “father” of 

modern ship hydrodynamics (17). The free-surface 

similarity law (see Chapter XI) is named after him. 

Von Karman, Theodore; was a very prominent aero- 

dynamicist (18). Bom in Hungary (1881), he was 

associated for a time with the Gottingen circle, was 

later Director of the Guggenheim Aeronautical Lab¬ 

oratory in Pasadena (California), and last Chairman 

of NATO aerodynamic activities. He died in 1962. 

See Astronautics and Aerospace Engineering, July 

1963. 

Pitot, Henry; French physicist 1695 to 1771, intro¬ 

duced an open-ended tube used to measure “total” or 

Pitot pressure (equal to p -f q in non-compressive 

fluid flow). 

Prandtl, Ludwig (1875 to 1953) Professor and Di¬ 

rector of the K.Wilhelm Institute in Gottingen (20). 

Together with Albert Betz, he was for some 50 years 

the spirit of aerodynamic research at the AVA. Among 

his numerous publications, “Essentials of Fluid Dy¬ 

namics” is available in English (London 1952). 

Reynolds, Osborne (1842 to 1912), Professor at the 

University of Manchester (England), published results 

of experimental investigations, “Whether Motion of 

Water shall be Direct or Sinuous and of the Law of 

Resistance in Parallel Channels”, in Philos.Trans. 

Royal Society (London) 1883 p.935. Also: "On the 

Dynamic Theory of Viscous Fluids and the Determi¬ 

nation of the Criterion ... ”, in Philos.Trans.Royal 

Society 1895. The basic similarity law of fluid dy¬ 

namics indicating the ratio between viscous and dy¬ 

namic forces, is named after Reynolds; thus the 

“Reynolds number”. 

Others. There are many others worth-while mention¬ 

ing. A few of them are listed in the footnotes of this 

Chapter. The names of still others appear as authors 

of papers and articles in the balance of this book. 
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3. DRAG AND THEORETICAL ANALYSIS 

“Resistance” was evidently the first fluid-dynamic 

force, arising from an obstacle placed against a stream 

of air or water, to become obvious to man. Lilienthal 

(22) named every force caused by flow “Widerstand"; 

and Eiffel (23) entitled the publications on his aero¬ 

dynamic research “la resistance de Lair”— although 

there is more information presented on lift than on 

drag in his books. Today, using the word “drag”, one 

thinks only of that component of any fluid-dynamic 

force, the direction of which coincides with that of the 

undisturbed flow (against an obstacle). In English- 

language terminology, “drag” is preferred in aviation; 

while “resistance” is common notation in marine en¬ 

gineering (and possibly in other fields of transporta¬ 
tion too). 

Action and Reaction. It is known that a wind-tunnel 

experiment, where a wind stream is blown against the 

stationary model, is equivalent to actual conditions, 

where for example, an airplane is propelled against 

more or less resting air. Upon discussing aerodynamic 

flow patterns, the stationary wind-tunnel system is 

usually preferred. One speaks, for example, of stream¬ 

lines passing some object, protuberances exposed to 

the flow, boundary layer originating along a surface, 

the dead space behind a blunt body — and so on. 

Analyzing drag problems, it seems to be useful, how¬ 

ever, to consider both systems and to observe the 

action of the air as well as the reaction of the body — 

or vice versa. As far as the body is concerned, a drag 

of certain magnitude is thus produced by the fluid 

flow. On the other hand, a disturbance is caused by, 

and left behind the moving body within the fluid 

space. This disturbance is the equivalent of the re¬ 

sistance; the energy involved in the disturbance is 

equal to that expended in propelling the body or 
craft considered. 

(17) Papers of W. Froude, a Memoir by INA (London) 1955. 
(18) VonKarman, see special issue of the J. Aeronautical Sciences 

May 1956, commemorating his 75th birthday. 
(20) Prandtl, Necrology, see J. Aeron. Sci. 1953 p.779. 
(22) Lilienthal (1848 to 1896), Der Vogelflug als Grundlage 

der Fliegekunst, Berlin 1889. 
(23) Eiffel (1832 to 1923), Recherches de l'air et Faviation, 

Paris 1910; Nouvelles recherches, Paris 1914. 
(24) Lanchester, "Aerodynamics”, London 1907. 
(25) Engineering-type presentations of aerodynamics are: 

a) Diehl, "Engineering Aerodynamics”, since 1928. 
b) Wood, "Technical Aerodynamics”, by Author, 1955. 

Momentum. A concept very useful in fluid dynamics 

is that of “momentum”. The momentum of a body 

(with respect to a suitable system of reference) 

mass times speed, in (slugs ft/sec) or in (lb sec) 

is an indication for the impact that it can produce 

when stopped. Momentum is transferred from a 

moving body upon the surrounding fluid; thus (mo¬ 

mentum transferred per unit time) equal to (drag). 

By measuring the momentum deficiency within the 

wake of an obstacle, its drag can be determined, ac¬ 

cording. This method is called “momentum-defi¬ 

ciency” or “wake-survey”, or “Pitot-traverse” tech¬ 

nique (see also Chapter II). To keep an airplane 

flying at constant speed, its momentum has contin¬ 

uously to be replenished (by means of the propelling 
engine or by “paying” altitude). 

Momentum Transfer. There are several forms in 

which momentum is transferred from a moving body 

onto the fluid, (a) A certain volume of fluid is accel¬ 

erated either in the direction of the moving body, or 

(b) in a direction transverse to that of the motion, as 

in the case of the induced wing drag for instance. 

(c) The fluid can also be put into irregular, turbu¬ 

lent motion; or the momentum equivalent to the drag 

may (d) be contained in a regulated system of vortices 

(vortex street), (e) At supersonic speeds, momentum 

(and heat) are carried sideways by means of compres¬ 

sion waves. Finally, (f) in the presence of a free water 

surface, momentum is dissipated in a system of gravity 

waves (and/or in the form of spray). Usually several 

of the listed ways are combined with each other. All 

the “dynamic” types are consumed after some time by 

the viscous friction between the fluid particles, and 

they are finally transformed into heat. A simple proof 

of this transformation is the fact that the temperature 

in a wind tunnel increases appreciably with time dur¬ 
ing operation. 

Theoretical Sources. A long time ago, somebody has 

said that induced drag was the only type of resistance 

on which theory could really give an answer. This 

is no longer true; we have more or less explicit re¬ 

sults on growth and characteristics of the boundary 

layer; we can predict flow separation; knowledge on 

wave drag in supersonic conditions has emerged from 

elementary concepts; theories are available indicating 

the wave-making resistance of ships and other bodies 

in water; characteristics in cavitating water flow are 

known from theoretical sources; theories are also 

available, describing fluid-dynamic conditions in free- 

molecular flow. Most of the existing solutions are 

partial, however, or rather complex; some of them 

are so involved that their mathematical evaluation 
has not yet been accomplished. 
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Statistical Methods. Very often, a considerable lack 

of understanding is apparent between “mathemati¬ 

cians” and “engineers”. Their abilities and their as¬ 

signments are basically different (26); and there are 

only a few who can master both, theoretical research 

and practical design. Also, many technical devices, 

such as indeed the airplane, have been invented and 

originally developed without much of a theoretical 

foundation. The engineer is usually forced to pro¬ 

ceed without the help of theory, wherever a solution 

is not available, or where it is too complicated for 

practical application. This is particularly true in the 

field of fluid dynamics where detailed analysis of the 

boundary layer, for example, serves more basic pur¬ 

poses while the engineer only needs to know the con¬ 

sequences as far as they affect the resultant forces of 

aircraft (or other devices). Therefore, the way many 

questions are handled in applied fluid dynamics, is 

by testing models in wind tunnels or water tanks, and 

by statistic knowledge derived from such experience. 

Approach In This Book. The primary thesis of this 

book is to supply educated engineering information. 

Written by an “engineer”, and primarily for engi¬ 

neers, the text is not “theoretical”, accordingly. How¬ 

ever, there is “nothing” more practical than a good 

theory. The results of theoretical calculations are, 

therefore, used as a basis and as a framework, within 

which the various problems concerning the resistance 

of bodies in air or in any other medium are presented. 

Wherever possible, experimental data are checked 

against and correlated with theoretical predictions. 

Practical conclusions are drawn from more academic 

functions. Limiting cases, which may not have any 

practical significance by themselves, are also pre¬ 

sented, from time to time. They often confirm the 

trend of a function within that range in which one is 

really interested. On the other hand, where theoreti¬ 

cal information is not available, efforts are made to 

(26) The British physiologist Grey has discovered that the two 
types differ in the frequency pattern of their electric brain 
impulses; see Grey "Living Brain” N. York 1953. Other 
pairs of terms describing the two, are "logical' and ''geo¬ 
metrical”, or "abstract” and "visual-imaginative”. 

(28) Quotations in regard to science and engineering: 
a) Appleton: "I have watched with admiration the engi¬ 
neer's ability to do things — while I’ve only been able to 
think about them in a theoretical way.” (Partnership of 
Science and Engineering, Trans NE Coast Inst’n of Engineers 
and Shipbuilders Vol. 71, 1954 p.89). 
b) Geyer: "Mathematics is tautology” (in "Die Dumm- 
heit”, Gottingen 1954). He also makes the statement that 
"computing machines are perfect idiots". 
d) VonKarman: "to remind persons engaged in the pro¬ 
fessional use of aerodynamic science, how much mental effort 
was necessary to arrive at an understanding of the funda¬ 
mental phenomena” (in "Selected Topics”, Cornell Univ. 

Press 1954). 
e) Lewis: "The model test may be considered as an analogue 
type of computer" (Trans SNAME 1954 p.431). 
f) Munk: "Wind tunnelling (can) degenerate into fruitless 
weighing and air blowing" (J. Aeron’l Sci. 1938 p.24l). 

obtain a physical understanding of the flow mech¬ 

anism from experimental observations. Applying sta¬ 

tistical methods, certain “rules” may then be derived 

from experimental results. For example, the inter¬ 

ference drag is treated in this book on a statistical 

basis. Such semiempirical methods usually enable the 

engineer to perform his calculations with an accuracy 

which is consistent with other phases of design 

work. Some information of this type may naturally 

grow obsolete, after more complete test results have 

become available. As an excuse for possible errors 

in the presentations in this text, psychology may be 

called upon as a witness; “even a wrong answer is 

closer to the truth than an apathetic ‘I don’t know’; 

a wrong answer can be proved to be wrong, and the 

correct answer can be sought” (J. A. Winter). Another 

important element in the presentation is the selection 

of suitable parameters to be considered in a problem. 

“Without computing relative importance, a class of 

facts leads to the most cluttered confusion” (Hub¬ 

bard). We may say, in this respect, that successful 

theories and/or rules do just that; they are usually 

simplifications (disregarding secondary terms). — At 

the end of this somewhat philosophical section, a 

number of statements are quoted from personalities 

engaged in scientific and/or engineering work (28). 

4. NON DIMENSIONAL COEFFICIENTS 

Dynamic Pressure. In one or possibly in more than 

one particular point on the front of every solid ex¬ 

posed to a flow of air or water, the “impinging” 

fluid particles come to rest; that is, their velocity ap¬ 

proaches zero in these points. During their deceler¬ 

ation, the momentum of the particles is transformed 

into static pressure. The pressure increment 

q = 0.5 V2 (lb/ft2) (2) 

is called “dynamic” pressure, because it is the equiva¬ 

lent of a dynamic quantity. 

Drag Area. Disregarding the range of very small 

Reynolds numbers, aero- or hydrodynamic pressures 

and forces are in many conditions and at least predom¬ 

inantly proportional to the dynamic pressure. It is, 

therefore, convenient to refer the flow forces to this 

pressure. Regarding drag, the so-called drag area 

D/q = CD S (ft2) (3) 

is useful in cases where an area of reference is not 

obvious (such as, for instance, in the case of a motor¬ 

cycle) or where several component parts are combined 

in some system. 
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Force Coefficients. Naturally, fluid-dynamic forces 

also increase with the size of the body involved. Usu¬ 

ally, the forces are proportional to a suitable area; 

such as for instance, the projected plan-form area of a 

wing (S), or the frontal area of an obstacle (S#). Re¬ 

ferring the "drag area” (equation 3) to such an area, 

a nondimensional fluid-dynamic drag coefficient is 

thus obtained: 

CD = D/qS = D/0.5 9 V2 S (4) 

Readers who are not familiar with fluid-dynamic co¬ 

efficients, may take notice here, that they will usually 

find information in the form of the drag coefficient 

(equation 4). The drag in lbs (or in any other weight 
unit) is then 

D = CQ q S = 0.5 V2Cd S (5) 

with all quantities in a consistent system of dimen¬ 

sions (as the foot-pound-second system). In compres¬ 

sed or in sonic or supersonic flow, the impact pressure 

at the stagnation point is higher than (0.5 (jV2). The 
coefficients are still based upon the dynamic pressure 

(equation 2) however, which in this case merely 

represents the momentum of the fluid flow. 

Pressure Coefficient. Another coefficient which is very 

useful in the analysis of resistance is that indicating 

certain differentials of the static pressure 

Cp = Ap/q = (Plocol - PambVq (6) 

where pamg = undisturbed static pressure (at some 

distance away from the body which is under obser¬ 

vation). At the stagnation point in uncompressed 

fluids, this coefficient is obviously equal to “one”. 

5. PHYSICAL SIMILARITY LAWS 

The drag- or pressure coefficients and the similarly 

defined lift coefficients are primarily a function of 

shape and attitude of the body which is under con¬ 

sideration. Under certain conditions, the flow pattern 

in the vicinity of a body and the non-dimensional co¬ 

efficients — are identical in air, water, or in other 

liquid or gaseous fluids. On this basis, the fluid-dy¬ 

namic characteristics of a body exposed to a flow in 

one medium, can be predicted from experiments in 

a different medium. So, for example, submarine 

models have been investigated in wind tunnels; and 

airplane wings in water tanks or -tunnels. The co¬ 

efficients may also depend upon certain physical char¬ 

acteristics present in one medium but not in a differ¬ 

ent one. There are certain more or less defined 

regions, however, within which such specific proper¬ 

ties (as for example, compressibility) only have a 

negligibly small effect upon flow pattern and flow 

forces. In ranges which are still further restricted, 

the coefficients are eventually constants. — A system 

of these coefficients, within a framework of equally 

non-dimensional classifying “numbers”, has been ac¬ 

cepted as an international fluid-dynamic language, so 

to speak. 

Reynolds Number. According to Reynolds’ similar¬ 

ity law (see section 2) flow pattern (including bound¬ 

ary layer) and force coefficients of two similar bodies 

(identical in shape, but different in size), or those of 

one and the same body in different mediums — are 

similar if their Reynolds numbers are identical. This 

number 

Rj! = Vl^//i = Vl/v' (7) 

represents the ratio of the dynamic forces (represen¬ 

ted by the velocity V, the body dimension 1, and the 

density of the medium (j) to the friction forces (rep¬ 

resented by the viscosity jj. of the medium). Unfor¬ 

tunately, the principle of identical Reynolds numbers 

cannot generally be realized in model testing because 

of the necessary economy in size and operation of 

wind-tunnel or towing-tank installations. The fluid- 

dynamic research of the last 40 or 50 years was, there¬ 

fore, confronted again and again with the problem 

of how to transfer model results to the real conditions 

of flying aircraft, or of ships in full-scale operation. 

It is (among others) for this reason that the variation 

of drag coefficients against Reynolds number is so of¬ 

ten presented in this book. 

Compressibility. Under certain conditions, certain 

fluids can be considered to be incompressible. This 

is particularly true for water (where the speed of 

sound, a measure of non-compressibility, is almost 

5000 ft/sec). In air, compressibility may be neglected 

within the range of small and moderate speeds. Dis¬ 

regarding the effects near the blade tips of propellers, 

the practical design of airplanes, therefore, did not 

seriously take into account compressibility during the 

first 20 or 30 years of its history (since 1903). Dealing 

with today’s flying speeds close to and exceeding the 

speed of sound, theoretical and experimental re¬ 

search on compressibility have been highly advanced, 

especially in recent years. Since, however, most air¬ 

planes in practical service are still flying, and may 

continue to fly, at moderately high speeds, simply by 

reasons of economy, the field of non-compressive aero¬ 

dynamics remains the basic subject in a book such as 

this one. The Mach number 

M = V/a (8) 

(named after Ernst Mach, 1838 to 1916) is commonly 

used to classify flow conditions with respect to com¬ 
pressibility. 
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Rarefied Fluid Flow. The forceful development of 

rockets as a launching device for satellites, leads into 

the upper atmosphere and “out” of it. At such alti¬ 

tudes, density is so small, that air or gas cannot be 
considered any longer as a continuous medium. In¬ 

stead, the gas molecules strike against a flying object 

singly; and they are reflected or rebound, possibly 

like balls. A chapter is added in this book, to present 

principles and available results "at high altitudes”. 

Cavitation. Water changes its physical status radi¬ 

cally, after reaching a certain temperature (boiling) 

or after the pressure has been reduced below a certain 

value (cavitation). Cavitation; that is, the appear¬ 

ance of voids which are filled with vapor instead of 

water — is, therefore, encountered in water (and in 

other liquids) at higher velocities. The tendency 

(preparedness of a flow of water to cavitate), is indi¬ 

cated by the cavitation number 

^ = (PmLn— Pomb )/(l (9) 

which is believed to have been introduced by Thoma 

(in Munchen). 

Free Water Surface. Flow characteristics of bodies in 

water, in proximity of or penetrating through the 

free surface, display considerable interaction with this 

surface. The pressure field of the obstacle causes a 

deformation of the surface. As a consequence, a wave 

system originates, trailing behind the moving body — 

particularly known in connection with ships. Such 

wave systems and the characteristics of. spray and ven¬ 

tilation are functions of the Froude number (named 

loo iso 2oo 3oo 4oo 600 Soo looo 

after William Froude 1810 to 1879) 

Fj = v//iT (10) 

Basically, this number indicates the ratio of dynamic 

forces (represented by 1? V?^/g) to static forces (dis¬ 

placed water Weight £ l3). The particular problems 

of resistance in water are presented in two chapters 

of this book. 

6. PROPERTIES OF AIR AND WATER. 

(A) Characteristics of Atmospheric Air 

Practical information on density, viscosity, speed of 

sound, vapor pressure, and other characteristics of 

many fluids and gases, are found in physical text 

books and/or engineering handbooks. The proper¬ 

ties of the two most important fluids, air and water, 

are briefly presented as follows — as a function of 

pressure and temperature. 

Dynamic Pressure in Air. The mass density of air is 

essentially 

(D (lb sec2/ft4) = 0.000324 p (lb/ft2)/T (°K) 

= 0.0229 p (inch Hg)/T (”K) (15) 

tvith XK = 273 + t„c indicating the absolute tem¬ 

perature in degrees “Kelvin” (which is the equivalent 

of centigrades). Many examples of air Aoav take place 

at the ground or flying near sea level. For such cases, 

a “normal” temperature of t = 15 °C = 59 °F and 

a pressure corresponding to 29.9 inches (= 760 mm) 

of mercury — has been adopted by international con¬ 

vention, averaging conditions in the temperate 

zones of the earth. The corresponding mass density 

of the air is <3 = 0.00238 lb secg/ft4 and the 

“standard” dynamic pressure in sea-level air is 

q (lb/ft2) = 0.5 v2sr (V,ft/sec)//840 

« (V,mph)^391 * (V,kts)7295 (16) 

as plotted in figured. Aviation is not all confined to 

sea level altitudes, however. Figure 2 presents the 

internationally (34) normalized average decrease of 

density against altitude above sea level. Replacing 

in equation 16, the normal mass density of qo by 

(9/9o)9o, t^e dynamic pressure can be determined as 
a function of altitude. 

loo 3oo 4oo boo 8<50 speed -v- Figure 1. Dynamic pressure (equation 16) 
in standard sea-level air. 
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Troposphere Stratosphere 

Figure 2. Variation of physi¬ 
cal air properties with altitude 
as indicated by the ICAO 
standard atmosphere (34). 

Viscosity of the Air. The dynamic viscosity of air (fi 

in lb sec/ft^) is a function of temperature (is for most 

practical purposes independent of pressure), as plot¬ 

ted in figure 3. Within the range of engineering 

applications (between T = 170 and 500 °K) the 

“absolute” viscosity varies as 

js ~ T°-76 (17) 

By combination with the density, the kinematic vis¬ 

cosity v== js/q in ft2/sec is obtained. Under “normal” 

sea-level conditions, this type of viscosity is approxi¬ 

mately 

V* = 1.56/1 (A (ft2/sec) (18) 

Since density and temperature decrease as the alti¬ 

tude is increased, the value of V increases considerably 

with altitude. The Reynolds number (for constant 

speed) decreases accordingly, as shown in figure 2. 

(30) Properties of air as a function of altitude: 
a) Burgess, Altitude, The Engineer 1952 p.338 & 370. 
b) NACA, Tentative Tables for the Properties of the Upper 
Atmosphere, Technical Note 1200 (1947). 
c) Additional presentation in Chapter XVIII. 

(31) Influence of Compressibility, NACA T.Rpt 837 (1946). 
(32) Physical properties of the atmosphere are presented at length 

in Wood’s "Technical Aerodynamics" (25,b). 
(34) The presented physical values have tentatively been agreed 

upon by the ICAO (International Civil Aviation Organiza¬ 
tion) in 1952; see Manual of ICAO Standard Atmosphere, 
NACA T. Note 3182 (1954) which is now T. Rpt 1235. 

(36) Information on air viscosity is found in; 
a) J. Aeron. Sci. 1951 p.156 and 1952 p.236 & 510. 
b) Basilesco, Experimental, Publ. Scientifiques et Tech¬ 
niques French Ministere de 1'Air, Rpt 111 (1937). 
c) Fortier, Experimental, Ann. de Physique 1945 p.292. 
d) Also in NACA T. Rpt 1135, on "Compressibility”. 
e) To p = 200 at, Tokyo Univ. Rpt (A)3, 1951 p.247. 
f) Keyes, Viscosity, Trans ASME 1951 p.589. 

(38) Roberts, Atmosphere, Aeron. Engg.Review Oct. 1949. 
(39) Chapman, Gas Mixtures, NACA T. Rpt 1259 (1956). 
(40) Fano and Others, Compressibility Density Viscosity and 

Properties of Steam, NACA T. Note 3273 (1956). 
(42) Physical properties of water (sea and fresh): 

a) See for example Trans INA 1953 p.358. 
b) See in any modern Engineering Handbook. 

Speed of Sound. Sound travels at the natural velocity 

with which a vanishingly small pressure variation is 

propagated through the air. This speed is generally 

’a' = |/dp/dy = \J k g’R! T (20) 

with k= 1.4 (in the air up to 300,000 ft of altitude), 

g = acceleration of gravity, ‘R’ = gas constant and 

T = absolute temperature. In air (throughout the 
troposphere): 

'a' (ft/sec) = 66 ✓t (°K) (22) 

For standard sea-level temperature, the sonic velocity 

is (34),'a'= 1117 ft/sec = 760 mph = 660 knots. — 

Since temperature decreases as altitude is increased, 

the speed of sound decreases accordingly; and the 

Mach number (equation 8) increases at the same time 

for a given speed, as illustrated in figure 2. In regard 

to compressibility, it is thus seen to be favorable to 

conduct subsonic airplane speed records in locations 

which are as low as possible and as hot as available, 

to keep away from the critical Mach number. 

Figure 3. Variation of the physical viscosity 
of air as a function of temperature. 
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High Altitudes, above some 60,000 ft, have been ex¬ 

plored by various direct (balloons and rockets) and 

indirect (physical) methods. A survey of the known 

atmospheric properties at high altitudes (as of 1949) 

is given in (38). The density decreases steadily with 

altitude to vanishingly small values. The average 

temperature shows heavy up-and-down variations, 

however, which correspond to the atmospheric zones 

illustrated in the last chapter of this book. 

Humidity. The amount of water vapor “solved” in 

atmospheric air, is usually small (less than 1% by 

weight). The influence of humidity upon mass den¬ 

sity is small, accordingly. For example, in “normal” 

sea level condition, 100% humidity (indicating satur¬ 

ation) reduces density by less than 1%. The influence 

of humidity on other characteristics is well explained 

in (32). 

Steam. Properties of steam are presented in (40). Its 

density is very roughly 2/3 of that of air under the 

same conditions as to temperature and pressure. 

Gases. Physical and thermodynamic properties of a 

number of gases other than air are reported and 

discussed in (39). 

0 10 20 30 40 °C 

(B) Physical Properties of Water 

Dynamic Pressure in Water. For all practical applica¬ 

tions (to date), the density of water can be considered 

to be constant (being independent of temperature 

and pressure): 

(> (fresh water) = 62.3/32.2 = 1.94 lb secVft^ (24) 

In average (Atlantic) sea water, with a salinity in the 

order of 3.5%, the density is 2.7% higher than in 

distilled or “fresh” water: 

^ (sea water) = 64/32.2 = 1.99 lb sec2/^ (25) 

Corresponding to these densities, the dynamic pres¬ 

sure is 

q (lb/ft2 )= 0.5 ^V2 = 0.97 (V,ft/sec)2 (26) 

in fresh water, as plotted in figure 4. In sea water, the 

dynamic pressure is 

q (lb/ft2) = 0.995 (V,ft/secf= 2.85 (V,kts)2 (28) 

The Viscosity in Water, needed for the computation 

of the Reynolds number, is a function of temperature 

as plotted in figure 5 in the form of the so-called kine¬ 

matic viscosity \r'= yu/^. At the “normal” tempera¬ 

ture of 15 °C (59 °F) the viscosity of water is in the 

order of \r= 1.25/10^ (ft2/sec). Average sea water 

has a kinematic viscosity some 4.6% higher than that 

of fresh water. — In water, viscosity decreases appre¬ 

ciably as the temperature is increased. For example, 

at 120 °F, the viscosity is only half of that at “normal” 

temperature. Heating the water in a towing tank or 

in a water tunnel, is therefore a means of possibly 

doubling the Reynolds number in model testing. 
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CHAPTER II - SKIN-FRICTION DRAG 

Viscosity is a molecular “resistance” which fluid 

particles exhibit against displacement in relation to 

each other and with respect to the surface of solid 

obstacles. Most directly, this type of resistance pre¬ 

sents itself in the form of frictional drag. This means 

that in a manner roughly comparable to that of 

solid surfaces sliding along each other, a tangential 

force originates where air or any other fluid moves 

past the surface of a body. This force is the skin- 
friction drag. 

1. VERY SMALL REYNOLDS NUMBERS 

to determine the resistance of two-dimensional plates 

in tangential flow. Referred to the area (b times 1), 
the drag coefficient is 

8ir/Rj 10.9/Rj 

D 3.2 — 2.3 logRg 1.4-logR^ 

This equation is plotted in figure 1 in the form of 

Cp = 0.5 CD. The graph gives a certain perspective 

as to the “viscous” regime in comparison to the 

‘“dynamic” functions of laminar and turbulent skin- 

friction drag at higher Reynolds numbers. 

Disk. The drag of a thin disk, exposed on both 

sides to a tangential flow, is indicated (1) by the 

theoretical non-dimensional coefficient 

At very low speeds, and/or in fluids with high vis¬ 

cosity, and/or in very small dimensions, that is 

roughly below R| = 1, viscosity is the predominant 

parameter determining the drag of a body. 

Two-Dimensional. As a solution of equation 6 in 

the “pressure drag” chapter, for h = 0, it is possible 

D/pdV = 5.34; D = 5.34 pdV (lb) 

with the viscosity “p” in (lb sec/ft2) and the diam¬ 

eter “d” of the disk in ft. This type of drag is thus 

proportional to the velocity V (in ft/sec); we have 

here a typical example where the “quadratic” drag 
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drag coefficients, does not apply. In the form of 

such a coefficient, based upon wetted disk area 

= d27r/2, the skin-frictional resistance in this type 

of viscous flow is 

D 4*5.34 6.8 

C = -=- =- (3) 
*1 ^wdr 3T Rj Rj 

This coefficient (plotted in figure 1) is appreciably 

higher than the two-dimensional function. The 

physical reason will be discussed later. 

Applications. The region of very small Reynolds 

numbers has a limited practical meaning. Numbers 

below R = 1, are only found in oil-lubricated bear¬ 

ings (3), or in the case of water draining through 

the ground, or in tight fabrics (4). Theoretically 

and actually, there is a very small region near the 

nose or leading edge of every solid body where lo¬ 

cally, frictional drag coefficients apply, similar in 

magnitude to those indicated in figure 1. Very low 

Reynolds numbers are also encountered at very 

high altitudes (as treated in the chapter on “rarefied 

gases”). 

Boundary Layer. Within the described range of 

smallest Reynolds numbers, “all” of the fluid space 

is affected by a moving body by means of viscous 

forces. To make such flow pattern better understood, 

one may assume the fluid medium to be replaced 

by a “plastic” material. A solid body (for instance 

a knife) pushed into this type of “fluid” encounters 

a resistance which is more or less directly transferred 

onto the “total” of the material. Testing the drag 

of bodies at such small Reynolds numbers in a tow¬ 

ing channel is accordingly difficult (as reported in 

5), because of the great influence of the tank walls 

upon the measured forces. This “remote-control” 

influence of viscosity decreases steadily, however, 

within a range of the Reynolds number which may 

be said to be between 1 and 100. Above this range, 

the influence of viscosity becomes limited to a com¬ 

paratively thin layer closely adjacent to the surface 

of the moving body — generally called the “bound¬ 

ary layer”. 

Figure 2. Non-dimensional distribution of velocity and 

dynamic pressure across the boundary layer, for turbulent 

and for laminar flow. The area between “w/V” and “q^/q” 

is a measure for the frictional drag. 

2. BOUNDARY-LAYER DATA 

In the flow past a solid obstacle, certain fluid par¬ 

ticles cling to the surface; their relative velocity is 

w —» 0. Particles at some small distance from the 

wall loose only part of their original velocity; they 

are kept balanced by viscous shearing stresses be¬ 

tween the wall and the undisturbed flow. Beyond a 

certain distance, defined as the total boundary-layer 

thickness, the outer flow is found, with a total pres¬ 

sure which fully corresponds to Bernoulli’s law (see 

in Chapter I). 

Velocity Distribution. Figure 2 shows the velocity 

distribution across the boundary layer. Starting 

from zero, directly at the surface, the shape of the 

distribution curve is very much a function of the 

type of flow. For laminar boundary-layer flow (6); 

w/V = 2 (y/6) - 2 (y/Sf + (y/5)* (4) 

This function means that near the wall, the local 

velocity “w” increases in linear proportion to the 

distance y; thus 

(w/V)q = 2 (y/6) (5) 

The distribution across turbulent boundary layers 

can be interpolated by 

w/V = (y/6)'/n (6) 

The intersection of this function with w/V = 1 

defines the total layer thickness “6”. Within the 
range of R* = 10“ to 107, boundary-layer surveys 

yield approximately n = 7 in the exponent of the 

equation. The value of “n” increases as a function 

of the Reynolds number (7). — As seen in figure 2, 
the distribution in the turbulent layer is “fuller” 

than that of the laminar layer; ir_ other words, the 

dynamic pressures close to the surface are much 

higher, if considering equal total thickness. 

Total Thickness. As presented (for example) in 

(8), the total thickness of the boundary layer is for 

laminar flow pattern: 

6/x = 5.5/R^2 (7) 

In turbulent flow condition, combination of equa¬ 

tions 18 and 19 yields 

6/x = Cf (n + 1) (n + 2)/2n = 5.14 Cf 

for n = 7. For the same value of n, using equation 
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28, the total thickness in turbulent condition is 
found to be 

S/x = 0.154/r(1 2 3 4 5 6 7 8 9 10 (9) 

Considering plane surfaces along which the bound¬ 

ary-layer flow is first laminar, then changing into 

turbulent state, the thickness at a point x is approxi¬ 
mately 

6/x — 0.154 (Rx— Ro)6/7/Rx (10) 

In this equation, R0 indicates a theoretical number, 

roughly 30% lower than the critical number R^ of 

the surface considered. — The combined functions 

of boundary-layer thickness as plotted in figure 3 

against Reynolds number, resemble those of the 

friction-drag coefficient in figure 6. As an example, 

the thickness along a plane wall is plotted in figure 

4 for R^ = 5 10 . As long as the flow is laminar, 

the boundary layer grows along the lower curve. 

Assuming, however, a critical Reynolds number 

R-itcrii— 10 , transition to turbulent flow is reached 
at x/1 = 10 / (5 106) = 0.2. From there on, the 

boundary layer thickness increases at a higher rate 
than before. 

Laminar Sub-Layer. Directly at a wall, turbulent 

oscillations are not possible in the direction normal 

to the surface. Oscillations in other directions are 

prevented by viscosity. A certain sub layer, there¬ 

fore, remains laminar, even in otherwise turbulent 

condition. The velocity distribution in the sub layer 

is essentially linear (as illustrated in figure 2) : 

d (w/V) 

-= 0.5 (5/x) RxCr (11) 

d (y/S) 

(1) Oberbeck, quoted in Handb.Exp.Physik Wien-Harms 
Vol.IV,2; or in Lamb’s "Hydrodynamics”. 

(2) Drag coefficients in laminar BL flow: 
a) Janour, Plate at Low Reynolds Numbers, Prague 
1947; Trans NACA T.Memo 1316. 
b) Schoenherr (14,b) results in glycerine reduced 
by this author to two-dimensional flow. 
c) Fage, Friction Plates, ARC RM 1580 (1933). 

(3) Prandtl, "Stromungslehre” (1942); English Edition: 
"Fluid Dynamics”, New York 1952. 

(4) Hoerner, Aerodynamics of Screens and Fabrics, Tex¬ 
tile Research Journal 1952 p.274. 

(5) Thom and Swart, J.Roy.Aeron.Soc. 1940 p.761. 
(6) Schlichting, “Grenzschichttheorie” (1951) ; “Bound¬ 

ary Layer Theory" by McGraw-Hill 1955. 
(7) Statistical values in J.Aeron Sci. 1954 p.705. 
(8) Falkner, Laminar B’Layer, ARC RM 1895 (1941). 
(9) Laufer, Turbulent Channel Flow, NACA T. Rpt 1053. 

(10) Rotta, series of papers on turbulent b’layers: (a) 
Planck Inst. Gottingen 1950; Trans TMB 242 or 
NACA TM1344. (b) Ing. Arch.1950, 277; 1951, 31. 
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Figure 3. Total thickness of b'layer 
%% originating along 'smooth 

wall, as a function of 
i Reynolds number. 
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with Gj. as defined by equation 21. The correspond¬ 

ing sub-layer thickness on smooth (constant-pres¬ 

sure) surfaces, as derived from (6) and from equa¬ 
tion 28, is 

4ub/x = K/RxVo.5 = 7.5 K/r"/i2 

This thickness ratio decreases roughly in proportion 

to l/R*. The constant is K = 5 (as given in refer¬ 

ence 6) for the laminar part of the sub layer; and 

K = 14 as tested in (9) to the intersection with the 

exponential distribution (equation 6). These thick¬ 

nesses are very small. Derived from equations 9 and 

12, the sub-layer fraction is approximately 

W4urb=50K/Rf (13) 

This function is applicable in the vicinity of R,(.= 

10 and 10 . The laminar sub-layer usually meas¬ 

ures less than a percent of the total turbulent thick¬ 

ness. This means that the sub-layer is only in the 

order between 1 and 2 times 10"4of the distance x 

(or body length 1). As pointed out in (10), vis¬ 

cosity and surface roughness are essentially effective 

in the sub-layer, while the remaining and by far 

larger part of the b’layer is predominantly a dy¬ 
namic mechanism. 

Displacement Thickness. Besides the total thickness, 

other thicknesses can be defined. The displacement 
thickness 

4 = /[1 - (W/V)] dy (14) 

is a measure, indicating how far the undisturbed 

outer flow is removed from the wall because of re¬ 

duced velocities within the boundary layer. This 
thickness is 

in laminar boundary layer: 4 — 0.315 & 

in turbulent boundary layer: 6^ = 8/(1+n) 

where the value of n is * 7. 

Momentum Thickness. The loss of momentum en¬ 

countered by the boundary layer along its way to 

a certain point considered, is indicated by the mo- 
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mentum thickness 

& = J[(w/V) - (w/vfj dy (16) 

In figure 2, this thickness is represented by the area 

between the respective velocity- and dynamic-pres¬ 

sure curves. The momentum thickness is 

in laminar b’layer: $ = 0.12 <5 (17) 

in turbulent layer: = n 5/[(n+l) (n+2)] (18) 

Momentum Loss of the Boundary Layer. The mass 
of air which passes, during the unit of time, through 

the cross section of the boundary layer, is /(b q w 

dy). The momentum per unit time (in pounds) of 

this flow is f(b q w'2dy). The difference between this 

value and that of the same mass of air at the undis¬ 

turbed velocity “V” is /(b q (wV — w5) dy). After 

dividing by V , the integral in this expression is 

identical to the momentum thickness as indicated 

by equation 16. Hence, (loss of momentum per 

unit time) = drag = b q Va^.After introducing q = 

0.5 q V2 and the wetted area Sw<Lfc of the surface 

under consideration, the skin-friction drag coeffi¬ 
cient is found to be 

Cf = D-frid:/fa Swet) = 2 &ffL (19) 

This equation represents the simplest case (at con¬ 

stant static pressure) of the momentum-loss tech¬ 

nique which is widely employed in experimental 

aerodynamics. The boundary layer thickness is, in 

other words, a measure of the parasitic resistance 

originating along the surface. By means of a pres¬ 

sure survey across the wake (boundary layer) of a 

wing section, for instance, it is thus possible to 

determine the profile drag of an airplane wing in 
actual flight (11). 

3. FRICTION WITH LAMINAR B’LAYER 

Within the range of small and moderately large 

Reynolds numbers, the flow pattern of the bound¬ 

ary layer is laminar. This means that all particles 

move along lines which are essentially parallel to 

each other, with velocities that are locally constant. 

Skin-Friction Coefficient. Derived from the viscosity 

f1 (in lb sec/ft*) of the flowing medium, a theoreti¬ 

cal solution (12) indicates the local drag coefficient 
(based on wetted surface area) 

Tlam 

d (CfLaw) 

d(R</RX) 

dw 

dy 

0.664 

R A 

where x = distance of the considered surface ele¬ 

ment from the leading edge and r = Ct q, in lb/ft2, 

indicating the local shearing stress at the surface. 

Experimental points are plotted in figure 6; and it 

is seen that the upper limit for the function’s valid¬ 
ity is in the vicinity of R* = 106 The total or 

average coefficient "Cf” of a surface is found by 

integrating the local values along the length (or 

chord) of the surface considered. As pointed out 
' (14,a), 

CT(k+l)/k (22) 

in 

Cf _ 

where k — (m — 1), and “m” as in equation 28. 
In case of laminar friction thus: 

C4W= Dlo«/(q Swet) = l.S28/>/R- 

The laminar drag (in pounds) is, therefore, pro¬ 

portional to (CfUin times V2) a function which is 

proportional to V'A The coefficient is plotted in 

figures 1 and 5, together with results on flat plates, 

tested in towing tanks or wind tunnels. The lower 

validity limit of the function is in the order of R^ = 

10 , below which the purely “viscous” type of skin 
friction takes over more and more. 

4. TURBULENT BOUNDARY LAYER 

At higher Reynolds numbers, after exceeding a 
stability limit which is treated later, the boundary- 

layer flow turns turbulent. This means that the flow 

adjacent to the surface of a body is eddying, with 

oscillating velocity components parallel and trans¬ 

verse to the main flow direction. Because of these 

superimposed motions, a certain exchange of mo¬ 

mentum takes place between the various "sheets” 

of the boundary layer. This dynamic mechanism 

produces shearing stresses which are higher than 

those in laminar condition. Magnitude and varia¬ 

tion of the skin-friction drag coefficient are different 
from those for laminar flow. 

Theoretical Drag Functions. The theoretical analy¬ 

sis of turbulent skin-friction drag is complex; an 

exact solution has not been established. The avail¬ 

able solutions are basically generalizations of experi¬ 

mentally determined velocity distributions across 

the boundary layer. Among dozens of such statisti¬ 

cal functions, the following are the most important 
ones. 



II —FRICTION DRAG 2-5 

(a) Prandtl and vonKarman, utilizing velocity dis¬ 

tributions determined in pipes, found for smooth 

and plane surfaces (13) : 

Cx = T/q = 0.059/R'f ; Cf = 0.074/r^ 

where Cr and C» as defined before. The function 

is applicable for Reynolds numbers below 106. Such 

derivation from pipe tests was later improved (6) to 

Cr = (2 logRx- 0.65)1^ Cf = 0.455/ (logR^P® 

giving adequate answers between R^ = 10 and 10. 

(b) From analysis of velocity distributions across 

the boundary layer, vonKarman (14,a) derived the 

similarity rule that C/'5 is proportional to log 

(RjCf). To determine a suitable basic function for 

the frictional resistance of ships, Schoenherr (14,b) 

then examined all available experimental results; 

and he established the equation which is widely 
used today: 

log (R^C^.) = 0.242/1/C^; CT = cj (1 4- 3.59 s/C^) 

As shown in figure 5, the “Schoenherr line” appears 

to be valid up to the highest Reynolds numbers 

likely to be encountered in human engineering (be¬ 

tween 10*5 and lO10). A simpler formula approxi¬ 

mating Schoenherr’s within ± 2% has recently been 

proposed (14,c) : 

1/^fCf = 3.46 logR^ — 5.6 (26) 

(c) Schultz-Grunow (14,d) tested velocity distribu¬ 

tions on a plane wall (rather than in pipes). Ex¬ 
pressed by 

CT = 0.37/ (logR,) 

C^s = 0.427/(logR^ — 0.407)2'6^ (27) 

(11) See for instance J.Aero Sci.1940 p.295; or NACA 
T.Rpt 660. Other sources on wake-survey method: 

Betz NACA T.Memo 337 (1925); ARC RM 1688 

(1936), RM 1808 (1937), RM 2914 (1944); Bollay 
J.Aeron Sci 1938 p.247. 

(12) Blasius, Zeitschr. Mathematik Physik 1908 p.l. 
(13) Prandtl, Erg. AVA Gottingen III (1927); vonKarman, 

Aerod.I.Aachen 1921 or ZAMM 1921 p.233. 
(14) Magnitude of turbulent skin-friction drag: 

a) vonKarman, J.Aeronautical Sciences 1934 p.l. 
b) Schoenherr. Resistance of Plates, Transactions 

Society Naval Architects Marine Eng. 1932. 

c) Hama, Transactions Society NAME 1954 p.333. 
d) Schultz-Grunow, New Skin-Friotion Drag Law, 

Lufo 1940 p.239; Transl. NACA T. Memo 986. 

e) Landweber, Friction Resistance, Trans Society 

NAME 1953; also in Yearb.STG 1952 p.137. 

his function (recently re-examined in reference 

14,e) comes close to Schoenherr’s “line”. 

Tabulation of the Schoenherr Function is as follows: 

V 1/v = I0? 106 107 108 109 io10 
103Cf = 7.18 4.41 2.93 2.07 1.53 1.17 

Practical Equations. Admittedly, all of the known 

solutions for turbulent skin-friction drag are semi- 

empirical. Further changes and improvements are 

therefore possible, as new evidence becomes avail¬ 

able. Figure 5 demonstrates, however, that equa¬ 

tions 25 and 27 agree well with experimental results 

obtained on smooth plates or on other surfaces, 

tested in wind tunnels or towed in water tanks. 

Schoenherr’s function, therefore, seems to be fully 

adequate for engineering purposes. His equations 

(and the subsequent equations too) are somewhat 

inconvenient, however, in their structure. It is use¬ 

ful, therefore, to interpolate certain ranges of the 

Reynolds number by 
*/m 

Cf = K/R^ (28) 

Between Rjj = 106 and 1(/, for example, m = 6 and 

K = 0.44, thus presenting a simple equation which 

essentially covers the Reynolds-number range of 

airplanes. Between R^ = 107and 109, the values 

m = 7 and K = 0.030 may be used, closely express¬ 

ing Schoenherr’s function. Equation 28 may also 

be used for the local skin-friction drag coefficient. 

With m = 6 and K = 0.036, for example, a formula 

is obtained which is adequate between R^= 10** 
and 108. — The exponent in equation 28 is always 

appreciably smaller than that in equation 22 (for 

laminar boundary-layer flow). The turbulent fric¬ 

tion drag (in pounds) is proportional to V or 

to V13/7, thus indicating drag which is “almost” 

proportional to the square of the velocity. How¬ 

ever, because of the wide range of the Reynolds 

Figure 4. Example of the distribution of boundary-layer 

thickness “6” and local drag coefficient “G^” along a plane 
wall having the length “1”. Note: distributions similar to 
the presented one, have been tested on a foil section (18). 
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Figure 5. Average or total skin-friction drag coefficient 
of smooth and plane surfaces (in incompressible flow) in 

air and in water. 

number encountered both in model testing and in 

full-scale operation of airplanes and ships, much 

attention is given to a solution as accurate as pos¬ 

sible. 

The Local Drag Coefficient, denoted in equations 

23 to 27 by Ct, corresponds to the slope of the total 

or average coefficient against R‘number; hence Cr 

= dCf/d (Rjg/Rj), where R^ = V 1 / v = R’number 

on “1” which is then replaced by “x” equal to dis¬ 

tance from the leading edge of the surface to the 

location considered. The transition from laminar 

to turbulent boundary-layer flow takes place within 

a certain interval “Ax” of the surface considered, 

as shown for example in figure 4. Theoretically, a 

sudden transition is assumed, however. As a conse¬ 

quence, at the point of transition or at the critical 

Reynolds number R*, the coefficient CT suddenly 

jumps to a peak that is 10 times the level shortly 

before the transition, as illustrated in figure 6. Even 

considering a certain phase of transition, actually 

measured local coefficients (18) reach values, shortly 

behind the point of transition, which are several or 

many times the minimum ahead of the transition. 

Transitional Coefficient. With regard to total or 

average drag coefficient, the transition from laminar 

to turbulent boundary-layer flow can be approxi¬ 

mated by subtracting from the coefficient corre¬ 

sponding to fully turbulent flow (equations 25 or 

28), the decrement 
AC+ = k/R^ (29) 

Prandtl (13) originally recommended the constant 

k = 1700 on the basis of certain towing tests in 

water (included in figure 5). The corresponding 

critical Reynolds number is Rlc<Sr 5 10^ In various 

more recent tests, much higher critical numbers 

have been reached, as illustrated in figure 9. 

Several transition curves have, therefore, been plot¬ 

ted in figure 5, corresponding to k values up to 4000. 

5. FRICTION OF 3-DIMENSIONAL BODIES 

Pressure Gradient. On the surface of streamline 

shapes, the boundary layer develops in a manner 

that is similar to the way it grows on plane, constant- 

pressure walls. The velocity distributions within the 

layer are of the same general type (laminar or tur¬ 

bulent, respectively) as described for plane walls. 

The pressure distribution along bodies or sections 

has an influence, however, on boundary layer and 
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Figure 7. Total thickness of boundary layer developing 
along body of revolution, as tested in (20,b). 

friction drag (19). The layer thickness decreases, 

and the local drag increases in a negative pressure 

gradient. Vice versa, thickness increases and drag 

decreases in a positive pressure gradient; and the 

local shear force reduces to zero where the flow 

separates (if at all) from the surface of the body. 

(16) Results on total skin-friction drag: 

a) Wieselsberger, Erg. AVA Gottingen I (1921). 

b) Stack, In VDT, NACA T.Note 364 (1931). 
c) ARC, In Compressed-Air Tunnel, RM 1804. 
d) NPL, quoted in J.Aeronautical Sci.1937 p. 504. 

e) Froude's Planks, Trans INA 1937 p.120. 
f) Kempf, Werft-Reederei-Hafen 1925 and 1929. 

g) Gebers, Schiffbau 1919 or in Erg. AVA III. 
h) 0006 Section, NACA T.Note 364. 

i) NACA, Body, T.Note 2854 or T.Rpt 1161 (1954). 

k) Locke, Stevens ETT Planks in Tank. 
l) Thin Foil Sections, AVA Gottingen Erg III. 

m) Kempf Pontoons, Yearb.STG 1951 p.228. 
(17) Experimental results on local skin-friction drag: 

a) Kempf, Werft-Reederei-Hafen 1929 p.234 & 247. 

b) Hydrod. Probleme des Schiffsantriebs 1932. 

c) Dhawan (Caltech), Direct Measurements of Skin 

Friction, NACA T.Note 2567 or T.Rpt 1121 (1953). 
d) Peters (MIT), Proc. 5th Intem.Congr.Appl. 

Mech’s 1938. 

e) Nikuradse, Turbulent B'Layers, Oldenbourg 1942. 

(18) Fage, Airfoil Skin Friction, ARC RM 1852. 
(19) Boundary layer and pressure gradient: 

a) Ludwig 8c Tillmann, Shear Forces in turbulent 

BL’s, Ing.Arch. 1949 p.288; also p.207, and ZAMM 
1949 p.I5. 

b) Sandborn, Experimental, NACA T.Note 3031. 
(20) Friction on three-dimensional bodies: 

a) Amtsberg, Yearbook STG 1937 p.177 and 201. 

b) Simmons, Airship Model, ARC RM 1268 (1929). 
c) See also NACA T.Rpt 430. 

(21) Laminar BL on cylinder in axial flow: 

a) Cooper 8c Tulin (TMB), TMB Rpt 838 (1953) . 

b) Seban and Bond, J’l Aeron’l Sci. 1951 p.671. 
c) Kelly, J.Aeronautical Sciences 1954 p.634. 

d) Glauert, Proc.R.Soc. (London) Ser.A 1955 p.188. 

(22) Turbulent BL on cylinder in axial flow: 

a) Landweber, TMB Rpts 689 (1949) and 761. 

b) Eckert, J.Aeron Sciences 1952 p.23. 
(23) Frictional drag along edges: 

a) Okabe, Res.I.Ap.Mech 1953 No.5, Kyushu Univ. 

b) Hughes, Frictional Resistance in Turbulent Flow, 

Trans, INA 1952 p.287 and 1954 p.314. 
c) Townsend, Boundary Layer on Flat Plate of Finite 

Width, ARC Paper 16,618; FM 2042 (1954). 

Displacement. In three-dimensional streamline bod¬ 

ies, the shape has still another influence by mere 

geometrical reasons. Along the forebody, where 

diameter (or width and height) grow in the direc¬ 

tion of flow, the volume of the boundary layer is 

evidently spread out over the growing circumfer¬ 

ence. Local friction is increased accordingly (20,a) . 

Along the afterbody, the boundary-layer thickness 

increases, on the other hand, because of the shrink¬ 

ing body diameter. As illustrated in figure 7, upon 

reaching the pointed end of the body, the ring- 

shaped cross-sectional area of the boundary layer 

concentrates into a circle with the approximate 

diameter 

d = I (30) 

where 60 = basic b’layer thickness, as indicated for 

instance by equation 9. At the end of an airplane’s 

fuselage, having the usual appendages and surface 

imperfections, the diameter of the boundary-layer 

circle approaches that of the body’s maximum cross 

section (S.). For example the fins at the stern of 

an airship, accordingly operate within a broad field 

of reduced velocity. The details of all these varia¬ 

tions are usually not considered in practical appli¬ 

cations. The average drag of streamline bodies and 

sections is somewhat higher, however, than that of 

an equivalent plate (plane surface of equal wetted 

area and same length and Reynolds number); as 

explained in the “streamline” chapter. 

Axial Cylinder. Upon shrinking the diameter of a 

cylinder in axial flow, having the length 1, the ratio 

of boundary layer thickness to body diameter d 

increases. In the extreme case of a thin “line”, the 

cross-sectional area of the boundary layer is trans¬ 

formed into a circle. The contact of the cylinder’s 

surface with the outer flow and its frictional drag 

are thus increased. For laminar boundary-layer flow 

(21 ,a), the increase of the coefficient over that of 

a two-dimensional flat surface having the same 

length, is approximately 

■AQp = 2/rc = 2(!/d)/R^ (31) 

A drag coefficient including this increment for 1/d 

= 10, is included in figure 1. Another theoretical 

solution (21,c) for the cylinder in axial flow, cover¬ 

ing the range of smaller Reynolds numbers, is also 

shown in the graph (1/d = 10). For example, at 

Rj^ = I, the skin-friction drag coefficient of that cyl¬ 

inder is * 2.5 times the coefficient of the two-dimen¬ 

sional plate (in tangential flow). 

In Turbulent Flow, the described influence of three- 

dimensionality is estimated (22) to yield a 

AC. 

Cfo 

1/d 1/d 

0.0016 (32) 
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where k between 0.022 and 0.025. For example, at 
R| = 10fc, and a length ratio 1/d = 10, the increment 

is in the order of 1.5%. There is some experimental 

confirmation (23,b) of this function up to 1/d ** 

600. For 1/d = 10, the effect is so small, however, 

that it cannot be demonstrated in figure 1. 

Figure 8. Skin-friction drag coefficient of flat piates (with 
2 longitudinal edges) as a function of their length ratio 

(23,b). Note: Results below 1% = 2 10& are debatable 
because of type and compensation of BL stimulation em¬ 

ployed in the tests. 

6. TRANSITION OF B’LAYER FLOW 

Origin of Turbulence. In the vicinity of Rc= 10 , 

the boundary layer originating along an undisturbed, 

smooth, plane, constant-pressure wall — reaches a 

critical condition. The dynamic flow forces become 

predominant over the viscous forces. As a conse¬ 

quence, the layer (still being laminar) exhibits a 

wave motion. Subsequently this motion breaks up 
into turbulent oscillations. The so far molecular 

(viscous) exchange of momentum is largely re¬ 

placed by a macroscopic exchange of mass; the skin- 

friction resistance is correspondingly increased. The 

turbulent transition usually starts at the trailing 

edge, where the Reynolds number R*- is greatest. 

Upon increasing Rj( above Rg*nt, transition point or 

line move steadily forward. The leading edge is only 

reached at R -»«*>; hence a certain, more or less 

small part near that edge always remains laminar. 

Longitudinal Edges. The edges of a plate in longi¬ 

tudinal flow exhibit an effect similar to that in 

slender cylinders. On the basis of theoretical bound¬ 

ary-layer functions in laminar flow (23,a), the drag 

due to a pair of edges in this type of flow is esti¬ 

mated to be 
ACj. = 2.9 (l/b)/Rf (33) 

believed to be valid between R^ = 10 and 10^. This 

drag increment (referred to the wetted area of the 

plate considered) roughly corresponds to the cir¬ 

cumference (2 b) of the “strip” considered as com¬ 

pared to (*d) of the cylinder. — For turbulent flow, 

figure 8 presents results of sheets and pontoons 

(each with two longitudinal edges) towed in a 

water tank. Assuming now that the edge effect fol¬ 

lows the pattern of equation ^32, evaluation of the 

tested slopes (above Rjj = 10 ) yields the drag co¬ 

efficient for a pair of edges 

Ad 0.0045 AC 

Ciz R, 
2 IS 

or- 
1/b 

- = °-03-w 
To 

where A<% is referred to the wetted area (2 b 1). 

This increase of turbulent friction due to lateral 

edges or that due to curvature (equation 32) is 

generally insignificant in full-scale aircraft or ship 

applications. In precise model testing (below R^ = 

10"), the influence may be noticeable, however. — 
A different mechanism, involving a secondary flow 

from the center of the plate toward the edges is 

proposed in (23,c). It is believed, however, that 

equation 34 correctly describes terminal conditions 

at higher 1/b ratios, while the solution in (23,c) 

may apply to ratios below 1/b ^5 — where the 

effect appears to be negligibly small in the first place. 

Stability Limit. If after disturbing somehow the 

boundary-layer flow, a wave motion is produced, 

this motion may either be damped (where upon 

the laminar character continues), or the motion may 

grow in amplitude thus leading to turbulence. The 

stability of the boundary layer in this respect has 

been analyzed (5). In agreement with experiments 

(25,e), the flow is found to be sensitive only to a 

certain range of disturbing frequencies. At highest 

critical Reynolds numbers, these frequencies are 

in the order of 2 (V2/10V) per second. In standard 
sea-level air, the resulting frequency is, for exam¬ 

ple, in the order of 1000/sec for a wind-tunnel 

velocity of 90 ft/sec; or in the order of 10,000/sec 

for an airplane flying at 200 mph. In both examples, 

the frequencies are within the range which can be 

heard by the human ear. Indeed, transition within 

the boundary layer can easily be detected through 

the use of a stethoscope (24). Connected to a small 

Pitot tube (“needle”) placed near the surface to 

be investigated, this medical instrument makes the 

turbulent oscillations audible as a noise which is 

between “hissing” and “thundering”. — Theoretical 

analysis (25,c) also indicates a limit of the Rey¬ 

nolds number below which the b’layer flow is al¬ 

ways stable. For constant-pressure surfaces, this lower 

limit is estimated to be in the order of Rxr= 6 10^ 

Transition. Proper frequencies are a prerequisite 

for transition. The Reynolds number at which 

transition really takes place, is then a function of 

the amplitude of the disturbing influence. Bound¬ 

ary-layer waves can be excited by surface roughness, 

through mechanical vibrations, by sound waves, or 

because of the turbulent oscillations in the artificial 

stream of a wind tunnel. Statistically, to be inde- 
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pendent of body shape and pressure distribution, a 

Reynolds number based upon the thickness of the 

laminar boundary layer (directly ahead of the tran¬ 

sition point) is being used to indicate transition. 

Based upon displacement thickness, = V 

= 2650 has been found in (26,a), for example, in 

a low-turbulence tunnel. Based upon momentum 

thickness "r\K, maximum R^ values have been re¬ 

ported by other researchers up to 1000, before tran¬ 

sition takes place. For constant-pressure surfaces, 

the critical Reynolds number on length x, is 

0.34 RT 2.3 Ro 

Figure 9. Critical Reynolds number (indicating bound- 
ary-layer transition) of plane walls (plates in tangential 

flow), slender airship bodies, and spheres, as a function 

of stream turbulence. To make the results on bodies, com¬ 

patible with those on plane surfaces, the Reynolds num¬ 
bers of the airship bodies have been based upon 0.5 1 and 
those of the sphere upon the radius rather than diameter. 

The values quoted, thus yield critical numbers 

Rattans in the order of 2.4 106. Still higher values, 

up to 3.7 106 have been found under favorable con¬ 

ditions (see in figure 9). 

Stream Turbulence. Figure 9 presents experimental 

material indicating the critical Reynolds number 

on plane walls, plotted against the mean-square 

ratio of the turbulent velocity fluctuations prevail¬ 

ing in the stream of wind tunnels. As a function of 

this amplitude of the generally isotropic (this means 

in all directions) and polytropic (this means with 

various frequencies) oscillations, the critical Rey- 
nols number is seen decreasing at a maximum ratio 

of more than 20 to one. The frequency of the oscil¬ 

lations is not reported in figure 9. Its influence 

should be involved, however, in the results. This 

becomes evident in turbulence tests in the free 

atmosphere, where the amplitudes are expected to 

be comparatively large and the frequencies corre¬ 

spondingly low. Sphere tests (27) seem to indicate 
only very little boundary-layer-afFecting turbulence 

in the atmosphere. — Considerable degrees of tur¬ 

bulence exist behind propellers. Reference (26,d) 

shows, for example, that the transition point on the 

suction side of a conventional wing section is moved 

forward because of the propeller (full-power or 

idling alike) from 27% to 6% of the chord. 

1.0 

o$ 

0.6 

oA 

o 2 

x Brunswick Surface ( ,c) 
+ Increased Turbulence ( ,c) 
• AVA. Flot Plote (28,o) 
O Sphere in Free Air (28,b) 

. A Sphere in W'Tunnel (28,b) 
\ n Circular Cylinder (30) 

' P 
\ iftrans 

\ 106 

0 I-1-,-,-- ,_,_| __H- 

0 2 4 & % 10 15. 14 ifc IS 20 22 

Figure 10. Transition Reynolds number on plane wall 
and of round bodies, as a function of sand roughness. 

(24) Pfenninger, Profile Drag, Mitt. 8 Zurich (1943). 

(25) Stability of laminar boundary layers: 
a) Tollmien, Trans NACA T.Memos 609 and 792. 
b) Schlichting, Nachr.Ges.Wissensch.Gottingen Math. 

Phys.Kl. 1933 and 1935; also ZAMM 1933 p.171 or 

Forschung Ing’wesen 1950 p.65; or (6). 
c) Lin, Qu.Appl.Math. 1945 11,117;III,218;IV,277. 

d) J.Aeronaut.Sciences 1951 p.490 and 1953 p.19. 
e) Schubauer-Skramstad (BOS), B’Layer Oscilla¬ 

tions, NACA T.Rpt 909 and J.Aeron Sci. 1947 p.69. 

(26) Transition as a function of stream turbulence: 

a) Hall-Hislop, Experiments, ARC RM 1843 (1938). 
b) NACA Airship Models, T.Rpt 342 and T.Note 264. 

c) Lyon, Airship Models, Aircraft Eng 1934 p.234. 

d) ARC, Effect of Slip Stream on B’Layer, RM 1957. 

(27) Experiments with spheres in turbulent streams: 

a) NACA Technical Rpts 342 and 581. 

b) Hoerner, Lufo 1935 p.42; Transl. NACA T.Memo. 

Surface Roughness. For roughness, uniformly cov¬ 

ering the whole surface, figure 10 shows how the 

critical Reynolds number steadily decreases as the 

roughness grain size is increased. Turbulence in the 

wind tunnel stream has a superimposed effect, rough¬ 

ly cutting off the function due to roughness at certain 

levels of the critical R’number. It is suggested that 

Rfran grows very high at (k/x) -* 0, provided that 

turbulence is completely eliminated; and there does 

not seem to be any permissible grain size then, with 

respect to transition. However, in turbulent streams, 

there is evidently some permissible sand roughness 

the size of which can be read from figure 10. Results 

on spheres and cylinders, also included in the graph, 

prove that in such bodies pressure distribution, 

more than roughness, dictates b’layer transition. 
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Protuberances. As shown in (29), single but two- 

dimensional protuberances (for instance a wire with 

diameter d, placed across the direction of flow at 

some station x of the length or chord), evidently 

exhibit a critical size. The Reynolds number R<-tr. 

at which the transition point begins to move for¬ 

ward from the original station x (located aft of xj) 

is a function of the height ratio d/6^, where 6^ = 

displacement thickness of the laminar boundary 

layer. On the basis of the experimental results in 

figure 11, the permissible size is estimated to be in 

the order of 

kcrft = (°-2 to °-3) ^ W 

V 

__ — -bl 

' X 

\\ r~ hr. 

Y'5 

\A 
10* 

X Toni-Ho-Ya (31,b) 
Bur of Stands (32,b) 
Tani-Hama (31,a) 
Stuper, Glas (32,c) 
Brunswick (28,c) 

• 
+ 
o 

° oo--0 

..... d4 
1 

0 0.2. o,4 0.6 OS 1.0 1.2 1.4 

Figure 11. Non-dimensional representation of transition 

number of plane surfaces for single protuberances (wires 

across span) placed in the forward part of the surface 
(with <5^ taken at the place of the protuberance) . 

Single Elements of Roughness (spaced in lateral 

direction on a plane wall) essentially show a unique 

Reynolds number = w d / V at which transi¬ 
tion “suddenly” takes place. For spherical elements 

(with diameter “d”), experiments (32,b) indicate 

a critical number in the order of R^U* = 600 de¬ 

fined for “w” = speed within the boundary layer at 

a distance from the surface equal to the diameter 

of the spheres tested. 

-0.2. 0 '-2 o.4 o.6 

Figure 12. Influence of the leading-edge shape upon 
boundary layer and profife-drag coefficient of 

a foil section, as tested in (34). 

Forced Transition. Upon increasing the size of a 

protuberance, transition of the boundary layer flow 

can be produced directly behind the obstacle. Be¬ 

hind isolated bodies (such as rivet heads, for exam¬ 

ple) turbulence then spreads out over a wedge- 

shaped area having a vertex angle (32,a) in the 

order of 2 times 10°. Turbulent areas with angles 

of similar magnitude also originate on the surface 

of wings along the adjoining walls of the fuselage 

(37,e) or the engine nacelles, and along lateral 

edges (24). — As found in experimental investiga¬ 

tions of two-dimensional protuberances (33), the 

laminar boundary layer may separate from them. 

At a short distance behind the obstacle, the flow 

then turns turbulent; and it reattaches itself in this 

condition to the surface. — Figure 12 presents the 

influence of three different leading-edge shapes upon 

boundary-layer flow and profile drag. A sharp edge 

forces transition on the suction side immediately 

upon leaving the symmetrical (zero-lift) angle of 

attack. The section with a rounding radius at the 

leading edge exhibits transition on both sides be¬ 

cause of a pressure minimum (on each side) in the 

pressure distribution of this shape. A parabolic 

shape avoids such distribution; both sides evidently 

have laminar flow and the profile-drag coefficient 

shows the “bucket” that is typical of laminar-flow 

sections. 

7. LAMINAR-FLOW FOIL SECTIONS 

Theoretical Possibilities. Within the range of small 

lift coefficients (that is, in case of an airplane at 

higher flying speeds), the resistance of thin wings 

consists almost entirely of skin-friction drag. Upon 
increasing the Reynolds number, the transition 

point of the boundary layer tends to move forward; 

the skin-friction drag coefficient increases accord¬ 

ingly, along a transition curve similar to those shown 

in Figure 5. Postponing, however, the transition to 

higher Reynolds numbers, by some suitable means; 

that is, by keeping the boundary layer “artificially” 

laminar — it is theoretically possible to obtain sub¬ 

stantial savings in drag. As shown in figure 13, the 

skin-friction drag coefficient of plane plates decreases, 

roughly along straight lines, upon moving the tran¬ 

sition point from the trailing to the leading edge. 

At Rji = 107, for example, the fully laminar resist¬ 

ance is only in the order of 1 /7 of the fully turbu¬ 

lent value. Hence, laminarization of wing- and fuse¬ 

lage surfaces of modern high-speed aircraft appears 

to be an attractive possibility for the aerodynamicist. 

The graph also shows some experimental results. 

Beyond x/c 70% (corresponding to maximum 

thickness location at between 55 and 60% of the 

chord), pressure losses along the tail increase to 
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Figure 13. Theoretical (35) and experimental variation 
of skin-friction drag as a function of transition-point loca¬ 
tion along the chord of foil sections. 

Figure 14. Theoretical prediction of the Reynolds num 
her indicating instability (not yet transition) of the bound 
ary-layer flow, evaluated from (36,a). 

such an extent that the beneficial effect of laminari- 

zation is reduced and terminated with respect to 
total drag. 

(28) Influence of sand roughness: 

a) Holstein, Friction Plate, ZWB Rpt UM 3110. 

b) Hoerner, On Spheres, Lufo 1935 p.42. 

c) Feindt, On Plate, DFL Brunswick Rpt 1956/10. 
(29) Dryden, Review, Journal Aeron Sci. 1953 p.477. 

(30) Fage and Warsap, Effects of Turbulence and Surface 

Roughness on Drag of Circular Cylinders, ARC RM 

1283 (1929). The grain sizes have been determined 

by author from samples made available by NPL. 
(31) Japanese investigations: 

a) Ta-Ha-Mit, Aero Res.Inst.Tokyo Univ.Rpt 199. 
b) Tani and Hama, J. Aeron Sci. 1953 p.289. 

c) Ta-Ha-Ya, Inst.Sci.Tech.Tokyo Univ. 8 (1954). 
(32) Influence of single roughness elements: 

a) Scherbarth, Yearbook D.Lufo 1942 p.I,51. 

b) Schubauer (BOS), BL Transition, J.Aeron.Sci. 
1955p.803; also NACA T.Note 3489. 

c) Stuper, Transition Wire, ZFW 1956 p.30. 

(33) Laminar separation and reattachment investigated: 
a) ARC RM 1873. 

b) NACA T.Note 1196 (1947) and 2338 (1951). 
c) NACA T.Memo 1352. 

(34) Doetsch, Foil Sections in DVL Wind Tunnel, Year¬ 

book D.Luftfahrtforschung 1940 p.I,54. 

(35) Skin-friction as a function of transition: 

a) Fedjajewsky and Goroschtenko, Techn.Wosd.Flota 
1940 No.7; TransI NACA T.Memo 822. 

b) Squire and Young, ARC RM 1838 (1938). 
(36) Influence of pressure distribution: 

a) Schlichting, Critical R’Number — Pressure Gra¬ 
dient, Yearb.D.Lufo 1940 p.I,97; NACA T.M. 1185. 

b) Goertler, Influence of Camber on BL Stability, 

ZAMM 1940 p.138, 1941 p.250; TransI 1588 BMAP. 

c) Liepmann, Experimental BL Transition on Curved 
Walls, NACA ACR Rpts, 1943 and 1945. 

d) Granville, Viscous Drag, TMB Rpt 849 (1953). 
(37) Location of Transition point of sections: 

a) Calculation, Tech.Wosd.Flota 1940 p.55. 

b) NACA T.Rpts 636, 637 (1938) and 667 (1939) . 
c) Pfenninger, TH Zurich Heft 13; NACA TM 1181. 

d) Jones, Flight Experiments, J.Aer. Sci. 1938 p.81. 

e) Wijker, Netherland NLL Rpt A.1269 (1951). 

f) Preston and Gregory, Transition and Drag of 
Laminar-Flow Wing, ARC RM 2499 (1952). 
g) Lyon, Streamline Bodies, ARC RM 1622. 

h) NACA, Thin Section, Technical Note 3505. 

Pressure Gradient. The stability limit of the bound¬ 

ary layer is very much a function of the static pres¬ 

sure gradient in which the layer develops. As shown 

in figure 14, the stability number R^y, maY 

change in this respect between such limits as less 

than 10 and higher than 107. The analysis indi¬ 

cates that the essential condition for termination of 

boundary-layer stability, is an inflexion in its veloc¬ 

ity distribution. Such an inflexion in the straight 

part of the laminar function in figure 2, can “easily” 

be produced by a positive pressure gradient. A nega¬ 

tive gradient, on the other hand, tends to acceler¬ 

ate the part of the boundary layer adjacent to the 

surface, thus preventing or postponing the forma¬ 

tion of inflexion and turbulence. 

Transition Point. Reaching the point of instability 

does not yet mean transition from laminar to turbu¬ 

lent flow pattern. An additional distance Ax is re¬ 

quired within which turbulence develops. No 

simple function is available to date for predicting 

the magnitude of this distance. The point of lami¬ 

nar separation — which is only a function of shape 

and attitude of the body involved — is accepted as 

the ultimate location of transition. Another piece 

of information comes from the investigation of the 

influence of longitudinal camber or curvature on 

boundary-layer stability (36,b and c). On convex 

surfaces, such as at the upper side of foil sections, 

the stability limit (in terms of local velocity and 

boundary-layer thickness) is approximately the 

same as on a plane wall (figure 14). However, on 

concave surfaces, the stability limit reduces rapidly 

as the radius of curvature is decreased. For example, 

for a radius r equal to loirs' (where nt = momen¬ 

tum thickness of the b’layer), roughlv representing 

the cusped tail shape in certain laminar-flow foil 

sections developed by the NACA (38) — the sta¬ 

bility Reynolds number is reduced to the order of 

1/2 of the plane-surface value. Concave shape and 

positive pressure gradient, therefore, combine in 

these sections to produce transition, shortly aft of 

the minimum-pressure point. Considering now this 
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Figure 15. Statistical evaluation of (37) indicating the 
location of the transition point behind the 
point of minimum pressure. 

point to be a lower limit with respect to transition, 

figure 15 presents a statistical evaluation of avail¬ 

able material. The distance Ax, behind the point 

of minimum pressure (indicated by “min”) de¬ 

creases steadily as the Reynolds number (on 

is increased. Results in (37,h) show, however, that 

the function suggested in the graph, does not very 

well apply in peaked pressure distributions, such 

as found near the LE of thin and/or symmetrical 

sections at higher lift coefficients. Reference (36,d) 

shows in this respect, that transition occurs the 

sooner, the higher the average pressure gradient is, 

between the point of neutral stability and the tran¬ 

sition point. 

Location of Maximum Thickness. A way of provid¬ 

ing a negative pressure gradient, and to move the 

minimum-pressure point downstream, is to place 

the maximum thickness of a body or that of a foil 

section as far back as practicable. Laminar profiles 

of this type have been developed in various coun¬ 

tries. The NACA (38) has investigated several se¬ 

ries of foil sections (for example those beginning 

with the numbers 64 and 65). One of these sections 

was employed in the North American “Mustang”, 

a fighter plane which was in active service around 

1942. Reference 39 and some experimental points 
in figure 18 are evidence for the attention which 

this section has found at that time. — Laminar pro¬ 

files have a thickness location between 40 and 65% 
of the chord, in combination with a comparatively 

pointed nose and possibly with a cusped afterbody. 

All these characteristics help to produce the desired 

negative pressure gradient. Since this gradient is 

also proportional to the thickness ratio t/c, a rea¬ 

sonable minimum value of this ratio is required to 

make a laminar profile. Figure 16 shows as an ex¬ 

ample a section with the thickness located at 50% 

of the chord and the pressure minimum approxi¬ 

mately at x/c = 55%. 

Figure 16. Shape and pressure distribution of two sym¬ 
metrical foil sections, differing in the location 
of maximum thickness. 

Influence of Lift Coefficient. Figure 17 presents ex¬ 

perimental results on a similar section; the mini¬ 

mum drag coefficient is appreciably reduced below 

that of an “ordinary” section having the same thick¬ 

ness ratio but with the maximum thickness located 

at 30% of the chord. The reduced coefficient is re¬ 

stricted, however, to a comparatively narrow range 

around the “optimum” lift coefficient (which hap¬ 

pens to be zero in the example). The bucket-shaped 

part of the CD(CL) function usually comprises a 

ACU = + and - (0.1 to 0.2). Outside the “bucket”, 

the flow around the foil’s leading edge disturbs the 

boundary layer (on one side) so that it turns tur¬ 

bulent very shortly aft of the edge. Employing a 

suitable value of section camber, the “bucket” can 

be placed around the lift coefficient which prevails 

in the high-speed or cruising condition of the re¬ 

spective airplane, without losing any or much of 

the laminar effect (38). 

-.6 -A -.2 o o.Z ok 0.6 o,8 !■» 1.2 

Figure 17. Profile-drag coefficient of various foil sections 

as reported in (38). Two of the sections show the “bucket”- 

shaped drag minimum which is typical of laminar-type 
airfoil sections. 
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TOKYO, PROFILE-(41,a) 
RIEGELS, RUSSIAN-(40) 
DITTO, GERMAN-(40) 
NACA W.RPT L-48 -(42,a) 
NAT. PHYS. LAB.-(41,c) 
MUSTANG, GERMAN-(39,a) 
NACA 66-116; CL= .1-(41,b) 
NACA T.RPT 964 -(41,d) 

Figure 18. Minimum drag 
coefficients of various lami¬ 

nar profiles, tested by wake 
survey technique. 

Experimental Results. Figure 18 presents the ex¬ 

perimental results of several laminar-type foil sec¬ 

tions, as a function of Reynolds number. To show 

the correlation of these results with the theoretical 

skin-friction functions, a set of lines has been in¬ 

cluded representing (2 1.25 Cp) = 2.5 C^. Doing 

this, the “2” indicates the two sides of the investi¬ 

gated foils; the “1.25” approximately takes into 

account the average increased dynamic pressure 

along the section sides due to their finite thickness. 

— The graph shows that the drag coefficients of 

sections with the maximum thickness in the vicinity 

of 30% of the chord, as they have been common in 

airplane design for at least 2 decades — approach 

the fully turbulent skin friction curve above Rc ~ 

10 . The coefficients of the laminar type sections, 

on the other hand, are seen steadily decreasing to 

and beyond Rt = 107. Their profile drag is, on the 

average, only about half as high as that of the “older” 

sections. Roughly half of the differential between 

fully turbulent and fully laminar skin-friction drag 

is saved in this manner. Theoretical lines are also 

included in figure 18 for transition locations at x/c = 

0.4 and = 0.8. 

(38) Abbott-Doenhof-Stivers, Airfoils, NACA T.Rpt 824. 

(39) Wind-tunnel experiments on “Mustang’’ section: 
a) German ZWB Rpts UM 1190 and 1724 (1943). 

b) British ARC RM 2359 (1946). 

(40) Riegels, Russian Laminar Profiles, ZWB Rpts UM 

3040, 3056, 3067 and 3159 (Gottingen 1943, 1944). 
(41) Minimum profile-drag of laminar-flow airfoils: 

a) "Tokyo LB 24” Airfoil, ZWB Rpt UM 2100. 

b) Practical-Construction Wings, NACA T.Rpt 910. 

c) Fage-Walker, NPL Tunnel, ARC RM 2165. 

d) Several Airfoil Sections, NACA T.Rpt 964. 
e) NACA W.Rpt L-138 (1944) shows that the 65-418 
section, with a minimum coefficient CCs = 0.004 be¬ 

tween Re = (2 and 5) 10s, has values to 0.01 and 
0.02 below Re = 10s — evidently because of laminar 
separation from the rear. 

(42) Effect of roughness upon transition: 

a) Loftin, NACA Wartime Rpt L-48 (1946). 

b) Fage, EQH 1260 Foil Section, ARC RM 2120. 

(43) Smith and Hilton, Flight Tests on “King Cobra” 
Having Low-Drag Aerofoil, ARC RM 2375 (1950). 

See also RM 2485 on maintenance of Laminar-Flow. 

Stream Turbulence. Upon increasing the Reynolds 

number above Rt 5 106, several of the investi¬ 

gated sections show a steady forward movement of 

the transition point. It is suspected that the turbu¬ 

lence of the wind tunnels used in those tests, is at 

least partly responsible for the movement. It has 

only been after the development of their Low-Tur¬ 

bulence Tunnel that the NACA obtained the low 

drag coefficients as shown in the graph. Figure 9 

serves as illustration for the influence of stream tur¬ 

bulence on boundary-layer flow. The turbulence in 

the atmosphere, which might be expected to affect 

the boundary layer of airplanes, appears to be quite 

low. It seems to be correct, however, that sound and 

vibrations produced by aircraft engines, have a no¬ 

ticeable effect on the transition point in the bound¬ 

ary layer. A strong source of turbulence is finally 

the propeller slip stream, as mentioned in connec¬ 

tion with (26,d). 

Surface Roughness. As “permissible”, we will define 

such surface imperfections and protuberances that 

do not show an effect upon the magnitude of drag. 

Permissible sizes evidently exist in the range of 

smaller Reynolds numbers, where the transition 

point of the boundary layer is either to be expected 

beyond the trailing edge, or where transition is 

forced by the shape of the foil section (by a cusped 

tail, for example, or by the laminar separation 

point). Small Reynolds numbers are not of much 

concern, however, in aircraft applications. Condi¬ 

tions in the range of higher R’numbers (in the 

order of 107) can be appraised on the basis of gen¬ 

eralized functions such as shown in figure 10. For 

“sand” type roughness (uniformly covering all of 

the surface) that illustration indicates some per¬ 

missible lower limit for the size of roughness ele¬ 

ments. Reference (38) disagrees with this conclu¬ 

sion in saying that “no roughness detectable to the 

finger tips should be allowed” on laminar-type air¬ 

foils. The imperfections (rivet heads and sheet- 

metal joints) and possibly paint roughness encoun¬ 

tered in practical-construction wings, may have an 

effect similar to that of distributed sand roughness. 

It is shown in figure 18 (among others) how the 
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Figure 19. Permissible size of single protuberances on the 

surface of laminar-type profiles, near zero lift (42) . 

drag coefficient of such a wing (39,a) starts increas¬ 

ing at a Reynolds number (3 106) which is con¬ 

siderably lower than that of the perfectly smooth 

model (starting at 7 106). Other tests (41,b) con¬ 

firm the deterioration of laminar characteristics on 

account of surface imperfections. Figure 17 also 

demonstrates how laminar flow and low drag are 

wholly eliminated by placing a narrow sand strip 

near the leading edge of the foil section. Reference 

43 reports on the operational aspects of laminar- 

type wing sections; and figure 20 shows results of 

flight tests with a high-speed airplane. After clean¬ 

ing up the various constructional imperfections of 

the wing’s surface, the drag coefficient is reduced 

roughly to one third. However, dust (accumulated 

on the wings at the ground) and insects (picked up 

during the flight) provide a degree of roughness 

sufficient to increase the minimum section-drag co¬ 

efficient from 0.003 to 0.004 and even 0.006 in this 

example. Nevertheless, there can be a permissible 

size in single roughness elements explained as fol¬ 

lows. 

Permissible Roughness. It has been concluded from 

figure 11, and it is stated in the text, that a certain 

minimum size (height) of single roughness ele¬ 

ments is permissible without producing turbulence 

in the boundary layer. The size indicated by equa¬ 

tion 36, is in the order of k/c = 4 10 5, at Rt = 107 

for example. For an assumed length of c = 10 ft, 

the resulting size is k = 5 mils, a value which (al¬ 

though small enough) is nevertheless high in com¬ 

parison to the “sand” sizes considered permissible 

in turbulent boundary layer (Chapter V). Figure 

19 shows the critical size (defined by a divergence 

of the drag coefficient against that of the smooth 

foil model) of single protuberances placed at certain 

stations of the chord of a foil section. The permis¬ 

sible size decreases considerably as the Reynolds 

number (speed) is increased, roughly in the pro¬ 

portion of k ~ 1/Rt. The ARC results on two- 

dimensional disturbances (across the foil span) 

Figure 20. Results of flight tests on the wing of “King 

Cobra” (43) showing (a) the profile drag "as received” 

and (b) after reducing the skin imperfections. 

roughly agree with those found for plane walls 

(equation 36). The NACA results on the influence 

of spanwise rows of “pins” (spaced in lateral direc¬ 

tion at 0.033 c) suggest a permissible k w c/104 at 

Rc= 107 a value which is about twice as high as 

that for the two-dimensional protuberances. Some 

explanation on this type of roughness is given un¬ 

der “single elements”. 

Boundary-Layer Suction. Another method of keep¬ 

ing the boundary-layer flow laminar, is suction. 

Through small slots in the surface or through a 

porous surface material, a suitable part of the lami¬ 

nar boundary layer is sucked into the hollow wing 

(and ejected downstream somewhere else). For an 

understanding of the efficiency of this procedure, 

definition of the resultant drag is necessary. Upon 

eliminating all of the boundary layer by suction, 

the momentum loss left behind in the wake would 

be zero. Reducing, however, the velocity of a stream 

tube to zero, as is done in suction, means a transfer 

of the corresponding momentum onto the wing in 

the form of drag. The power necessary to remove 

the boundary layer, or “to pump it back to full 

total pressure”, can be expressed in the form of an 

effective increment of the drag coefficient: 

^ = CpCQ (36) 

where CQ = Q/VS = w/V; and Q = volume of air 

sucked in the unit of time (ft3/sec). In the arrange¬ 

ments which are here considered, the volume Q is 

meant to be that of the two sides of the considered 

foil sections, referred to the wing area S. “Cp” is a 

pressure coefficient. In test conditions where the 

drag is measured by a wind-tunnel balance, 

CP = (Pamb - PLmJAl (37) 

is to be used in computing ACQ. In a test setup 

where the profile drag is determined by wake sur¬ 

vey (as considered above), rather the total-pressure 
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Figure 21. Example for laminarization and drag reduc¬ 

tion by means of boundary-layer control. The presented 

results apply to a 10% thick section (44,a) whose boundary 

layer is mostly sucked into the hollow wing through the 
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Figure 22. Total profile-drag coefficients of some airfoil 
sections successfully using boundary-layer control through 
suction (reference 44). 

difference between outside and inside 

Cpidt = (q + Pamb - Pins.)/q = 1 + Cp 

must be applied in determining the additional com¬ 

ponent of drag. Besides some pressure drop across 

the slotted or porous skin of the wing, the coeffi¬ 

cient Cp includes the differential due to section 

thickness and possibly another differential due to 

lift. Values for the coefficient are in the order of 

Cp = 0.3 to 0.6, for slender sections near zero lift. 

Reduction of Drag. Figure 21 demonstrates how 

the profile drag of a section decreases (rather sud¬ 

denly in the example presented), upon reaching a 

certain critical volume coefficient of suction. Only 

very little momentum deficiency is remaining in 

the wake behind the foil. After adding the drag 

coefficient equivalent to the energy spent in sucking 

(equations 36 and 38), the effective or “total” co¬ 

efficient is obtained. This coefficient shows a mini¬ 

mum value at an optimum suction coefficient. Upon 

further increasing the volume, the total coefficient 

increases again. Figure 22 presents optimum total 

coefficients as a function of the Reynolds number. 

It is seen that for favorably designed suction foils, 

drag coefficients can be obtained which are com¬ 
paratively close to the laminar level. 

(44) Boundary-layer control through suction: 

a) Braslow and Others, Suction on 64-010 Airfoil, 

NACA T.Rpt 1025 (1951); or T.Notes 1905 and 2112. 
b) Pfenninger, 17% Airfoil, J.A. Sci. 1949 p.227. 

c) Raspet, Sailplane, Aeron Engg Review June 1952. 
(45) Lachmann, Laminarization Through Suction: Aer. 

Engg Review 1954 p.37, or AGARD Rpt AG 14/P5. 

(48) DVL, Airfoils in High-Speed Tunnel, unpublished 
Rpt Jf-727 (1944). 

Required Suction Volume. The quantity of CQ is 

important for the size of the suction machinery re¬ 

quired. Figure 23 presents optimum experimental 

values for several sections (at C L »= zero). The 

required volume coefficient is essentially propor¬ 

tional to the laminar skin-friction drag coefficient, 

which is proportional to 1 /y/R^. There is also a 

theoretical estimate available (6) predicting for a 

flat surface a coefficient of Cq,^ 0.00012 and a cor¬ 

responding drag coefficient = 0.00024. It is sug¬ 

gested that these two values (each doubled to 

account for the two sides of a foil section) are the 

ultimate levels to which Ca and CDtoy may pos¬ 

sibly reduce at Reynolds numbers between 108 and 

10? Experiments prove that drag reductions similar 

to those in figure 22 can also be obtained at higher 

lift coefficients. For the suction side of the foil, the 

pressure coefficient roughly increases as tested in 

(44,c) by ACp= CL. 

Figure 23. Minimum suction volume required to produce 
laminar boundary-layer flow in airfoil sections. 

Surface Roughness in the spaces between openings, 

holes or slots permitting suction, can have a very 

detrimental effect upon the drag of these sections. 

Laminarization through slots is treated in (45); and 

the influence of surface roughness is explained there 
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at length. Suction reduces the boundary layer thick¬ 

ness; and the layer grows again between slots. This 

up and down of thickness has critical limits, an 

upper one with regard to laminar stability, and a 

lower one on account of roughness. Turbulent flow 

is obtained beyond either limit; by under-sucking, 

respectively, or over-sucking (44,c). Since permis¬ 

sible roughness reduces with speed, maintenance of 

laminar flow grows more and more difficult, as speed 

(not Reynolds number), or more precisely (V/v ) 

is increased. Laminarization through suction is, 

therefore, a rather sensitive operation. Since the re¬ 

quired mechanical equipment (blower and ducts) 

also adds to the complexity of aircraft, boundary- 

layer control has so far primarily been considered 

and tried in airplanes to increase the maximum lift 

(at low flying speeds, by preventing separation) 

rather than with a view toward reducing drag at 

high speeds. 

Turbulence Stimulation. Figure 24 shows once more 

the correlation between transition point and profile 

drag, in a laminar-type foil section (without suc¬ 

tion) . As the lift coefficient of the symmetrical shape 

is changed to positive or negative values, the suction 

side turns turbulent from 20% and even 10% of 

the chord. The drag coefficient roughly doubles at 

the same time, although the pressure side stays lami¬ 

nar to some 80% (essentially, without being affected 

by lift). Such laminarization (on the pressure side) 

evidently takes place in many common foil sections, 

caused by the natural pressure gradient (at positive 

angles of attack) between stagnation point and trail¬ 

ing edge. Figure 24 also shows the influence of uni¬ 

form “sand” type roughness on the characteristics 

of that foil. Although at of and CL = 0, transition is 

essentially unchanged by the modest degree of rough¬ 

ness applied, transition at the suction side progresses 

rapidly upon exceeding an interval of CL~ ± 0.05. 

Note in figure 25 that distributed “sand” type 

Figure 24. Correlation between minimum section drag 
coefficient (at bottom of bucket) and location of transition 

point in the laminar-type airfoil section shown, tested (48) 
at 1% = 3 10 ; (a) in smooth condition, (b) with uniform 

sand type roughness (k = 6 c 10 ). 

roughness reaches higher drag values corresponding 

to fully rough condition where the drag coefficient 

becomes a function of grain size “k” and velocity, 

rather than of Reynolds number. A corresponding 

line calculated on the basis of figure 4- in Chapter 

V, with a factor of 1.3 to account for section thick¬ 

ness, is included in the graph. On the other hand, 

a roughness strip placed at the airfoil’s nose, has 

primarily a turbulence-stimulating effect, thus in¬ 

creasing the level of the drag coefficient from mostly 

laminar, to mostly smooth-turbulent condition 

(without presenting much drag of its own). For both 

the uniformly distributed sand, and for the turbu¬ 

lence strip, some “permissible” size is evident in 

figures 24 and 25. Favorable pressure gradients evi¬ 

dently stabilize the boundary layer. The fact that 

the strip shows a permissible value, appreciably 

smaller than that of the sand type roughness, must 

be laid to the considerably higher Reynolds number 

in testing that foil. 

Figure 25. Drag coefficient of two laminar-type airfoils 
as a function of roughness grain size; (a) DVL (48) with 

uniform sand-type roughness at Rc =310, (b) NACA 
(38) with sand strip at nose, at R^ = 3 107. 
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CHAPTER III-PRESSURE DRAG 

In contradistinction to the skin-friction drag (which 

is a tangential force), pressure drag results from the 

distribution of forces normal to the body surface, 

This is also true for the induced drag; and every 

type of wave resistance (in supersonic flow as well 

as at the free surface of water) also acts upon the 

obstacle by way of pressure differentials. Only the 

viscous pressure drag — that is, pressure drag 

caused by boundary-layer separation — is treated, 

however, in this chapter. 

1. AT VERY SMALL REYNOLDS NUMBERS 

This region of the Reynolds number has been called 

that of “creeping motion”. Certainly, however, low 

R’numbers can also be produced by very small 

dimensions or in a very thin and/or highly viscous 

fluid. Theoretical functions and experimental re¬ 

sults on bodies at small Reynolds numbers are plot¬ 

ted in illustrations later on, together with results 

at higher R’numbers. 

Sphere and Disk. In the same manner as the skin- 

friction drag (Chapter II), the viscous pressure 

drag is proportional to the velocity, and not to the 

dynamic pressure — within the range of smallest 

Reynolds numbers. Entirely neglecting dynamic 

components, Stokes (1) has derived the resistance 

of the sphere from the viscous characteristics of the 

surrounding fluid; thus in non-dimensional form: 

D/(jidV) = 3lt; or CD#=24/Rd (1) 

as plotted in figure 10. The drag of a disk (in a 

flow normal to its surface, reference 6), is somewhat 

smaller, because the wetted area is smaller than that 

of the sphere (considering equal diameter); thus 
for the disk: 

D/(p d V) — 8; or CD#=20.37/Rd (2) 

as plotted in figure 26. The term D/fi dV) is non- 

dimensional; the coefficient CD# is based on frontal 

area S. = (d2tr/4). It can generally be said that 

these simple functions apply only at Rj below *• 1. 

Pressure Drag Caused by Friction. Within the con¬ 

sidered range of extremely low Reynolds numbers, 

the flow pattern (3) around sphere or disk does 

not show any separation. To understand the very 

high drag coefficients, it is helpful to think of 

heavy oil as flowing medium. The particles closest 

to the body cling to its surface. Because of the vis¬ 

cous friction within the oil, the outer sheets are 

dragged by the inner ones, in the direction of the 

moving body. To maintain this movement of the 

particles against the body and in relation to each 

other, a positive pressure originates ahead of, and 

a negative one behind the body. The corresponding 

pressure drag is very much different from that due 

to flow separation as described later. Pressure dif¬ 

ferentials in viscous flow are the equivalent of skin 

friction; they are a resultant of the tangential shear 

forces along the forward and rear surfaces of the 

body. In the example of the disk (normal to the 

direction of flow), all of the resistance is necessarily 

due to pressure. In the case of the sphere, reference 

6 indicates that at the very low Reynolds numbers 

considered, 1/3 of the drag is due to pressure dif¬ 

ferentials, while 2/3 directly correspond to tangen¬ 

tial friction. Comparing the disk in normal flow to 

that in tangential flow (equation 2 in Chapter II), 

it is found that the “normal” drag is only one 

and a half times that of the “tangential” value. 

Stagnation Pressure. Corresponding to the de¬ 

scribed flow mechanism, the pressure at the stag¬ 

nation point is much higher, in the range of low 

Reynolds numbers, than the dynamic pressure 

q = 0.5 q V2. For blunt-nosed bodies, this so-called 

Barker effect (4) gives approximately the pressure 

ratio 

cp*„,= AP^/(°-5 9V" =' + <W (3) 

where is based on diameter or thickness of the 

respective body. At Rj = 0.1, for instance, Aps^ac) 

is in the order of 60 times the dynamic pressure. * 

Floating Dust. Figure 10 also contains some drag 
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coefficients determined on tiny air bubbles rising 

through some sort of oil. It is surprising that (at 

very low Reynolds numbers) such bubbles have 

almost the same hydrodynamic properties as solid 

bodies. Fog droplets floating in air, may also be ex¬ 
pected to have similar drag coefficients. Average 

representative sizes of airborne solids, quoted from 

(5), are tabulated on this page. Considering as an 

example, a fog droplet with a diameter of 1 mil, at 

a sinking speed of 4 ft/min, its Reynolds number 

is found to be smaller than 0.1; its drag coefficient 

is higher than 100, as seen in figure 10. Employing 

Stoke’s function (equation 1), the sinking jpeed of 

the listed particles is found to be 

v * <4) 

with £part- = weight density of the particle. Neg¬ 

lecting the small quantity , and assuming 

Ifpot-t to be equal to that of water (*" 62 lb/ft3), 
the sinking speed in standard sea-level atmosphere 

is approximately given by 

V«4(dmllf (ft/min) (5) 

This speed is also the minimum velocity of the air 

required in upward direction, to keep the fog drop¬ 

lets “permanently” suspended. 

TYPE PARTICLES DIAMETER SINKING SPEED 

SMOKE PARTICLES 0.1 0.1 inch/hour 

atmospheric DUST 0.1 0.1 inch/hour 

INDUSTRIAL DUST 5 2 inch/ min 

FOG DROPLETS 20 2 feet/ min 

PLANT POLLEN 30 5 feet/ min 

AV. RAIN DROPS 1000 6 feet/ sec 

DIAMETER IN MICRONS; l MICRON — 1/1000 mm — 1/25,000 INCH 

(A) PLOW PATTERS OP CIRCULAR CYLINDER IN NON'VISCOUS PLOW; NO DRAG. 

(B) CYLINDER AT REYNOLDS NUMBERS IN THE ORDER OP ^O; 1.2. 

(D) PLATE WITH "SPLITTER" DEVICE IN WAKE; CD. = 1.6. 

(P) STREAMLINE SECTION WITH CD# IN THE ORDER OP 0.06. 

TABLE, listing average sizes and sinking speeds (roughly 

picked irom reference 5) of smoke-, fog- and other 

particles floating in air. 

Figure I. Theoretical and actual flow pattern of 
two-dimensional bodies. 

In Two-Dimensional Flow. As pointed out by 

Stokes and Lamb (6), analysis of resistance in 

two-dimensional viscous flow is possible only if cer¬ 

tain dynamic terms are taken into account. For 

symmmetrical elliptical cylinders in such flow, the 

drag cofficient on frontal area is 

8 tr/Rh 

Cd* _ [c/ (c+h)] + 1.5 - 2.3 logR* 

where h = height, c = length of cylinder axis in 

direction of flow and R^ = V o.5 (h + c) /v" • For 

the circular cylinder, c = h and 0.5 (h + c) = d, 

therefore: 10.9/R, 

(7) 
CD. = 

0.87 - logRj 

A corresponding curve is plotted in figure 12 to¬ 

gether with experimental results. — For a plate (in 

normal flow) the “chord” c is zero. Referring the 

Reynolds number to the height h and with log 

(0.5 Rh) = logRj — 0.7; the coefficient of the plate 

in two-dimensional flow is 

10.9/Rh 

0.96 — logR^ 
(8) 

At extremely small Reynolds numbers, the term 

(CD* Rh) tends to be proportional to (l/logRh). 

As can be seen in figures 10, 12, 26, these drag co¬ 

efficients are smaller than those of the correspond¬ 

ing three-dimensional bodies. In three dimensions, 

a volume of fluid is evidently affected by the viscous 

forces which, in relation to the frontal area of the 

body, is larger than in two dimensions. 



Ill —PRESSURE DRAG 3-3 

U'*x 

\ 
\ 6 o' 9 o° a 

/■' 
/ 

/ 

/ f/« lo° 

i\ 
l^+ -+ ->4 
iV*-* v4 
• / 

1 / 

i ! 

r« 4-*-4-2-1 

ft... \j\ 

/ 

/ 

\ 
\ 
V 

r / 
/ 

/ 

1 

^Cp« 1 I — hr-sin2' f 

Intermediate Reynolds Numbers. Above R ~ 1, 

the dynamic forces of the fluid can no longer be 

neglected. Already below R = 10, the flow pat¬ 

tern is, therefore, unsymmetrical in fore- and 

aft direction; a stationary separation prevails be¬ 

hind the body (3), similar to that as shown in 

figure l.b for Rj = 50. Above R = 50 or = 100, 

the dynamic forces are predominant over the vis¬ 

cous forces to such an extent as to cause and to 

maintain the periodic shedding of vortices behind 

blunt bodies (as in figure l,c) at a non-dimensional 

frequency which increases steadily with the Rey¬ 

nolds number. The frequency-indicating “Strouhal 

number” (see later) then reaches a more or less 

constant level in the vicinity of R = 10^. Decreas¬ 

ing viscosity and increasing dynamic forces finally 

produce a constant flow pattern (above R ~ 10^) 

to be described in the next section. 

2. MECHANISM OF FLOW SEPARATION 

Within the range of subsonic speeds, non-viscous 

fluid-dynamic theory expects the flow to close-in 

behind an obstacle, without any losses. Such flow 

pattern is illustrated in figure l,a for the circular 

cylinder. Positive pressures at the front of the cylin¬ 

der are counterbalanced by positive pressures of 

equal magnitude on the rear; the resulting drag is 

zero. Real flow patterns are different, however. 

If (I) Stokes, Trans Cambridge Phil.Soc. 1850 p.8. 

If (3) Spheres and cylinders in viscous flow: 

a) Vortex System of Sphere, ARC RM 1531 (1932). 

b) Flow Past Circular Cylinder, ARC RM 917 (1924). 

c) Moller, Hydrodynamic Experiments on the Sphere, 

Physikalische Ztschr. 1938 p.57. 

d) Homann, Viscosity in Flow of Cylinder and Sphere, 
Forsch’g Ingenieurw'n 1936, 1 and 2; NACA T Memo 1334. 

)f (4) Barker, Proceedings Roy.Soc.London Vol 101 (1922) 

p.435; see also Macmillan, Viscous Effects on Pitot Tubes, 
J’l Roy.Aeron’l Soc. 1954 p.570. 

If (5) Data by American Air Filter Co. quoted in Woods 

“Fan Engineering”, by Woods Colchester (England) 1952. 

If (6) Lamb, Hydrodynamics. A recent treatment of flow 

past plates and cylinders in viscous flow is by Tomotika 

and Aoi in Quart. J’l Appl’d Math’s 1950, 1951 and 1953. 

If (7) Prandtl, Fiihrer durch Stromungslehre (1941); “Es¬ 

sentials of Fluid Dynamics”, New York City 1952. Bound¬ 

ary-layer theory, "Fluid Motion at Low Viscosity”, Ver- 

handlungen Internat’l Math.Congress Heidelberg 1904. 

If (8) Pressure Distribution of Circular Cylinders: 

a) Fage and Falkner, ARC RM 1369 (1931). 

b) Konstantinov, Influence of Reynolds Number on Cavi¬ 

tation Flow, Izvest.Akad.SSSR, Otdelenie Tekhn.Nauk 1946 
p. 1355; Trans’l TMB 233. 

c) Hoerner, Fieseler Wasserkanal Bericht No. 2 (1939). 

d) Ermisch, Abhandl’g Aerody.Inst. TH Aachen No. 6. 

e) Flachsbarth, in Handb’k Exp.Ph.Wien-Harms IV,2. 

f) Dryden, BOS Journal of Research Rpt. 221 1930. 

AT SUBCRITICAL NUMBERS Ha = (2 TO 10)104! 

A EISNER (14), 0. = 1.17 
n BRITISH (8,a) "• = 1.20 
X RUSSIAN (8,b) =, 1.25 
O AACHEN (8,d) = 1.17 

AT SUPERCRITICAL NUMBERS Rd = (2 TO 4)105: 

A EISNER (14), C„ » 0.34 
■ TURBULENT (8,a)D- - 0.34 
+ RUSSIAN (B,b) = 0.33 
♦ HOERNER (8, c) . 0.40 

Figure 2. Pressure distribution around the circumference 

of circular cylinders (tested between walls). 

Boundary-Layer Theory. The conception of the 

boundary-layer theory by Prandtl in 1904 (7) 

opened the way to theoretical and experimental 

study of drag and lift. According to this theory, 

the viscosity of the air is to be considered only with¬ 

in a limited sheet of fluid adjacent to the body sur¬ 

face. Outside this “boundary layer”, considering 

the motion of the air particles against each other, 

viscosity does not have any noticeable effect. The 

first effect of the boundary layer is to shift the sur¬ 

rounding potential flow somewhat further outward, 

corresponding to its displacement thickness (see 

in Chapter II). Generally, this effect may be unim¬ 

portant, however, in comparison to the effect which 

the potential flow, in turn, exerts upon the bound¬ 
ary layer. 

Pressure Distribution. Figure 2 presents the pres¬ 

sure distribution around circular cylinders (in 

flow normal to the axis). The pressure decreases 

between stagnation “point” (at <p = 0°) and maxi¬ 

mum thickness (at cp =90°) from Cp = + 1 to 

negative values of appreciable magnitude. If at all, 

the boundary layer is only favorably affected by the 

corresponding negative pressure gradient. Between 

<p = 90° and the “rear stagnation point” (at cp 

= 180), potential theory expects full recovery of 

the static pressure to Cp = +1. This does not come 
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true, however; not only because of the momentum 

deficiency of the boundary layer, but above all be¬ 

cause of a basic change of the flow pattern by way 

of separation. 

Figure 3. Roller-coaster-car analogy of boundary-layer. 

Boundary-Layer Mechanism. Prandtl (7) compares 

the task of the boundary layer in the described 

conditions to that of a mechanical ball. In place 

of the ball, we will consider a roller-coaster car 

(as found in amusement parks). Such a car may 

start rolling at point “A” in figure 3, moving down 

the tracks. During this period, potential energy 

(corresponding to the elevation of point “A” rela¬ 

tive to “B”) is transformed into kinetic energy 

(velocity at “B”). Ascending the “hill” toward “C”, 

kinetic energy is transformed back into potential 

energy. The roller-coaster car would regain the same 

elevation as it had at “A”, provided that no energy 

was lost along the way — because of mechanical fric¬ 

tion and other resistance. Since such losses cannot 

be avoided, every hump (“C”) in a roller-coster 

system has to be lower than the preceding level 

(“A”). The innermost fluid particles traveling with¬ 

in the boundary layer are in a position similar to 

that of the car under consideration. Because of vis¬ 

cous losses along the way from the stagnation point 

(“A” in figure l,a) along the surface of the cylinder, 

passing through the point of maximum velocity (at 

“B”), the particles closest to the body’s surface, do 

not have sufficient kinetic energy left to overcome 

the adverse (positive) pressure gradient along the 

rear of the body. The b’layer particles, therefore, 

come momentarily to rest after exhausting their 

energy, somewhere between “B” and “C”. Figure 

4 shows what accordingly happens within the bound- 

UNDISTURBED OUTER FLOW 

Figure 4. Velocity distribution and flow pattern of 

the boundary layer in a positive (adverse) pressure 

gradient, and including separation. 

ary layer. At point “a”, a layer is shown with a cer¬ 

tain thickness and velocity distribution. At “b”, the 

distribution is already somewhat deformed because 

of the pressure gradient imposed from the outer 

flow. At “c”, the sheet closest to the wall, having 

the least momentum, is reduced to zero velocity. 

Subsequently, at “d” in figure 4, the direction of 

the motion is reversed; particles of the boundary 

layer are flowing against the direction of the undis¬ 

turbed flow. These particles are accumulated, the 

thickness of the boundary layer is accordingly in¬ 

creased and presently the outer flow is separated 

from the surface of the body. Hence, a vortex is 

filling the resulting “dead” space, at point “e”. 

Figure 5. Laminar separation points on several two- 

dimensional elliptical and Joukowsky shapes, determined 

by theoretical analysis (9) of the boundary layer flow. 

Point of Separation. For laminar boundary- 

layer flow, the point of separation is a function 

of body shape only; and it can be found by theoreti¬ 

cal analysis (9). As examples, several symmetrical 

section shapes are shown in figure 5, having theoreti¬ 

cal separation points as marked. However, after 
separation has taken place, the pressure distribution 

is, of course, different from the non-viscous distri¬ 

bution assumed as basis in the analysis. Actually, 

separation therefore starts somewhat ahead of the 

theoretical points. The circular cylinder, for exam¬ 

ple, has separation from points approximately 10° 

ahead of the maximum thickness (as shown in fig¬ 

ure 1 ,b and as indicated by the pressure distribution 

in figure 2, for subcritical Reynolds numbers), 

while theory predicts separation points 20° aft of 

the maximum-thickness location. — For turbulent 

boundary-layer flow, separation cannot be predicted 

by available theoretical methods. 

Drag Due to Separation. Figure 2 shows 

(among others) that the pressure at the rear side of 

the cylinders tested, is very much lower than pre¬ 

dicted for non-viscous flow conditions. The result¬ 

ant differential between positive pressures on the 

forward side and negative pressures at the rear side 

of the cylinder, represents the pressure drag. In 
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blunt or bluff and fat shapes, this type of drag is 

usually many times as high as the skin-friction drag. 

For example, for the circular cylinder a frictional 

drag coefficient (corresponding to wetted area and 

taking into account an average supervelocity past 

the sides) can roughly be assumed in the order of 

CDf# = 0.01. The tested coefficients CD- ~ 0.3 

or 0.4 at supercritical R’numbers, and CD# 1.2 

at subcritical numbers, are thus between 30 and 

120 times as high as the component that is directly 

due to tangential shear forces along the surface. 

Since in this example, viscosity (in the order of 

0.01) is the cause of separation and pressure drag 

(in the order of 0.3, 0.4 or 1.2) — skin friction is 

realized to be a “trigger” that (in certain combina¬ 

tions of shape and attitude) can set in motion pow¬ 
erful mechanisms of drag. 

3. VORTEX SYSTEMS 

Upon towing a body through resting air, a more or 

less regular motion of the fluid particles is left in 

the “wake” of the obstacle. That is to say, as equiva¬ 

lent of the energy spent in moving the body against 

the originating drag, momentum is transferred to 
the fluid. 

Vortex Types. In case of laminar friction, a 

certain volume of fluid particles is accelerated so 

that it follows the moving body. In a turbulent wake, 

this type of momentum transfer is combined with 

a component involved in the manifold motions of 

the fluid particles against each other. Such motions 

and other more orderly vortex formations are as 
follows: 

If (9) Analysis of boundary-layer separation: 

a) Bussmann and Ulrich, Yearb’k D.Lufo 1943; see also 
in reference (10). 

b) Howarth, elliptical section with c/t = 6, also as a func¬ 

tion of lift coefficient, Proc. R’l Soc. A 1935 p. 558. 

c) Schubauer and Klebanoff, Separation of Turbulent 

Boundary Layer, NACA Tech Rpt 1030 (1951). 

If (10) Schlichting, Grenzschichttheorie (1951); or “Bound¬ 
ary Layer Theory”, McGray-Hill 1955. 

If (11) Investigation of double-row vortex streets: 

a) Strouhal. Widemann’s Annalen der Physik 1878 p. 216. 

b) Benard, Comptes Rendus 1908, 1913, 1925, 1926, 1928. 

c) VonKarman and Rubach, Mechanism of Drag, Physi- 
kalische Zeitschrift 1912 p. 49. 

d) The theoretical height ratio of the street (ll,c) is y/x 

= 0.283. Vortex arrangements corresponding to this ratio 

are found at some small distance behind the street-produc¬ 

ing bodies. As reported in various places, the height “y” 

increases, however, considerably further downstream, while 

the separation "x” essentially remains constant. This dimen¬ 

sion is, therefore considered to be a better reference length 
than the height, in statistical analyses. 

(a) Turbulence, equal to vortex formation without 

much of a regular pattern, originates intensively 

within every turbulent boundary layer and as a part 

of more regular systems behind many obstacles. 

(b) Stationery vortices are formed in holes and 

gaps. More or less restricted to their place, they con¬ 

sume but little momentum furnished by the passing 

outer flow. 

(c) A pair of “induced” vortices originates behind 

wings, as illustrated in Chapter VII. Such vortices 

can also be observed behind many “non-lifting” 

bodies as for instance behind fuselages or in the 
wake of automobiles. 

(d) The vortex street to be discussed later on. 

Vortex System Behind the Sphere. A vortex 

system originates behind spheres, first in a station¬ 

ary form similar to that in figure l,b — possibly 

beginning at Rj ~ 10. This system develops into 

an unstable condition as the Reynolds number is 

increased. Vortex packages are then carried away by 

the outer flow, in more or less irregular fashion. 

The line of separation on the surface of the sphere 

moves back and forth accordingly; and transversal 

forces appear in the sphere changing direction in 

time with the separation of the packages. As irregu¬ 

lar and unstable as this mechanism may be, a pre¬ 

dominant frequency has been found (3, a and c) 

in the order of f = 2 V/d — approximately constant 

in the R’number range between 10^ and 105. 

Figure 6. Theoretical pattern of the vortex street (7), 

seen from a system fixed to the cores. The body producing 

the street is moving away from it at (V — w). 

Vortex Street. A conspicuous type of vortex 

pattern is found in the wake of two-dimensional 

bodies, such as cylinders, plates or bluff rods. This 

comparatively stable system is called “double-row 

vortex trail” or “vortex street” (ll,c). The two 

sides of the body alternate periodically in releasing 

a straight vortex. The “street” moves accordingly 

up and down and the flow pattern as illustrated in 

figures l,c and 6, comes into existence. The oscilla¬ 

tions are the physical source of the tones in an 

“Aeolian Harp ” produced by wind (Aeolus was 

the Greek God of the wind). Similar tones can also 

be heard in telephone poles. — The whole system 

of the vortex street moves in the same direction as 
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the body, with the velocity w measured against the 

resting fluid. Based upon the length “x” of the 

street (ll,d), the drag coefficient is 

CDx = D/ (q b x) = 1.6 (w/V) - 0.6V(w/Vf (10) 

Unfortunately neither the velocity w nor the dimen¬ 

sion x can be predicted by theory. Tests on circular 

cylinders (14), at Reynolds numbers below the 

critical, indicate w/V = 1/6 and x/d ^ 4.5 The 

drag coefficient, calculated as CQ# = 4.5 times CD* 

(as per equation 10) agrees with the tested value (in 

the order of 1.15). Theory has thus demonstrated 

that the equivalent of the drag of bluff bodies such 

as the cylinder can entirely be contained in the vor¬ 

tex system. It is emphasized that the vortex street 

is a mechanism which leads to realistic drag coeffi¬ 

cients, without introducing any quantitative viscos¬ 

ity values. An assumption must be made, however, 

concerning existence and dimensional characteris¬ 

tics of the vortex trail. 

□ KARMAN (11,c) CYLINDER AND PLATE 
o GALCIT (12) CYLINDER AND PDATB 
x NACA (12) - VARIOUS SHAPES 
A VARIOUS FRENCH SHAPES (13,b) WITH 

STKOUHAL K/UNVWTR estimated drag coeppicients 

Figure 7. Strouhal number and drag coeflicient of various 

shapes in essentially two-dimensional flow, at Reynolds 

numbers > 10^. 

Vortex Frequency. The number of vortices formed 

at one side of the “street” in the unit of time, is 

f = (V — w)/x (11) 

In non-dimensional form, this frequency is pre¬ 

sented by the so-called Strouhal number (1 l,a) : 

“S” = fh/V (12) 

where h = height or thickness of the body produc¬ 

ing the street. Available experimental results of 

essentially two-dimensional bodies (cylinders of 

various shapes as presented in references 12 and 13) 

are plotted in figure 7. For the range of^Reynolds 

numbers under consideration (10 to 10 ), Strou¬ 

hal number and drag coefficient seem to be coupled 

with each other in a consistent manner. For the cir¬ 

cular cylinder (with CD. = 1.17), for example, the 

dimensionless frequency is in the order of 0.19. The 

two-dimensional plate (with Cq. = 1.98) has ‘S’ 

= 0.13. Tests with plates and stalled airfoils (at 

<X = 90°) of limited span (13,a) show “S” again 

to be roughly in the order of 0.2. This value corre¬ 

lates quite well with the reduced drag coefficient of 

such obstacles (in the order of 1.1). The empirical 

function in figure 7 can be expressed by 

“S” = 0.2 l/C^4 (13) 

Because of high viscosity, the vortex frequencies are 

lower, however, than indicated by this function, at 
3 ' 

Reynolds numbers below 10 . 

General Street Characteristics. As pointed out 

in (12,a), characteristics of vortex streets are theo¬ 

retically independent of the bodies producing them. 

Analysis leads to believe that (above R = 10^) the 

term “S” = (f x/U) is a universal constant, with 

U = V+ AV = V * \/l-Cp (14) 

indicating the velocity past the wake of the body. 

As a likely value of the constant, this author suggests 

“S/’ = fx/U = 0.56 (15) 

Combining this value with equations 12 and 14, the 

longitudinal dimension of the vortex street is found 

to be 

x/h = 0V/“S”) (U/V) = 0.56 V\-Cp /‘S’ 

Solving now equation 11 for w/V, the velocity ratio 

of the street is found to be 

w/V = 1 — (x/h) “S” — 1 — 0.56 Vl— Cp (17) 

Equation 10 can then be used to determine the drag 

coefficient CD. = (x/h) CD)C of vortex-street-pro¬ 

ducing bodies, provided that “S and Cp are known 

(tested). The procedure does not lead to reliable 

results, however, since w/V is a small differential. 

It appears that some simpler solution has still to 

be found. For the time being, the statistical results 

(particularly in figure 7) are recommended for 

practical application. 

Splitter Plate. By placing a “splitter” plate on 

the center line of the vortex street, its motions 

can be considerably affected (12). The Strouhal 

number is reduced to the order of half the usual 

value; and the drag coefficient is decreased appre¬ 

ciably. In extreme conditions, a flow pattern may 

result similar to that in figure 1 (b and d), with a 

frequency reduced to zero. Some more experimen- 
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a) G.* 094 
; Oil) tit (19,b) 

b)Ca = o.59 (M) CAITSCH (12) 

Co.-0.62 a#3) CALTECH («2) 

4Cb.-0.S9(1 |9j tri (lw) 

e) Co.* 14 (,.7) 

(|.q) 

9>Q.=l.7«c|.<,g) IACA (41 ,■) 

Figure 8. Influence of “splitter” plates (and similar de¬ 

vices) on the drag coefficient of vortex-street-producing 

shapes (tested between walls). The values in brackets are 

the drag coefficients without wake interference. The Rey¬ 
nolds numbers (on cl or h ) are between 10^ and 10s. 

tal results regarding the influence of plates and 

other obstructions interfering with the motion of 

the vortex street, are presented in figure 8. It should 

be noted that the drag coefficients obtained in such 

configurations do no longer follow the function as 

indicated in figure 7. With respect to the arrange¬ 

ments “d” and “g” in figure 8, we suggest that the 

reduction of the drag coefficient is not a matter of 

“streamlining”. The wedges attached to the rear 

of cylinder and plate, respectively, simply reduce 

the motion of the vortex street. 

0 
A 

A 

AVA (16,h) AT Bd = 1.7 105; Cjj. = 0.45 

DITTO, BUT AT Rd = 4.6 105; Cj,. = 0.09 

ABC (16,g) AT Bd = 1.6 105} Cjj, = 0.47 

DITTO, BUT AT Bd = 4.2 105; CD. = 0.14 

Figure 9. Pressure distribution around the sphere. 

4. CRITICAL REYNOLDS NUMBER 

There are several different types of “critical” R’ 

numbers in fluid dynamics; so for example the one 

indicating termination of low drag in laminar-type 

foil sections (Chapter VI), or the one indicating 

the permissible size of surface roughness (in Chap¬ 

ter V). Termination of laminar separation is the 

definition of critical Reynolds number as discussed 

in this section here. 

Characteristics of Spheres are extensively reported 

in (16). As illustrated in figure 10, the sphere has 

a fairly constant drag coefficient (in the order of 

Cq. = 0.47), within the R’number range between 

1 (r and 10s. In the neighborhood of Rj = 4 10s 

or below this number, the coefficient decreases rap¬ 

idly, however, to a level in the order of 0.1, which 

is almost 1 /5 of that at Reynolds numbers below 

the critical. This phenomenon, first recognized by 

Eiffel and Prandtl, can be explained on the basis 

of boundary-layer theory, in the following manner. 

Laminar Separation. As indicated in the pres¬ 

sure distribution (figure 9) for subcritical Rey¬ 

nolds number, the flow past the sphere separates 

shortly behind the point of minimum pressure. 

Figure l,b shows the corresponding flow pattern of 

the circular cylinder (at low R’number). 

Turbulent B’Layer. Within every turbulent 

boundary layer, an exchange of mass and momen¬ 

tum takes place between each sheet of the layer and 

the adjoining ones. This exchange thus represents 

a continuous momentum transport from the outer 

flow toward the surface of the body. The resultant 

losses are higher than in a laminar layer. However, 

near the surface of the body, the turbulent b’layer 

carries much more momentum than the laminar 

layer (as can be seen in Chapter II). Approaching 

the critical Reynolds number, the b’layer begins 

to turn turbulent around the equator of the sphere. 

The sheets nearest to the surface are accordingly 

boosted in velocity and momentum; and they are 

therefore better enabled to flow against the positive 

pressure opposed to their movement along the rear 

of the body. Subsequently the flow attaches itself 

If(12) Roshko (Caltech), analytical and experimental 

studies on drag and flow of two-dimensional bodies: 

a) NACA T.Notes 2913 and 3169 (1953 and 54). 

b) Turbulent Wakes, NACA Tech Rpt 1191 (1954). 

c) Bluff Bodies, Journal Aeron’l Sci. 1955 p.I24. 

(13) Experimental vortex frequencies: 

a) Blenk-Fuchs-Liebers, Lufo 1935 p. 38. 

b) Publ.Sci.Techn.Ministere de l’Air No. 127 (1938). 

c) Nokkentved, Structural Shapes, Bygningsstatisky 
Meddelelser Vol XII No. 3 (Danish, 1941). 
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Figure 10. Experimental drag coefficients of the sphere 

as a function of Reynolds number. 
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to the surface as far as to tj) = 150 or 160°. The 
drag decreases correspondingly (see in figure 11) to 
a supercritical coefficient in the order of 0.1 (around 
Rj = 106). Figure 9 shows that the supercritical 
pressure distribution is relatively close to that as 
predicted by potential theory. 

■ NACA, IN HIGH-SPEED WIND TUNNEL (k) 
* NACA, VARIABLE-DENSITY TUNNEL (e) 
O NACA TOWING THROUGH RESTING AIR (d) 
a DVL-H0BRNER, TOWING IN TREE AIR (i) 

o HOERNER, IN BRUNSWICK TUNNEL (i) 
A DITTO, BEHIND TURBULENCE SCREEN (i) 
+ IN WIND TUNNEL WITH k/d * 0.003 (i) 
x DITTO WITH ROUGHNESS RATIO 0.03O (i) 
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Figure 11. Presentation of typical experimental results 

on the drag coefficient of the sphere in the critical 

range of Reynolds number. 

critical number is based on the radius r (rather 
than the diameter d). The influence of roughness 
is also demonstrated in figure 14 presenting the 
drag coefficient of circular cylinders having various 
degrees of surface roughness. The supercritical level 
of the coefficient rises appreciably as a function of 
the roughness parameter k/d, while the critical 
R’number (defined by CD, half way between sub- 
critical and supercritical level) decreases. 

Stream Turbulence. An interesting and famous 
effect on the critical Reynolds number of round 
bodies is that of turbulent fluctuations in the wind- 
tunnel stream. As shown in figure 11 and as plotted 
in Chapter II, the critical Reynolds number de¬ 
creases steadily as a function of the turbulent root- 
mean-square amplitude ratio (vv/V) contained in 
the fluid stream. As example of an extremely low 
number, RjcrLt = 1.5 105 is reported from NACA’s 
Variable-Density Tunnel, in its early status (16,e). 
Carefully designed tunnels show, on the other hand, 
values around = 3.9 10?; and values in the 
order of 4 10S were found in undisturbed resting 
air (16, d and i). The critical sphere numbers are 
thus suitable to indicate qualitatively the amount 
of boundary-layer-affecting turbulence present in a 
fluid stream. — Also the stiffness of the suspension 
of a sphere in the wind tunnel and mechanical vibra¬ 
tions (16,f), and even sound waves (16,i) have an 
effect upon critical Reynolds number and resistance 
of round bodies. 

Surface-Roughness Effect. There are hundreds 
of experimental results available on spheres in the 
critical R’number range. A small selection taken 
from (16) is plotted in figure 11. Surface rough¬ 
ness affects the critical Reynolds number appreciably. 
A plot of Rdcrit’l °f [he sphere (arbitrarily defined 
for CD. = 0.3) against the relative roughness-grain 
size k/d is presented in Chapter II. To make such 
sphere results compatible with the results on plane 
walls (which are also plotted in that graph), the 

Circular Cylinder. The above-described boundary 
layer characteristics are identically or similarly 
found in circular cylinders exposed to a flow nor¬ 
mal to their axis. Figure 2 presents the pressure dis¬ 
tribution around the cylinder; figure 12 shows the 
function of the drag coefficient against Reynolds 
number. In the vicinity of R<j = 3 or 4 times 10 , 
the coefficient drops from ~ 1.18 (in two-dimen¬ 
sional flow) to approximately 0.3. — Figure 13 pre¬ 
sents the drag coefficients of other, more or less 
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Figure 12. Drag coefficient of the circular cylinder in a 

flow normal to the axis (between walls), as a function of 
Reynolds number. The function below R = 1, corresponds 

to equation 6. 
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rounded, essentially two-dimensional bodies (tested 

between walls). The critical number is a function 

of the boundary-layer history as it develops between 

stagnation point and the location of maximum thick¬ 

ness (or minimum pressure). 

If (14) Eisner, Cylinders in Water, Mitt.Pr.Versuchsanstalt 

Wasserbau Schiffbau Berlin, Heft 4 (1929). 

If (15) Drag characteristics of spheres in viscous flow: 

a) Arnold, Air Bubbles, Philosoph’l Mag. 1911 p.755. 

b) Schiller, Drop Tests With Spheres and Disks, Hand- 
buch Exp.Physik Wien-Harms Vol IV,2; also in Ztschr’t. 

Flugtech. Motorluftsch.1928 p.497. 

c) Lunnon, Roy.Society A 118 (1928) p.680. 

1f(16) Drag Characteristics of Spheres With and Without 

Turbulence: 
a) Eiffel, in “Nouvelles Recherches Resistance de l’Air”, 

Paris 1914 and 1920. 
b) Ergebnisse AVA Gottingen Vol II (1923) and Vol IV 

(1932) ; also ZFM 1914 p.140. 
c) Millikan and Klein Aircraft Engineering 1933 p.169. 

d) NACA Tech Reports 185, 253, 342, 558 and 581. 

e) Jacobs, In Variable-Density Tunnel, NACA T Note 312. 

f) Wiselius, Netherl.Aeron.Inst.Rpt A.950 (1947). 

g) British ARC, Spheres, RM 1725 and 1766 (1936). 

h) Flachsbarth, Spheres, Physik.Ztschr.1927 p.461. 

i) Hoerner, Influence of Reynolds number Turbulence 

Surface Roughness on Spheres, Lufo 1935 p.42; Trans’l 
NACA T Memo 777. 

k) Robinson, High-Speed, J’l Aeron’l Sci. 1937 p.199. 

l) NACA, Journal Aeron’l Sciences 1937 p.199. 

If (17) Drag of Circular Cylinders in Viscous Flow: 

a) Finn, Journal Applied Physics 1953, p.771. 

b) White, Wires, Proceedings Royal Society London 1946. 

c) Relf, Resistance of Wires, ARC RM 102 (1914). 

If (18) Hydrodynamic Characteristics of Circular Cylinders: 

a) Wieselsberger, Ergebnisse AVA Gottingen II (1923). 
b) Pechstein, In Natural Wind, VDI Zeitschr. 1942 p.22. 

c) Schiller and Linke, NACA Tech Memo 715. 

d) Welsh, Flight Tests on Cylinders, NACA T Note 2941. 

If (19) Special tests on circular cylinders: 

a) Fage and Warsap, Effects of Turbulence and Surface 

Roughness on Drag of Circular Cylinders, ARC RM 1283 

(1929). The grain sizes were measured by the author from 

samples of the Nat.Phys.Lab.Teddington. 

b) Circular Cylinders With “Thwaites Flap”, ARC RM’s 

2611, 2787 and 2829. 

5. DRAG OF ROUND BODIES 

Origin and characteristics of viscous pressure drag 

have frequently been investigated, using sphere or 

circular cylinder as examples. The reason is that 

with these “simple” bodies, basic characteristics of 

pressure drag have first been determined — such as 

the triggering effect of the boundary layer, the phe¬ 

nomenon of flow separation, the critical Reynolds 

number of round bodies, and the influence of wind- 

tunnel turbulence. 

- O ? ! ’ 
• © CIRCULR 

► E> i- ■« 
• Or-0! 

Figure 13. Drag coefficients of several cylinder shapes 
(tested between walls) in the critical Reynolds- 

number range; GALCIT (12). 

The Separation Point in turbulent boundary 

layer cannot really be predicted by theory. There 

is some statistical information available, however. 

It seems that separation takes place when and if 

the form parameter of the boundary layer “H” 

= reaches a certain critical order of magni¬ 

tude. In the flow along a plane constant-pressure 

surface, this ratio is H = 1 + (2/n) as can be de¬ 

rived from the b’layer functions in Chapter II. For 

n = 7, for example, H = 1.29 on a plane wall. Ref¬ 

erence (9,c) reports H = 2.7 at the point of sepa¬ 

ration on some streamline shape. Velocity distribu¬ 

tion and shape parameter are functions of pressure 

distribution along the body under consideration. 
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Figure 14. Drag coefficient of cylinders 

roughness (sand-grain size “1 

Rear-Side Pressure. Flow pattern and pressure 

in the “dead” space (wake) behind a blunt body 

cannot really be predicted. Statistical evidence 

is as follows. At Reynolds numbers above the criti¬ 

cal, the pressure distribution around the sphere 

shows a positive value in the vicinity of t|> = 180°. 

Figure 15 shows correlation between this pressure 

and the drag coefficient. By a single pressure meas¬ 

urement on the rear side of the sphere, its drag can 

thus be estimated. This method (16, d and i) is 

sometimes used, instead of weighing the drag, to 

determine the critical R’number of a test sphere in 

the flow of wind tunnels. Figure 16 presents corre¬ 

sponding results for the circular cylinder. Between 

CD. = 0.6 and 0.3, there is evidently a discontinu¬ 

ity in the experimental function. It is suspected that 

a change in the pattern of the vortex street may be 

responsible for this result. In other words, the street 

may develop only weakly, or may not develop at all 

under conditions of attached flow (as illustrated in 

figure l,e), so that the drag coefficient is smaller 

than it would be with freely developed vortex trail. 

For example, drag coefficients are presented in (8, 

b) which are sometimes on the upper and other 

times on the lower branch of the function in figure 

16 — at overlapping values of the pressure coefficient. 

(19,a) having various degrees of surface 

” as against diameter “d”). 

Other Cylindrical Shapes. As seen in figure 13, cylin¬ 

drical bodies reach a minimum drag coefficient 

shortly above the critical Reynolds number. As 

mentioned in connection with figure 16, there is 

probably reduced vortex activity in this phase. Tests 

of all these shapes have not been extended very far 

into the range of higher Reynolds numbers. One 

general prediction can be made, however. Resist¬ 

ance is evidently a function of the momentum losses 

which the boundary layer encounters along the way 

from the stagnation point to the rear of the body. 

The pressure drag is, in other words, related to the 

skin-friction drag. The observed increase of cylin¬ 

der-drag coefficients above Rj = 106, corresponds 

to the increase of the frictional coefficient along one 

of the transition lines shown between R = 10s and 

106 in Chapter II. At still higher R’numbers (above 

Rj = 107), another decrease of the drag coefficient 

can be predicted for the round bodies under con¬ 

sideration. This decrease corresponds to the declin¬ 

ing course of the skin-friction coefficient in this 

range of the Reynolds number. It must be under¬ 

stood, however, that compressibility and/or rough¬ 

ness effects may be involved in practical applica¬ 

tions where such high Reynolds numbers are ob¬ 

tained. 
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Figure 15. Correlation between drag and rear-side pres¬ 

sure of the sphere; reference (16). 

Figure 16. Correlation between drag and rear-side pres¬ 

sure of circular cylinders (8), between walls. 
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(a) AT Rc = (1 to 4) 10^: 

a EIFFEL (20,0) 

O N A C A (20,c,d) 

Figure 17. Drag coefficients of elliptical sections, (a) at 

subcritical R’numbers, (b) above the critical R’number. 

Elliptical Sections are represented in figure 17. 

Equations have been developed similar to those 

in the “streamline” chapter — giving a suitable 

interpolation of the tested drag coefficients. At 

subcritical R’numbers, 

CD.= 2Cflam(1+c/t) + L1 (‘AO (2°) 

Above the critical R’number range, the coefficient 

is approximately 

CD. = Cfu(4 + 2 (C/t> + 120 <t/Cf) <21> 

Optimum chord/thickness ratios (giving minimum 

CD.) are in the order of 9 below, and of 5 above 

the critical variation of the drag coefficient as against 

R’number. 

IT (20) Experimental results on elliptical cylinders: 

a) Eiffel in Nouvelles Recherches, Paris 1919. 

b) AVA Struts, Tech Berichte I (1917) and II (1918). 

c) NACA Tech Note 279 (1928) and Tech Rpt 289. 

d) Jacobs, Streamline Wires, NACA T.Note 480. 

e) Lindsey, Simple-Shape Cylinders, NACA T.Rpt 619. 

t) British ARC, RM 1599 (1934) and RM 1817 (1937). 
If (21) Circular cylinders inclined against flow: 

a) Relf and Powell, Tests of Smooth and Stranded Inclined 

Wires, ARC RM 307 (1917). 
b) Mustert, Lift and Drag, German Doct ZWB FB 1690. 

c) Kazakevich, Zh.Tekh.Fiz. 1951 p.llll; also Kuznetov, 

CAHI (Moscow) Rpt 98 (1931). 

d) Thews-Landweber-Plum, Towing Cables, TMB Rpts 

418 (1936) and 666 (1948). 

e) Bursnall and Loftin, Pressure Distribution on Yawed 

Circular Cylinder in the Critical Reynolds Number Range, 

NACA T.Note 2463 (1951). 

Figure 18. Drag (and lift) coefficients (on area "d” times 

axial length "1”) of circular cylinders, wires and cables: 

inclined against the direction of flow — at Reynolds num¬ 

bers below the critical. Reference (21). 

Cross-Flow Principle. A principle with quite a 

number of practical applications (see Index) is very 

well illustrated by the inclined circular cylinder in 

figure 18. At an angle of attack “oc’j flow pattern 

and fluid-dynamic pressure forces of such bodies 

only correspond to the velocity component (and the 

dynamic pressure) in the direction normal to their 

axis. Therefore (based on area Sa = dl, where 1 = 

length along axis) : 

So = NASo = Cbbc»;c(sin8<x or cos*X> C22) 

This force is then split up in the directions of drag 

and lift; hence: 

Ct>n= CDbasic (sin^ or cos3X) (23) 

CLa =CDbasic (sir,8o<: cos(X) or (sin^- cos2X) 

Experimental results in figure 18 on wires, cables 

and circular cylinders (at subcritical Reynolds num¬ 

bers) confirm the prediction very well, after adding 

the frictional component AC^ 4= ir Cp. 

At Supercritical Reynolds Numbers (that is, 

with essentially attached flow pattern), cross-flow 

conditions are different from those at subcritical 

Reynolds numbers. The pressure drag evidently de¬ 

pends on the skin-frictional losses along the surface, 

in which the axial velocity component takes part. 

A rough rule seems to be that between 0 and 50° 

angle of sweep or yaw “ A”, the drag of a smooth 

cylinder in supercritical condition, is approximately 

constant, corresponding to a drag coefficient CDO 

on “d” times (b or 1) in the order of 0.2. Reference 

(21 ,e) also indicates that the critical speed of a 
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cylinder (at which the flow attaches to the rear 

side) decreases as the angle of yaw “ X” is increased; 

for example from Rj = 3.6 10“ for normal flow to 

2.0 10“ (still based on total speed “V”) at X = 60 . 

In conclusion, the cross-flow principle cannot be 

applied to elements with attached flow pattern (as 

far as incompressible drag is concerned) . 

Figure 20. Coefficients indicating the forebody- 

pressure drag of a series of cylindrical bodies, 

evaluated from pressure distribution (25,e). 

coefficient close to zero. As flow separation starts and 

grows in the less streamlined and bluffer shapes, the 

drag coefficient grows rapidly, however. 

Figure 19. Drag coefficients of ellipsoidal bodies (22); (a) 

at a subcritical Reynolds number R^ = 7 10 , and (b) 
above transition, at R’numbers approaching 10 ). 

Simple Ellipsoidal Bodies are represented in figure 

19. The pressure drag caused by laminar separation 

(at subcritical Reynolds number) can be approxi¬ 

mated by a component proportional to the thickness 

ratio (d/1). Applying the functions as given in the 

“streamline” chapter, the total drag coefficient in 

this condition can be approximated by 

CD> = 0.44 (d/jt) + 4 Cf(i/d) + 4 C^d/tf (25) 

Figure 19 also presents the minimum drag coeffi¬ 

cients obtained shortly above the critical transition 

(see for illustration figures 10 and 11). It appears 

that equation 3| of the “streamline” chapter can be 

applied to give an approximate interpolation, using 

a friction-drag coefficient Cp = 0.004. 

Half Bodies. A theoretical “half body” extends 

to infinity in one direction. Theory (23) predicts 

that such bodies, with a properly streamlined shape 

facing the fluid flow, do not have any drag. Positive 

as well as negative pressure differentials press upon 

the frontal area so that the resultant force is zero. 

To understand this result, the reader is invited to 

investigate the pressure distribution of the sphere 

— which gives a related result. Integrating the theo¬ 

retical pressure distribution in figure 9 across the 

frontal area, it is found that the suction forces pre¬ 

dominate so that the forebody drag coefficient is 

negative (CD< = —0.125). The phenomenon of 

zero or negative forebody drag is also found to some 

extent in real and viscous fluid flow. Figure 20 

gives pressure drag coefficients evaluated from tests 

(25) on a series of rotationally symmetric body 

“noses”. The first three shapes have a forebody drag 

disk, - -figure 26 

Figure 21. Drag coefficients of cylindrical bodies in axial 

How, with blunt shape (in the upper part) and with 

rounded or streamlined head forms (lower part) —as a 

function of the fineness ratio 1/d. 

Parallel-Sided Shapes. Plotted in figure 21 are 

the drag coefficients of a number of cylindrical bod¬ 

ies in axial flow. Figure 22 shows corresponding re¬ 

sults in two-dimensional flow. The drag of these 

shapes essentially consists of that of the forebody and 

the base drag originating at the blunt rear end. At 

zero length ratio, the coefficients of disk and plate 

are plotted, respectively. Two branches are seen in 

each graph, one for blunt head form or leading edge, 

respectively; and the other one representing the ex¬ 

perimental results of rounded or streamline shapes. 

Figure 22. Drag coefficient of "rectangular” sections (tested 

between walls') with blunt leading edge (upper part) and 

with rounded shape (lower part), against length ratio. 
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It is seen that with the blunt forms too, the drag 

reduces appreciably upon reaching a certain mini¬ 

mum length ratio, which is in the order of 1/d =- 1 

and c/t = 2.5, respectively. The separated flow re¬ 

attaches in these cases at some distance aft of the 

blunt face. With well-rounded noses, the drag re¬ 

duces quickly to comparatively low values. Some 

estimated functions are also plotted in the two 

graphs, indicating the drag contributions due to skin 

friction and base pressure. 

Rounding Radius. “Streamlining” is a continu¬ 

ous variation of shape including (among others) 

the trend of keeping velocity- and pressure-distribu¬ 

tion uniform and smooth. Rounding-off edges in 

blunt shapes, is a less perfect method of reducing 

drag. Figure 23 shows nevertheless, what can be 

accomplished in this manner in two-dimensional as 

well as in three-dimensional bodies. Above a cer¬ 

tain, comparatively small ratio r/h or r/d, respec¬ 

tively, separation from the forward edges reduces 

progressively. The drag coefficient drops accordingly, 

between 50 and more than 90%, depending of 

course upon the shape of the afterbody. The critical 

H (22) Drag Coefficients of Ellipsoidal Bodies: 

a) Riabouchinsky, Spheres and Ellipsoids, NAGA Tech 

Note 44 (1921) ; not plotted in figure 19. 

b) Ergebnisse AVA Gottingen Volume II (1923). 

If (23) Theoretical considerations on streamlining: 

a) Zahm, Simple Quadrics, NACA T. Rpt 253, 1927. 

b) Smith, Strut Forms, NACA T. Rpt 335, 1929. 

If (25) Tests on cylindrical shapes in axial flow: 

a) Naumann, Cylinders, ZWB Tech Berichte 1943 p.278. 

b) Schirmer, Airship Shapes, ZWB Report FB 1647. 

c) Half Bodies on Fuselage, Dornier Report (1937). 

d) Goodwin, Fuselage Nose Section, NACA RM L9J13. 

e) Rouse and McNown, Cavitation Pressure Distribution 

of Head Forms, Iowa University Engg Bull.32 (1948). 

If (26) Dornier, Bluff Sections, reported in (41,g). 

If (27) Delany and Sorensen, Low-Speed Drag of Cylinders 

of Various Shapes, NACA T.Note 3038 (1953). 

If (28) Influence of rounding radius on drag: 

a) Pawlowski, Wind Resistance of Automobiles (Basic 

Body) SAE Journal 1930, July p.5. 

b) Russian Report on Drag of Fuselage, CAHI Rpt N.519. 

c) Goethert, Drag Tests on Various Bodies and on Spheres 

at High Speeds, ZWB Tech Berichte 1944 p.94 and 377. 

d) Robinson and Delano, Drag of Windshields (Canopies) 

in Wind Tunnel, NACA Tech Rpt 730 (1942). 
If (30) Drag characteristics of rotating bodies: 

a) Wieselsberger, Physikal.Zeitschr. 1927 p.84. 

b) Luthander and Rydberg, Rotating Sphere, Physikalische 
Zeitschrift 1935 p.552. 

c) Sann, Drag- and Pressure Measurements on Rotating 

Projectiles ZWB Rpt FB 1048 (1939). 

(o) 2-DIM‘L SHAPES AT R=l0f: 

Figure 23. Influence of a rounding radius upon the 

drag coefficient of various “blunt” bodies (28). 

radius ratio (effecting the change in flow pattern) 

is to some degree a function of Reynolds number; 

the ratio reduces slowly as the R’number is in¬ 

creased. As a suitable radius ratio, r/h = 0.2 can be 

recommended for two-dimensional conditions; while 

r/d = 0.1 seems to be adequate for three-dimen¬ 

sional bodies. 
X D I S K (b) 

O CYLINDER (b) 
A PROJECTILE (b) 

, Q S P H E R E (a) 

19 1 Q. , • PROJECTILE (c) .         «—*-— «SK • DITTO, BASE DRAG 

1.0 

0 12 3 4 

Figure 24. Drag coefficient of rotating bodies (30) as a 

function of the circumferential velocity ratio. 

Rotating Bodies. There are a few experimental 

results available, indicating the drag of simple 

bodies as a function of their speed of rotation around 

an axis that is parallel to the direction of the fluid 

flow through which they move. The influence of 

rotation seems to be fourfold. First, the boundary 

layer is thickened because of the added speed com¬ 

ponent u = (circumferential velocity) = d % n, 

with n = number of revolutions per time unit. In 

streamline forebodies, this effect causes additional 

drag (see the projectile in figure 24). Second, the 

thickened boundary layer is likely to cause separa¬ 

tion and additional form drag in the afterbody (see 

the sphere in supercritical condition at “f”). Third, 

on account of centrifugal forces in the rotating 

boundary layer, separation from the base appears to 

be increased (see the blunt cylinder in the graph). 

Fourth, the added velocity component affects the 

stability of the boundary layer, thus reducing the 

critical Reynolds number of sensitive bodies such 
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as the sphere. In this respect is tentatively: 

where k -< 1 represents a suitable integration con¬ 

stant. This effect is demonstrated in figure 24 at (t); 

the critical Reynolds number of the sphere as tested 

is shifted from R^ct-it = 2.9 105 (without rota¬ 

tion) to 2 10s as shown in the graph at u/V ~ 1-8; 

hence k ~ 0.6. The sphere also exhibits the centri¬ 

fugal effect at “c”. Note that the low sphere value 

CD. = 0.38 in subcritical condition (instead of == 

0.47) is caused by type and size of the support in 

these tests by means of a rotating shaft. 

The Human Body is similar in aerodynamic shape 

to a cylinder with a length ratio h/“d” between 4 

and 7. Since human beings vary very much in size 

and proportions, selection of a reference area is diffi¬ 

cult. Figure 25, therefore, presents the drag of an 

average man in the form of drag area D/q. The 

drag is predominantly a function of the projected 

frontal area in the various positions tested. Based 

on estimated areas, drag coefficients can be deter¬ 

mined for the standing positions between = 

1.0 and 1.3. Without clothing, the drag is between 

5 and 10% less than listed. 

How Fast a Man Falls. After bailing out of an air¬ 

plane, and before releasing the parachute, the body 

of a man accelerates to a terminal velocity the mag¬ 

nitude of which can be derived from W = D = 

q (D/q). Near sea level (where § = 0.0024 lb sec2/ 

ft^), the falling speed of a man with W = 180 lb, 

is accordingly Vjp^y5^c~ 400 V (D/q). Employing the 

drag areas as listed in figure 25 (between 1.2 and 9.0 

ft2), speeds between 130 and 370 ft/sec are thus 

obtained. Terminal velocities are reported (32,c) 

between 150 and 180 ft/sec “near sea level”; with¬ 

out specification as to position and attitude dur¬ 

ing free fall. Another source (32,e) gives a drag 

area of 5 ft? for a “rolling and somersaulting” man. 

To give a certain scale to all these numbers, it is 

mentioned that the drag area of a typical fighter 

airplane is in the order of 6 ft? 

The Drag of Ski-Runners has been tested in wind 

tunnels. In upright position (going down a slope) 

a drag area D/q = 5.5 ft2 is found (32,a) in a 

smooth wooden model. A similar value (» 6.5 ft2) 

can be derived from (32,b) on the basis of an esti¬ 

mated frontal area in the order of 7 ft2. Both sources 

also give results on drag and lift of a ski-jumping 

man. In the typical “flying” position, with the body 

leaning forward against and onto the air, the lift 

area (including the contribution of the skis) is in 

the order of L/q = 2.5 ft2; the maximum lift/drag 

ratio is in the order of “1”. 

6. DRAG OF VARIOUS TYPES OF PLATES 

All that is said in the preceding section about the 

critical effect of the boundary layer upon the drag 

of spheres, applies in principle to all sufficiently 

rounded bodies, such as the strut sections for in¬ 

stance in Chapter VI. On the other hand, bodies 

with sharp edges, such as disks and plates in a flow 

normal to their surfaces, do not show any critical 

drag decrease. The pressure gradient around the 

sharp edges would necessarily be extremely high for 

a flow pattern attached to the rear of a plate — that 

is, theoretically from Ap/q ——oo at the edge to 

+ 1 at the rear stagnation point. No boundary layer, 

whether laminar or turbulent, can follow the way 

around the edges of such plates. 

Small R’Numbers. Figure 26 shows the drag coeffi¬ 

cient of disks and square plates in normal flow, as 

a function of Reynolds number. Below Rj = 100, 

there is the regime of predominantly viscous flow 

as discussed in the beginning of this chapter. Ap¬ 

proximately at Rj = 300, the drag coefficient of the 

disk shows a peak, as reported from two independ¬ 

ent sources. Observation of the flow pattern (35) 

proves this peak to be due to a change in the pattern 

of the vortex system behind the body. 

Turbulence Effect. Above Rj — 1000, the drag co¬ 

efficient of disks (and other plates) is practically 

constant up to the highest Reynolds numbers ever 

tested (approaching 10^). Because of this stability, 
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Figure 26. Drag coefficient of circular and square plates 
(in normal flow) as a function of Reynolds number. 
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airfoil, aspect ratio 6 (33) 
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the disk is sometimes employed in the calibration 

of air streams. Drag coefficients reported from nu¬ 

merous wind tunnels do not really show one and 

the same drag coefficient, however. One explanation 

for the discrepancies is the blocking effect in closed- 

type tunnel installations. Figure 27 shows another 

influence affecting the magnitude of the drag. The 

coefficient slowly increases with the degree of tur¬ 

bulence in the wind stream (36,b). The total in¬ 

crease as tested is in the order of 5%. 

If (31) Schmitt, Wind-Tunnel Investigation of Air Loads on 

Human Beings, TMB Rpt 892 (1954). 

If (32) Other investigations of the human body: 

a) Tani and Mituisi, Aerodynamics of Ski Jumping, Japa¬ 

nese “Kagaku” Vol 21 (1951) p. 117. 

b) Straumann, Aerodynamic Tests on Ski Jumpers, Hel¬ 

vetica Physica Acta Vol 14 (1941) p.311. 

c) Terminal velocities of parachutists near sea level, quoted 

in Journal Aeron’l Sciences 1942 p.293. 

d) “How Fast a Man Falls”, Aeroplane 57 (1939) p.445. 

e) Webster, Free Falls and Parachute Descents in the Stand¬ 

ard Atmosphere, NACA Tech Note 1315 (1947). 

ff (33) Tom and Swart, Airfoil at Extremely Low Speeds, 

Proceedings Royal Society A, Volume 141 p.761 (1934). 
If (34) Resistance of Plates and Disks: 

a) “Recherches Experimentales Tour Eiffel”, Paris 1907. 

b) Drag of Disks, NACA T.Notes 252 and 253. 

c) AVA Gottingen, Ergebnisse Volume IV (1932). 

d) Ring Plates, AVA Gottingen, Ergebnisse Volume II- 

e) Wick, Inclined Plate, NACA T.Note 3221 (1954). 

f) Smith and Whipple (MIT), Bodies Moving Through 

Still Air, Journal Aeron’l Sci. 1936 p.21. 

If (35) Flow pattern past plates and disks: 

a) Fage and Johansen, Behind Plates, ARC RM 1104 

(1927): and Proc. Royal Society London Vol 116 (1927). 

b) Simmons and Dewey, Disks, ARC RM 1334 (1931). 

ff (36) Influence of turbulence on drag of plates: 

a) Schubauer and Dryden, NACA Tech Rpt 546 (1935). 

b) This effect has been discussed by Prandtl (ZFM 1910 

p.73) and by Joukowsky (Aerodynamique, Paris 1916). 
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Figure 27. Influence of turbulence on disk drag (36). 

"Aspect Ratio". Figure 28 shows how the drag of 

rectangular plates (and that of cylinders with limited 

length) varies with their height-to-span ratio h/b. 

It is surprising how far the effect of the side edges 

(ends or tips) extends toward the center portion of 

these bodies. Up to b/h = 10, the drag coefficient 

does not increase appreciably, and at b/h = 30, the 

coefficient is still considerably lower than that of the 

two-dimensional plate (between end plates). Con¬ 

sidering the ends of a rectangular plate as three- 

dimensional, their dead-space pressure is evidently 

less negative than that of the ‘‘two-dimensional” 

center. Consequently, a flow of air is induced from 

the ends along the rear side of the plate and the aver¬ 

age pressure is considerably increased. Another way 

of looking at this phenomenon is to assume that the 

motion of the vortex street is affected by the “ven¬ 

tilation” from the ends of the plate. The total varia¬ 

tion of the drag coefficient is between 1.17 and ~ 

2.0. Most of the change evidently takes place be¬ 

tween h/b = 0 and = 0.1. Interpolation is suggested 

by 

S. =CD..[>-k(Vb)] (29) 
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FLAT RECT'R PLATES: 

X AVA-- - (34,c) 
+ MIT-(34,f) 

- OTHERS - OTHERS 

• RAE-X»ll8,k) 

CIRCULAR CYLINDERS: 

• AVA-(18,a) 

O BOS-  (8,f) 
A NACA, T.RPT - 231 

V NACA-(I8,e) 

0 EIFFEL-(34.0) 

Figure 28. Drag coefficients of rectangular plates and circular cylinders as a 

function of their height (or diameter) to span ratio. 

where Cq = coefficient in two-dimensional flow 

and “k” a constant in the order of 5. 

Rear-Side Pressure. Plates in fluid flow normal to 

their surface, have highly negative pressures on their 

rear side. Because of wind-tunnel blocking, some 

discrepancies are found, however, with respect to 

the magnitude of the pressure coefficient as reported 

in various references (37). As likely values are 

suggested: 

in 2 dimensions =1.98; Cpreor= — 1.13; 

in 3 dimensions CD =1.17; CpWar= — 0.42; 

Plates At An Angle. Upon tilting three-dimensional 

plates to an angle against the direction of flow, away 

from a = 90°, the normal-force coefficient as plot¬ 

ted in figure 29,a — remains approximately constant 

between A of = plus and minus « 45°. This obser¬ 

vation seems to be the basis of an old theory of ship 

sailing. With ChorwaL ~ 1.17 *= constant, the 

lateral component of the sail is Cl — 1.17 cos oc , 

while the drag component is CD = 1.17 sin of. This 

analysis can only be correct, of course, in the range 

of wind-against-sail angles above (X =45° — as they 

were used in the old-time fully-rigged ships designed 

for sailing more or less in front of the trade winds. 

Disk With Hole. As illustrated in figure 30, the drag 

of a disk (in pounds) is not reduced at first, upon 

cutting a hole in its center. Beyond dj /dQ = 0.25, 

the drag decreases, however, more or less steadily. 

Based upon the area of the resulting ring, the drag 

coefficient increases and reaches a limiting value 

which is identical to that of the rectangular plate 

with b/h = oo, that is CD. =.1.98. In the wake be¬ 

hind the ring, an annular vortex street must be 

expected similar to that as observed within the wake 

of a cylindrical ring (17). Between d[_/d0 = 0.6 and 

0.8, evidently some change takes place in the flow 

pattern. Likely, the organization of the vortex sys¬ 

tem switches here from the three-dimensional to the 

two-dimensional type. 

Figure 30. Drag coefficient of annular plates (rings), 

as reported in (34,d), at Rdo = 10s, 

Figure 29. Normal-force coefficients of plates having square or circular shape 

(left), and in two-dimensional condition (right, between tunnel walls). 

a) 
b) 

• AVA (34,c) FORCE ON DISK 

El DITTO, FORCE ON SQUARE PLATE 
• ARC (35,0) FORCE COEFFICIENT 

O DITTO, PRESSURE COEFFICIENT 
X REAR-SIDE COEFFICIENT (34,e) 
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Fig. 31. Drag coefficient of sheet-metal "caps” (40,a) as a 

function of their height ratio. 

Caps and Cups. As large as the drag coefficients of 

plates may be, there are other shapes exhibiting still 

higher values. Figure 31 shows the drag coefficient 

of open cup- or cap-like bodies (similar to para¬ 

chute canopies). The maximum drag coefficient (on 

projected area) is obtained for h/d in the order of 

0.5, a shape which is hemispherical. Upon fur¬ 

ther increasing the height ratio, the rear side more 

and more changes into a wake “fairing”. The drag 

coefficient is, therefore, expected to approach the 

theoretical minimum which corresponds to full stag¬ 

nation pressure across the opening. 

7. DRAG OF WEDGES AND CONES 

Figures 32 and 33 present shape and drag coefficient 

of a number of three- and two-dimensional bodies. 

All of these shapes have a more or less separated flow 

pattern; most of them have negative pressure on 

their rear side; and their drag coefficients are com¬ 

paratively high. 

Angle of Flow. To establish some order in the drag 

coefficients of various shapes, the geometrical angle 

is very useful, at which the flow is guided by the 

body’s surface upon separating from its rear side. 

The flat plate, for example, has such an angle 

= 90°. A “fold” with a vertex angle of two times 

45 , has a separation angle of 90° plus or minus 

45°, depending upon the direction of the oncoming 

flow. Figure 34 demonstrates how the drag coeffi¬ 

cient increases as a function of the shape angle. Two 

branches are found, of course; one for two-dimen¬ 

sional bodies (between walls) and another one for 

three-dimensional conditions. At "c." = 0, parallel¬ 

sided round-nosed shapes have been used in the 

graph; a hallow, scoop-like body is plotted at 180°. 

Figure 32 (near). Drag coefficients of various 3- 

dimensional bodies (40) at R’numbers between 

10^ and lO6. Note: (♦) tested on wind-tunnel floor. 

11 (37) Information on rear-side pressure of plates: 

a) On disks and small-aspect-ratio plates see: NACA (36, 

a) ; AVA Ergebnisse IV; reference (40,f) . 

b) On plates between walls see: (12), (35,a) and (40,f). 

If (40) Experimental results on three-dimensional bodies: 

a) Doetsch, Parachute Models, Lufo 1938 p.577. 
b) NACA, Cup Anemometer, Tech Rpt 513 (1935). 

e; AVA, Hemispherical Bodies, Ergebnisse IV (1932). 

d) Eiffel, Recherches a Tour Eiffel, Paris 1907. 

e) Hemispherical Cup at Rj = 2 10®, ARC RM 712 (1919). 

f) Irminger and Nokkentved, Elementary Bodies and 

Buildings, Kopenhagen 1930 and 1936; Transl’n by Jarvis. 

If (41) Sections (tested between plates or walls): 

a) Lindsey, Simple Shapes, NACA T, Rpt 619 (1940). 

b) Junkers Wind-Tunnel, Report Strote V.9609 (1940). 

c) Interference Between Struts, NACA T- Rpt 468 (1933). 

d) Delany-Sorensen, Various Shapes, NACA T.Note 3038. 

e) AVA Gottingen, Ergebnisse II (1923) and III (1926). 

f) Junkers Wind-Tunnel Result on Angle Profile. 

g) Reported by Barth , Zt.Flugwissen 1954 p.309. 

If (42) Free-streamline (cavitation) theory: 

a) Kirchhoff, Free Jet Theory, Crelle 1869 (see Lamb). 

b) Bobyleff, Russian Phys.-Chem. Society 1881 (see Lamb). 

c) Riabouchinsky-Plesset-Schafer, Journal Appl.Physics 1948 

p.934, and Review Modern Physics 1948 p.228. 

d) Reichardt, Laws of Cavities, German ZWB UM 6628. 

If (43) Neef, Dive Brakes, Fieseler Tunnel Rpt 22 (1941). 

Figure 33 (right). Drag coefficients (41) of 2- 
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Brake Flap. Figure 35 shows an example where the 

principle of flow angle is involved. Because of the 

wing section placed in front of the brake flap, and 

on account of the stationary vortices in the corners 

between wing and flap, the angle at which the flow 

leaves the flap edges, is evidently reduced in com¬ 

parison to the flow pattern of such plate-like shape 

in free flow. The drag coefficient decreases, there¬ 

fore, considerably with the relative thickness of the 

wing section — from the value C^. = 1.8, taken for 

free flow conditions from figure 36, down to approxi¬ 

mately half of that value. 

Figure 34. Drag coefficients of wedges, cones and similar 

shapes as a function of their half-vertex angle. At ot = 90° 
the shape is that of plates in normal flow; between 90 and 

180° “folds” and hollow cones are plotted with their open¬ 

ing against the oncoming stream. 

Free-Streamline Theory. Theoretical solutions are 

existing (42), indicating the drag due to pressure 

on the front of “folds” and cones. The three-dimen¬ 

sional version is plotted in figure 34; and a certain 

relation is obvious between this curve (valid for 

Cp = 0) and the experimental function. The theory 

can be modified by including the negative pressure 

at the rear side (represented by “Cp”); thus: 

CL = C_ (1 — CJ (31) 

where CDo = coefficient for a rear-side pressure 

equal to ambient pressure (Cp = 0). Analyzing, for 

example the flat plate with Cp = — 1.0 and with 

KirchhofFs theoretical value of CpQ = 0.88, equa¬ 

tion 31 yields CD. = 1.76. The actually tested value 

is in the order of 2.0, however. The cavity concept 

(42) evidently does not represent correctly the vor¬ 

tex-street pattern of this type body. A better approach 

is by way of vortex-street theory as explained in 

section 3. Employing equation 13, the drag coeffi¬ 

cient of two-dimensional wedges can be calculated 

on the basis of a tested value for the Strouhal num- 

1 

NOSE DRAG, Fig. 22 

__ < , _ , 
-2 o 2 4 ft<vno Jt/j, 8 

Figure 36. Drag coefficients of wedges, tested between 

walls, as a function of their length ratio (41,a). 

Solid Wedges. Figure 36 presents the drag coefficient 

of wedge sections as a function of their length ratio 

1/h. In the range of negative 1/h values, the effect 

of flow angle is seen again. A variation of the length 

into the wake space (at positive 1/h values) slightly 

increases the drag, at first; unfavorable interference 

with the vortex street is suggested as explanation. 

At length ratios above 2, the flow should be ex¬ 

pected, however, somehow to reattach itself to the 

wedge surface, at some distance aft of the forward 

edges. It is assumed that the drag coefficient then 

reduces to the comparatively low level indicated in 

the graph, estimated on the basis of figure 22. 

ber. 

BETWEEN WALLS -«- C 

Figure 35. Drag coefficient of a dive-brake flap, deflected 

from the trailing edge of a wing section (43). 

8 BASE DRAG 

At the base of projectiles, there originates a pres¬ 

sure drag which is consequently termed “base drag”. 

In principle, the same type of drag is also found 

behind two-dimensional bodies such as airfoil sec¬ 

tions, the trailing edges of which are thickened or 

cut off. It is possible (45) to correlate the various 

tested values of base drag with each other, by con¬ 

sidering the influence of the boundary layer origi¬ 

nating along the forebody. 
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(a) BASE DRAG OF 3-DIMENSIONAL BODIES 

Jet-Pump Mechanism. Examining the flow pattern 

behind the base of a projectile, it is found to be 

similar to that of a jet pump. The “jet” (formed 

by the outer flow), placed like a tube around the 

space behind the base, mixes with the dead air and 

tries to pump it away. The static pressure at the 

base of the body reduces as a consequence. 

U (45) Hoerner, Base Drag and Thick Trailing Edges, 

Journal Aeronautical Sciences 1950 p.622. 

(46) Base drag on bodies of revolution: 

a) Kosin-Lehmann, Fuselages, Yb’k D.Lufo 1942 p.I, 241. 

b) Projectile model see reference (30,c). 

c) Erdmann (Peenemunde), Drag and Pressure Distribu¬ 
tion of Cones and Spheres, German ZWB Lilienthal Rpt 

139/1 p.28. 

d) Charters-Turetzki, Aberdeen Ball.Res.Lab. Rpt 653. 

e) Chapman, Base Drag, NACA Tech Note 2137 (1950). 

(48) Sections formed by cutting off from trailing edge: 

a) AVA Gottingen, Ergebnisse Vol III (1926). 

b) Okamoto, Aeron. Institute Tokyo University Rpt 131. 

c) Swaty (DVL), 0018 Section, Yearbook D.Lufo 1940. 

d) Smith-Schaeffer, Cut-Off 0012, NACA T.Note 2074. 

e) Sargent, 0012 With Cut-Off TE, ARC RM 2209 (1942). 

If (49) Sections with thick trailing edges: 

a) Engelhardt, Momentum Survey Behind Variable Trail¬ 

ing Edge, Aerodynamic Lab’y TH Munchen Rpt 4/1944. 

b) Drescher-Schwenk, In Water, AVA Rpt B 1944/J/17. 

c) Barlow, Propeller Shanks, NACA T Rpt 852 (1946). 

d) Dornier, “Square” Rods, quoted in (41,g). 

e) Strut Sections, Junkers Tunnel Rpt S. 1943/85. 

ff (50) Wieghardt, Surface Imperfections, Yb’k D.Lufo 1943. 

IT (51) Two-dimensional base-drag results at higher Mach 

numbers NACA RM L8B13, L50E19a and T.Note 3550. 

“Insulating” Boundary Layer. Studying available 

pressure- or drag measurements, the base drag of 

projectiles is found to depend largely upon the 

length of the forebody, its surface conditions and 

the ratio of base- to body diameter. The boundary 

layer, arriving at the edge of the base, evidently 

serves more or less as an “insulating” sheet, placed 

between outer flow and “jet pump” effect, and the 

dead space behind the base. The effective dynamic 

pressure of the pump is, in other words, reduced 

because of boundary layer thickness. This thickness 

is proportional to the drag originating along the 

surface of the forebody. As predominant parameter 

of which the base drag is considered to be a func¬ 

tion, we therefore select the drag coefficient 

CfB =A.re/<<lV = C/~<^SB <33> 

where denotes the “skin drag” of the forebody, 

meant to include any drag caused by roughness 

or protuberances. This analysis applies primarily 

to subsonic flow. A similar treatment of transonic 

and supersonic base drag is presented in the corre¬ 

sponding chapters. 

Base Drag of Three-Dimensional Bodies. The avail¬ 

able experiments on projectiles and “fuselages”, 

plotted in figure 37, indicate approximately 

cdb = D/(q S)eT 0029/^b <34) 
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Figure 39. “Base” drag, originating behind 

the cut-off or thickened trailing edges of foil 

sections. Coefficients are defined in the text. 

- JUNKERS FOIL SECTION (49,e) 

• A V A CUT-OFF FOIL SECTIONS (48,a) 

o TOKO CUT-OFF 0013 SECTION (48,b) 

o IIUNCHBN 2412 WITH THICK TE (49,a) 

A DTI 0018 WITH TE THICKNESS (48,c) 

a DORNIER BLUFF BOB SECTIONS (49,4) 

V A V A BLUFF SECTIONS, WATER (49,b) 

+ N A C A AIRFOIL SECTIONS (49,c) 

® N A C A MODIFIED 0012 FOIL (48,4) 

♦ N A C A THIN FOIL SECTIONS (51) 

I ARC MODIFIED 0012 FOIL (48,a) 

» VARIOUS SHEET - METAL JOINTS (50) 

with “B” denoting the base. In the case of bodies 

with a base diameter smaller than that of the fore¬ 

body, the mechanism of base drag may essentially 

be the same as with parallel-sided bodies. Referring 

the base drag to the maximum cross-section area of 

such bodies, and with forebody-drag coefficient 

into 
= C- 'Of. (d/dB)2, equation 34 is transformed 

ACd> =D/(qS.) = 0.029 (dB/df/te (35) 

with representing the forebody drag. Figure 

38 shows corresponding results on a smooth fuse- 

Figure 38. Drag coefficient of a streamline body, whose 

trailing end is cut off in steps (46,a). In calculating the 

function, the base diameter is assumed dB/d = 2 (Al/10). 

lage body, the trailing end of which was cut off in 

steps. The fuselage of an average airplane may have 

a drag coefficient, however, much higher than that 

of such a smooth body of revolution — possibly in 

the order of — 0.15, if accounting for surface 

irregularities and protuberances. For dg/d - 1, 

equation 35 indicates a corresponding base drag in 

the order of ACq, = 0.09. To accommodate the 

tail turret of a bomber, a ratio of dg /d = 0.5 may 

be sufficient, however. The resulting base-drag co¬ 

efficient in the order of less than 0.01, is compara¬ 

tively small; in the order of some 6% of the fuse¬ 
lage drag. 

Effect of Boat-Tailing. Rounding or tapering the 

blunt end of a fuselage body affects the base drag 

only as far as a round edge is able to “pull” the 

flow somewhat into the space behind the base. In 

bodies with in the order of 0.5 and higher, the 

effect of rounding the cut-off end is expected to be 

hardly noticeable. In a similar way, the effect of 

“boat-tailing” the rear end of projectiles, depends 

upon the boundary-layer thickness and the employed 

shape of taper. By means of a boat tail, moderate in 

size (dg /d = 0.9) and in angle of taper (in the 

order of 5° as against axis) it is possible somewhat 

to reduce the drag of projectiles. Reference (46,b) 

shows in such a case a reduction in the order of 

= — 0.07. For larger taper angles, or in cases 

where drag and boundary-layer thickness of the fore¬ 

body are much larger, rather the maximum cross- 

section area of the body must be considered as “base” 

and the base drag be determined for the correspond¬ 

ing Cp-g value (based upon the larger area). 
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(b) BASE DRAG IN 2-DIMENSIONAL SHAPES 

By cutting off or thickening the trailing edge of a 

wing section, a “base” is formed, flow pattern and 

“jet-pump” mechanism of which is similar to that 

as outlined in the foregoing paragraphs for bodies 

of revolution. Figure 39 shows the available test 

points, plotted against the same forebody-drag co¬ 
efficient as defined in equation 33. 

Base Drag at Sheet-Metal Joints. Behind certain 

sharp-edged sheet-metal joints, as illustrated in 

Chapter V, flow pattern and “base” drag are similar 

to those at the blunt trailing edge of a wing. The 

drag of such sheet-metal joints naturally corre¬ 

sponds to the thickness of the boundary layer within 

which they are placed. Employing the analysis as 

given in Chapter V, and with the appropriate con¬ 

stant, the base-drag coefficient of sheet-metal joints 
is found to be 

CQ> =0.18 Vh/6 (36) 

where h denotes the height or thickness of the pro¬ 

truding sheet. The thickness “6” of the turbulent 

boundary layer is given in Chapter II. From equa¬ 

tions 18 and 19 of that chapter can be derived that 

The base drag of the joints is consequently smaller 

than that of most of the foil sections. — It might be 

expected in streamline shapes, that the more or less 

negative base pressure would have an effect upon 

the pressure distribution of the forebody. Results 

of such shapes correlate well, however, with experi¬ 

mental points found in parallel-sided shapes (where 

the pressure distribution is not so much expected to 

be sensitive). 

Profile-Drag Coefficient. The base-drag coefficients 

(equations 38 and 39) are converted into profile- 

drag coefficients by multiplying them with h/c: 

ASS = k<Cosolli-(h/c)% (40) 

where k = 0.10 or = 0.14, respectively. Figure 40 

(as figure 39) shows a transition of the experimental 

points from one of the calculated curves to the other. 

Obviously, for small values of h, as long as the trail¬ 

ing edge is thinner than roughly one half the bound¬ 

ary-layer thickness, a regular vortex street does not 

originate. Results are also available (48, c and d), 

where vortex activity and base drag are seen to be 

reduced upon putting a symmetrical foil section at 

some angle of attack (so that CL plus or minus 

0.1). It is suggested that the vortex street loses sta¬ 

bility in unsymmetrical conditions of flow. 

CfB = (x/h) Cf = (x/h) 2 (f&/x) = 0.2 5/h 

Qi 

Upon introducing h/6 = 0.2 C.g-g into equation 36, 

the base-drag coefficient is found to be 

ChB = O.l/VG^ (38) 

Drag Due to Blunt Trailing Edges. Most of the 

results in figure 39, indicating the base drag of air¬ 

foil sections with blunt trailing edges, show coeffi¬ 

cients which ar esomewhat higher than according 

to equation 38; thus; 

Sb = 0-135/(39) 

Explanation is found in the flow pattern. Behind 

two-dimensional bodies with detached flow, we 

usually have the regulated pattern of the vortex 

street (figure 6). In the case of the sheet-metal 

joints, the up- and down movement of such a street 

is damped, however, or even suppressed by the pres¬ 

ence of the wall along which the wake proceeds. 

-WITH 0.10 ("W'OUT* VORTEX STREET) 

-WITH 0.14 (WITH VORTEX STREET) 

** H A 0 A, 0 0 1 2 AT 6 106 (48,d) 

" * DITTO, WITH LEADINO - EDGE ROUGHNESS 

O HflHCHEH - 2 4 1 5 AT 2 106 (49,») 

* D V I - 0 0 1 8 AT 3 106 (48,o) 

+ ARC - 001 2 IT 110! (48,•) 

0 I 2 (h/c)% 3 

Figure 40. Drag increase of airfoil sections, due to cutting 
off or thickening the trailing edge. 

Laminar Mixing. In supersonic experiments on 

slender shapes (described in the “transonic” and 

“supersonic” chapters), there is a marked difference 

between laminar and turbulent mixing along the 

wake. Pressure distributions favoring laminar flow 

are not likely to prevail, however, in ordinary sub¬ 

sonic shapes and at subsonic speeds. It seems that 

the presented material only represents turbulent 

mixing. There are also some results included in 

figure 37 obtained at supersonic (that is, transonic) 

Mach numbers; they obviously agree with the points 

corresponding to subsonic (incompressible) experi¬ 

ments. It is found, however, that the results in (51) 

at Mach numbers between 0.7 and 0.9 (and at mod- 
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erate R’numbers) correlate with the points in figure 

39 only if assuming that their skin-friction drag is, 

at least to a larger part, laminar. 

Figure 41. Drag coefficient of toil sections whose trailing 

edges are cut off in steps. References (48, a and b). 

Cut-Off Trailing Edge. In figure 41, minimum drag 

coefficients are plotted of several airfoil sections the 

trailing edges of which were cut off in steps. For 

conventional sections (with the maximum thickness 

located at ~ 30% of the chord) the thickness of the 

trailing edge is approximately 

h/t — 2 (Ac/c0) (41) 

where cQ denotes the original chord of the section. 

Replacing in equation 40 the “h/c” by (h/t) (t/c) 

and substituting Cjj50 = Co0. (t/c0), an approxi¬ 

mate but simple expression is found for the addi¬ 

tional drag caused by cutting off the trailing edge 

of such sections: 

0.135 2^ Ac V3 0.34 Ac 

3n/CDo. co VsT c°. 

V3 

This incremental drag coefficient (based on maxi¬ 

mum thickness of the section) is plotted in figure 

41 together with some experimental results. 

Optimum TE Thickness. In the case of wings, the 

trailing edge does not only affect the drag but also 

the lift; the maximum lift is somewhat increased. 

As explained in (45), the airfoil efficiency ratio 

CLmQ^ /CI)m;ft reaches a flat maximum between 

h/c = 0 and a; 0.4%, assuming conventional values 

for the original lift- and drag coefficients of an air¬ 

plane. The corresponding permissible thickness of 

the trailing edge of a wing is in the order of l/s 

to 1 inch, depending upon the size of wing and air¬ 

plane. 

Figure 42. Lift and drag of a 40% thick foil, having 

square ends and ratio A = 4, as tested in a wind tunnel 

(49,e). The section drag is determined by wake-survey. 

Thick Sections. Figure 42 shows another example 

where a blunt trailing edge is of practical impor¬ 

tance. The lift characteristics of a 40% thick section 

are considerably improved upon employing a thick 

trailing edge; the maximum lift-drag ratio is in¬ 

creased by some 100% (!). Profiles with high thick¬ 

ness ratios are used at the blade roots of propellers. 

The flow past such sections is usually somewhat de¬ 

tached from the rear. Thickening the trailing edge, 

therefore, means “filling out” the dead space. An¬ 

other series of tests (49,b), carried out on short 

foil or strut pieces with geometrical aspect ratios 

of b/c — 1.4 and 2.0, but placed between the walls 

of a two-dimensional water tunnel, shows drag re¬ 

ductions in the order of 25 and 30% for thickness 

ratios of t/c = 57 and 80% respectively — after 

thickening their trailing edges up to h/t = 0.5 and 

0.6. In this case, the flow past the original section 

(with h = 0) is, of course, severely handicapped by 

interference with the tunnel walls. Similar condi¬ 

tions prevail, however, in the inside of turbo-pro¬ 

peller configurations, where the air flow feeding the 

jet engine, has to pass between the blade roots of 

the propeller. 

U (52) Pressure drop across grids and screens: 
a) Hoerner, AF Tech.Rpt 6289 (Wright Field, 1950). 

b) Eckert-Pfliiger, Mesh, Lufo 1941, 142; NACA T.M.1003. 

c) AVA Gottingen, as in reference (53,a). 
d) Scholkemeier, LFA Braunschweig Rpt 10 Apr 1943. 
e) Adler, Mach-Number Variation, NACA W.Rpt L-23. 

f) Weske, Airfoils in Grids, J’l Aeron’l Sci. 1944 p.369. 

g) Grids, Mitt.Hydrau.Inst. TH Miinchen 1 (1926), 2. 
h) Baines-Petersen, Screens, Trans ASME 1951 p.467. 

i) Schubauer-Others, Screens, NACA T.Note 2001 (1950). 

k) Roberston, see in reference (55,c). 
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Free-Flow Principle. The loss coefficient of screens 

and grids having smaller solidity ratios, can be de¬ 

rived from the free-fiow drag coefficient of 

their elements or ribs, if allowing for the increased 

9. DRAG OF NON-SOLID BODIES velocity = w/(l — & ) within the openings: 

Grids or screens can be used for wind protection 

(53,a), as turbulence screens in wind tunnels, as 

safety grids in the intake ducts of engines (52,a) 

and in the design of dive brakes or similar devices. 

The mechanism of flow across pervious sheets of 

material also helps to explain the drag characteris¬ 

tics of parachutes and wind socks. 

<50> 

Using, for example, C^0. = 1, the equation ap¬ 

proximates the loss coefficient of round-wire screens 

or grids, up to d « 0.3. Between this solidity ratio 

and d = 0.5 or 0.6, a transition takes place from 

this function to that as indicated by equation 48. 

Loss Coefficient. The loss of momentum that the 

flow encounters upon passing through pervious or 

porous material, is a function of shape and solidity 

ratio of the elements or ribs composing the sheet. 

The solidity “<p ” is the ratio of the projected solid 

area S. to the total area Sa. The pressure drop across 

screens, perforated sheets or through fabrics — is 

found by tests in closed channels (ducts). With “1” 

indicating the conditions ahead of, and “2” behind 

the obstacle, the loss coefficient is 

^ = (Pi—/(.°-5 § w2) = Ap/qw (47) 

where w indicates the average velocity in the chan¬ 

nel (w = w, = w2). In the case of round rods or 

wires, forming the grid or screen, the flow can be 

considered to be that through a bunch of nozzles 

along which the velocity is increased from w to a 

maximum “w^”. Subsequently the cross section is 

'suddenly' expanded again. The corresponding loss 

of momentum is indicated (according to Borda; 

see about diffusers in the chapter on “internal sys¬ 

tems”) , by the coefficient 

(S/l1-^))2 (48) 

In the case of grids composed of sharp-edged strips, 

the flow contracts within the openings to a cross- 

sectional area which is in the order of (2/3) S0p^rt. 

The loss coefficient is, therefore, equal to that at a 
higher solidity ratio: 

<«> 

Experimental data plotted in figure 43 substantiate 

the two theoretical equations, particularly in the 

higher ranges of the solidity ratio. The term 1/ § 

(which can be considered to be the dynamic pres¬ 

sure qw necessary to produce a certain pressure 

differential Ap) has, therefore, been plotted in the 

right-hand part of the graph. 

Streamline Grids. Using in the last equation Cj)0. 

= C^jo (c/t), the loss coefficient of grids composed 

of slender streamline elements can be obtained from 

their basic profile-drag coefficient CDio. Substan¬ 

tiated by tests (52,f) up to d = 0.5, the equation 

shows that such grids have much smaller loss coeffi¬ 

cients than round-wire devices. Streamline grids are, 

therefore, suitable for protection against foreign 

substances — if placed across the inlet channel of a 

water turbine or in the intake duct of aircraft en¬ 

gines. 

WIRE ELEMENTS AT R*> 103 

(52,c)« <52,e)o (52,d)v 
(52,b)« (55,c)« BLUFF V 

STREAMLINE ELEMENTS A (52,f) 

FABRIC ELEMENTS AT R„= 200 

<55,c)« * (55,d) 
SHARP ELEMENTS AT R* > 103 

(52,c)+ (52,h)I (52,d)X 

Figure 43. Momentum-loss coefficient across pervious 

sheets of material (screens and fabrics) as a function of 

their solidity ratio. Experimental results from (52). 

Fine Fabrics, such as parachute cloth, have yarn 

diameters in the order of d = 1 mil. The Reynolds 

number R* = wK d/y is correspondingly small; in 

the case of a man-carrying parachute during steady 

descent, in the order of Rr » 200. In the vicinity 

of this number, the viscous forces are of appreciable 

magnitude (as shown in reference 55). Consider¬ 

ing a certain solidity, the loss coefficient is therefore 

2 or 3 times as high as beyond R^ = 103, for which 

range the Borda-type equations (number 48 and 

49) are applicable. The loss coefficient of an aver¬ 

age parachute cloth is thus in the order of § = 200 

or 300; see experimental points in the right-hand 

part of figure 43. 
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Compressibility. The pressure loss across screens 

and grids increases with the Mach number (52,e). 

The increment is of the type AJ ~ M ; and it is 

unimportant up to Mach numbers M = w/a of about 

half the critical value. The critical number indi¬ 

cates that the speed of sound is reached within the 

openings of the porous material considered. At 

solidities higher than 6 = 0.6, the critical number 

is approximately 

Mcni = 058 (51) 

Drag In Free Stream. Upon placing a pervious sheet 

of material in a free stream—instead of in a closed 

duct—the velocity w (shortly ahead and behind the 

surface) is smaller than the undisturbed velocity V. 

Part of the flow turns sideways in order to get 

around the obstacle, rather than passing through 

the sheet. Assuming that w = 0.5 (V + Wqo) ; (where 

ww= wake velocity far downstream), theory (54) 

gives a function between drag coefficient and loss 

coefficient: 

So = D/(q so) = 1 - (<4 - 5 )/(4 + S t 
This equation agrees with experience, up to 5=1 

and CDa = 0.6, as can be seen in figure 44. Beyond 

this limit, Cdcj steadily approaches the value of 

the solid plate or disk (Cp. — 1.17). Beyond the 

range of the plot (5 = 20), the drag difference 

between pervious sheets and solid disks is no longer 

considerable (less than 5%). As derived from 

their definitions, the relation between loss- and drag- 

coefficient is given by 

cDfl = §(w/V)2; w/V-tfwT <53> 

By combining available information on the value 

of S with the function in figure 44, it is possible 
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A V A G R I D S (o) 
A V A WIRE MESH (o) 

L F A G R I D S (b) 

ARC WIRE MESH (c) 

RADIATOR - - - - CORES (d) 
-WEINIG ■ • THEORY (54) 

10 /S I'c&Z 2a 

Figure 44. Relation between the drag coefficient of per¬ 

vious sheets in free normal flow, and the pressure-loss 

coefficient of the porous material. References (53). 

to determine the drag coefficients of pervious ob¬ 

stacles (in normal flow) as a function of their solid¬ 

ity ratio. As an example, the drag of a radiator (core 

in the open, without duct or fairing) is quoted from 

(53,d). For a design with § = 3, the drag coeffi¬ 

cient was found by wind-tunnel test to be CDo = 

0.95; see in figure 44. 

Parachutes. Permeability is a function of the loss 

coefficient (equation 47) across any porous mate¬ 

rial, with “w” indicating the average velocity shortly 

ahead or behind the “sheet”. Considering the vol¬ 

ume flow of air through the opening of a parachute 

canopy, or through its maximum cross-sectional 

area SD, the effective velocity is found to be higher 

than the “w” obtained from the ' 5 coefficient of the 

fabric used — approximately in proportion to 

Smat/SD. The velocity ratio is increased accord¬ 

ingly, to 

Vv= (wWcDo/5 <54) 

where = developed area of the material form¬ 

ing the canopy. Using now this ratio as a permeabil¬ 

ity measure for porous obstacles (rather than that 

of the material as such), various experimental re¬ 

sults of pervious drag “bodies” have been corre¬ 

lated in figure 45. Flat sheets are included in the 

graph as well as parachutes. It is believed that at 

higher permeabilities, the shape has little influence 

on the magnitude of the drag coefficient. Approach¬ 

ing, however, the solid condition (at w/V = 0), 

the external flow pattern is naturally a function of 

shape. — The outlined procedure is equivalent to 

calculating the drag coefficient as 

CDq= S(VSmQtf(wa/V)2 (55) 

Parachutes and wind socks are further discussed as 

listed in the Index. 

X standard disk value (figure 32) 
• solid oup or oap in tunnel (40,a) 
O parachute models In tunnel (56»a) 
+ grids and soreens - tunnel (53,a) 
A pervious sheets drop tests (53,o) 
-Welnig theory (54) 

taken from figure 44 

Figure 45. Drag coefficient (on frontal area) of pervious 

sheets and parachutes, as a function of the velocity ratio 

wn /V (defined for maximum cross-sectional area). 
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Figure 46. Drag characteristics of fluttering flags (57) ; as a function of fabric 
weight (left), and as a function of chord to span ratio (right). 

Drag of Flags. Flags are made of porous material 

(fabric). Their drag is caused, however, by a mech¬ 

anism different from that as explained in the pre¬ 

ceding paragraphs. The minimum drag of a “sheet” 

in tangential flow corresponds, of course, to the 

(turbulent) skin friction drag along the two sides; 

and may thus be in the order of CDn = 0.01, assum¬ 

ing to be = 0.005. Tested drag coefficients of 

flags are considerably larger, however, than the 

frictional minimum. Additional pressure drag arises 

by way of flow separation, caused by the flutter of 

the bunting, which is caused in turn by separation. 

Two parameters are found in (57) affecting the 

drag of flags; the chord/span ratio (c/b) and the 

weight of the fabric (in lb/ft2). As illustrated in 

figure 46, there are two components of drag; one 

representing skin friction plus drag of “batten” or 

staff (CDo ~ 0.025), and a dynamic component 

representing flutter and separation. For an “aspect 

ratio” b/c = 1, and a material of 0.02 lb/ft2, the 

drag coefficient is in the order of CDn = 0.1, a 

value which is found 10 times as high as the fric¬ 

tional drag estimated above. 

10. REDUCTION OF PRESSURE DRAG 

Considerable pressure-drag coefficients are always 

the result of flow separation. Accordingly, to reduce 

the drag, separation itself must be tackled. Several 

means have been tried to control the boundary 

layer; moving portions of the body surface in the 

direction of flow, guiding the flow around edges 

through auxiliary foils or vanes, discharging fluid 

with high velocity into the boundary layer, and 

finally removal of the retarded boundary-layer mate¬ 

rial by way of suction. 

(a) MECHANICAL DEVICES 

Moving Skin. Upon moving, by suitable means, por¬ 

tions of the skin of a body in the direction of flow, 

the relative velocity between air and body surface, 

and accordingly the skin friction — can be reduced. 

The formation of a boundary layer can thus be 

prevented and flow separation can be avoided. As 

an example, figure 47 shows the flow pattern around 

If (53) Drag of pervious obstacles in free flow: 

a) AVA Gottingen, Grids, Ergebnisse Vol IV (1932). 

b) Scholkemeier, Rpt LFA Brunswick 10 April 1943 (52,d). 

c) Taylor 8c Davies, Porous Sheets, ARC RM 2236 and 2237. 

d) Properties of Radiator Cores, NACA T.Rpt 63 (1919). 
If (54) Weinig, Theory of Parachutes, Yearb’k D.Lufo 1940. 

ff (55) In the viscous range of the Reynolds number: 

a) Hoerner, Properties of Screens and Fabrics, Textile 

Research Journal 1952 p.274. 
b) Dannenberg, Porous Material, NACA T.Note 3094. 

c) Robertson, Fabrics, Textile Res.J’l 1947 p.167. 

d) Longnecker, 1950 Thesis Text. Inst. Lowell, Mass. 

If (56) Drag characteristics of parachutes: 

a) Scher and Draper, NACA Tech.Note 2098 (1950). 

b) More references are under “parachutes”; see Index, 

ff (60) Experiments with movable-skin devices: 

a) Prandtl in Ergebnisse AVA Gottingen Vol III (1936). 

b) Farren, in Goldstein’s "Modern Fluid Dynamics” 1938. 

(57) Fairthorne, Drag of Flags, ARC RM 1345 (1931). 

Figure 47. Flow pattern past rotating circular cylinders: 
(a) Separated flow pattern with vortex street; 

(b) Cylinders as presented by Prandtl (60,a); 

(c) An application as suggested in (60,b). 



3-26 FLUID-DYNAMIC DRAG 

a pair of circular cylinders. With the two bodies 

rotating in the directions as indicated by the ar¬ 

rows, the flow becomes attached all the way along 

the rear side of the configuration. The drag is con¬ 

sequently reduced, practically to zero. It is doubt¬ 

ful, of course, that any design involving moving 

surfaces will ever be successful in practical applica¬ 

tion. Years ago, the “Flettner Rotor”, intended to 

utilize the “Magnus” effect — was an application of 

this type of boundary layer control. A possible ap¬ 

plication, suitable to reduce the resistance of blunt 

shapes, is illustrated in the lower part of the illus¬ 

tration. 

Vortex Generators (62). Another “mechanical” 

means of preventing or postponing separation is 

“redistribution of momentum in the boundary 

layer”, or “transporting of momentum to the lower 

regions of the boundary layer” by means of vortex 

generators or through ramps or wedges placed ahead 

of the expected separation. Through such “mixing” 

methods, separation can evidently be somewhat de¬ 

layed and the lift of wings or wing flaps can be 

increased. With regard to drag, an equal price has 

to be paid, however, for avoiding separation in the 

form of momentum losses in the outer stream. 

Figure 48. Reduction of separation drag (of a disk) by 

means of a "ring”, tested in various sizes in reference (61,a). 

Ring Surface. The flow around sharp edges can 

considerably be improved by means of auxiliary 

foils. The most-commonly known application of this 

method is the leading-edge slot, employed to in¬ 

crease the maximum lift of wings. Considering blunt 

bodies, the separated flow can be affected by simi¬ 

lar devices. As an example, figure 48 shows how the 

drag of a disk is reduced to approximately 40% of 

the original value, by means of an annular foil 

which is placed around it. Such surfaces have been 

used in the form of the “Townend Ring” (61,a) 

to improve the flow pattern around radial engines 

(see in the “internal-flow” chapter). 

Guide Vanes. For application in blunt bodies, guide 

vanes have been investigated (61,b). As an exam¬ 

ple, figure 49 shows a favorable arrangement of 

double vanes at the nose and at the base, respec¬ 

tively, of a two-dimensional shape. In either case, 

the drag is reduced to a fraction of the original 

with: Cp. = 0.26 

w'out = 0.71 

V -►.■RC = 6*I0S 

with: CD = 0.27 

w'out = 0.S8 

Figure 49. Reduction of pressure drag on a two-dimen¬ 

sional body by means of staggered guide vanes (61,b). 

value (without vanes). Auxiliary surfaces similar 

to these have also successfully been used to reduce 

the drag of buses. However, employing any such 

devices, possible interference effects and the drag 

of the parts necessary to support the vanes, should 

not be overlooked. 

(b) BOUNDARY-LAYER CONTROL 

Discharging Fluid. The boundary layer’s momentum 

deficiency can be counteracted by discharging a 

high-velocity sheet of fluid from within the body 

considered, tangentially into the layer. Flow sepa¬ 

ration, if originally existing, may be eliminated 

in this way. This technique has not yet been util¬ 

ized in practical applications. So far, successful tests 

have been conducted with the aim of increasing the 

maximum lift of a wing section by blowing air over 

its upper side (63), thus affecting the flow in a 

way similar to, but more intensively than by wing 

slats. The maximum lift can be doubled by this 

method. Discharging of fluid is also of interest in 

connection with boundary-layer control by suction; 

the removed volume of fluid has to be discharged 

at some other place (if it is not consumed in the 

engine) . 

Suction Method. The suction variety of boundary- 

layer control has also been tried for increasing the 

maximum lift of airfoils. The boundary-layer sheets 

closest to the surface of the upper side, are removed 

through openings or slots into the hollow wing by 

means of a blower (and returned somewhere else 

into the outer flow). The suction method is also 

very effective in stabilizing the laminar boundary- 

layer flow — as described in the “friction” chapter. 

Sphere With Suction. As an example of the possible 

application of boundary-layer suction in bluff bod¬ 

ies, to prevent or to reduce separation, figure 50 

presents the drag coefficient of a sphere at Reynolds 

numbers above the critical — as affected by suction 

(64). Portions of the rear surface are replaced by 
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Figure 50. Drag analysis of a sphere, tested with boundary- 

layer suction at the rear side, to reduce separation. 

wire mesh; the air from the boundary layer is 

sucked through this mesh and discharged sideways 

into the space outside the wind-tunnel stream. Un¬ 

der these conditions, the drag as measured at the 

tunnel scales, is reduced from CD> = 0.125 to 0.070. 

As indicated in the treatment of laminarization 

through boundary-layer control (in Chapter II), 

the power expended in the suction machinery can 

or should be considered in the form of an additional 

effective drag coefficient. Since in the sphere experi¬ 

ment considered, the original drag coefficients have 

been determined as forces on the wind-tunnel bal¬ 

ance, the procedure is somewhat different, however, 

from that as described in Chapter II. To obtain the 

wake-drag coefficient, values of (2 Cq) have been 

subtracted from the tested values. Then, to obtain 

the total effective coefficient, values of (Cg. Cp) 

have been added to the wake-drag values, with Cp 

indicating the difference between pambi«vL arid the 

pressure inside the hollow sphere. As an important 

result it should be realized that in case of the sphere, 

the volume coefficient CQ is at least one order of 

magnitude larger than in the laminarization tech¬ 

nique (Chapter II). As a consequence, the pressure 

drop across the suction openings is considerable; 

H (61) Experiments on Auxiliary foils or guide vanes: 
a) Townend, “Townend Ring". J.R.Aero.Soc. Vol 24. 

b) Frey, Guide Vanes, Forschung Ing.Wesen 1933 p.67 and 

1934 p.105; see also Fliigel in Yearb’k ST.G 1930 p.87. 

IT (62) Postponing separation by vortex generators: 

a) Bursnall, Generators on Lift, NACA Rpt RM L52G24. 

b) Stephens-Collins, “Ramps”, Austral. ARC Rpt ACA-55. 

If (63) Discharging fluid into boundary layer: 

a) Hoerner, Maximum Lift by Blowing, ZWB FB 276. 

b) Williams, Blowing Over Flaps, ARC C.Paper 209 (1955). 
11(64) Schrenk, BL Control, Zts.Flugt.M.Luft 1926 p. 366. 

If (65) Preventing separation through suction: 

a) Thwaites Flap, ARC RM’s 2611, 2787 and 2788; see 

also NACA T.Note 3498 and J1 Aeron’l Sci. 1948 p.189. 

b) Griffith-Type Foil-Sections in Wind Tunnel, ARC RM’s 

2148, 2149, 2475, 2577, 2647 (1945 to 1953). 

Figure 51. Drag of a circular cylinder (at subcritical 

R’number) as a function of suction; from reference (65,a). 

the Cp values are high and they increase appreciably 

with the suction-volume coefficient Ca. In conclu¬ 

sion, the total drag coefficient of the sphere (as in¬ 

vestigated) is reduced only from 0.125 to 0.095 in 

optimum condition, while the smallness of the mini¬ 

mum wake-drag coefficient obtained (0.013) may 

only be of academic interest. 

Cylinder With Suction. Figure 51 presents results 

of a wind-tunnel program designed to eliminate 

separation and to produce circulation (lift) in a 

circular cylinder. The so-called Thwaite’s flap is an 

important part in this method of boundary-layer 

control by means of suction through the porous 

surface of the cylinder — evidently preventing the 

start of an alternating vortex street. It seems that 

the minimum value of the suction-volume coeffi¬ 

cient necessary to produce an attached flow pat¬ 

tern, is proportional to y/Rj representing the mo¬ 

mentum losses of the laminar boundary layer. Re¬ 

attachment is complete as can be seen in the rear- 

side pressure coefficient which increases from Cpr = 

-1 (without suction) to +1 (locally at the rear 

“stagnation point”), above CQ = 0.05 as in Figure 

51. The drag as determined in the wake, reduces to 

zero. Here again, an effective component of drag 

can be calculated, representing the power expended 

in pumping the boundary layer material; AC^. = 

(1 + Cp) Cq , where Cp — 1.5 indicating the static 

pressure differential between inside and ambient 

space. The minimum total drag coefficient is then 

found to be in the order of Cp. = 0.2. The result 

is similar to that of the sphere in figure 50. 

Thick Foil Section. Considering suction as a means 

for preventing flow separation, there is hardly much 

to be gained in applying it to slender wing sections 

(at small lift coefficients). A number of experiments 

have been carried out, however, in England (65) 

attempting to reduce separation and resistance in 

comparatively thick foil- or strut sections. Figure 

52 presents as an example results of a 30% thick 
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shape having a cusped rear end with a pair of suc¬ 

tion slots. It is possible to reduce the wake in this 

arrangement to an apparent drag coefficient of 0.001 

and 0.006, respectively. Figure 52 shows, however, 

that the total drag coefficients (obtained after add¬ 

ing ACDs= (1 + 0.7) Ca) are of appreciable mag¬ 

nitude. With turbulent boundary layer (stimulated 

at 0.1 chord), there is hardly any advantage found 

in this type of suction. Only upon combining sepa¬ 

ration control with laminarization (laminar bound¬ 

ary layer almost to the suction slots), is a consider¬ 

able reduction of drag (to ~ i/2) obtained. The 

value of = 0.012 is not lower, however, 

than that of an ordinary streamline section (with 

t/c = 30% at higher R’numbers — as can be seen 

in the “streamline” chapter. It is, therefore, sug¬ 

gested that suction is not really a favorable means 

for reducing drag. 

t/c - 30* 
Ttc * 10* 

II. SUPPLEMENTARY NOTES 

Since there is more space available on this page, 

some notes supplementing the topic of pressure 

drag are added as follows. 

Forebody Drag. In the second and third shape shown 

In figure 53, the value of the negative rear-side 

pressure coefficient is greater than the total drag 

coefficient. It is therefore concluded that the fore¬ 

body drag is somewhat negative, thus confirming 

what is explained about negative half-body drag in 

connection with figure 20. 

Figure 53. Drag and rear-side pressure of bluff sections 

(41,g) tested at b = 30 h, between end plates. 

Total Drag Coefficients (on ‘Wing* Area): 

Without Suction (Separated) — 0.025 

With Suction, Turbulent (a) — 0.015 

With Suction, Laminar (b) — 0.010 

Figure 52. Drag coefficient of a foil section (between end 

plates) as a function of suction applied to the rear (65,b). 
(a) turbulent from 0.1 c: CDW&ke = 0.005-, CQ = 0.010 

(b) laminar flow to slots: CDwq)<9 = 0.001; C,j= 0.007 

Leonardo Da Vinci (1452-1519). Figure_ 55 has been 

traced from one of Leonardo’s drawings (F.55) of 

flow patterns as he had determined them in water. 

We might thus call VonKarman’s vortex street 

“Leonardo’s vortex trail” as well, since he is some 

450 years ahead, if not in the mathematical treat¬ 

ment, so certainly in discovering this system. 

V 
• //f / vNNWVz/vW///' v' 'Y//\ ' M/TAf vp/^*u ///(I \*ft/ 

Figure 55. Flow pattern past a bluff obstacle (showing an alternating vortex 
street), traced from one of Leonardo da Vinci's drawings. — “Del Moto e Misura 

dell’Acqua”, edited by Carusi and Favaro, Bologna 1923. 
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CHAPTER IV - WIND FORCES ON STRUCTURES 

The forces produced by wind in buildings are es¬ 

sentially pressure- and predominantly drag forces 

(1). Besides buildings, other structures are of engi¬ 

neering interest too with respect to wind — such as 

bridges, chimneys, and steel masts, for example. 

I. WIND CHARACTERISTICS 

places on top of buildings or towers. Figure 1 pre¬ 

sents a collection of tested values, plotted in form 

of the dynamic pressure ratio against an altitude of 

10 meters (= 33 ft) and of 100 meters (= 330 ft), 

respectively. Interpolation is possible in the form of 

n /— 
V •— Vh ; or q Yh (1) 

Speeds. Buildings have to be made strong enough 

structurally to withstand the maximum wind veloci¬ 

ties which, by past experience, can be expected in 

their particular location. In England, for example, 

maximum velocities between 70 and 110 mph have 

occasionally been observed in violent storms (at 

heights above the ground between 30 and 50 ft) 

(4,c). In hurricanes moving along the Atlantic coast 

of the United States, velocities up to 140 mph have 

been reported. The dynamic pressures q = 0.5 q V 2 

corresponding to the higher speeds quoted, are be¬ 

tween 30 and 50 lb/ft2 . Similar values are assumed 

in building codes. Appreciably higher speeds (up 

to 300 or 400 mph) have been mentioned in con¬ 

nection with tornadoes, locally restricted to the nar¬ 

row path along which they travel. By economical 

reasons, ordinary buildings are generally not made 

to stand up against this type of storm. 

Boundary Layer. Moving along the surface of land 

or water, wind develops a boundary layer in a man¬ 

ner similar to that as described in the “friction” 

chapter. The thickness (height) of this layer is much 

larger, however, as found on man-made aerodynamic 

bodies. In steady winds, the thickness has been stated 

to be higher than 1000 ft. Statistical observation 

(2,e) indicates that the BL thickness (in ft) is in 

the order of 6 = 30 to 50 times the speed of VQ (in 

ft/sec, above the layer). The same source also gives 

statistical values for the turbulent velocity fluctua¬ 

tions within the Earth’s b’layer; their non-dimen¬ 

sional frequency (f S/V0) is in the same order of 

0.13 to 0.25 as found in wind tunnel investigations 

of much thinner boundary layers. Man-made struc¬ 

tures are usually within the b’layer. Correspond¬ 

ingly the speeds quoted above are not really maxi¬ 

mum; rather they are values measured at convenient 

where n is in the order of 6 or 7. Considering as an 

example, the Eiffel Tower (h = 300 m *= 1000 ft), 

the dynamic pressure at the top may be 1.7 times the 

value at the lower main platform. — Over obstacles 

and because of various meteorological effects, the 

distribution may be considerably different from that 

in the equation. It is said, however, in (2,h) that 

during 93% of the daytime, the distribution is 

“logarithmic”, a type of function meant to be similar 

to that in figure 1. Evidently, it is also difficult 

to define zero altitude of the distribution (where 

V—> 0) in woods or cities. It is suggested to assume 

a type of sublayer, roughly corresponding to the 

average height of trees or buildings, respectively; in 

which velocity is close to zero. 

• QUOTED FROM (a) h. — 10 m 
* ON RADIO MAST (d) - 100 m 

OVER AIRFIELD (f) - 10 m 
A NACA, FIELD <fl) h. - 10 m 
- US WEATHER BR (h) - 100 m 
a ELEKTROTEKNIKEREN 1949 p.407 

1.4 

1.2 

0.8 

o.^ 

o.2 

0 
0 0-5 1.0 

ALTITUDE RATIO 

1.5 2.0 2.5 

Figure 1. Increase of dynamic pressure with altitude in 
steady winds, over “smooth” ground surface such as calm 

water or an airfield; evaluated from (2) with h. indicating 

a suitable reference altitude. 
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Ground Effect. In wind-tunnel investigations and 

in full-scale calculations there does not seem to be 

any established rule to account for variation and 

distribution of speed with altitude, as far as wind 

loads on buildings and structures are concerned. On 

the floor of the tunnel or on a ground board, a 

boundary layer is usually present that is lower than 

the obstacle investigated. Drag coefficients are then 

referred to the undisturbed dynamic pressure above 

the layer. Pressures are given in form of the non- 

dimensional coefficient 

S = (Ploc.1 - P«~bi)/<»-5 9 v2) <2> 

(a) 
c,™, - -.aV ^v-: 
c,.-o-<>o s*' Co. - 0 96 

—V 

<W~.72 
Ci.a|.2C Co. e I-&5 

iw 

to) halt-circlar plate; Q.- 1 19 (- 1.171 «>) hall streaetlioe bod,; C^- 0.09 (- 0.04) 

Figure 3. Drag coefficients of two three-dimensional bodies 

(seen in direction of flow), mounted over a ground surface 

(3,b), tested at = 2 10s where b = 90 mm. The values 

in brackets indicate drag coefficients in free flow (on double 

models). 

type of their flow pattern does not appear to be 

affected by the atmospheric boundary layer. The 

magnitude of their drag coefficients corresponds to 

the mechanism of protuberances as explained in the 

chapters on “irregularities” and “interference”; in 

other words, their drag approximately corresponds 

to the average dynamic pressure within their height. 

2. VARIOUS BUILDINGS 

✓- 
v / 
*-- 

\ 
k— 
| a) oven ground i.o 

b) IN FRtc flow Qj.- 1.15 

(C) 
V — - r — (.4 4 Ay — 1 n 
V 

WAKE 

^-D. •>'' i-u 

“IS 

_i/ c _ 4»3 +1 02 — 14,5 

JL = 4h 

-1/ ko. — • VJ ■ l-u*- - I.OJ 

Figure 2. Pressure and drag coefficients of bluff shapes, 
tested between tunnel walls (3,a) : 

a) half bodies mounted over floor of tunnel, 

b) in free flow (complete double models), 

c) demonstrating influence of “splitter” plate. 

Figure 2 shows that the b’layer has a considerable 

influence upon pressure distribution and drag of 

simple bluff obstacles. The experiment in part (c) 

of the illustration demonstrates the influence of the 

ground on the vortex street developing behind two- 

dimensional obstacles (see in the “pressure drag” 

chapter). With the board (“splitter” plate) ahead 

of the two-dimensional plate, face- and rear-side 

pressures are somewhat reduced as against condi¬ 

tions in free flow. With the board behind the plate, 

the vortex street is evidently suppressed; the value 

of the rear-side pressure is considerably reduced 

from Cp = —1.14 to —0.37, and the drag coefficient 

is only half of that in free flow. In a three-dimen¬ 

sional plate (figure 3), the drag coefficient is not 

affected, however, by the presence of the ground. 

On the other hand, because of interference with its 

flow pattern, the drag coefficient of the streamline 

body in figure 3,b (with b’layer-sensitive flow sepa¬ 

ration from the rear), is a* doubled. Since buildings 

are usually of bluff and three-dimensional shape, the 

Houses. Figure 4 presents the pressure distribution 

of a house. There is positive pressure on flat sur¬ 

faces facing the wind. In the separated space behind 

the house, the pressure is uniform and negative, 

between Cp = -0.2 and -0.8 (depending on build¬ 

ing shape and wind direction). In sharp-cornered 

buildings, the flow may also be separated from the 

lateral walls. References (4,b and c) show that the 

flow can also be separated from the windward side 

of roofs as illustrated in figure 4 - particularly with 

slopes smaller than 45° and in taller buildings (with 

h/1 exceeding unity. Figure 5, on the other hand, 

is an example where the flow reattaches to the wind¬ 

ward side of the roof. This illustration also demon¬ 

strates that the distribution is little or not at all 

affected by the particular shape of the rear side. 

Wind directions different from the one in the two 

illustrations are investigated in (4). Reference (4,c) 

also gives information on the mutual interaction 

between several houses placed one behind the other 

in a row. 

Figure 4. Flow pattern and pressure distribution (on 

center line) of a simple house shape (4,b). 
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Figure 5. Influence of the leeward-side shape of a house Figure 6. Pressure distribution on airship hangars (5). 

on pressure distribution (3,a) . 

Internal Pressure. Buildings are usually not really 

air-tight. The inside pressure is, therefore, affected 

by the outside distribution. Since negative values 

are predominant in this distribution, the inside pres¬ 

sure usually assumes some negative value (in the 

order of Cp = —0.2 or —0.3) for a random distribu¬ 

tion of leaks. However, by opening windows on the 

windward (leeward) side, a maximum positive 

(negative) pressure value can be obtained inside the 

building. This inside pressure then combines with 

the negative (positive) outside pressure on the lee¬ 

ward (windward) outside of the building, thus pro¬ 

ducing a maximum pressure differential in the 

respective wall of the building corresponding to a 

coefficient Cp = Cp0ut — Cp;n, which can be in the 

order of 2. For an assumed maximum dynamic wind 

pressure of 50 lb/ft2, the corresponding pressure 

force in the considered wall is then in the order of 

If (1) Principles of building aerodynamics are laid down 

by Pagon in 8 Articles in Engg News Record; Mar, 

Jul, Oct, Dec 1934 and in Apr, Mar, May, Oct 1935. 

If (2) Wind velocities as a function of altitude; 
a) Deacon Wind Velocities in the Atmosphere, Por- 

ton Technical Paper No. 39, Series No. 10, 1948. 
b) Paeschke, Physik der Atmosphare, Vol.24 p.163. 

c) Wind Near Ground, J.Metr.Soc. Japan, 1952 p.255. 

d) Wing, Wind Pressure, Electrician 1921 p.6. 
e) Goddard, BL in Atmosphere, JASci.1935 p.115. 

f) ARC, Velocity Gradient, RM 1489 (1932). 
g) NACA, Air Conditions Near Ground, T.Rpt 489. 

h) Meteorology Atomic Energy, Gov.Printg O. 1955. 

If (3) Resistance of elementary bodies: 

a) Irminger-Nokkentved; Drag Characteristics, Wind 
Pressure, Kopenhagen 1930 and 1936; Transl by Jarvis. 

b) Schmid, Wind Resistance of Motor Vehicles, Issue 

No. 1 of Deutsche Kraftfahrtforschung VDI, 1938. 

ff (4) Pressure distribution on houses: 
a) Ergebnisse AVA Goettingen IV (1932) p.128. 
b) Chien-Feng-Wang-Siao; Pressure Distribution on 

Elementary Buildings; Iowa Univ. Rpt for ONR 1951. 

c) Bailey and Vincent, Wind Pressure on Buildings, 
Inst’n Civil Engrs. Journ. (London) 1942/43 p.243. 

ff (5) Pressure distribution on aircraft hangars: 

a) Eiffel, Nouvelles Recherches de l’Air (1919). 

b) Arnstein-KIemperer, Akron Dock, J.A.Sci. 1936, 88. 

c) Ergebnisse AVA Gottingen Vol IV p.128. 

Figure 7. Drag coefficients of simple shapes on 
ground surface. First 8 bodies from (3,a) ; then comes 

a cylinder (8,b) at Rj = 10', smooth as well as with 

8 ribs on outside; finally a square prism (6,b) in 
two positions. 

100 lb/ft2. The safeguard in such a wall may be 

the windows. They will probably blow out (or in, 

respectively), before the wall collapses. 

Hangars. Figure 6 shows the pressure distribution 

on the outside of two hangars. As in circular cylin¬ 

ders (“pressure drag” chapter) a suction peak (in 

the order of Cp = —1.2) appears somewhat ahead 

of the roof top. Again, the internal pressure is of 

great importance for the structural safety in a wind 

storm. Inside pressure coefficients are, for example: 

Cp = -0.6 with the hangar doors open 

Cp = —0.4 with “lantern” windows open 

Positive internal pressures could be produced 

through openings (windows) in the windward side. 

Combination of the suction forces near the top of 

these structures with positive inside pressure may 

lift the roof off, as it has happened occasionally in 

strong winds. 

Tall Buildings. Figure 7 presents the drag coeffi¬ 

cients of various shapes, tested over and in a bound¬ 

ary layer as indicated. The coefficients are similar 

to those listed in the “pressure drag” chapter. As 

a function of height h over width b, the coefficients 

increase in a manner similar to those of plates and 

subcritical circular cylinders in free flow. Because of 
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I Co.- 1.4 TO 1.5 

Figure 8. Tests on model of Empire State Building (6,a) ; 
note wind-tunnel boundary layer and approxi¬ 

mate skyline of surrounding buildings. 

this effect and owing to the increase of wind pressure 

with altitude, the moment due to drag forces might 

grow sufficiently large to turn-over tall buildings. 

An experimental investigation was, therefore, un¬ 

dertaken in connection with the design of the Em¬ 

pire State Building (6,a). Figure 8 shows some 

results, indicating drag coefficients (determined from 

pressure distribution as well as by force measure¬ 

ments) up to CD. = 1.5. For an exposed frontal 

area (above the sky line) in the order of 100,000 

ft2, the wind force on the building, in a hurricane 

blowing at least with 100 mph, at a corresponding 

dynamic pressure q ~ 40 lb/ft2' — may then be 

estimated to be roughly 2000 tons. It is not surpris¬ 

ing, therefore, that the structure has been reported 

(6,c) to be bending; so for example by one 

foot (top against base) in a 40 mph wind. 

Figure 9. Pressure distribution on the circumference of 
a gas storage tank (8,a) with smooth surface and with steel 

ribs on the surface, respectively. 

3. CYLINDRICAL STRUCTURES 

Storage Tank. The negative pressures at the sides 

of circular cylinders can have high values, in the 

order of Cptni'n = ~2, as shown in the “pressure 
drag” chapter. Figure 9 demonstrates, however, that 

the suction peaks are eliminated by ribs in the out¬ 

side structure of the storage tank, although the drag 

is higher in this condition than with smooth sur¬ 

face. With openings in the “lantern” on top of the 

tank (simulating ventilation openings, if any) an 

inside pressure is obtained indicated by Cp = —0.5. 

Chimneys. Drag and pressure distribution of circu¬ 

lar cylinders are presented in the “pressure drag” 

chapter. In full scale, the Reynolds number Rj = 

V d/V is expected to be higher than the critical 

(Rj as 4 105). Reference (7,a) shows, however, 

that the drag coefficient of a "length of chimney" 

(tested between end plates) is appreciably increased 

by surface roughness in the form of mortar gaps 

between the bricks in old-type chimney construc¬ 

tion: 

smooth cylinder CD< = 0.3 to 0.4 

with smoothed gaps = 0.4 to 0.5 

with ordinary gaps = 0.5 to 0.6 

These coefficients should not be confused with the 

higher (subcritical) values at Reynolds numbers 

below Rj = 3 105 (as shown in the “pressure drag” 

chapter). 

Oscillations. It has been explained in the “pressure 

drag” chapter that a “vortex street” develops behind 

bluff obstacles in two-dimensional or similar flow 

conditions. Fluctuating lateral “lift” forces corre¬ 

spond to the motions of that street; and for the 

circular cylinder (tested between walls) such forces 

are reported in (9,a) having a maximum value of 

C|_. = ±0.45. Cylinders have also been investi¬ 

gated (9,b) suspended in a water stream in such a 

manner that they were free to oscillate in lateral 

direction, between springs. For a particular system, 

lateral force coefficients were evaluated at resonance 

speed up to CL> = ±1.0 and ±1.6. These values 

are between 2 and 4 times the fixed-and-rigid-body 

result quoted above. In oscillating condition, the 

frequency of the vortex street does no longer cor¬ 

respond to a constant Strouhal number (meaning 

f V) ; rather the vortex shedding seems to be 

controlled by the motion of the body at its natural 

frequency. Another investigation (9,c) indicates 

that in a water tank, “permitting the cylinder to 

vibrate, raises the resistance up to twice the non¬ 

vibrating resistance”. In conclusion we may, there- 
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fore, assume that drag, lateral forces and frequency 

(or Strouhal number) very roughly correspond to 

the width “h” over which the cylinder sweeps when 

oscillating instead of the diameter “d”. 

In Smoke Stacks, chimneys or other cylindrical 

shapes, the frequency of vortex street and lateral 

forces can come into resonance with their natural 

bending frequency. Oscillations of considerable 

magnitude can thus be excited by comparatively 

small aerodynamic forces; possibly leading to the 

collapse of such structures. For example, wind- 

excited oscillations of a 150 ft high steel stack with 

a diameter d = 4 ft, are reported in (10,a) beginning 

at a speed corresponding to a Strouhal number “S” 

= fd/V = 0.2, where f = frequency. These oscilla¬ 

tions continued up to twice the speed at which they 

first started, dangerously shaking the structure. The 

oscillations could be eliminated in that case by 

damping devices in the stays holding the stack. Cer¬ 

tain modest vibrations are also reported (I0,c.) to 

have occurred at one or two particular wind direc¬ 

tions in the leeward one of a pair of steel stacks. 

In these directions, the vortex trail in the wake of 

the windward stack evidently hit upon the other 

stack thus exciting its natural frequency. 

Pipe Line. Another example of oscillations is re¬ 

ported in (11). A 1000 ft long, 30-inch-diameter 

gas pipe line, suspended on cables across a river 

If (6) Dryden and Hill (Bureau of Standards) : 
a) Wind Pressure on Model of Empire State Build- 
ing, J.Research Nat’l Bur. of Stds Vol.10 (1933) p.493. 
b) Pressure on Prism, Sci Paper BOS No.523 (1926). 
c) Rathbun, Tall Building, ASCE Proc.1938 p. 1335. 

If (7) Wind pressure on circular cylinders and chimneys: 
a) Ackeret, Schweizer Bauzeitung 108,2 (1936) p.25. 
b) Dryden and Hill, BOS J.Research 1930 Rpt 221. 
c) Pechstein, Large Cylinder, Z.VDI 1942 p.221. 

ff (8) Pressure distribution on storage tanks: 
a) Erg.AVA Gottingen III p.144, IV p.134; Natur- 
wi’schaften 1930, 475, Bauwelt 1932 p.550, 692. 
b) Hankins and Lean, Gas Rese. Board, London 1948. 

If (9) Oscillations of circular cylinders: 
a) Schwabe, Ingenieur Archiv 1935 p.34. 
b) Petrikat, Oscillations of Weirs; D. Wasserwirt- 
schaft 1941; Forschungshefte der MAN 1952 and 1953. 
c) Hay, In Towing Tank, Princeton Rpt 1947. 
d) Thoma, Mitt.Hydraul.Inst. TH Munich No. 8,9. 

If (10) Oscillating smoke stacks: 
a) Scruton, The Engineer (London) 1955 p.806. 
b) Pagon, Vibrations, Engg News Record July 1934. 
c) DenHartog, Vortex Wake, Proc.Nat.Acad.Sci.1954 

If (11) Baird, Pipe Line, Trans ASME 1955 p.797. 
If (12) Characteristics of cables and wires: 

a) CAHI (Moscow), Investigations, Rpt 33 (1928). 
b) British ARC, R and M 307 (1917). 
c) Croseck, Theory of Sailing, Springer 1925. 

If (14) Oscillations in electric power lines: 
a) DenHartog, Tr.A.Inst.El.Engs 1932 Paper 32-91. 
b) Ruedy, Canadian J. of Research 1935 p.82. 
c) Galloping, Trns AIEE 1930, 1444 and 1947, 1154. 

started swaying up and down (by 5 or 6 ft) at wind 

speeds in the order of a few mph. It was possible 

in this case to break-up the vortex street by attach¬ 

ing certain pieces of “splitter” plate (see in Chap¬ 

ter III) to the pipe. Their effect is similar to that 

of the ground in figure 2,a. 

Cables or stranded wires and ropes are used either 

as electrical conductors (in power lines and in radio 

antennas) or as supporting devices (in bridges, 

cable-car lines or as stays as in figure 15). Their 

basic aerodynamic drag coefficient (figure 10) is 

similar to the subcritical value of circular cylinders 

(Cjj. = 1.17). Because of the rough (grooved) 

shape of their surface, cables are not expected really 

to show decreased drag coefficients above a critical 

Reynolds number. However, Reference (12,c) in¬ 

dicates a steady decrease of the drag coefficient of 

ropes and stranded wires from CD> = 1.17 at Rj 

= 10^ to CD.= 1.0 at Rj = 6T0^. Wires or cables 

in electric power lines (or in other applications) 

also show dynamic (oscillating) characteristics simi¬ 

lar to those described in the section on “smoke 

stacks”. The wires in power lines may thus vibrate 

(and occasionally break) in one of their natural 
harmonic modes. 

Cd. - 1.19 - 1.14 Cj. . 1.04 C,,. . 1.03 Cp. - 1.06 

Figure 10. Fluid-dynamic drag coefficients of stranded 
wires, steel cables and ropes. Three items left 
by CAHI (12,a); two shapes right by AVA 
(12,c). 

Galloping Lines. The musical noise in telephone 

poles has its origin too in vortex streets exciting a 

suitable natural frequency in the wires strung be¬ 

tween them. Generally the street frequencies are 

too high, however (estimated to be between 10 and 

100/sec) to produce amplitudes which might be 

damaging. — A different type of oscillation has been 

observed in electric power lines ( 14- ). Because 

of ice and sleet deposited on them and hanging 

down from them, the wires may obtain a shape ex¬ 

hibiting a certain “lift” curve slope. They are 

then slightly lifted by wind and they start oscillating 

up and down at their natural frequency in the order 

of 1 per second in wires or cables spanning 300 ft 

between masts. After swinging in this manner for 

hours or days (!) at amplitudes up to ± 10 ft in 

winds between 20 and 30 mph, the cables may finally 

break down. A remedy is to heat the lines where 

and whenever necessary, for a short time by an 

over-dosis of current so that the ice melts off. 
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4. STEEL STRUCTURES 

Beams. Radio Towers, some bridges and similar 

structures are built-up of steel beams and girders. 

The sections of sharp-edged beams, illustrated in 

figure 11, show drag coefficients which are close or 

comparable to those of flat plates. In two-dimen¬ 

sional flow, Cp. is in the order of 2 in many cases, 

with the coefficient based upon projected frontal 

area. 

C„ — 1.17 1.5 I.6S 2sS 1.82 1-72 -- 

v*2o1‘ 1.17 160 1.81 2.«5 118 I.6S — Cb. 

Figure II. Drag coefficients of various beam sections (15, 
a) tested on models with b = (10 to 12) - h 

between end plates; b = 1.5 m. 

Girders. Figure 12 shows an example of a bridge 

girder. Based upon the frontal area of the structure, 

the drag coefficient of a single girder is 'zc 1.7; 

the projected solidity ratio of this girder is 30%. 

In a pair of girders, the second one is shielded by 

the first to a certain extent. The drag coefficient 

of the second girder is, therefore, only CD. = 0.7; 

and the average coefficient of the pair is 1.2. The 

shielding effect may decrease, however, as the direc¬ 

tion of the wind against the structure is selected 

somewhat different from normal to the girder planes. 

Solidity. It can be seen in (15) that the drag coeffi¬ 

cient Cj). (on projected solid area) decreases as the 

solidity (that is, the ratio of the solid to the total 

area) of a girder is increased, to CD> = 1.3 for a 

solid “beam” of b/h ~ 9. Figure 13 gives a statisti¬ 

cal analysis on the magnitude of the drag coefficient 

as a function of solidity. At S./Sn —> 0, beam coeffi¬ 

cients are plotted in free flow. At S./Sn = 1, three- 

dimensional solid shapes are used in the graph 

(such as the disk). 

SlMGU GiRDER CB.= 17 1 PAIR of girders 
Soutny-ratio =3016 Forward Cd,= 1.7 

REAR. GIRDER-= 0.7 

Figure 12. Drag coefficient of bridge girders (16,a) . 

Figure 13. Drag coefficients (on projected solid area S.) 
of various steel structures as a function of their 

solidity ratio. 

Bridges, such as the Golden Gate Bridge, for ex¬ 
ample, at the entrance to the harbor of San Fran¬ 

cisco, may be exposed to the full force of strong 

winds. Figure 14 presents drag coefficients of several 

shapes of a road-bed structure used in suspension 

bridges. It is evidently not much of a problem, how¬ 

ever, to build bridges (and similar structures) so 

that they stand up statically against predictable wind 

forces. Experience with suspension bridges (l6,b) 

has shown, however, that their dynamic behavior 

(oscillations and flutter), based not only on drag— 

but also on lift forces, is extremely important. 

1 151 = CD, 

j 1.55 

D I ”3 

0.83 

-C.265"-- 5.3.1c 

Figure 14. Drag coefficient (on single frontal area) of a 

bridge structure (road bed plus lateral beams) 
wind-tunnel tested (16,b) with A = b/c = 3.9. 

Radio Masts, with triangular or square cross section, 

supported by stays as shown in figure 15,a, have 

been built up to 800 ft in height. For undisturbed 

emission, radio installations are usually located in 

open terrain or even on mountain tops. They are, 

therefore, exposed to strong winds. As reported in 

(18) , practical assumptions in their design are a 

wind pressure (dynamic pressure q) between 30 

and 60 lb/ffi, a drag coefficient CD, between 1.5 

and 2.0 and a safety factor in the order of 3. While 

the pull by horizontal antenna cables (if any) at 

the top of radio masts, is considerable; namely be¬ 

tween 1 and 10 tons in larger installations—the wind 

pressure during a storm (to be determined through 

the use of figure 13) is still higher, possibly in the 

order of 50 tons. 

b 
* - I- 
70 At/sec r 

a- 
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Figure 15. General shapes of radio masts (a) or towers 

(b) , both built in heights up to 800 ft (18); 
(c) wind forces in a lattice frame (16,d) . 

Steel Towers are expected to show drag character¬ 

istics similar to those of girder bridges. Because of 

the high drag coefficients involved (Cp. up to 2, 

on projected area of the structural members), the 

Eiffel Tower (h = 300 m 1000 ft) has evidently 

been designed in its characteristic shape; on a rather 

wide base. Power-line masts and certain radio towers 

(figure 15,b) are also built in cantilever type (sup¬ 

ported from the base, usually on 4 legs). Figure 15,c 

presents shape and drag coefficients of a typical lattice- 

design section of such a tower. The mechanism of 

solidity applies to these structures in the same 

manner as to girders, so that their drag can be cal¬ 

culated on the basis of the coefficients plotted in 

figure 13. In a tower built up of 4 frames as in part 

(c) of figure 15, the contribution of the two lateral 

frames (parallel to the direction of flow) is only 5% 

of the drag as indicated for the two sides normal 

to the wind. That tower has a maximum wind force 

(in pounds) at a lateral angle between 25 and 35° 

against the flow, in the order of 10% above the value 

as in the position normal to the direction of wind. 

If (15) Aerodynamische Versuchsanstalt Gottingen: 

a) Various Beam Shapes. Ergebnisse III (1927). 

b) Experiments on Steel Girder, Erg III (1927). 
If (16) Aerodynamics of steel structures: 

a) Ower, Resistance of Girder Bridges, by Inst, of 
Civil Engrs. and Inst, of Struct Engrs (1948). 

b) Farquharson, Stability of Suspension Bridges, Uni¬ 

versity of Washington Bull. No.116, I (1941). 
c) Suspension Bridges, Am.Scientist 1954 July. 

d) NPL, Wind Pressure on Latticed Tower Models. 
J. Inst’n Electr.Engs 1935 No. 464 p.189. 

If (18) Nokkentved, Radio Masts, Ingenioren 1932 p.347. 

ff (20) Aerodyn.Lab. TH Munchen, reported in Kauffmann 
“Tech Hydro and Aeromechanik”, Springer 1954. 

If (22) Klemin and Others (NYU), Aerodynamics For 

Worlds Fair, Trans AS Civil Engg 1939 p.1449. 
ff (24) Eiffel. Travaux Scientifiques a la Tour de 300 

Metres, published in Paris 1900. 

If (26) Additional references on building aerodynamics: 

a) CAHI (Moscow), Wind Pressure on Roofs and 

Walls (Railroad Station1!, Rpt 35 (1928). 

b) Giovannozi, Building Models, L’Aerotecnica 1935 

p.596; see also in Richerche di Ingegniera 1936 No. 
4 p.129 and No. 5 p.105. 

5. OTHER STRUCTURES 

Open Roofs. Pressure distributions on certain shed- 

type buildings (without walls) are included in (4,b). 

Taken from another source, figure 16 shows an open 

roof structure as they are used to protect the plat¬ 

forms in railroad stations. Forces in such roofs can 

be considerable; a combination of pressure (below) 

and suction (on top) tends to lift the structure in 

a manner similar to that of a wing. A particular 

problem in the roof as illustrated in figure 16, is 

the effect that the presence of a train can have upon 

the pressure distribution. While the flow is always 

separated from the upper side, the positive pressure 

forces underneath the roof are increased to Cp = 0.7 

and 0.8, in presence of a train at the leeward side. 

Figure 16. Pressure distribution on the roof over a rail¬ 
road platform, tested (20) on wind-tunnel model: 

a) without any train; b) with train at leeward side; 

c) with train at windward side, the pressure coefficient 
under the roof is uniformly Cp = — 0.2. 

Sphere. In big exhibitions, “structures of unusual 

character” are sometimes erected to attract curiosity 

and attention. One of these has been the “peri- 

phere” as illustrated in figure 17-shown together 

with the “trylon” described in the subsequent para¬ 

graph, at the “New York World’s Fair” at Flushing 

Meadows on Long Island in 1939. Characteristics 

of spheres are presented in the “pressure drag” 

chapter. For a diameter of 200 ft, supercritical flow 
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Figure 17. Drag coefficient of a giant sphere (“peri- 
sphere”) as tested in a 1/10 scale model (22) . 

Figure 18. Drag coefficient of the "trylon” as tested in the 

NYU wind tunnel (22). 

pattern must be expected at wind speeds above 0.5 

ft/sec. The sphere was therefore tested in the NYU 

wind tunnel (22) on a model having 2 ft diameter 

at a Reynolds number of Rj 4 106. It is seen 

that the presence of the ground increases the drag 

by 70%. The drag is further increased because 

of “columns” or “collar” needed to support the full- 

scale structure. An interesting result is that after 

adding ground and support, a lifting force is pro¬ 

duced corresponding to a coefficient “Cl.” between 

0.3 and 0.4. 

“Trylon”. Figure 18 presents wind-tunnel results 

on a slender pyramidal shape having h — 675 ft, 

full scale. The drag coefficient varies, of course, 

with wind direction; between a minimum of 0.88 

and a maximum of 1.43. In a hurricane of 125 mph, 

the corresponding steady-state wind forces would 

be below and above, respectively, 1,000,000 lb. Here 

as in smoke stacks (discussed in a preceding para¬ 

graph) oscillations caused by vortex shedding, in 

resonance with the structure’s natural lateral bend¬ 

ing frequency, might be of importance too. 

Statue of Liberty. As a final example of a structure in which wind 

forces and their exploration by model tests are of importance, the 

Statue of Liberty is mentioned. Reference (24) says about this 150 

feet high monument (erected in New York City harbor in 1886) : 

“Les etudes que M. Eiffel avait faites sur la resistance au vent des 

construction metalliques le designaiant a l’avance pour l’etablissement 

de l’ossature en fer de la Statue de la Liberte de Bartholdi”. 
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CHAPTER V - DRAG OF SURFACE IMPERFECTIONS 

The influence of surface imperfections (roughness, 

protuberances, holes and gaps) upon drag is twofold. 

First, the boundary layer may be forced to turn tur¬ 

bulent ahead of the transition point as for smooth 

condition. This type of added resistance is treated 

in Chapter II. Second, depending upon size and 

shape, any obstacle on the surface presents a drag 

of its own. Only this component of resistance; that 

is, the drag of various surface imperfections in tur¬ 

bulent boundary layer, shall be considered in this 
chapter. 

1. DRAG DUE TO SURFACE ROUGHNESS 

The drag of a rough surface in tangential flow may 

not be purely 'viscous? Behind every single, suffi¬ 

ciently high protuberance, the flow may locally more 

or less be separated; and the resultant drag may at 

least partly be pressure drag. The flow pattern 

(velocity distribution) across the outer parts of the 

boundary layer is much the same, however, as that 

along smooth surfaces (with turbulent boundary- 

layer flow). The influence of roughness is thus re¬ 

stricted to the sublayer; and roughness may be con¬ 

sidered as a substitute for viscosity. If we really want 

to make a distinction between frictional resistance 

and drag due to roughness, we may call the latter 
one “skin drag’’. 

Surface roughness may have an endless variety of 

grain size, grain shape and concentration. The type 

which has predominantly been investigated is sand 

roughness; sand grains of essentially equal diameter 

are glued to the surface (more or less embedded in 

lacquer), closely packed against each other. The 

parameter defining this roughness is simply the grain 
diameter “k”. 

Figure 1. Skin-drag coefficient of sand-rough surfaces: 
(a) as derived from Nikuradse’s pipe experiments (1), and 
(b) as tested and presented in (2). 

(a) Permissible Grain Size 

Critical Reynolds Number. The turbulent bound¬ 

ary layer is characterized by velocity fluctuations in 

all directions. As explained in Chapter II, there is 

always a comparatively thin sublayer, however, 

within which stable laminar flow is prevailing. As 

long as the protuberances of a rough surface are 

deeply enough submerged within the sublayer, the 

surface is, therefore, hydrodynamically equal to a 

smooth one. As shown in figure 1, the rough sur- 
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law as the smooth ones — up to certain critical 

Reynolds numbers. Only above these numbers, the 

drag coefficient of rough surfaces departs from the 

smooth and turbulent function which is explained 

in Chapter II. In other words, as the thickness of 

the laminar sublayer decreases with increasing 

R’number, the roughness grains begin to emerge 

from that layer at certain critical numbers. — The 

results of two different evaluations are plotted in 

figure 1. Schlichting’s system (1) shows certain 

“dips” before the constant terminal levels of the 

drag coefficient are reached. As the critical Reynolds 

number is approached, the boundary layer (assumed 

to be turbulent from the beginning) changes into 

the state of roughness flow, first at (or near) the 

leading edge, where the ratio k/6 is highest. Within 

a range of Reynolds number, for example between 

106 and 107 in figure 1, the transition then steadily 

moves from the leading toward the trailing edge. 

This travel thus takes place in a direction which is 

opposite to that of the transition point from lami¬ 

nar to turbulent boundary-layer flow. In Schlicht¬ 

ing’s experiments, the drag coefficient of the rear 

portion of the surface is evidently still decreasing 

with Reynolds number — while the forward portion 

has already assumed the constant terminal level. 

The corresponding dip of the drag coefficient is not 

seen, however, in the results of reference 2. It is 

suggested that in the latter tests some of the sand 

grains were protruding from the average level of 

the rest. Results are known from other investigators 

(see in reference 3) employing non-uniform grain 

sizes — which do not exhibit either, the transitional 

dip of the drag coefficient. It seems that this con¬ 

dition also applies to most physical surfaces, in 

which a certain number of larger protuberances 

emerge first from the sublayer, thus covering the 

dip which can be expected only for uniform rough¬ 

ness structure. 

tion of the Reynolds number R^ . A simple rule can 

be derived from figure 1; roughly independent of 

length and R’number of the surface, the permissible 

sand roughness is defined by the Reynolds number 

based on average grain diameter “k”: 

•WiMl = = 90 “ 120 

The permissible grain diameter is accordingly 

^critical « 100 V/V (2) 

Measuring the grain size in mils, it is found for air 
in standard sea-level condition (with v = 1.564/10^, 

ft2/sec): | 

c permissible' 
in mil 

185/V , c 
ft/sec 

lio/y 
k-ts 

Hence, as illustrated in figure 3, the permissible size 

is a function of speed only, at a given altitude (4). 

This means, for example, that a wing with 10 ft 

chord, is not permitted to have a larger grain size 

than a wind-tunnel model having only one ft chord, 

provided that both bodies are tested at the same 

speed and in the same atmosphere. 
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Figure 2. Permissible size of grains 
in standard sand roughness as a function 

of the Reynolds number of the surface 
considered (evaluated from figure 1) . 

LOCAL 

Q-li = X* 
' r v' 

Critical Roughness Size. The critical Reynolds num¬ 

ber (or the critical grain-size ratio k/1) shall be 

defined in figure 1 as the point where the smooth- 

turbulent function intersects the terminal level in¬ 

dicated by Cf = constant. Figure 2 presents the 

corresponding critical roughness ratio k/1 as a func- 

Figure 3. Sand-roughness size in air, permissible on plane 

walls, as a function of speed. 

Influence of Atmosphere. At an altitude of 25,000 

ft, the kinematic viscosity (Chapter I) is approxi¬ 

mately twice as high as at sea level. As indicated 

by equation 2, the permissible grain size on the 

surface of an airplane is consequently twice as high 

too at this altitude, for equal speeds. Considering, 

on the other hand, the test conditions in wind tun¬ 

nels operating with compressed air, as for instance 

in the Variable-Density Tunnel of the NACA, with 

a pressure of 20 atmospheres and a kinematic vis¬ 

cosity in the order of only 1/15 of that in free sea- 

level air, the permissible roughness of wing- or 

airplane models is found to be very small; namely 

in the order of only 0.1 mil, at a speed of ~ 75 

ft/sec. — The permissible roughness in water will 

be discussed in the “hydrodynamic” chapter. 
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Measuring Roughness. Grain size and structure of 

physical surfaces can be determined by optical meth¬ 

ods (5). The surface is lighted in oblique direction. 

Using a microscope with a linear enlargement fac¬ 

tor of 10 or 20, the grains, contrasted by their shad¬ 

ows, are then optically measured, and a reasonable 

average size is selected to represent the height or 

the diameter of the grains. Naturally this method 

is somewhat arbitrary. Results are furthermore com¬ 

plicated by shape and concentration of the tiny 

protuberances in physical surfaces. 

Type of Surface Approximate 
microns 

Grain Size d 
in mils 

surfaces like that of a "mirror” 0 0 
surface of average glass . 0.1 0.004 
finished and polished surfaces ... 0.5 0.02 
aircraft-type sheet-metal surfaces 2 0.1 
optimum paint-sprayed surfaces 5 0.2 
planed wooden boards . 15 0.6 
paint in aircraft-mass production 20 1 
steel plating — bare . 50 2 
smooth cement surface . 50 2 
surface with asphalt-type coating too 4 
dip-galvanized metal surface . 150 6 
incorrectly sprayed aircraft paint 200 8 
natural surface of cast iron 250 10 
raw wooden boards .... 500 20 
average concrete surface . 1000 40 

Table A. Approximate values indicating the 
sizes (diameters) on physical surfaces. 

average grain 

Grain Size in Physical Surfaces. Approximate aver¬ 

age grain sizes as found in physical surfaces, are 

listed in table A. In aviation, camouflage paint may 

be requested to show a dull surface. Such paint must 

have accordingly some grain size. At 400 knots, for 

example, which may be a speed representative of 

(1) Prandtl and Schlichting, Drag Law of Rough Surfaces, 
Werft-Reederei-Hafen 1934 p.l; also Yearb.STG 1936 

p.416 and Trans ASME 1936; also Transl TMB 258. 
(2) Schultz-Grunow. Rough Plates, Ybk STG 1938 p.177. 
(3) Hama, Smooth and Rough, Trans SNAME 1954. 

(4) Hoerner, Influence of Roughness on Aircraft Charac¬ 

teristics. Ringbuch Luftfahrttechnik Part I A 9 (1937). 

(5) Lichtschnittverfahren by Zeiss and Schmalz. 
(6) Schlichting, Roughness Experiments, Ingenieur Archiv 

1936 p.l, also Yearbk STG 1937 p.159, and Trans 
ASME 1936. 

(7) Experimental Results of Terminal Drag Coefficients: 
a) Airfoil Sections in CAT, ARC RM 1708 and 1789. 

b) Airship Bodies, NACA T Rpts 342 and 394. 

c) Hooker, Tests on Airfoil, NACA T Note 457. 

d) Tests on Airfoil, Document ZWB Rpt FB 642. 
e) Goethert, On Bodies, ZWB Tech Berichte 1944. 
f) Young and Others, Flight Tests on Surface Con¬ 

dition (paint, rivets, joints), ARC RM 2258 (1939). 

g) Young, 0012 Foil, Journal RAS 1950 p.534. 

h) Allen-Cutland, Emery on Plank, Trans Inst. Engrs 
and Shipbuilders Scotland 1955/56 see also 
Shipbdg Shipping Review 1955 p.541. 

today's fast long-range airplanes, the permissible 

grain size is found in figure 3 to be in the order of 

0.4 mils (at sea level). It is justified to request, 

not to exceed this roughness size in manufacturing 

and painting aircraft. It is not necessary, however, 

or favorable, as far as turbulent boundary layer is 

concerned, to polish the surface until it shines. The 

light-alloy sheet metals, commonly used in airplane 

construction, are generally smooth enough without 

any further care, up into the transonic range of 

flying speeds. It is only for portions with laminar 

boundary-layer flow, especially near the nose of 

wings or fuselages, that it is favorable to reduce the 

grain size below the limits indicated by figures 2 

or 3. There is an easy chance, on the other hand, 

of producing grain sizes beyond any permissible 

limit — just by incorrect handling of the spray gun. 

(b) Skin-Drag Coefficients 

Terminal Drag Coefficient. The fact that the drag 

coefficient of rough surfaces assumes constant ter¬ 

minal values, means that these surfaces follow a 

quadratic drag law. Terminal values have been taken 

from figure 1 and they have been plotted in figure 

4 against the relative sand-roughness size k/1. With¬ 

in the most interesting range between k/1 = 10 ^ 

and 10 , it is approximately found that 

CfWrrii = °°32 (k/1>‘ 
i/S 

(4) 

Some critical Reynolds numbers are marked on the 

curve, indicating the limits down to which the ter¬ 

minal values are applicable. Below these numbers, 

the coefficients of smooth surfaces must be used. 

The experimental points determined on slender 

bodies and streamline sections, show drag coefficients 

that are somewhat higher than those of plane sur¬ 

faces (thin plates) — because of increased average 

velocities past their sides. 
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Figure 4. Terminal (constant) skin-drag coefficient of 
rough surfaces as indicated by theory (1 and 2) and as 

tested (7). The points are some 10% higher than the 
theoretical function because of increased average velocity 
past the slender bodies used in the experiments. 
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Equivalent Sand Roughness. To this point, the pre¬ 

sented functions of rough surfaces are primarily 

applicable to “standard” sand roughness. Dealing, 

however, with physical surfaces, the shape of the 

roughness grains and their concentration (average 

distance between grains) — is of hydrodynamic in¬ 

fluence too. Various kinds of roughness have been 

investigated (6) in a special wind channel. The 

aerodynamic effect of each type is simply indicated 

by an effective sand-grain size “k”. This size or the 

ratio k/d (where d indicates the average “diameter” 

of the grains or elements considered) — indicates 

the size of standard sand roughness which produces 

the same drag coefficient as the type of roughness 

investigated. The limitations of the procedure are 

pointed out later. 

o SPHERES WITH h/d - 1 (6) 
• SPHERICAL SEGMENTS WITH 0.33 (6) 

Figure 5. Equivalent sand roughness “k” as a function of 
roughness concentration. 

Grain Concentration. The density or concentration 

of roughness grains is measured by the parameter 

6 = I(d2)/Swet (5) 

where d indicates the grain diameter. Some experi¬ 

mental results are plotted against this parameter in 

figure 5. The equivalent sand-grain ratio k/d, for 

example of spherical grains, increases considerably 

upon decreasing the concentration. The grains are 

evidently much more effective standing alone than 

closely packed against each other. A surface with a 

comparatively thin concentration (around Gs> = 

20%) may thus present considerable skin drag. 

Taking, for example, the maximum value for 

spheres, k/d = 4, the corresponding coefficient 

(equation 4) is expected to be increased to 4^ = 

1.32 of that of same-diameter standard sand rough¬ 

ness. It should be noted, however, that the spherical 

shape, if “embedded” in lacquer (8,a) has a very 

much reduced effect, evidently corresponding to 

reduced exposure. It can also be noted that at (5 

= 1.0, all of the investigated shapes (with round 
plan form) exhibit k values which are lower than 

that of the somewhat irregular “standard” sand- 

roughness variety. 

Grain Shape. The influence of grain shape is most 

evident (in figure 5) at intermediate concentration 

ratios. It is also seen there that the equivalent sand- 

roughness ratio corresponds to the height ratio h/d 

of the elements and/or to their shape. Flat elements, 

for example, have not only smaller k/d but also lower 

k/h values than the spherical grains. The grains 

found on painted surfaces may resemble the shape 

of flat cones or spherical segments. Roughly, figure 

5 suggests for these shapes k/d = 1 (or a somewhat 

lower value) . 

Permissible Grain Size. Using the concept of the 

equivalent sand roughness, the permissible size of a 

specific type of elements can also be estimated. For 

k/d = 2, for instance, the permissible size is tenta¬ 

tively only half of that of standard sand grains. Such 

estimates may be adequate, however, only down to 

concentration ratios in the order of 0.5. Below this 

value, there are evidently portions of the surface 

between the grains, exhibiting lesser drag corre¬ 

sponding to smooth friction. In other words, a few 

grains distributed over a larger surface cause only 

small additional drag. However, their permissible 

grain size must be assumed to be at least as small 

as for the concentration shown in figure 5 exhibit¬ 

ing maximum drag. 

Figure 6. Drag functions having slopes against R’num- 

ber, less than that of smooth-turbulent friction. 

SAMPLE CALCULATION (EQU.13 AND TEXT) 

L B PAINTED 001? AIRFOIL (7,g) 

O EMERY OH TAHH PLANE (7,h) 

+ ElVETS OH SIJBPACE (8,l>) 

• TMB NAVY PAINT (8,c) 

o GALVANIZED PONTOONS (8,f) 

A PAINT ON PONTOON (8,#) 

A PAINT 0B SHIP HULL (8,e) 

— SHEET-METAL WINS, reported 

- 1b Ybk.D.Lofo 1939 p.1,95) 

* HIRAGA PLANK XI (9,c) 
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Slope of Cp (Rf). At Reynolds numbers above the 

critical, the skin-drag coefficient for standard sand 

roughness (with (s =1) is constant; the slope of 

Cp(Rj) is zero. As explained and demonstrated on 

revolving cylinders (9), concentration not only af¬ 

fects the critical R’number of roughness, but also 

the slope of Cp(R^). In other words, there may not 

be a constant “terminal” drag coefficient at all for 

certain types of roughness. Figure 6 presents some 

examples; and it is seen that painted and other sur¬ 

faces exhibit coefficients decreasing against R’num¬ 

ber at a rate which is less than that of the smooth- 

turbulent function. Two examples of coarse-grain 

coatings are included, however, in the graph-to 

show the constancy of their drag coefficients. To 

make the behavior of the painted surfaces under¬ 

stood, a limited number of grains shall be consid¬ 

ered again, distributed over a larger area. Tenta¬ 

tively, the surface portions between the grains 

maintain most of their smooth-surface behavior, in¬ 

cluding a skin-friction drag coefficient which de¬ 

creases against Reynolds number. The slope of the 

total or average drag coefficient of such surfaces will, 

therefore, be between that of the smooth-turbulent 

function and a constant terminal coefficient corre¬ 

sponding to grain size. The data in figure 6 and 

other results have been evaluated in the form of the 

slope- or exponent ratio m/m0 in the function 

Of - K/R™ (6) 

where for smooth surface “m” is in the order of 1 /6; 

see equation 28 in Chapter II. The slope ratios are 

plotted in figure 7 against the concentration ratio 

^ = L(k2 or d2)/Swet (7) 

The available points are interpolated by 

m/mo = (1 — <3 )E (8) 

(8) Experimental Results on Surface Roughness — Slope: 

a) Kempf, Yearb. STG 1937 p.159; Trans INA 1937, 

b) Williams and Brown, Rivets, ARC RM 1855. 

c) Couch, Ship-Bottom Paints, TMB Rpt 789 (1951). 

d) Moody, Friction in Pipes, Trans ASME 671, 1944. 

e) Todd, Skin Roughness, Trans SNAME 1951 p.315. 
f) Kempf-Karhan, On Ships, Ybk STG 1951 p.228. 

g) From Pipe Results, Mech’l Engg 1933 p.497. 
(9) Influence of Roughness Concentration: 

a) Hoemer, Effect of Roughness Concentration Upon 
Frictional Drag, Journal Am.Society Naval Engineers 
Vol 66 (1954) p.497. 

b) Revolving Cylinder, NACA Tech Rpt 793 (1944). 

(10) Hopf and Fromm, ZAngMathMech 1923 p.329 and 339. 

(11) Colebrook and White, Experiments With Rough Pipes, 

Proceedings Royal Society A 1937 p.367. 

Figure 7. Analysis of the exponent “m” indicating the 
slope of Cp(R) as a function of concentration. 

where E»5 for sand-type roughness. It is predicted, 

however, that this exponent will be smaller for 

roughness elements which are flatter than spherical 

grains; possibly in the order of E = 2. — The fact 

that many physical surfaces have drag-coefficient 

slopes somewhere between that of the smooth sur¬ 

face and a constant level, has been pointed out to 

exist as early as 1923 (10). Data given in this and 

other references have been evaluated and listed in 

table B in the form of the exponent ratio m/m0. 

One could reverse the procedure now, and conclude 

that certain concentration ratios are the equivalent 

of certain types of roughness, as tested. 

Type of Surface m/m, Reference 

asphalt-coated. 
cast-iron . 
painted plate . 
steel pipe 
marine paint . 
galvanized pipe . 
galvanized metal 

0.8 Hopf (10) 
0.8 Hopf (10) 
0.8 Fig. 7 (8,a) 
0.77 Pigot (8,g) 
0.7 Fig. 7 (8,c) 
0.67 Pigot (8,g) 
0.5 Hopf (10) 

slope ratio m/m0 in several 
types of surface roughness. 

Polytropic Grain Size. A surface covered with grains 

of non-uniform size, may be studied by assuming 

one basic uniform roughness, combined with some 

limited number of larger grains. Reference (11) 

presents experimental results on such surfaces in 

pipe flow. There are two critical Reynolds numbers, 

corresponding to the grain sizes involved. At the 

lower number, the drag coefficient begins to depart 

from the smooth-turbulent function, assuming a 

reduced slope from there on. At the second critical 

R’number, a constant terminal drag coefficient is 

reached as in uniform sand roughness. Considering 

next a surface with various grain sizes, the lower 

critical Reynolds number is expected to correspond 

to the largest size involved. The terminal level will 

then be obtained at a number which corresponds 

to the smallest grain size represented in such a 

surface. 
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Practical Procedure. In conclusion, sand-type rough¬ 

ness is realized not to give a complete description 

of the hydrodynamic characteristics of physical 

roughnesses. The above considerations of non-uni¬ 

formity and concentration give the answer (quali¬ 

tative so far) to many problematic results in 

correlating the viscous drag of full-scale airplanes 

and /or ships with model-test results (see also in the 

chapter on “water-borne craft”). Additional research 

into this problem is needed. However, for the time 

being, the procedure as follows is suggested for an 

appraisal of the drag function in moderately con¬ 

centrated roughness, (a) The critical Reynolds 

number is approximately determined on the basis 

of the predominant or average grain size, (b) The 

slope of the Cr(R) function (starting at the point 

on the turbulent skin-friction curve at RCi-if) is then 

determined through the use of figure 7. The ex¬ 

ponent is found as m = m0(m/m0) where m0 as 

indicated in Chapter II; for smooth-turbulent fric¬ 

tion (m0 « 1/6). (c) Depending on the type of 

surface (either with a uniform fine grain size, or 

with underlying smooth portions) there may or may 

not be a second critical Reynolds number and a 

constant terminal drag coefficient. 

2. DRAG OF SURFACE IMPERFECTIONS 

In the following paragraphs, “imperfections” shall 

be understood to be protuberances (and cavities) 

the height of which is in the order of or less than 

the boundary layer thickness. Again, the drag of 

such imperfections shall only be considered here 

within turbulent boundary layer. Also the results 

have almost all been determined on a flat wall. 

a) General Mechanism 

Effective Dynamic Pressure. A small body, placed 

within the boundary layer, causes a drag component 

which corresponds, at least approximately, to the 

average or effective dynamic pressure of a layer 

limited by the height h of the body. Basically, there¬ 

fore, the drag of surface imperfections is smaller 

than to be expected in free flow or at the wall of 

a body where no boundary layer is present. From 

the velocity distribution across the boundary layer 

(Chapter II), the effective dynamic pressure is de¬ 

rived as 

~ 075 (9) 

The experimental points in figure 8 show the cor¬ 

responding trend of C^ •—' (h/x)7^ ', where the 

length x of the surface or wall to the location of the 

protuberance is the measure for b’layer thickness. 

Figure 8. Drag coefficients of elementary surface imper¬ 
fections as a function of their height ratio. 

Independent Drag Coefficient. Accepting the pro¬ 

portion D ~ h'^3 , it is possible to determine the 

drag for any height (smaller than 6) — if the same 

is known for one particular height. Referring now 

the drag to the effective dynamic pressure (equa¬ 

tion 9), an “independent” coefficient is found: 

D C^ 

c = - ~ - (10) 

D s °-75 Vh/5 

The drag of any protuberance with h -c 6 in tur¬ 

bulent boundary layer — is sufficiently well defined 

by means of this coefficient. At Reynolds numbers 

between Rx = 106 and 107, the total thickness of the 

boundary layer on smooth surfaces is roughly 

S/x = 1.6% (11) 

with x indicating the distance of the considered 

point from nose or leading edge of the respective 

body. Introducing this ratio into equation 10, it is 

approximately found that 

Cp = 0.33 CQ/ V^h/x ; = 3^/h/x c^ 

Of course, this equation applies only to height ratios 

up to h/x = 1.5%. 

Against Reynolds Number. As pointed out in Chap¬ 

ter II, the skirt-friction drag coefficient Cg and the 

boundary layer thickness 6/x — are approximately 

proportional to 1 /Rjf . The drag coefficient of a 

protuberance on the other hand, is proportional to 

(h/6)'^3 , as indicated by equation 9. As a function 

of the R’number of the surface or wall, therefore 

l/lfl 
CD~ R/ 8 (13) 

The drag coefficient of the protuberance thus in¬ 

creases with the Reynolds number, while the skin- 

friction coefficient decreases. The percentage cov- 
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ered by protuberances (such as rivet heads or sheet- 

metal joints) of the wetted surface of an average 

wing may be in the order of 1%. Roughly, 99% 

of the surface are thus following the laws of smooth 

skin friction. The corresponding drag coefficient is 

Cf(=0.99 0.043/R^6 , as found in Chapter II. The 

drag component (on the wetted area) due to the 

protuberances is Cf2= 0.01 CD with CQ = 0.75 cD 

(h/o) ^ , as per equation 10. For an assumed aver¬ 

age height ratio h/x = 0.1%, a ratio h/6 = 0.0045 

R>r is derived from b’layer equations in Chapter 

II; and for an assumed average coefficient cD = 0.4, 

a coefficient Cj.^ = 0.0005 Rj^'8 is finally found. As 

plotted in figure 6, the total drag coefficient = 

Cpi + Cp2decreases with the Reynolds number at a 

rate which is less than that of the smooth skin- 

friction coefficient. The example is a confirmation 

of what is presented in the “roughness” section on 

the characteristics of moderately concentrated sur 

face roughness. — It should be noted that the inter¬ 

ference between protuberances and surface is not 

taken into account in the simple functions presented. 

Figure 9. Independent drag coefficient of two-dimensional 
protuberances, tested (12,a) at h/6 = 7.5%, and R . = 
10 . (x.) decreases at higher R’numbers. ’ 

d) 0.(1 i) 0l4 

«) 0.°4 ■ ...l.l..'" 11 1 1 k) 0 '*> 

i 
«) 0» 

D* 

Figure 10. Independent drag coefficient of various sheet- 
metal joints (12,a), based on thickness “h”. 

(12) Drag Caused by Protuberances in Turbulent Flow: 

a) Wieghardt, ZWB FB 1563 or Yearb.D.Lufo 1943. 
b) Tillmann, Rpt KW Inst. Gottingen, Dec 1944. 

c) Abell, Resistance of Lapped Butt Joints, Liverpool 

1931; see also Zeitschrift VDI 1931 p.1431. 

d) Hughes-Alien, Turbulence Stimulation, Trans 
Society NAME 1951 p.281. 

e) Wood, Fittings, NACA T.Note 280 (1928). 

(13) Hood, Waviness on Wing, NACA T.Note 724 (1939). 

b) Spanwise Protuberances 

Spanwise protuberances shall be understood to ex¬ 

tend sufficiently far across the general direction of 

flow. A typical example of this type is a sheet-metal 

joint running over the span of a wing (or around 

the circumference of a fuselage). 

Drag of Strips. The drag coefficient of sharp-edged 

spanwise protuberances, shown in figure 9, is rather 

independent of their specific shape. The flow is 

always detached from the rear of these strips, just 

as in free flow. Reference (12,d) also indicates the 

drag coefficient of wires (used for turbulence stimu¬ 

lation) to be cD> between 0.7 and 0.9 in turbulent 

b’layer (and between 0.6 and 0.7 in laminar layer). 

Sheet-Metal Joints. Among the sheet-metal joints, 

illustrated in figure 10, the butt joint shows, of 

course, the lowest drag, cD. = 0.01. The highest co¬ 

efficients on the other hand, are characteristic of 

the most-protruding and sharp-edged joints, espe¬ 

cially (c) and (g) which are directed against the 

oncoming flow; Cj^ = 0.4. It is worth noticing, 

however, that by beveling (at 60°) or by rounding 

the edges of such joints, as in (d) and (e), their 

drag is reduced, down to 1 /4 and 1 /l0, respectively; 

a result which is confirmed by another source (12,c). 

Flat rounding is more effective, however, than same- 

length beveling. Finally, figure 11 demonstrates that 

an open joint when facing the fluid flow, has a 

comparatively high drag coefficient. 

V - 18 RNT> - 2S »yw 

0.4 

* * V.3 m 

o.2 

= o.6_ 

|2o *v — «■ H * oG X 

0.2 - cD. 
13- 

Figure 11. Drag coefficient of a sheet-metal joint (12,b), 
in “solid” and in open condition. 

Waviness. The available experimental data on sur¬ 

face waves are plotted in figure 12. The independ¬ 

ent drag coefficient (equation 10) increases approxi¬ 
mately as 

c^ = 15 (h/1)2 (14) 

with 1 as defined in the illustration. Considering 

constant wave length (given, for example, between 

the frames of a fuselage), the drag of a wave in the 

sheet-metal skin of an aircraft approximately in¬ 

creases as D ~ h7/3 •*= h2. Generally, however, the 

drag of such waves is but small as compared to that 

of sharp sheet-metal joints. 
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Figure 12. Independent drag coefficient (on projected 
frontal area) due to surface “waves”. 

c) Drag of Individual Protuberances 

Small bodies, such as bolt- or rivet heads, may be 

called “spotlike” protuberances. Contrary to span- 

wise imperfections, they show a three-dimensional 

flow pattern, of course. 

Small Bodies. Among the protuberances illustrated 

in figure 13, square plates have a coefficient 

between 1.0 and 1.3. On the average, this coefficient 

has the same magnitude as in free flow. Further 

results on plates and disks are presented in the “in¬ 

terference” chapter. In prismatic bodies, the drag 

Figure 13. Independent drag coefficient of various three- 

dimensional protuberances; shapes *a,b,f,g' from (12,b), 

“pin” 'e' from (12,d), 'c‘ and'd' as in (12,e). 

decreases beyond 1 5= h, in a manner similar to that 

in figure 21 of the “pressure drag” chapter, down 

to a constant level (12,b), with cD. = 0.74. Cylindri¬ 

cal “pins” (used in model testing for turbulence 

stimulation) have comparatively high drag coeffi¬ 

cients too. Upon streamlining the little bodies, their 

drag is considerably reduced. 

2 
Figure 14. Independent drag coefficient (on dw/4) of 

bolt- and rivet heads. All shapes tested (12,a) at the same 

d/5 ratio. Coefficients of the last three heads are based 
on the effective dynamic pressure as for the first three 
(corresponding to their height h). The values in brackets 

apply for supercritical R’numbers. 

Bolt- and Rivet Heads. In figure 14, the hexagonal 

bolt head shows, of course, a high drag coefficient, 

cDd = 0.8, based on plan-form area of the head. In 

comparison to this shape, flush rivet heads present 

but a vanishingly small drag coefficient (based upon 

the same effective dynamic pressure as for the first 

three heads in the illustration). That such flush 

heads show a perceptible value of drag after all, is 

5 
Figure 15. Drag coefficient on d7r/4) of a flat rivet head 

(12,a) tested at d/5 = 3, as a function of its elevation with 

respect to the surrounding surface. 
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because of the small groove along their circumfer¬ 

ence and owing to imperfections in their applica¬ 

tion. Inevitably the head is often placed, either 

somewhat too high or too low, in respect to the 

surrounding sheet-metal surface. A wind-tunnel in¬ 

vestigation into this effect is illustrated in figure 15. 

The minimum drag of the flush-type heads occurs 

in the vicinity of h/d = — 1%. It is thus favorable 

to set these rivets purposely a little bit lower than 
flush. 

Figure 16. Drag coefficient of round rivet heads in the 

critical range of their Reynolds number (12,a). 

Critical Reynolds Number. Figure 16 demonstrates 

that the drag coefficient of round rivet heads de¬ 

creases beyond certain height ratios h/x. The reduc¬ 

tion corresponds to that of the drag coefficient of 

the sphere as a function of Reynolds number as 

presented in the “pressure drag” chapter. Upon in¬ 

creasing the height h (and the diameter d), the 

effective R’number of the heads Rw = d w/v in¬ 

creases not only because of the size, but also on 

account of the effective boundary-layer velocity “w”. 

Owing to turbulence in that layer, transition to 

lower drag coefficients starts already around R^ = 

2 J (A The middle between the limiting conditions 

(cD. ~ 0.3) is passed at approximately R^ceit = 
8 10 . This number is only a fifth of that of the 

sphere in a turbulence-free stream. As in free flow, 

the independent coefficient of the hemispherical 

heads drops through the critical range of Reynolds 

number from around cD- = 0.5 to the order of 0.1 

Critical Speed. Assuming a round rivet head with 

1/4 inch diameter, placed within a boundary layer 

where w = 0.5 V, the critical transition of the coeffi¬ 

cient takes place between 200 and 1000 mph, if 

considering an airplane flying near sea level. Condi¬ 

tions above the critical Reynolds number are thus 

not very likely to be attained; and intermediate drag 

coefficients within the critical range must be ex¬ 

pected for these heads in aircraft applications. 

Height Ratio of Round Heads. As illustrated in 

figure 17, the drag coefficient CDo (based on dy¬ 

namic pressure of the outer flow, and plan-form 

. 0 
Figure 17. Drag coefficient (on area d tt/4) of round 
heads as a function of their height ratio. Experimental 
data (12,a) reduced to d/x = 0.5%. 

area of the head) increases with the height-diameter 

ratio at a power between 2 and 3. A round rivet 

head with h/d = 0.2, for example, presents a drag 

which is in the order of only 10% of that of the 

hemispherical shape. Such a flat-round head proves, 

however, to have a drag which is still much higher 

than that of flush heads (see in figure 15). 

Longitudinal Protuberances, extending in the gen¬ 

eral direction of flow, such as chordwise ridges or 

sheet-metal joints, for instance, are shown in figure 

18. Their drag is approximately twice as high as the 

skin-friction drag corresponding to their wetted sur¬ 

face. A similar result is found for corrugated sheet 

metal in figure 23. 

In Oblique Flow. In crosswise flow (at (3 = 90°) 

the drag of the strips shown in figure 18, is in the 

order of 60 times as high as in longitudinal flow 

(at P = 0°). The transition between these two 

directions can roughly be approximated by Dpressore 
~ sin2(3 . 

^ i a°°3 
0-5 h - fc - 1/16 « .15 & 

f121-1 1-1 0.0.5 “ --- 1 1 -- '.No.-- vx 1 
1.3 Jt 

O.oo9 

\ Ljr”” 
ht -01 » . .5 » - 1/16 - .2* i 

■*"tf __.00l 
I 

UJ7. 
.of 

i* ewes now 11 lovsinnmux now cVmt - 

Figure 18. Drag coefficients of strips 
and grooves (12,a) in longitudinal and in 

cross flow, as indicated. 
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d) Drag of Holes and Gaps. 

The imperfections considered so far, are more or 

less protruding from the surface on which they are 

tested. Besides open holes, there are many cracks, 

gaps and grooves, however, in the skin of airplanes, 

usually at places where component parts join each 

other. Such gaps (or holes) do not have a positive 

height for which an effective dynamic pressure could 

be defined as per equation 9. As substitute, either 

the depth “h” or the length (in flow direction) 

may be used to define coefficients which are com¬ 

parable to those of positive protuberances. 

d -0.5 *6 | 
W77T77777777? 

d 

J0.017 

v 0.008 

'/77777777777777&77Wr7>' 

- 26 -- 

Figure 19. Drag coefficients (on opening 

area) of several types of holes (12,a,b) . 

Holes, cut into the skin of aircraft, present a com¬ 

paratively small drag, corresponding to a coefficient 

roughly in the order of = 0.01 (figure 19). The 

edge shape of these holes is of some importance. 

Rounding the downstream edge, reduces the drag. 

Leading, however, the flow over a rounded (and 

sloping) edge into the recessed space, increases the 

drag fourfold in the example as tested. 

Transverse Gaps. The drag caused by transverse 

gaps or grooves is a function of their width and 

depth. A constant coefficient cD„ = 0.014 (on plan- 

form area and dynamic pressure corresponding to 

a height h = e) is obtained beyond h/e = 0.7; as 

seen in figure 20. However, the coefficient cD> (on 

frontal area b h and dynamic pressure correspond¬ 

ing to the height h), shown in figure 21, reaches 

the constant value of 0.29 beyond a length ratio 

e/h = 7. This ratio corresponds to h/e = 0.14. Be¬ 

tween this value and h/e = 0.70 (as above), or 

between e/h = 1.4 and 7.0 (as in figure 21), a 

transition takes place from one regime to the other. 

Shape of Edges. Figure 22 shows that the drag of 

gaps (or grooves) greatly depends upon the shape 

of the edges and on their position with respect to 

each other. Rounding the downstream edge, helps 

to reduce the drag; the flow is smoothly received 

beyond the gap. Lowering the upstream edge, on 

the other hand, leads the flow into the gap, thus 

increasing the drag. Employing optimum positions 

of the two edges, the drag is reduced some 30%, as 

compared to the original flush configuration. 

Sheet-Metal Edges. In modern airplane construction, 

the edges of gaps are usually formed by sheet metal; 

and the hollow space inside may be wider than the 

opening in the skin. As seen in figure 22, the drag 

is somewhat larger in this case than that of a “solid” 

gap. By bending the sheet-metal edges up or down, 

respectively, it is possible, however, to change the 

drag considerably. In practical production, it ap¬ 

pears to be favorable to set the upstream edge as 

straight as possible and to bend down the down¬ 

stream edge to a small angle. 

Longitudinal Gaps. Grooves, exposed to longitudi¬ 

nal flow are listed in figure 18 together with pro¬ 

truding strips. In contradistinction to the latter ones, 

the gaps show much smaller drag in transverse flow 

(at [5 = 90°). Obviously the flow jumps easily 

across such a gap; but it penetrates deeply into a 

longitudinal groove. 

Figure 20. Drag coefficient (on area e times b) of deep 
gaps or grooves (12,a,b), tested at e/x = 0.001, e/6 = .06, 

flaff/q = CD = 3-4 Cd' 

Figure 21. Coefficient (on h times b) of shallow gaps or 
grooves (12,a,b), tested at h/x = 0.001 and h/5 = 0.06. 
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Figure 22. Drag coefficient (on e times b) of a two- 
dimensional gap, groove or hollow, determined (12,a,b) 

in a plane wall, as a function of the shape of the edges. 

3. IMPERFECTIONS ON STREAMLINE 

SHAPES 

So far, the drag of imperfections has mostly been 

considered as tested on the plane wall of wind chan¬ 

nels (6 and 12). Imperfections, protuberances and 

other disturbances when placed on the surface of 

streamline foil sections, are considered as follows. 

(a) Imperfections and Protuberances 

Surface Roughness. Figure 4 shows that the drag 

due to roughness uniformly distributed over the 

surface of streamline shapes is somewhat higher than 

on a constant-pressure wall. This is evidently so be¬ 

cause of the increased velocity along the sides of 

such bodies. Some more results concerning the drag 

of airfoil sections having sand-type roughness on 

(14) Doetsch, Influence of Surface Imperfections on Drag 

of Sheet-Metal Wings, ZWB Document (DVL) UM 
1233 (1944). 

(15) Day and Schwarzbach (Curtiss Wright), Flight In¬ 

vestigation of Surface Finish (Mud), Jl. Aeron’l Sci. 

1946 p.209. 
(16) Wood, Corrugated Surface, NACA T.Rpt 336 (1929). 

(17) Schrenk, Wake Survey in Flight, Lufo 1928 p.l. 

3 S 
Type of Surface 10 Cy 10 k/1 "k” mils 

smooth polished finish _ 3.2 (+) 0 
well doped linen . 3.8 (*) 0 
bare (oiled) plywood ... 4.5 15 9 
Junkers corrugated sheet 5.4 40 2 4 
coarse fabric (taut) . 6.0 60 36 

Table C. Results of wake survey in flight (17) at Rt = 

5 106 on wing having t/c ~ 17%. “k” is equivalent sand- 
roughness size (derived from equation 4; producing the 
same drag). (+) partly laminar (*) subcritical. 

their surfaces, are presented in the “streamline” 

chapter. Another piece of information is given in 

table C where results of flight tests on a wing sec¬ 

tion are listed, indicating type of surface, drag co¬ 

efficient (obtained by wake survey) and equivalent 

sand-roughness grain size as explained above. The 

sectional drag coefficient came out to be essentially 

constant in these tests, between Cl = 0.3 and 0.6. 

Corrugated Sheet Metal has been used in the con¬ 

struction of wings and fuselages (particularly by 

Junkers) in years gone by. For the range of low 

lift coefficients, figure 23 presents drag coefficients 

which are not too much above that of the smooth 

wing at the same Reynolds number. The increment 

roughly corresponds to the increase in wetted area 

(in the order of 20%) due to the corrugations. 

However, in case A, with the corrugations placed 

on top of the original surface (rather than being 

cut into the basic model as in “B”), the drag incre¬ 

ment amounts to some 40%. 

Clarl-Y with c = Z ft, = 2 106 

for the smooth airfoil CDs = 0.0086 
for corrugations form A = 0.0118 
for corrugations form B = 0.0104 

Figure 23. Section drag coefficient of a wing covered with 
corrugated sheet metal (16). 

Sheet-Metal Wing. In case of imperfections placed 

more or less singly on the surface of streamline 

shapes, an effect of the type as explained in the “in¬ 

terference” chapter must be expected, due to the 

positive pressure gradient along the rear of such 

bodies. As a rough rule, it may be said here that 

on the after portions of fuselage bodies and of wing 

sections near zero lift, the drag due to individual 

protuberances may be in the order of twice as high 
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Figure 24. Me-109 sheet-metal wing with slotted flap and 

aileron, tested by wake survey in wind tunnel (14). 

as on a constant-pressure wall. Figure 24 shows the 

distribution of momentum loss across the span of 

an Me-109 wing as tested in a large wind tunnel by 

wake survey behind the wing. The attachments 

shown on the upper wing side have their traces in 

the Cjjs distribution. Other peaks correspond to the 

chord-wise rows of screws used to hold large sheet- 

metal panels in the lower side. In this reference as 

well as in other sources, it can be found, however, 

that a protuberance concentrated in one particular 

spot, produces a pair of peaks in the wake-loss dis¬ 

tribution, while at a short distance behind the ob¬ 

stacle, the flow reattaches, thus leaving no momen¬ 

tum deficiency at its spanwise station. It is also seen 

in figure 24 that the average drag level is highest 

within the part of the span where the wing slat 

(although retracted) is located. The average mini¬ 

mum profile drag coefficient of this wing is slightly 

above 0.010, while the same type of foil section in 

smooth and undisturbed condition would have a 

CDs ~ 0.007 at the Reynolds number as tested. 

Surface Condition ^Dsmin 

smooth foil section (joints 
filled with putty, and polished) 0.0063 

common service condition (with 
joints, rivets, camouflage paint) 0.0083 

service condition with 
"thin mud” (from air field) 0.0122 

service condition with 
"heavy mud” (from air field) 0.0175 

Table D. Profile drag of 22(12.8) section, tested in flight 

by wake survey (15), at CL = 0.16 and Rc = 1.6 107. 

Dirt and Mud. In some physical examples of surface 

disturbance, grain size or any other definition of the 

imperfections is not readily known. This is usually 

true for dirt or ice which may collect on the skin 

of airplane wings. Table D gives an idea on the 

possible influence of dirt and mud on profile drag. 

Evidence on the influence of dirt and mud on 

boundary layer and drag of laminar-type foil sec¬ 

tions can be found in the “friction” chapter. 

Ice Formation. Ice usually collects at the nose of 

wing sections. Water has been injected into the 

stream of wind tunnels (18) and frozen on a wing 

model. The resulting changes in aerodynamic shape 

were then simulated in wing models by putting on 

molded wooden strips. The profile drag coefficient 

for various conditions is tabulated in figure 25. Air¬ 

planes may not only get into trouble because of drag 

due to, and weight of the ice deposited, but also 

because of a serious reduction of the maximum lift 

coefficient in such condition. 

Figure 25. Section drag due to ice formation of two air¬ 

foils (18) at low lift coefficients and at Rc. = 
106 and 107, respectively. 

(5) Drag of Control Gaps 

Certain gaps between control surfaces (ailerons, 

rudders, elevators) and the airplane parts to which 

they are hinged, are necessary to permit their oper¬ 

ation. The airplane designer tries, of course, to keep 

these gaps as narrow as possible. Nevertheless, they 

exhibit some additional drag, described as follows: 

Longitudinal Gaps. Adjoining the lateral edges of 

wing slats, landing flaps and control surfaces of air¬ 

planes, there are chordwise or longitudinal gaps, 

with a width in the order of 1 /4 of an inch or even 

wider. Figure 26 indicates comparatively high drag 

coefficients for such gaps. Information on the varia¬ 

tion of this drag as a function of lift coefficient is 

still lacking. It is suggested, however, that part of 

the drag is momentum loss due to flow through 

the gap, while another part may be caused by inter¬ 

ference with the flow past the foil section. 
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simulating flap or aileron 

gap width c = 0.013 chord c 

Figure 26. Drag of longitudinal wing gaps, tested (19) 
on 2412 airfoil at CL = 0.1 and % = 2 10? 

Gap Width. In spanwise gaps between the noses of 

ailerons, slotted flaps, elevators or rudders, and the 

wing or tail surfaces, respectively, definition of gap 

width is somewhat problematic. After considering, 

however, what is known about the effect of the 

edges in the case of spanwise gaps, the definition as 

illustrated in figure 27 — is adopted for the follow¬ 

ing analysis of available data on the drag of control 

gaps. Using the width e, the area S 0 = e b is em¬ 

ployed as reference for the drag coefficient CDo. In 

cases where gaps exist on both sides of the airfoil, 

the sum of the two widths is to be used. 

Experimental Data. Figure 27 indicates how the ad¬ 

ditional profile drag of conventional wing- or tail 

surfaces caused by control gaps, increases in propor¬ 

tion to the gap width. The gap-drag coefficient is 
accordingly 

CL = between 0.02 and 0.03 
Dn 

The lower value applies for the lower- or pressure 

side of the airfoil section and for thinner sections; 

the higher value is preferable for the upper- or suc¬ 

tion side and for thicker sections. For example, for 

a ratio e/c = 5%, such as may be characteristic of 

an average “open”-type control gap, a drag coeffi¬ 

cient CDo is found in figure 22 for a plane wall, 

below 0.01. The reason why equation 15 gives much 

higher values is believed to be in the interference 

effect mentioned above. 

Figure 27. Evaluation of drag due to control gaps. 

(18) Icing experiments in wind tunnels: 

a) Gerhardt-Hentrich, Yearbk D.Lufo 1940 p.I,575. 

b) Gray-Glahn, 65-212 Foil, NACA T.Note 2962. 
(19) Engelhardt, Aerodynamic Laboratory TH Miinchen: 

a) Drag of Chord-wise Wing Gaps, Rpt 1/1945. 

b) Control Surface With Variable Gap, Rpt 3/1944. 
(20) Control-gap statistics: 

a) NACA Tech Rpts 664 and 677; also T.Rpt 938. 

b) Doetsch-Kramer, Profile Drag, Lufo 1937 p. 173. 

Figure 28. Section-drag coefficient of a horizontal tail sur¬ 
face at zero lift, as a function of the trailing-edge thickness 
of the stabilizer (19,b). 

Positions of the Edges. Figure 28 shows how con¬ 

siderably the drag of a control gap depends upon 

the position of the two edges in relation to each 

other. An elevator was attached to the model of a 

stabilizer, the trailing edge of which was elastically 

adjustable to various thicknesses (19,b). By decreas¬ 

ing this thickness, the profile drag of the tail surface 

can be reduced to 76% of the original value (of 

the configuration having a contour corresponding 

to the 0012 airfoil section). In comparison to the 

original gap drag, the reduction amounts to 85%. 

Similar tests (19,b), employing a thickened elevator, 

show a corresponding, but somewhat smaller reduc¬ 

tion of the drag. For explanation of the impressive 
effect, it can be stated: 

(a) By changing the position of the front edge as 

described, the flow is directed against the round 

nose of the elevator. Any separation of the flow 

from the flanks of this elevator is subsequently 

prevented. 
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(b) Corresponding to the local curvature of the 

streamlines, the velocity with which the flow 

passes over the gap is somewhat decreased. 

At any rate, the boundary-layer flow along the ele¬ 

vator is obviously improved, and the pressure drag 

is considerably reduced, by changing the foil con¬ 

tour as indicated. 

Flow Through the Gap. At lift coefficients different 

from zero, a flow originates through the control gap 

from the pressure to the suction side of the surface. 

The profile drag increases accordingly. It is possible, 

however, to adjust the two stabilizer edges in such 

a way that a flow through the gap is prevented. Drag 

reductions similar to those at zero lift can then be 

obtained as shown in figure 29 for a lift coefficient 

ofCL=0.4. 

(b) OPTIMUM-, PLOW DOWN 

(c) MAXIMUM DBAS 

<T>. ■ 0-024 

Figure 29. Section drag (by wake survey) of the tail 
surface as in figure 28, at CL = 0.4. (b) has 
upper TE of stabilizer lowered, (c) has the 

lower side displaced upward. 

Interference in B’Layer. Coming to the end of this chapter on surface 

imperfections, figure 30 presents a further example, showing that the 

drag of protuberances within the boundary layer has characteristics 

similar to those in free flow. A comparison of this illustration with 

figure 1 in the “interference” chapter suggests that the second hexa¬ 

gonal head is shielded by the first one. In closest position (at x/d = 0), 

the drag is 25% of that of two single heads. It should be noted, 

however, that beyond x/d = 5, an interference effect is no longer no¬ 

ticeable. This result too, is in agreement with experience in free flow. 

Figure 30. Interference effect between a pair of hexagonal bolt heads tested 

within the boundary layer of a wall (12,b) . 
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CHAPTER VI - DRAG OF STREAMLINE SHAPES 

The discovery of minimum fluid-dynamic drag in 

slender shapes is evidently very old — as can be seen, 

for instance, in the ships of the Egyptian Pharaohs. 

Also Leonardo da Vinci has presented drawings of 

what we now call “streamline” bodies. Extensive 

experimental information has been accumulated in 

our age regarding the aerodynamic characteristics 

of such shapes, particularly of airfoil sections. Ad¬ 

vances in their mathematical treatment have evi¬ 

dently not reduced experimental efforts in modern, 

large and expensive installations to confirm theo¬ 

retical predictions and to obtain information in con¬ 
ditions where theory does not apply. 

Shape Parameters. Streamline shapes are classified 

by their thickness ratio t/c (or d/1 respectively) 

the location of maximum thickness x/c (or x/1), 

the distribution of thickness along chord c or length 

1 (including leading-edge radius and trailing-edge 

angle), and in wing sections by shape and ampli¬ 

tude of their camber (f/c). In a statistical interpre¬ 

tation of the available experimental material, ap¬ 

proximate functions (1) are presented in the fol¬ 

lowing sections, indicating the profile drag of airfoil 

and strut sections, and the drag of three-dimensional 

streamline bodies as a function of their thickness 
or fineness ratio, respectively. 

A. DRAG OF WING- AND STRUT SECTIONS 

T housands of wing- and similar sections have been 

tested within the last «=" 50 years, primarily in wind 

tunnels. Two aspects predominate in their develop¬ 

ment; one is the influence of Reynolds number, 

the other one is the shape most suitable for particu¬ 

lar applications. — The “viscous” or “parasite” drag 

of wings is usually called “profile” drag. To get 

away from the subscript “p” which is likely to be 

confused with the “p” in “pressure”, an attempt 

is made in this book, to substitute “s” from “sec¬ 

tion”. We will, therefore, find “CD5” = Dj/qS, de¬ 

noting the “section” drag coefficient of airfoils and 

struts (based on "wing” area b times c). 



6-2 FLUID-DYNAMIC DRAG 

1. DRAG AS A FUNCTION OF R’NUMBER 

Turbulence. Within the range of small lift coeffi¬ 

cients, the drag of airfoil sections is predominantly 

frictional. Skin-friction drag is very much a func¬ 

tion of transition from laminar to turbulent bound¬ 

ary-layer flow, as explained in the “skin-friction” 

chapter. Results at higher Reynolds numbers are 

now available from modern low-turbulence wind 

tunnels (7). Most of the experimental points at 

lower R’numbers, as plotted in figure 2. have been 

collected, however, from earlier tests in rather tur¬ 

bulent wind tunnels. Figure 1 presents as an exam¬ 

ple, results for several «=■ 25% thick sections. The 

general trend of the drag coefficient is to reduce 

from the level of laminar separation below Rc = 10 

or 10^ (in the order of CDs =0.1 or = 0.4) 

"7 
to the fully turbulent condition beyond 10 

(in the order of = 0.01 or = 0.04). This 

transition over an interval between lO^or 10 and 

10^, 107 or even 10^— can take various ways. 

(a) Wind-tunnel stream turbulence produces early 

and flat transition. At Rc = 10 , variation of the 

drag coefficient due to turbulence, can be in the 

ratio of 3 to 1. 

(b) The earlier the transition takes place, the sooner 

the drag coefficient assumes the fully turbulent 

characteristics. 

(c) In low-turbulence streams and in suitable sec¬ 

tion shapes, the boundary-layer flow along the fore¬ 

body remains laminar and the drag coefficient is 

comparatively low, to high Reynolds numbers. 

At Reynolds numbers above the critical drop of the 

drag coefficient, most of the results in figure 2 have 

been corrected using the method as recommended 

in (2,a). The so-called turbulence factors “f” = 

Reffeci/Riest applied in figure Z , are consid- 

Figure 2. Data on sectional drag (at zero lift) of streamline foil- and strut 

sections. Many of the experimental results are obtained by wake-survey tech¬ 

nique; in others, drag of blunt wing tips has been subtracted from the original 
values. Drag coefficients at subcritical R’numbers are as indicated by equation 24 

(using C.p = 2.66 y/RJ ; at very high R’numbers as given by equation 28 (using 

as indicated by the Schoenherr equation in Chapter II). 

SYMBOL SOURCE SHAPE t/ojt f REF 

• NACA - ELLIPTICAL 200 1 5,b 
0 VARI'S CYLINDERS 100 1 IN 
o- VARIOUS DITTO CL 100 1.5 HI 
• AVA — CYLINDERS 100 1 5,h 
□ CYLINDER'IN WIND 100 1 5,e 
© NACA WIND TUNNEL 100 1 5 »b 
■ DRYDEN - IN WIND 100 1 5, a 
■ 0 0 7 0 IN WATER 70 3 4 ,f 
O AVA-STRUT 71 3 4,a 
o A V A-STRUT 64 3 4 ,a 
• NACA - ELLIPTIC! 50 1.5 5,d 

a ARC - ELLIPTICAL 50 1.5 'f.e 
a NACA - B-THICX 50 2 4,d 
o AVA — S T R U T 49 3 4 ,a 
■ DIN-L-92 STRUT 46 3 4,f 
A NACA - ELLIPTICAL 40 1 5,g 
■ DIN-L-92 STRUT 37 3 4 ,f 
V AVA JOUKOWSKY 36 1 3,b 
A NACA 0035 SECT'N 35 1 3,f 
+ EIPFEL STRUT 34 2 4, i 

ARC GLOSTER STRt 30 2.5 4 ,e 
X ARC 0030 SECTION 30 3 3,e 

▼ AVA JOUKOWSKY 30 1 3 »b 

I CAHI -STRUT 28 3 3,e 

> NACA - ELLIPTICAL 27 1 5,g 

X ARC — S T R U T 25+ 1 4,h 

O AVA STRUT 25 2 4,a 
*■ ARC, PLIGHT TEST 25 1 3,p 
A NACA S T R U TS 25 2 4 ,d 
V ARC, 0025 FOIL 25 3 3,e 
I CAHI - STRUT 25 3 4, c 
• NACA - ELLIPTICAL 25 1 5,d 
h ARC POIL SECTION 24- 3 3,o 
A NACA - 0025 FOIL 25 1 3,f 
r NACA - 0021 FOIL 21 1 3,1 

AVA, WIRE-STRUT 20 1 4 ,a 
T ARC JOUKOWSKY 13- 1 3,o 
• NACA - ELLIPTICAL 13- 1 5,d 

h A V A - 459 FOIL 12+ 1 3.k 
1 STEVENS 0012 12 1 3,m 
V ARC, GLOSTER STR 12+ 2 4,e 
+ NACA, FULL SCALE 12 3 3,f 
X ARC-CAT, 0012 12 4 3,e 
Y NACA, LOW TURBUL 12 1 (7) 
A D V L, 0012 FOIL 12 3 3,1 
▼ AVA JOUKOWSKY 11 + 1 3,b 
A NACA 0006 SECT1N 6 1 (7) 
• AVA, FOIL SECT'N 6 5 3,k 
T NACA 0006 SECT *N 6 1 3,1 

NACA 0006 SECT'H 6 3 3,1 
A D V L, 0006 FOIL 6 3 3,1 
/ A V A - CAMBERED 6 1 3,k 
* RM 1117 CAMBERED 13 1 ARC 

EQU. 6 FOR 
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erably higher, however, than quoted in (2,a). 

They correspond to figure 9 in the “friction” chap¬ 

ter. At R’numbers below the critical drop, a tur¬ 

bulence correction is not needed. The Reynolds 

number range in which the drop takes place has 

been shifted, however, in figure 1 in proportion to 

“f” factors as listed. It would be better, of course, 

to have experimental data obtained in turbulence- 

free flow. Applying, however, the corrections men¬ 

tioned, it is possible to give approximate informa¬ 

tion on shapes and at Reynolds numbers not 

available otherwise. It is nevertheless possible, that 

certain section shapes would have basically different 

transition if tested in a turbulence-free stream. 

(1) Statistical interpretation of foil-section drag: 

a) Hoerner, Streamline Shapes, Ybk D.Lu 1942 p. 374. 

b) Method of using mean-average values for the dy¬ 
namic pressure, stems from Weinig (Ybk STG 1937), 

c) Scholz, Slender Shapes, Yearb’k STG 1951 p.244. 
(2) Section-drag corrections (wing-tip drag) : 

a) Regarding wing-tip and turbulence-correction, see 

NACA T.Rpt 586 and the Appendix of T.Rpt 669. 
b) Hoerner, Drag of Lateral Edges, Doct ZWB UM 

7815 (1943); see Wing Tip Shape, USAF T.Rpt 5752. 
c) British ARC, RM's 1870, 2110 and 2584. 

d) 0009 to 0035 Airfoils, NACA T.Rpts 431, 647, 708. 
e) Doetsch, Foils in DVL Wind Tunnel, Lufo 1937- 

(3) Sections with maximum thickness at n- 30% of chord: 

a) Fage-Falkner-Walker, Experimental Investigation 
of Symmetrical Joukowsky Sections, ARC RM 1241, 

b) AVA Gottingen Experiments on Joukowsky Sec¬ 
tions, Ergebnisse Vol III (1926) and Vol IV (1932). 

c) 0012 and Other Airfoil Sections (Smooth and 

Rough) in CAT, ARC RM’s 1708 and 1789 (1936/37). 

d) DVL Tests, Doct ZWB FB 642 and Lufo 1937. 

e) Sections 0015, 0030 and Others in Compressed-Air 

Tunnel, ARC RM 1804 (1937) and 2584 (1952). 

f) Symmetrical Sections in Full Scale Tunnel, NACA 

T.Rpts 647 (0009, 12, 18) and 708 (0025 and 0035). 

g) 4-Digit Series Modifications, NACA TN 1591. 
h) NACA at small Reynolds numbers, T.Rpt 58. 

i) Foils in DVL High Speed Tunnel, ZWB FB 1490. 

k) AVA, Foil Sections, Erg Gottingen III (1926) p.87. 
l) 4-Digit Sections in VDT, NACA TN 364 and 457. 

m) Locke, 0012 and 4415 in Stevens Towing Tank, 
ETT Memo 42 (1939) and Rpt dated 15 Sept 1939. 

n) Jacobs-Pinkerton-Greenberg; Airfoils Having 
Camber Far Forward, NACA T.Rpts 537 and 610. 

o) Joukowsky Sections, ARC RM’s 1970 and 2110. 

p) ARC, Flight Tests on Several Sections, RM 1826. 

(4) Experimental results of strut sections: 

a) AVA, Tech Ber. Flugzeugmst. I (1917) and II. 
b) Hartshorn, Seven Strut Shapes, ARC RM 1327. 
c) CAHI (Moscow) Rpt 33 (1928). 

d) Jacobs, Drag of Streamline Wires, NACA TN 480. 

e) ARC, Resistance of Strut Sections, RM 1599. 

f) Hoerner, Fieseler Water Tunnel Rpts 2 and 5. 
g) Williams-Brown, Thick Sections, ARC RM 2457. 

h) Struts at subcritical R’numbers, ARC RM 890. 

i) Eiffel,‘Nouvelles Recherches' Paris 1914 and 1919. 
k) Kohler, Drag in Strut Junctures, Lufo 1938 p.143. 

l) Maxen, Strut Junctures, Ybk D.Lufo 1940 p.I,599. 
m) Struts at Low R’numbers; ARC RM 49, RM 256. 

Their drag coefficient may, for instance, drop sud¬ 

denly, possibly involving a hysteresis on increasing 
or decreasing the speed, respectively. 

Reynolds Number Phases. Figure 2 contains more 

information on small Reynolds numbers and thick 

(bluff) sections (subject of Chapter III) — than on 

streamline shapes at higher Reynolds numbers. 

Characteristics become more evident, however, in a 

combined presentation. — As a function of Reynolds 

number, several phases can be recognized in figure 2. 

(a) Below Rt«r 105, there is the region with com¬ 

pletely laminar boundary-layer flow. Sections with 

intermediate and higher thickness ratios show high 

drag coefficients, owing to separation of the flow 
from their rear. 

(b) In the range between Rt«^ 5 ~10^ and ~ 5 10^ 

the sections show a critical decrease of their drag 

coefficient, caused by transition from laminar to 

turbulent boundary-layer flow (see in Chapter III) : 

in thicker sections, the coefficient drops to 1 /3 or 

even to 1/10 of the level below the critical Rey¬ 

nolds number. The critical R’number (based on 

chord length c) is seen decreasing from near 106 

for an elliptical section with t/c = 2, to around 105 

for slender streamline shapes. 

(c) For some interval of Reynolds number above 

the critical drop, the transition point of the bound¬ 

ary layer seems to be comparatively fixed (by the 

pressure minimum). With laminar flow along the 

forebody, the drag coefficient varies essentially in 

proportion to the laminar skin-friction drag co¬ 
efficient. 

(d) Another critical phase follows then (in the 

vicinity of Rt= 10 ). Here, the transition point 

moves steadily ahead, thus causing the drag coeffi¬ 

cient to grow again, in a manner similar to that of 

the skin friction drag coefficient as presented in 
Chapter II. 

(e) Only well beyond Rc= 107, terminal conditions 

are obtained at last (in the non-laminar type of 

sections plotted). Here, practically all of the b’layer 

flow is turbulent, and the section drag coefficient is 

proportional to the turbulent skin-friction drag co¬ 

efficient. This condition is also obtained at con¬ 

siderably smaller R’numbers (106) in very turbu¬ 

lent wind-tunnels and/or by surface roughness. 

The last two phases are the usual field of practical 

application in airplane wings. The importance of 

larger wind-tunnel facilities is thus apparent. Many 

of the early investigations have been carried out 

within the critical R’number range. Stream turbu¬ 

lence (reducing the critical Reynolds number) 

helps, however, in obtaining supercritical, if only 

qualitative results in small and inexpensive wind 
tunnels. 
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2. AS A FUNCTION OF THICKNESS RATIO 

The "sectional” drag of a thin plate, exposed on 

both sides to a tangential flow, is Cos = 2 Cf, with 
= proper skin-friction drag coefficient as treated 

in Chapter II. The drag of thin airfoil sections is 

somewhat higher than this lower limit. 

Wing-Tip Drag. Rectangular wing models, used for 

many years in wind-tunnel investigations of airfoil 

sections, are often made with square or blunt lat¬ 

eral edges. To obtain the section drag, not only 

the induced but also the parasitic drag originating 

at the ends must be subtracted from the readings 

of the wind-tunnel balance (see for example in 

reference 2,a). The wing-tip drag is obviously a 

function of the profile dimensions at the tips. The 

coefficient of this drag component is, therefore, 

based on the “tip area” (c. • A2,. Various investiga¬ 

tions of wing models concurrently tested with 

rounded and with blunt lateral edges, have been 

evaluated. Results have also been obtained by com¬ 

paring force tests (with blunt ends) to wake-survey 

results. For lift coefficients equal to or close to zero, 

figure 3 approximately indicates 

CQc = (AD, 2 edges)/ (q c2) = 0.15 (t/cf (1) 

Referring the coefficient to the “frontal” area (t2) 

of the tips, the constant value C^^ = 0.15 is found 

for a pair of blunt wing ends. Their drag is similar 

in nature to that of the bodies in figure 21 of the 

“pressure-drag” chapter. Equation 1 has been used 

to correct the experimental results plotted in fig¬ 

ure 2; as far as they were obtained from force read¬ 

ings on blunt-ended rectangular wings. 

Figure 3. Parasite drag due to square or blunt lateral 

edges of rectangular wing models, at * zero lift. Reynolds 

numbers Rc above 10 . 

Faired Edges. A systematic investigation of the 

characteristics of wing tips (lateral edges) is re¬ 

ported in (2,b). Among the tip forms from this 

source (illustrated in Chapter VII), the numbers 

2 and 5, having favorable shapes, show “negative” 

tip-drag values in the vicinity of C|_ = 0. This 

means, that the parasitic drag of the wing including 

the two tips, is somewhat lower than the two-dimen¬ 

sional section drag — evidently because of three- 

dimensional flow conditions around the edges. With 

CL close to zero, a pair of these wing tips presents 

a parasitic drag coefficient in the order of 

CDto = -f- 0.11 with blunt edges, number 1 

= — 0.04 with round edges, number 2 

= — 0.03 with sharp edges, number 5 

Results on a 30% thick rectangular model wing are 

reported in (2,c). For example at Rc = 5 10fa, the 

total parasitic drag coefficient on wing area for as¬ 

pect ratio A = 6, is found to be approximately 

CJ)S = 0.0143 with blunt wing tips 

= 0.0118 with well-rounded edges 

= 0.0125 tested by wake survey 

Here again, the rounded ends obviously present a 

negative drag differential, in the order of = 

(0.0118 - 0.0125) 6/0.3* = - 0.047. In conclusion, 

it appears possible that the drag of a wing with 

finite span is smaller than in two dimensions. 
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tions fat 

Drag coefficient of streamline and elliptical sec- 

« zero lift) at subcritical R’numbers. 

Low Reynolds Numbers. Streamline wires and com¬ 

pression struts (sections of which are listed in figure 

9) are often used in the range of comparatively low 

Reynolds numbers. As explained in the “pressure- 

drag” chapter, laminar separation takes place in this 

phase; and the drag is predominantly due to pres¬ 

sure differentials. The experimental results of 

streamline (and some elliptical) sections at Rc be¬ 

tween (1 and 5) 10*, as plotted in figure 4, can be 
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interpreted by + o 

Cl,5 = 2Cf(1 + T>+ W 

CD. = 2 cf (c/t) + 2 Cf + (t/c) (2) 

The last term represents the pressure drag as de¬ 

scribed above. For larger thickness ratios, this term 

becomes predominant; and that is the reason why 

in figure 1 such sections show apparently constant 

drag coefficients between a? 10^ and 105! It is 

suggested that neither the conventional streamline 

shapes nor the elliptical sections are optimum in 

this R’number phase. More efficient shapes might 

be developed, whenever worth-while applications 
should arise. 

Optimum Wire Shape. Referring the drag coeffi¬ 

cient (equation 2) to the area (bx/Tc) , as explained 

later in the text, a function is obtained that per¬ 

mits to optimize the thickness- or fineness ratio of 
“streamlined” tension wires: 

2 CfV^A) + 2 S(t/c)/2+ (t/cf/2 (3) 

For example, for Rfr= 1(A) where for laminar b’layer 

Cp = 0.0133, differentiation of this equation leads 

to an optimum thickness ratio of t/c in the order 
of 9%. 

The Critical Reynolds Number is a function of 

maximum-thickness location x/c. Several strut sec¬ 

tions, for example, with t/c = 25% have been tested 

(4,d) in a turbulent wind tunnel. The critical num¬ 

ber (defined for 1/2 of the decrement of the drag 
coefficient) is 

^■ccvit 
h- 

11*10 
7 1()| 
s i oh 

for x/c — 50% 

= 40% 
= 30% 

two of these sections are represented in figure 2. 

Location and value of the pressure minimum are 

evidently responsible for the variation of the criti¬ 

cal R’number. By the same reason, the 40% thick 

elliptical section (5,g) in figure 2, should have a 

critical number appreciably higher than plotted. 

(5) Experimental Results on elliptical sections: 

a) Dryden, Cylinders in Wind, BOS J.Res.Pap.221. 
b) Delany, Blunt Shapes, NACA T.Note 3038. 

c) Jacobs, Drag of Streamline Wires, NACA TN 480. 

d) Lindsey, Simple-Shape Cylinders, NACA TR 619. 

e) Pechstein, Cylinder in Wind, Zts.VDI 1942 p.22. 

f) Hoerner, Fieseler Wasserkanal Report 5 (1938). 

g) NACA, Elliptical Sections, Note 279 and Rpt 289. 
h) AVA Gottingen, Ergeb II (1923) and III (1926). 

i) Eiffel, Nouvelles Rech Resistance, Paris 1914. 
k) Betz, lenticular “wires”, Durand IV p. 143. 

It is only to fill the illustration, that the drag co¬ 

efficient of this section has been plotted using a tur¬ 

bulence factor f = I. — Note, that there are results 

on strut sections available, obtained in turbulent 

tunnels, showing supercritical drag coefficients at Rt 

in the vicinity of 2 10 . Values are still compara¬ 

tively high, however, because of the magnitude of 

the skin friction coefficients involved 

0.006 and 0.003). Such sources are, for 

example, (3,a) (4,d) and (5,i). 

Skin-Friction Drag. Because of thickness (displace¬ 

ment) , the mean-average velocity around a sym¬ 

metrical foil section is higher than that of the un¬ 

disturbed flow, even at zero lift. The supervelocity 

AV and the corresponding increment of the dy¬ 

namic pressure (Aq) increase roughly in propor¬ 

tion to the thickness ratio t/c. For sections with 

maximum thickness located at or near 30% of the 

chord, the differentials are approximately 

AV t ACL Aq t 
- = _j and - = — = 2 - (4) 

V c 2 Cf q c 

This function basically agrees with theoretical 

analyses (8) ; and it is substantiated by experimen¬ 

tal results (figure 5). The skin-friction drag also 

depends, of course, on the location of the boundary 

layer’s transition point on section chord. It appears, 

however, that in the range between R0= I0* and 

10 , transition on foil sections with maximum thick¬ 

ness at x/c ~ 30% is governed by the location of 

the minimum-pressure point rather than by thick¬ 

ness ratio. In other words, in this type of sections. 

0.025 
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Figure 5. Profile drag coefficient of wing- and strut sec¬ 

tions, at higher Reynolds numbers: equation 6. 
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the location of the transition point is comparatively 

independent of thickness ratio. The value of Cp to 

be used in equation 4, should, of course, be tnat 

of a thin plate having the same location of the 

transition point. 

Pressure Drag. In addition to the friction drag, there 

is also a certain pressure- or separation-drag com¬ 

ponent, originating along the afterbody of foil- and 

strut sections against the pressure gradient. This 

component is not included in the theoretical studies 

(8). Analyzing available experimental results of 

airfoil sections with x/c ~ 30%, as plotted in figure 

5, this drag component can be interpolated by 

CDpr/(^C-f) == 60 <5> 

In this equation, (t/c)’ represents the frontal area 

on which the pressure is acting; and (t/c)'3 repre¬ 

sents the effect of the adverse pressure gradient along 

the rear of the section. The pressure or separation 

drag is assumed to be proportional to the friction 

drag Cp (along the forebody). The total “viscous” 

or profile drag of these sections is obtained by add¬ 

ing equations 4 and 5: 

(6) 

Thickness Location. Laminar profiles, that is, sec¬ 

tions with the maximum thickness located at 40 or 

50% of the chord, have a lower supervelocity ratio 

than the “conventional” sections considered so far. 

The second term of equation 6 is, therefore, re¬ 

duced in magnitude. The experimental points in 

figure 6 on “64” and “65” series sections with tran¬ 

sition fixed by means of sand strips, are best inter¬ 

polated by 

CDS/(2C^) = l + 1.2i + 70(i)4 (7) 

Note that in these sections the value of corre¬ 

sponding to t/c -> 0, is higher than the turbulent 

skin friction drag coefficient. The sand strips ob¬ 

viously have some pressure drag of their own. 

Laminar Profiles. Equation 7 does not agree, how¬ 

ever, with smooth-surface laminar-type sections 

whose drag coefficients are plotted in the lower part 

of figure 6. In these sections, two effects are fighting 

each other with respect to drag; that of laminariza- 

tion and the boundary-layer accumulation or sepa¬ 

ration near the trailing edge. The third term of the 

equation represents a penalty in this respect, to be 

paid to obtain laminarization. In the 64 and 65 

series sections, -this term is approximately twice as 

high as that in equation 6 which applies for sections 

with x/c == 30%. Approximately at x/c = 50%, 

minimum drag is obtained (in conventional thick¬ 

ness ratios and at the R’numbers tested). Beyond 

this location, pressure and separation drag increase 

as a function of the wedge angle at the trailing edge. 

Because of the sensitivity of the boundary layer, the 

drag coefficient of laminar-type sections shows cer¬ 

tain humps and hollows as against thickness ratio. 

A hollow exists, for example, around t/c = 15% 

in the “64” series at Ra= 6 10 . The hollow is a 

function of Reynolds number too. As a consequence 

of such complex combination of effects, for example, 

the section 63-0018 exhibits a drag coefficient (at 

Ra= 2.5 107) that is lower than those of thinner 

sections. As indicated in figure 6, the drag of all 

... t/o - 57* WITHOUT TURBULENCE THOM FIGURE 1 

4 57 * STEUT SSCTIOH IH WATER TUNNEL (9,c) 

* DITTO WITH A/c - 5/1000 AMD - 11/1000 (9,e) 
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o SMOOTH 0012 WITH T0R0ED TURBULENCE (9.R) 

O 0012 WITH E/o - (2.2; 6.4; 20) 10"5 (9.H) 

O 0012 WITH ROUGHNESS A/o - 1.2 10*4 (9,g) 

t/c-371. | 

\ 

<J2% ' 
/V _-L 

' j_ 

s'" 
— +-! 

1 n 

1 

/\
 f j 

- 

rc-VcA 
_i 

2Cftm* 

L_ 

!( A 10 S 10 
r i 1 

10* 10 » 

Figure 6. Profile-drag coefficient of laminar-type sections Figure 7. Drag coefficients (at zero lift) of various sym- 

(with maximum thickness at or near 40% of the chord) metrical sections having various degrees of surface rough- 

as a function of thickness ratio (6). ness (9); no corrections applied. 
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these sections increases, of course, to that of the 

thin and flat plate (which does not have laminari- 

zation due to shape), as t/c approaches zero. At any 

rate, equation 6 cannot very well be used for pre¬ 

dicting the drag of laminar-type foil sections with 

undisturbed boundary layer flow. Unfortunately, 

such disturbances are easily produced by dust, mud, 

insects, imperfections, lateral wing edges (if any), 

fuselage- or nacelle walls, by the propeller slip stream 

(if any) and finally by mechanical vibrations (see 
in the “skin-friction” chapter). 

Surface Roughness. Putting into equations 6 or 7 

for C.p the proper skin-drag coefficient, as found in 

the “imperfections” chapter, the profile drag of 

wing- or strut sections with surface roughness is 

readily obtained. Available experimental data are 

plotted in figure 7 against Reynolds number. As 

explained in Chapter V, the coefficients of rough 

sections diverge from those of smooth ones at cer¬ 

tain critical R’numbers. Terminal drag coefficients 

have been taken from figure 7 (extrapolated where 

necessary) and plotted in figure 8 together with 

other results. As a function of grain-size ratio (k/1), 

the drag coefficients evidently have the same trend 

as the thin plate, whose coefficient was taken from 

the “imperfections” chapter as CDs = 2Cp. Except 

for 0012 (9,a), the agreement with equation 6 is 

good, even at a thickness ratio of 37%. 

(6) Experimental results laminar-type foil sections: 
a) A series of unpublished NACA reports between 

1939 and 1945, summarized in T.Rpt 824 (7). 

b) Loftin, Sections w’out cusp, NACA T.Rpt 903. 

c) NACA, Circular-Arc Foils, Tech Rpt 1146 (1953). 
d) Loftin-Smith, 15 Sections, NACA Note 1945. 

e) Benson-Land-Havens, Testing Strut Sections in 
Towing Tank, NACA Memo Rpt for Navy Bu'Ships. 

f) DVL, In Large Wind Tunnel, ZWB FB 1621- 
g) NACA, Sections to R& = 2.5 10T Tech Rpt 964. 

(7) Abbott-Doenhoff-Stivers, Summary of Airfoil Data, 

NACA Tech Rpt 824 (1945); also McGraw-Hill 1949. 
(8) Theoretical calculation of profile drag: 

a) Squire-Young, Profile Drag, ARC RM 1838 (1937) . 
b) Pretsch, in Yearbk D.Lufo 1938 p.I,60. 

c) Fedjajewsky and Go, Techn.Wosd.Flota July 1940. 

(9) Experimental results on surface roughness in foils: 
a) D.Vers.Anst.Luftf., German Doct ZWB FB 642. 
b) NACA, Technical Notes 364 and 457 (1945). 

c) Jones and Williams, Roughness on 0012 and Other 
Airfoils in CAT, ARC RM 1708 (1936) and 1804. 

d) Schrenk, Momentum Method in Flight, Lufo 1929. 

e) Hoemer, 0012 and Strut, Fieseler Rpts 2 and 5. 
g) Relf, 0012 and other Sections, ARC RM 1706 

(1936) and 1789 (1937); also Aircraft Eng’g 1936 

h) Young, 0012 Section, J.R.Aeron’l Soc. 1950 p.534. 

i) Fage and Warsap, Turbulence and Roughness on 
Cylinders, ARC RM 1283 (1929). Grain sizes meas¬ 

ured by this author from samples of the NPL. 

Figure 8. Terminal drag coefficients of streamline and of 

other shapes as a function of roughness. 

3. APPLICATIONS OF STREAMLINE 

SECTIONS. 

To indicate (roughly, by order of magnitude) Rey¬ 

nolds number ranges for various engineering and 

other applications of streamline sections, tabulations 
A and B have been prepared. 

APPIIC1I10I °inch Ho 

AVERAGE BUTTERFLY (§) 1 1 5 102 
Z A H 0 M I A SEED 2 2 2 103 
IIDOOH AIBFLAHE MODEL 3 6 1 10* 
SMALL BIRDS 2 20 2 10* 
SEAGULL (WHIG CHORD) 6 20 6 10* 
7BBE-PLIIH0 APL MODEL 6 30 1 105 
HOUSEHOLD MI ($) 4 50 1 105 
ALBATB0S BIRD 8 50 2 105 

TABLE A. Reynolds numbers in various small-size applica¬ 
tions. (§) Speed is resultant, wing against air. 

Streamline Shapes, suitable at larger Reynolds num¬ 

bers for application to airplane wings, tail surfaces, 

and as struts or fairings, have been developed first 

by empirical means and more recently on the basis 

of theoretical analysis (of their pressure distribu¬ 

tion) . Figure 9 displays various typical streamline 

shapes, arbitrarily blown up to a thickness ratio of 

t/c = 40%, to show more clearly their characteris¬ 

tics. Among these, (c) gives a simple geometrical 

method of construction. Ordinates of other section 

types are found in the references listed (3 to 7) . 

Streamline shapes are generally “fine” and tapered 

in the afterbody to avoid flow separation. In the 

forebody, certain marine applications still prefer 

a sharp (pointed) shape, while in aviation more or 

less rounded leading edges have been found to be 

most favorable with regard to the variable angle 

of attack (and lift) of wings and other applications. 
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APPLICATION ° ft Vknota R0 

AIRCRAFT STRUT 0.5 100 5 105 

SAILBOAT SAIL 10 10 1 106 

AVERAGE SAILPLANE 4 80 3 106 

PERSONAL AIRPLANE 5 100 5 106 

AVG FIGHTER AIRPLANE 6 500 3 107 

COMMERCIAL AIRPLANE 13 300 A 107 

AVERAGE BOMBER WING 12 400 5 107 

WATSB-TUBBINE BLABS (+) 3 15 6 106 

SHIP, STRUT in WATER 1 23 3 106 

FOIL OF HYDROFOIL BOAT 2 40 1 107 

SHIP-PROPELLER BLADE +) 4 25 2 107 

TABLE B. Average Reynolds numbers (on chord length) 
in various engineering applications. (+) Speed is mean 
resultant value between blade and fluid. 

Section Families. Several more or less systematic 
series of section shapes have been developed and 
tested. The more interesting or important ones are 
as follows: 

An example is 

6 4 — 2 12 thickness ratio t/c = 12% 
| design lift coefficient = 0.2 

location of minimum pressure at 0.4 c 
NACA series number of this type 

Reference (6,b) proves, however, that the usually 
cusped shape of this series is not really important 
with respect to section drag. 

(f) The German classification system also indicates 
variation of the nose radius. An example is 

2 30 12 — 1.1 40 thickness at 40% c 
| nose radius r/c — 1.1 (t/cf 

thickness ratio t/c = 12% 
location of camber at 30% chord 

camber ratio f/c = 2% 

A similar system is occasionally used in British pub¬ 
lications, also indicating the main section-shape 
parameters. 

(a) The wing sections developed by Eiffel (5,i) 
and at Gottingen (4,a) in the first decade of this 
century, were thin, sharp-nosed and cambered. They 
are completely obsolete now as far as airplane wings 
are concerned. They seem to be suitable, however, 
at Reynolds numbers below 105 (in small birds and 
in insects). 

(b) Round-nosed sections with maximum thick¬ 
ness in the vicinity of 30% of the chord, were next 
developed in Gottingen (3,k) (for example No. 
535, which is a famous sailplane shape), by the 
NACA (for example “Clark Y”) and by the British 
ARC (for example “RAF-34”, reference 3,c). 

(c) The first mathematically defined shape was 
that of the so-called Joukowski sections (figure 9,a) 
extensively tested in Gottingen (3,b). Their maxi¬ 
mum thickness is slightly ahead of 0.3 c; their tail 
is cusped. 

(d) The first realistic family of airfoil sections is 
the 4-digit series of the NACA (3,f and 1) (7) with 
maximum thickness at 30% of the chord (figure 
9,b). An example of this series is 

2 4 12 thickness t/c = 12% 
j camber location at 0.4 chord 
camber = 2% of chord 

Modifications of this series are investigated in (3,g). 
The 5-digit series (16,^) developed for reduced 
longitudinal moment (for example “23012”) has 
the same thickness distribution as the 4-digit series. 

(e) The NACA 6-series sections (see figure 9,e) 
with systematic variations of thickness distribution 
along chord (7), have been developed for favorable 
pressure gradients. They have partly laminar bound¬ 
ary layer flow (low section drag coefficients); and 
they are suitable for applications at higher speeds. 

Foil shapes suitable for transonic and supersonic 
applications are shown in the respective chapters. 

E) NACA 64-SERIES, DESIGNED 
FOR LAMINARIZATION. 

EXTREME LAMINAR-FLOW 
TYPE FOIL SECTION. 

Figure 9. Streamline section shapes, having t/c = 40%. 
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Wing Sections. Streamline sections have various en¬ 

gineering applications. Depending upon applica¬ 

tion, various reference areas can be selected for the 

drag coefficient. For wings and tail surfaces, the 

plan-form area (leading to CQ or Ccs) is most suit¬ 

able. For other purposes, reference areas and coeffi¬ 

cients are preferable as listed in table C. 

TYPE OP APPLICATION REFERENCE AREA COEFP B„ = T c/r 

WING OR TAIL SURFACES 

FAIRINGS (OR STRUTS) 

TENSION WIRES 

COMPRESSION STRUTS 

’» I I S’ ABBA S = b 0 

PROKTAL AREA S. = t t> 

CROSS-SECT IOHAL b fTo 

" INERTIA" AREA bV=~fs 

C3>s 

°D. 

CDcr 

°DI 

106 TO 10® 

105 TO 107 

104 TO 105 

105 TO 106 

TABLE C. Reference areas and R’numbers of wing-, wire- 

and strut sections, with regard to their application. 

Tension Wires. Because of the load they have to 

carry, the cross-section area is important for stream¬ 

line wires. To find their optimum shape, the drag 

coefficient is, therefore, based on the area Scross = 

by/Tc. By multiplying equation 6 with 2Vc/t, the 

“cross-section coefficient” is found to be 

<WCf = 2 (j)2 + 4 (I)4 + 120(1)7/2 (9) 

Minimum drag in this case is obtained at t/c = 0.19 

or c/t = 5.3, as illustrated in figure 11. However, 

wires may be used in applications below the critical 

Reynolds number (see in table C). Equation 3 then 

leads to a much smaller optimum thickness ratio. 

Fairings. In the case of fairings put around a given 

bluff cross section to reduce its drag, section thick¬ 

ness is significant. By multiplying equation 6 with 

2 c/t, the coefficient CD>, based on maximum cross- 

section or frontal area is obtained: 

CX>/Cf = 4 + 2 ~ + 120 (if (8) 

Contrary to the coefficient on plan-form area, this 

one has a minimum as shown in figure 10. The opti¬ 

mum length ratio of fairings put around two-dimen¬ 

sional obstacles is c/t «= 3.7; the corresponding 

thickness ratio is t/c ~ 27%. A plot of equation 8 

is repeated in figure 11 together with other defini¬ 

tions of the drag coefficient. — To demonstrate the 

impressive reduction of drag due to streamlining, 

figure 12 shows a streamline section having the same 

drag as the much smaller two-dimensional shapes 

of a plate and a circular cylinder (at supercritical 

Reynolds number). The drag ratios are in the order 
of 1 to 50 and 1 to 10, respectively. 
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Figure 11. Drag ratios of symmetrical sections, for various 
practical purposes for which they may be used. 

Figure 10. Profile drag coefficients of symmetrical wing- 

and strut sections, based on frontal area, as a 

function of chord/thickness ratio. 

In Turbulent Condition: 

* NACA with sand-strip stiml'n (7) 

F blunt ends corrected — = 10 (4,e) 
o ARC in CAT at Rc — 10* (4,g) 
At Lower Reynolds Numbers: 
• Joukovsky (3,a) 
* Hoerner in water tunnel (4,fl 
At Higher Reynolds Numbers: 

1 ARC Flight test Rc 6 I0&. (3,p) 
— ARC in CAT at Rc — 7 106 (3,e) 
In Low-Turbulence Flow: 

o NACA Full-Scale Tunnel , (3,f) 
+ NACA Low-Turbulence 6 10 (6,a) 

2. 4 <o 3 10 12 



6-10 FLUID-DYNAMIC DRAG 

Figure 12. Two-dimensional bodies of equal fluid-dynamic 

drag; optimum streamline or fairing section, at Reynolds 

numbers between 106 and 10^, in comparison to circular 

cylinder and two-dimensional plate. 

Compression Struts. Struts carrying longitudinal 

pressure loads must be designed so that they do not 

buckle. The moment of inertia of their cross-section 

area is to be considered, therefore, in selecting a 

basis for their drag coefficient. The term b VI can 

be used as area, with “I” indicating the moment 

of inertia about the longitudinal section axis. Since 

for solid sections, this moment is I ^(c ^), the 

area Sj = b tyc t*’ shall be used. The corresponding 

drag coefficient, derived from equation 6, is 

CD1/Cf = 2(f)/4+ 2(“)/4'+ 120(-i)3A 

(10) 

The optimum thickness ratio in this definition is 

in the vicinity of t/c = 23%. However, for consider¬ 

ation of their weight, struts are often made hollow; 

just tubes are often employed, pressed into a more 

or less streamline form. Assuming the wall thick¬ 

ness of the tubing to be proportional to the chord 

c, the same equation (number 9) is obtained as 

for tension wires. Assuming, however, the wall thick¬ 

ness of the tubing to be proportional to the section 

thickness t, equation 10 is found again. Actually 

constructed streamline tubes are probably in be¬ 

tween the two cases. Their optimum thickness ratio 

is accordingly between 18 and 23%. 

Function of Reynolds Number. At R’numbers above 

Ro =10, the optimum ratios can be considered to 

be constant. For subcritical numbers, well below 

Figure 13. Optimum thickness ratio of fairings (with re¬ 

gard to (j ), as a function of R’number. 

Rc,= 10 , differentiation of equation 2 leads to the 

optimum thickness ratio with respect to frontal area 

and Cjj.of 

(t/V= L63/(Rc)^ (n> 

This ratio is plotted in figure 13 as a function of 

Reynolds number. Below the critical R’number 

range, the optimum ratio drops to a minimum of 

«T1%. Optimum values for other applications, as 

treated above, have the same trends against Rey¬ 

nolds number. A very minimum value is reached 

by the tension wire with t/c — 5% in the vicinity 

ofRt=8 10* 

B. SECTION DRAG AS A FUNCTION 

OF LIFT 

Critical Reynolds Number. The range of low, sub- 

critical R’numbers does not have much engineering 

application, not in airplane wings to be sure. Only 

in toy-size free-flying airplane models, Reynolds 

numbers (on wing chord c) can be expected in 

the order of Rc,= 10^ And it is for such applica¬ 

tion, that a number of foil sections has been tested 

(10,a). Figure 14 shows the variation of drag- and 

lift coefficient of a wing model, at fixed angle of 

attack, as a function of Reynolds number. The wing 

goes through a critical R’number range in which 

laminar flow separation from the upper side sud¬ 

denly disappears. As a consequence, lift increases 

considerably, and the parasitic or section drag (ob¬ 

tained after subtracting the induced drag CD^ = 

C^/irA) decreases correspondingly. The critical 

Reynolds number is a function of section shape, 

lift coefficient, turbulence and so on. The flow 

mechanism in passing through the critical phase, is 

basically the same as that of the circular cylinder 

(and of other “round” shapes) as described in the 

“pressure-drag” chapter. 

Insects and Birds. Figure 14 also demonstrates that 

a sharp-nosed foil section (such as a thin plate) 

does not exhibit a critical variation of flow pattern 

and forces. This is evidently the reason why insects, 

operating at very low Reynolds numbers, do not 

have streamline shapes in their wings (10,b). Larger 

birds, however, operating at R’numbers Rc above 

10® (such as buzzard and albatross, for example) do 

have round-nosed (and cambered) wing sections. 
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Higher R’numbers. At lift coefficients different from 

zero, the average flow velocity is increased at the 

upper side of a wing, and it is correspondingly 

decreased at the lower side. The viscous drag origi¬ 

nating on the upper side is consequently higher 

than that on the lower side. This variation of sec¬ 

tion drag due to lift can be estimated by applying 

the same principles as used above in the description 

of drag due to thickness. The drag is divided into 

two components. The drag of the upper side is simi¬ 

lar to that of half a profile with higher thickness 

ratio, and that of the lower side corresponds to half 

a section with lower thickness ratio. 

Circulation. From the circulation around a foil 
section 

r =Jwdx= wav 2c = 0.5 CLV c (ft2 /sec) 

follows the average circulation velocity 

wav/V = CL/4 (13) 

(10) Foil Sections at subcritical Reynolds numbers: 

a) Schmitz, Aerodynamics of Models, Berlin 1942. 

b) Kuechemann and Holst, On Aerodynamics of Fly¬ 
ing Animals, Luftwissen 1941 p.277. 

c) See (3,l,m), (4,a,d,h,i,m) and (5,b,d,g,i,k). 
(11) As a function of lift, usually by wake survey: 

a) German flight test results, Yearb’k D.Lufo 1941 

p.1,111 (FB 1456), and Lufo 1929 Issue No. 1. 

b) NACA, Wake Survey Results, T.Rpts 660 and 667. 
c) Results, ZWB FM 1576 (Kramer) and 1621. 

d) Flight Tests on Foil Section Drag, ARC RM 1688. 

e) Flight Tests by GALCIT, J.Aeron'l Sci. 1940 p.425. 
f) See results in reference (7). 

g) AVA Gottingen, Ergebnisse Vol I (1921). 

h) Foil Sections to R, = 2.5 107, NACA T. Rpt 964. 

i) Polhamus, Drag Due to Lift, NACA T.Note 3324. 

'c -12.4“* 
-F/c = 4% 

Figure 14. Variation of lift and drag coefficient as a func¬ 

tion of Reynolds number, tested (10) at constant angle 

of attack on wind-tunnel models having A = 5. Section 

drag coefficient obtained after subtracting C^/jrA. 

This velocity has one and the same magnitude at 

upper and lower side of an airfoil section. However, 

while on the upper side it has the same direction as 

the general flow (with positive sign), it is directed 

against the general flow (with negative sign) at the 

lower side. The difference in the average dynamic 

pressure, corresponding to circulation, is therefore 

The skin-friction drag differentials for the two sec¬ 

tion sides directly correspond to this equation. In 

the region of sufficiently low lift coefficients, where 

Cl —* 0, the upper side makes up completely for 

the drag reduction of the lower one — as far as 
friction drag is concerned. 

Pressure Drag. A difference in dynamic pressure, 

Aq, means a subsequent change of the static pres¬ 

sure gradient along the rear of the airfoil section. 

The pressure component of section drag varies with 

the third power of this gradient. At the same time, 

the frontal area of the respective side of the section 

varies with the angle of attack. The resulting incre¬ 

ment of the effective thickness ratio is roughly plus 

or minus, respectively, Cl/5. The pressure-drag 

component of one side is consequently 

Note that on the lower side (negative sign) the 

pressure drag reduces to zero at a certain lift coeffi¬ 

cient; subsequently the function has no more mean¬ 
ing for that side. 

Optimum Lift Coefficient. Equation 15 applies only 

to camber ratios at which the flow smoothly meets 

the section nose, without any or much flow around 

it from one side to the other. The optimum or 

“symmetrical” lift coefficient for which this is true, 
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Figure 15. Collection of profile-drag coefficients of various 

foil sections as a function of lift (11). 

is approximately 

CLoPt= <10 to 12> f/c <16> 

a section-drag coefficient which is almost twice as 

high as at zero lift. It has been tried to express the 

incremental drag by empirical equations (12). A 

rough but simple function indicating the profile 

drag of symmetrical (or only slightly cambered) air¬ 

foil sections, is 

ACrss/Cosmin = k C" (18) 

If, or as long as this drag component is proportional 

to the square of the lift (n = 2), it can easily be 

combined with the induced drag which is also a 

function of ; see in this respect the “equivalent- 

aspect-ratio” method as treated in Chapters VII and 

XIII. In figure 4 of the “drag-due-to-lift” chapter, 

a component is evident, roughly corresponding to 

equation 18, with k = 1. For example, on the basis 

of Cjj50 = 0.009 and a wing aspect ratio A = 7, the 

increase of section drag amounts to AC^/Cp), = 

0.01 tt 7 = 20%. 

where f/c = camber ratio of the foil section. Figure 

15 presents available experimental data on the pro¬ 

file drag of airfoil sections, determined by the only 

method which eliminates the induced drag — the 

momentum-loss method (see in Chapter II). CLop{- 

is roughly indicated by the minimum of the section- 

drag coefficient CDy Combination of equations 14 

and 15 yields the drag ratio per section side, with 

the positive signs to be applied to the upper side 

and the negative signs to the lower side of the sec¬ 

tion. Figure 16 illustrates how the viscous drag of 

a 12% thick airfoil section is shifted from the lower 

to the upper side, upon increasing the lift coefficient 

to positive values. The sum of the two drag com¬ 

ponents increases with C|_. Some experimental points 

evaluated for optimum lift coefficient, substantiate 

the calculation, up to CL ~ 1. 

Additional Section Drag. Above and below the op¬ 

timum lift coefficient, the drag increases because of 

flow around the leading edge and subsequent mo¬ 

mentum losses in the boundary layer. The 0012 

section for example, in figure 15, shows at Cl = 1 

Figure 16. Example with t/c = 12%, of the variation of 

optimum profile drag as a function of lift, evaluated from 

(11) for Reynolds numbers between 106 and I07. 

In Cambered Sections, the drag at CL -* zero, can 

be appreciably higher than that at CLopj.. For small 

camber ratios, between 1 and 2% of the chord, 

corresponding to CLc.pt between 0.1 and 0.2, evalua¬ 

tion of foil-section data (11) with thickness location 

at 30% of the chord, suggests a variation of sec¬ 

tion drag in the form of 

= k <W„ <4Cl/1CLw«)" (IS) 

where ACL = (C|_ - CLopt). positive or negative, 

ACLtflQ* = (CLwaiC- CLopf). and n between 2 and 

3. In all such empirical functions, the boundary- 

layer changes in laminar-flow type sections are dis¬ 

regarded, of course. These and other sections as 

well may exhibit irregular variations of viscous drag 

as a function of lift coefficient (due to pressure- 

side laminarization, for example) — so that equa¬ 

tions 14 through 19, describing continuous varia¬ 

tions, can be considered only as idealizations. One 

more influence comes from the aspect ratio of the 

wing. It has been shown (ll,i) that in small aspect 

ratios the effective section camber reduces, because 

of flow curvature. Increments of section drag above 

those as indicated above are, therefore, found in 

aspect ratios below those as applied in conventional 

airplane wings. 

Reynolds Number. Figure 17 shows the variation 

of section drag against R’number, for several air¬ 

foils at the lift coefficient Cl = 0.7, a value that is 

well above “optimum”. Most of the variation due 

to partly laminar boundary-layer flow is evidently 

eliminated; the transition point at the upper side 

is most likely fixed near the minimum pressure 

peak. 
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Sharp Leading Edges. At optimum lift coefficient, 

foil sections with sharp leading edges may be ex¬ 

pected to have the same drag as similar sections 

having a favorably rounded leading edge. Figure 18 

demonstrates, however, that above and below CL0(^. 

2= 0.5 for f/c = 5%, the viscous drag of this sharp¬ 

nosed circular arc section increases considerably 

above that of comparable round-nosed shapes. The 

mechanism through which flow around a sharp lead¬ 

ing edge is maintained, has found increased atten¬ 

tion lately (14). Laminar separation first takes place 

directly at the edge. Because of turbulent mixing, 

reattachment is then effected at a location that stead¬ 

ily moves from near the leading to the trailing edge, 

as the angle of attack is increased. Experience with 

airfoil sections or plates having sharp edges, proves 

that in this way appreciable positive pressure gradi¬ 

ents can be overcome, without contracting perma¬ 

nent separation. Generation of lift and a fairly high 

lift-curve slope are thus maintained up to maximum 

lift coefficients in the order of 1. The section drag 

increases, however, progressively in this mechanism, 

as shown in the examples of figure 18. Figure 14 

also proves that in sharp-nosed sections, high lift 

coefficients are maintained down to comparatively 

low Reynolds numbers — below those that are criti¬ 

cal for round-nosed sections. Early experiments in 

wind (Lilienthal) and in small wind tunnels 

(Eiffel), at Reynolds numbers below 10^ therefore, 

led to the conclusion that sharp-nosed (and cam¬ 

bered) sections would be optimum for airplane 

wings. Only after increasing speed (and size) of 

the test facilities, characteristics were subsequently 

found in streamline foil shapes, truly superior in 

BOUBDARY LAYER REATTACKEMERT 

♦ BIOORYEX t/o - 5 * (BO CAMBER) 

• 5 % CIRCULAR ARC f/o - 2.5* 

* 10X CIRCULAR ARC f/o- 5 * 

Fig. 18. Drag-lift function of foil sections having sharp 
LE’s, tested with A = 6 at R^ = 6 10 (13). 

(12) Formulas for section drag as a function of lift: -j ^ 

a) NACA T Rpt 312 (1929) ; AC^, = 0.0093 CL' . 

b) Rpt 391 (1931); AcD5= 0.0062 (CL- Cwf • 
c) Flight 1932 p.530a and 710a; A-C-^ presented as 

a function of [ (q-Cu)pt) / (CLw4* - CLoyt) ]. 

(13) Williams and Others (NPL), Circular-Arc Aerofoils 

in CAT, ARC RM 2301 (1946) and 2413 (1950). 
(14) NACA, Investigations on BL Reattachment T.Notes 

1196 (1947) , 1894 (1949), 2338 (1951) and 3505. 

(15) Characteristics at extremely high angles of attack: 

a) Naumann, Profile to 360°, Ybk Lufo 1940 p.I,51. 

b) AVA Gottingen, Ergebnisse Vol III (1926). 

c) NACA, “Clark Y”, Rpt 317 (corrected for block). 

d) NACA, 0012 Between Walls to 180°, T.Note 3361. 

the range of Reynolds numbers as they prevail in 
full-scale airplanes. 

Beyond C(_ma)(, the drag of airfoils increases in a 

manner as shown in figure 19. In the vicinity of 

<*■ = 45°, the lift shows a certain “hump”; and 

from there on, drag predominates, reaching at <*. = 

90° a maximum roughly equal to that of a flat plate 

in normal flow (Chapter III). Wings with A = 5 

or 6, show in this way CDs = Cj>. «= 1.15, while in 

two-dimensional condition (between tunnel walls) 

Cftsmax 5c 2. Practical application of high angles 

of attack is found in heliocopter blades and in ma¬ 

rine propellers (in reversed operation). 
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Figure 19. Variation of drag-, lift coefficient (15) ; (a) 

in finite aspect ratios, (b) between tunnel walls. 

Wing Slats. Slots (fixed) or movable slats (pio¬ 

neered in England by Handley-Page) increase maxi¬ 

mum lift by preventing flow separation from the 

upper wing side. Section-drag coefficients associated 

with their application seem to be excessive at wing- 

chord Reynolds numbers below «=» 106 — as shown 

in (17) for example. It is suggested that the R’num- 

ber on slat chord (between 15 and 20% of the wing 

chord), should be well above 105, so that flow sepa¬ 

ration from slat suction side is avoided. It should be 

expected that at certain lift coefficients, the section 

drag coefficient of slotted wings can be as low as 

with trailing edge flaps. Generally, however, LE 

slots and slats do not appear to be promising as far 

as drag is concerned. Their application is rather 

a necessity in certain wing shapes, to prevent stalling. 

Figure 20,a presents drag characteristics of an open 

(fixed) slat. It is seen that in condition (b) with no 

flow through the slot, drag is comparatively small. 

0 I A C A 25012 5 10s ( •*) 
• DTI 24 12 2 10® ( h ) 

X 1*01 23012 3 10* ( a ) 
+ I A 0 A 6*210 4 10® ( i ) 

A I A 0 A 25012 5 10* ( ■ ) 
A I A 0 A 64210 4 10* ( 4 ) 
O StOI-LIP P0TLE» 3 10* ( f ) 
O D0UBLI - 5MTTID 3 10* ( « ) 

Wing Flaps. By deflection of a landing flap, section 

camber is increased. At higher lift coefficients, 

flapped sections, therefore, can have less drag than 

plain airfoils. A certain flap angle is associated with 

each lift coefficient, providing minimum section 

drag. Corresponding points are plotted in figure 20, 

indicating envelopes of the maximum “lift/ (section 

drag) ” ratio. Regarding the design of landing flaps, 

ailerons and control surfaces, figure 20 leads to 

practical conclusions as follows: 

(a) Slotted flaps and similar designs, such as the 

“double wing” present the least drag in the range 

of intermediate and higher lift coefficients. Up to 

certain critical lift coefficients, where evidently a 

more extended flow separation begins, the profile 

drag of the slotted sections roughly agrees with the 

theoretical result as per equations 14 and 15. 

(b) Split flaps usually show the highest maximum 

lift coefficients and the lowest minimum drag values 

(if retracted into the wing profile). On account of 

the dead space between the trailing edges of wing 

and flap (if deflected) the section-drag coefficients 

of split flaps are about twice as high, however, in 

the average, as those of the slotted flaps. 

(c) In the case of plain flaps, widely used in con¬ 

trol surfaces, the flow stays attached to the suction 

side of the flap within a deflection angle of only 

plus or minus 10 or 15°. Beyond these angles, the 

section drag is at least as high as in split flaps. 

0 OS .10 .15 .20 .25 

Figure 20. Profile drag of airfoil sections equipped with 

various types of lift-increasing TE flaps (16). 

(«) 
■ -0.015 

Figure 20,a. Drag (by wake survey) of foil section (Fie- 

seler "Stork”) in combination with fixed slat (17,b). 
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C. DRAG OF STREAMLINE BODIES 

Basic Shapes. In distinction from airplane wings 

(essentially designed for lifting area) engine nacelles 

and particularly airship hulls are designed with a 

view to volume. Streamline forms used in these 

applications, illustrated in figure 21, are generally 

“fuller”, therefore, than the sections in figure 9. 

Only fighter airplanes (if not having a jet outlet 

at the tail) and other airplanes (not carrying any¬ 

thing or much in the afterbody) may have more 

slender basic fuselage contours similar to the NACA 

4-digit foil sections. Engine nacelles may have shapes 

very much dictated by technical functions, such as 

in- and outlets of cooling air or jet volume and the 

landing gear which is often retracted into them. 

In the fuselages of commercial airplanes, a pris¬ 

matic shape of the middle body is desirable for a 

convenient arrangement of seats — as in railroad 

cars. In displacement ships, bow- and stern portions 

of the hull are made as fine as practicable to reduce 

(postpone) wave resistance. Generally, the position 

of maximum thickness has a considerable influence 

on that of the minimum pressure (dictating bound¬ 

ary-layer transition). Reference (20,a) indicates, for 

example, on a 17.5% thick body of revolution: 

for maximum thickness location x/c = 0.30, 0.40, 0.50 
a minimum pressure location at 0.20, 0.35, 0.60 

References (20,b and c) also demonstrate that full 

forebodies (in distinction from fine or even pointed 

shapes) have the pressure minimum near the nose. 

Reynolds Numbers. Approximate average R’num- 

bers (on length 1) in streamline bodies are as listed 

in table D. These numbers are considerably higher 

than those of the foil sections in tables A and B. 

APPLICATION 0 ft 7knots ®0 

AUTOMOBILE BODY 15 50 7 106 

AVERAGE BOMB BODY 5 400 2 107 

FIGHTER FUSELAGE 35 550 2 10® 

COMMERCIAL AIRPLAHE 100 300 3 10® 

BOMBER FUSELAGE 100 400 4 10® 

LARGE AIRSHIP HULL 600 100 6 10® 

LARGE R0CHT A0 1500 6 10® 

TABLE D. R'numbers in streamline-body applications. 

Experimental Data. Plotted in figure 22 against Rey¬ 

nolds number, the drag coefficients of three-dimen¬ 

sional bodies generally show trends similar to those 

of the two-dimensional shapes in figure 1. At R’num- 

bers below 107, the experimental points are rather 

scattered, however. The drag coefficients of two 

bodies having the same fineness ratio, may be dif¬ 

ferent in the ratio of 1 to 2, for example, at one 

and the same R’number. The reasons are as follows: 

(a) The support of a body of revolution in the 

test section of a wind tunnel, is practically impos¬ 
sible without disturbing the flow pattern somehow 

(by rods or wires attached to the forebody). Also, 

the wake-survey method of testing drag (which is 

so successful in testing foil sections) cannot help — 

since it necessarily includes interference effects too. 

The method has been applied, however, in (21,h) 

and (22,a). 

(b) On three-dimensional bodies, pressure minima 

are basically smaller than in two-dimensional flow. 

Boundary-layer transition is, therefore, not fixed 

(as in the 4-digit foil sections for example). Rather, 

transition is a complex function of shape, Reynolds 

B) BASIC SHAPE FOUND IN COM¬ 
MERCIAL AIRPLANE FUSELAGES. 

(16) Characteristics of flapped wing sections: 

a) Wenzinger and Others, Airfoils with Various Flap 

Arrangements, NACA T Rpts 661, 664, 668, 677. 
b) Kramer, Wing Flaps, German Doct ZWB FB 1576. 
c) A bibliography on wing flaps is given in ARC RM 

2622, Characteristics of Flaps by Young (1958). 

d) Sivells, Wing with Flaps, NACA T.Rpt 942 (1949). 

e) CAHI (Moscow) Rpt 138; in Fieseler "Stork”. 
f) NACA, Fowler Flap, Technical Note 808. 

g) NACA, Double-Slotted Flap, Technical Rpt 723. 

h) DVL, 2412 Foil, Yearb’k D.Lufo 1940 p.I,182. 

(17) Characteristics of airfoils with LE slots or slats: 

a) NACA, Tech Note 702 and Tech Rpt 586. 

b) Petrikat, LE Slats, Ybk.D.Lufo 1940 p.I,248. 

c) CAHI Rpt 133, German Transl. Luschau 1936. 

EXAMPLE OF THE SHAPE OF 
AN AVERAGE AIRSHIP HULL. 

Figure 21. Some examples of basic streamline body shapes 

in engineering applications. 
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Figure 22. Selected results on the drag o£ rotatio'nally- 

svmmetric bodies (no corrections applied). 

/ 

number and stream turbulence, similar to condi¬ 

tions in laminar-type foil sections. “Turbulence 

factors” (not applied in plotting the results in figure 

22) would be very large in certain shapes, for ex¬ 

ample in the order of 10 as in figure 9 of the “skin- 
friction” chapter. 

* IS57 

At Subcritical Reynolds Numbers. Not a single 

source was found by the author on streamline bod¬ 

ies in really subcritical condition (below Rj^ = 105). 

Assuming, however, that with separated flow pat¬ 

tern, streamline bodies may have the same drag as 

spheroids (treated in the “pressure-drag” chapter), 

it is possible to appraise the subcritical drag (in a 

manner similar to that of the foil sections in figure 

4). Thus the pressure drag is tentatively 

CDpress • = °’33 «*/* (21) 

Guided by the later equation 28, the skin-friction 

drag is estimated to be 

Ci>wet = + <d/<>’/2] <22> 

These two coefficients can be converted into one 

another, using equation 30. The functions then 

present a pair of asymptotes between which the 

drag coefficient is 

CD. = 0.33 (d/1) + CfLam [3 (i/d) + 3 (d/j(),/2] 

Or, based on wetted area: 

CDw«t = CfwJl + <d#|+ 0-11 W<f (24) 

This function has been used in figure 22 to indicate 

drag coefficients between Rj^ = 10^ and =10? The 

optimum fineness ratio, if considering drag based 

on frontal area, is in the order of d/( = 20%, at 

R^IO* 

Forced Turbulence. Drag predictions in the transi¬ 

tional range around Rj£ = 10 are problematic. Diffi¬ 

culties reduce, however, at higher Reynolds num¬ 

bers (see in table D) and/or in such applications 

where boundary-layer transition is forced. In many 

or most engine nacelles, for example, the b’layer is 

made turbulent by air intakes, cooling flaps, surface 

imperfections and the adjoining wing parts. The 

propeller slipstream (if involved) also produces 

early transition in nacelles as well as on the fuselage 

surface (in single-engine configurations). Even in 

comparatively clean jet engine installations, the 

boundary-layer may turn turbulent from the rim of 

the intake opening. In these practical applications, 

therefore, the irregularities in the drag-coefficient 

function as seen in figure 22, may not be very im¬ 

portant. Airship bodies have accordingly been tested 

in wind tunnels (21) and ship hulls in towing tanks 

(see in the chapter on “water-borne craft”) with 

transition forced and fixed by means of sand strips, 
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wires or turbulence pins placed on the model’s sur¬ 

face near nose or stem, or through turbulence 

screens placed in front of the models. Extrapolation 

to full-scale Reynolds numbers (above 108) is then 

accomplished in proportion to the turbulent skin- 

friction drag coefficient. Figure 23 presents a selec¬ 

tion of results in which turbulent boundary-layer 

flow is forced over most of the R’number range 

investigated. There are many other experimental 

results available (21) between R^ = 106 and 107. 

One group exhibiting the effect of moderate wind- 

tunnel turbulence is included in figure 22. Between 

the lowest curve shown there and the “fully” tur¬ 

bulent function in figure 23, the drag coefficient can 

have any value because of stream turbulence, sur¬ 

face roughness, interference from attached or ad¬ 

joining parts and as a consequence of shape (position 

of maximum thickness and fullness — prismatic co¬ 

efficient) . Such results have been excluded from 

the two graphs, to keep the basic picture clearer. 

(20) Pressure and drag on rotationally symmetric bodies: 

a) Lange (DVL), Experiments on a Series of Bodies 
German ZWB FB 1516 (1941), Transl’n NACA TM. 

b) Neumark, Distribution (Theory), ARC RM 2814. 
c) Weinig, Foil Sections and Bodies of Revolution, 

Ybk STG 1937 p.231; see also ZWB FB 1633. 

d) Young, Drag Calculation, ARC RM 1874 (1939). 

e) Pretch, 3-Dimensional Bodies, ZWB UM 3185. 
(21) Wind-tunnel results on airship hulls: 

a) Investigations by BOS, NACA T.Note 264. 

b) "Akron” Hull in Prop. Tunnel, NACA T.Rpt 432. 

c) Bur. of Stand., R-33 Hull, Jacobs in Durand III. 

d) Zahm-Smith, C-Class Hulls in Washington Tunnel, 

NACA T.Rpt 291 (results do not correlate well). 
e) MIT Investigation, Aircraft Engg 1934 p.233. 

f) Two Bodies (R-101) in CAT, ARC RM 1710. 

g) Fuhrmann, Ybk Motorluftsch. Studieng. 1911/12. 
h) Lyon, Study of B’Layer, ARC RM 1622 (1934). 

i) Abbott, Airship Hulls in VDT, NACA T.Rpt 394. 

k) Two Streamline Bodies, NACA T.Rpt 451 (1933). 

l) R-101 Hull, ARC RM’s 1168 (1926) and 2896. 
m) C-Class Airship Hulls, NACA T.Rpt 138 (1922). 

(22) Experimental results on bodies of revolution: 

a) Mottard-Loposer, Parabolic Body Tested in Tow¬ 

ing Tank, NACA T.Rpt 1161 (1954); also TN 2854. 

b) Kosin and Lehmann, Fuselage Aerodynamics, 
Yearb’k D.Lufo 1942 p.I,241; also Doct AVA 35/1941. 

c) Weinblum, Streamline Bodies in Towing Tank; 

Schiffbau 1936 p.411; Yearb’k STG 1937 p.177; 
Transl’n by TMB. 

d) DVL, In High Speed Tunnel, Doct J 729/3 (1944). 

e) Ower, Interference Investigation, ARC RM 1409. 

f) AVA Gottingen, Spheroids, Ergebnisse II (1932). 

g) ARC, Series of Streamline Bodies, RM 311 (1917). 
h) Streamline Bodies in Towing Tank, Hamburg 
k) NACA Fuselage Bodies in VDT, T.Note 614. 

l) ARC, Two Streamline Bodies, RM 1271 (1929). 
m) Goethert, Streamline Bodies in DVL High Speed 

Tunnel, ZWB Tech Ber. 1944 p.377 (also UM 1222) . 

n) Pannell 8c Jones, Bodies, ARC RM 607 (1919). 
o) Mitt.Inst.Aerodynamik TH Zurich No. 13, 1946. 

• HHB1U N SHAPE NO. I WITH d/l - 16 * 21.*' 
6 A H C - L Y 0 H »B“ BOH WITH d/l - 20 * 21,h 
X HCA-7D T WITH d/1 m 12 TO 16 it 21,a 
d jr A C A - V D T WITH d/l - 17 TO 22JC (21 i) AND 22,k 
+ NACA A I B SHIP HULL WITH d/l - 10 * 21 ,d 
— BIBLII Ilf TO WINS TASK WITH d/l - 12 5* 22,o 
• HAH1VB0 IN TOWING TANK WITH dA - 13 it 22,h 

Figure 23. Drag of streamline bodies, tested in turbulent 

wind tunnels or with turbulence stimulation. 

Thickness Ratio. To show their relation to the skin- 

friction drag coefficient (V the experimental results 

in figures 22 and 23, have been referred to the 

wetted surface area of the bodies. Employing the 

same methods as for two-dimensional shapes, the 

drag in rotationally symmetric conditions can be 

described in terms of the thickness ratio. In three- 

dimensional flow, the supervelocity is approximately 

proportional to (d/1)®-^ , as can be found in (20). 

For small (d/1) ratios, the increment of the average 

dynamic pressure along the sides is accordingly 

AqQV/q = 1-5 (d/lf/2 (26) 

The frictional drag coefficient corresponds to the 

average dynamic pressure; therefore: 

ACVC* = 1.5 (d/1 f'Z (26) 

Interpolating the experimental points in figure 24, 

the drag component due to flow separation is statis¬ 

tically found to be: 

CDPr/Cf = 7(d/1? (27> 

The total drag, based on wetted area is consequently 

/ S/2 
Cbwei/Cf = 1 + L5 (d/l) + 7 (d/1) (28) 

The graph shows that the third term of this equa¬ 

tion is practically negligible up to d/1 ~ 0.2. 
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(a) AT B, - 106 - WITH TURBULENT BOUNDARY LAYBBi 

A NACA - 7 D T BABE AIRSHIP HULLS (21,a, ,1) 
* A 7 A - JUHRMANN AIRSHIP BODY (21 ,g) 

W WITH ROUGHNESS k/l - 5 10“5 AT Rj ■ 4 10" (22(d) 

(b) AT B, • 3 10S - WITH TURBULENT BOUNDARY LAYERi 

* D 7 L - LANGE STREAMLINE BODIES (20,a) 
+ ABC-LYON AIRSHIP HULL "A" (21 ,h) 
H ARC STREAMLINE BODY (22,1) 

(o) AT B, « 107 - WITH TUBBULEHT BOUNDABY LAYERt 
A NACA-7DT AIRSHIP HULLS (21,i,k) 
7 DITTO -NO TURBULENCE STIMULATION (22,k) 
a ARC - R-101 AND 102 AIRSHIP HULLS (21,f) 
♦ HS7A AND STQ, STREAMLINE BODIES IN TANK (22,h) 
0 A 7 A - FUSELAGE BODY (22,b) 
0* NACA - "AKRON" AIRSHIP HULL (21,b) 
« NACA - STREAMLINE BODY IN TOWING T. (22,a) 

(d) AT R-, - 106 - WITH NATURAL TRANSITION t 
O' D 7 L - LANGE STREAMLINE BODIES (2Q,af 
« ARC—OWE R, BODY EXTRAPOLATED (22,a) 
fl MIT AIRSHIP HULL "A" (21,e) 
• ARC-CAT R-101 and 102 AIRSHIPS (21,f) 
O BOS - AIRSHIP HULLS (21,a,c) 

(e) TANGENTIAL OPTIMA AT 4 105J 

- 7ABI0US RESULTS E7 ALUATED PROM PIG.22 

Figure 24. Streamline bodies; variation of drag coefficient 

(on wetted surface area) as a function of d/f. 

“Laminar” Regime. It appears in figure 22 that be¬ 

tween R = 105' and 10fo, the drag coefficients of sev¬ 

eral streamline bodies tested, follow lines which are 

essentially parallel to the laminar skin-friction func¬ 

tion — which means that their drag is proportional 

to that drag. Equation 28 may, therefore, be ap¬ 

plicable. A number of experimental points was 

taken at, or reduced to R^ = 4 10^ (see the lines in 

figure 22), and included in figure 24. By coinci¬ 

dence they exhibit drag coefficients in the same 

magnitude as these bodies have in fully turbulent 

condition at RjL= 107. Note that with laminar fore¬ 

body flow, the function cannot continue at thickness 

ratios below 0.1; transition can no longer be 

expected then to be fixed near the pressure mini¬ 

mum (whose value reduces together with d/[). — 

In not-too-thin bodies, laminarization can be con¬ 

tinued to higher Reynolds numbers by placing the 

maximum thickness further back. An example of 

this effect is included in figure 22 between (3 and 

8) 106 in two bodies having the thickness at 0.45 (. 

However, since the favorable pressure gradients ob¬ 

tainable in three-dimensional bodies are compara¬ 

tively small, the laminarization effect cannot be as 

strong and lasting as in laminar-type foil sections. 

Also in many applications there may simply not be 

much of a chance for the b’layer to stay laminar, 

because of other components of a configuration 

(such as, for example, wing roots on a fuselage). 

Surface Roughness, A few results of streamline bod¬ 

ies having a rough (carborundum- or sand-coted) 

surface are included in figure 8. Figure 24 demon¬ 

strates in two experimental points (22,d) that equa¬ 

tion 28 also applies in rough-surface conditions, if 

using a basic value that corresponds to the rela¬ 

tive roughness size k// (as explained in the chapter 

on “imperfections”). 

Applications. Rotationally symmetric streamline 

bodies or similar three-dimensional shapes are ap¬ 

plied in fuselages, nacelles, airship bodies, ship 

hulls, floats and in fairings. Suitable reference areas 
are listed in table E. 

APPLICATION REFERENCE AREA 

PAIRINGS AND ENGINE NACELLES FRONTAL AREA dS/4 

70LUME AREA T2'5 

0.4- 2.5 

AIRSHIP- AND BOAT HULLS 0.3 3 

PUSELAGE3 WITH TAIL SURFACES SEE BETEKEBCE 0,0) .17 6 

TABLE E. Reference areas and optimum ratios of three- 

dimensional bodies, as a function of application. 

Frontal Area. The wetted surface area of streamline 

bodies is approximately 

swc£ = (°-7 to °-8) I (perimeter) 

The perimeter is that of the maximum cross-section 

area, which in rotationally symmetrical bodies is 

equal to (d n). The smaller constant applies to finer 

shapes, the larger one to fuller shapes (approaching 

spheroids) as illustrated, for instance, in figure 21. 

Using an average constant of 0.75, the circumfer¬ 

ence ird, and the frontal area S, = d »/4, the ratio 

of wetted to frontal area is found to be approxi¬ 

mately 

Vt = 4^74 = A 
S. “ d/J? ~ d 

(30) 

Employing this expression, equation 28 is converted 

into_ 

CD./Cf = 3 (ji/d) + 4.5(d/^)/2+ 21 (d/if 

Optimum Fineness Ratio. With respect to frontal- 

area coefficient, figure 25 shows a minimum at (/d 

~ 2.7 or d/| <=■ 37%, respectively. Considering 

aircraft applications, it must be remembered, how¬ 

ever, that the flow past streamline bodies is usually 

disturbed by interference through appendages or 

other adjoining parts. The optimum fineness ratio 

of such bodies or that of fairings is consequently 

higher than 2.7. More information on this subject 

is available in Chapters VIII and XIII. 
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a imunii cosimojs at ^ - io6 
HI WITH HOUGH SURPASS, EVALUATES PHOM JIG'3 8 AES 24 

o TURBULENT B'LATEE ELOV AT Hj - IO7 

- OPTIMUM L1IIIU CONSITIOH AT H1 • 4 105 

X WITH H A T U H A L THAH3ITI0I AT Hj^ » 106 

Figure 25. Drag coefficients (on frontal area) of stream¬ 

line bodies as a function of their fineness ratio. Points 

evaluated from figures 22 and 23; equation 31. 

Volume. For airships, the decisive characteristic is 

volume. It is, therefore, convenient to refer the 

drag coefficient to an area derived from volume; 

that is, to = (volume)2/^. This area represents 

the side of a cube having the same volume “V” as 

the body considered. The volume of a streamline 

body is 

V = CP,U n S. (32) 

Where CpM-s = prismatic coefficient. A value of 0.6 

for this coefficient applies to finer fuselage shapes; 

Cpris = 0.7 is approximately correct for airship bod¬ 

ies. Using an average constant, combination of this 
equation with 30 gives 

WvS/3 =4 m/3 (35) 

Subsequently, equation 28 is transformed into 

<WCf = 4(X/d)% 6(d/|j + 24 (d/jf*7 (36) 

(23) Streamline bodies with surface roughness; 

a) Hoerner, Reynolds Number Turbulence Rough¬ 
ness on Spheres, Lufo 1935 p.42; Transl'n NACA T. 
Memo 777. 

b) NACA, Airship Bodies, T.Rpts 324 and 432. 

c) DVL, Bodies in High Speed Tunnel, (22,d). 
(26) Jones-Bell, Spheroid, ARC RM 858 (1922). 

(28) Eggers, Reversed 0012 Section and Wedge Function 

of M; NACA Rpt RM A7C10 (1947). 

As theoretically optimum fineness ratio for airship- 

and submarine bodies, this equation yields d/1 = 

0.25 or |/d = 4. The optimum is, however, rather 

flat, at d/| = 0.2 and — 0.3, for instance, the drag 

is only 2% larger than the minimum. 

Real Bodies. Fuselages and flying-boat hulls differ 

more or less from the ideal streamline shape, both 

with respect to contour and cross-section. Usually, 

therefore, such bodies present drag values, which 

are somewhat higher than indicated in figures 23 

and 25, even if disregarding protuberances, append¬ 

ages, and interference effects. As equivalent “diam¬ 

eter” of these bodies, “d” = 0.5 (b + h) may be 
used. 

Drag Due to Lift. The induced drag of three-dimen¬ 

sional bodies, associated with lift which they usually 

produce if put at an angle of attack against the flow, 

is treated to some degree in the “drag-due-to-lift” 

chapter. In addition to this component of drag, 

streamline bodies also exhibit some increment ol 

viscous drag — caused by increased average super¬ 

velocity around the shape. At positive angles of 

attack, the boundary-layer has the tendency of ac¬ 

cumulating above the stern; and such accumulation 

is part of the mechanism by which lift originates 

in the first place in these bodies. 

D. SUPPLEMENTARY INFORMATION 

To fill the space on this and the next page, some 

more results are presented, related to the subject 
of “streamline drag”. 

Turbulence Stimulation has been mentioned under 

the heading “forced turbulence” on page 6-16. 

Figure 26 demonstrates how the drag coefficient of 

Figure 26. Example of turbulence stimulation by means 
of a wire ring (26). 
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a spheroid varies as a function of the diameter of a 
wire ring applied for stimulation. In the first phase, 

drag is decreased; evidently separation is further 

reduced in the same manner as in spheres and cyl¬ 

inders (see in the “pressure drag” chapter) within 

the critical range of their Reynolds number. In the 

second phase (above Aw/cl = 0.3) the spheroid’s 

drag increases again. Drag due to, and boundary 

layer thickness caused by the “trip wire” evidently 

produce separation to an extent which approaches 

and then exceeds the original degree of separation. 

The example presented is extreme insofar as the 

shape of the spheroid lends itself to separation. The 

result suggests, however, that some consideration 

must be given to degree and consequences of tur¬ 

bulence stimulation in model testing. 

.01 - 

Figure 27. Distribution of sectional drag within the wake 

of a wing tip. Shape and model tested, is the same as in 

reference (2,b) of this chapter and in figures 9 and 11 

of the “drag due to lift’’ chapter. 

Wing-Tip Drag. It is mentioned on page 6 - 4, that 

rounded or sharp lateral edges of a rectangular wing 

somewhat reduce the sectional drag (at or near zero 

lift). Figure 27 presents the distribution of para¬ 

sitic drag as found in the wake of three different 

tip shapes. Assuming that the sectional drag should 

correspond to wetted surface or local chord of the 

wing tip (as indicated in the illustration), certain 

positive and negative differentials are found. After 

integrating them, negative values are found in two 

of the shapes tested, for the drag coefficient C]>c_ — 

D/q c2, defined for a pair of wing tips. This result 

must be explained on the basis of reduced super¬ 

velocities past the round and the tapered wing-tip 

edge, making frictional and pressure drag smaller 

than in two-dimensional condition. 

Q>s = 0.007 

Figure 28. Drag of 0012 airfoil section and of a wedge 

tested at zero lift between tunnel walls by wake survey (28). 

Reversed Flow. Streamline shapes are designed, of 

course, to be used in their “natural” direction of 

motion. There may be occasions, however, as men¬ 

tioned on page 6-13 (in connection with figure 19), 

where the direction is reversed. Figure 28 presents 

the drag coefficient (between walls) of a 0012 sec¬ 

tion at zero lift, tested in both directions. With the 

round edge trailing, the section drag is more than 

doubled in comparison to that in the direction of 

common application. The round trailing end still 

has an appreciable “streamlining” effect, however. 

This result is realized when inspecting the wedge 

shape in figure 28, having a drag coefficient which 

is «= 5 times that of the reversed 0012 section. 
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CHAPTER VII - DRAG DUE TO LIFT 

“Drag due to lift” is meant to indicate components 

of resistance directly and necessarily associated with 

the generation of lift — in airplane wings as well 

as also in bodies such as fuselages, airships, or even 

automobiles, for example. Predominantly, drag due 

to lift is induced drag and its many variants. The 

name “induced” refers to the similarity of the fluid- 

dynamic flow pattern with that of the magnetic field 

“induced” by electric conductors (l,a). The in¬ 

duced velocities are an essential part of the vortex 

system left behind the wing; they are the means 

through which momentum is transferred from the 

flying wing onto the fluid. 

1. INDUCED DRAG AND ASPECT RATIO 

Basically, lift is produced by deflecting a certain 

stream of fluid downward from its undisturbed 

direction. For infinite span, the affected volume of 

fluid (being proportional to the square of the wing 

span) is infinite too. For uniform lift distribution, 

the final or remaining deflection angle and the in¬ 

duced drag are zero accordingly. Considering, how¬ 

ever, the limited span of actual wings, induced drag 

is a price that has to be paid for obtaining the lift 

needed to support the weight of an airplane. 

Lifting Line Theory. Because of the pressure dif¬ 
ference between lower and upper side of a lifting 

wing, a certain flow is started around the wing tips, 

so to speak. Theory (2) replaces the structure of the 

wing by a “bound” straight vortex or “lifting line”, 

the circulation of which is of the same magnitude 

as that of the physical wing. Because of the decrease 

of circulation toward the wing tips, “trailing” vor¬ 

tices originate along the lifting line. As illustrated 

in figure 1, a vortex sheet with a more or less con¬ 

stant downwash velocity “w”, leaves the trailing 

edge of the wing (part “a” of the illustration). 

Shortly after leaving, however, this vortex sheet 

transforms itself (it “rolls up”) into a pair of tip 

vortices (b), downwash distribution and flow pat¬ 

tern of which are shown in parts (c) and (d) of 

figure 1. The circulation in these vortices is the 

continuation of that in the center of the lifting line. 

Integral with this vortex system is a permanent 

downward deflection of the affected stream of air. 

Upon approaching and meeting the ground, the in¬ 

duced momentum may theoretically again be taken 

out of this stream and be transferred onto the earth 

in the form of pressure. In this way an airplane can 

thus be considered as being supported from the 

ground. There can also be more than one pair of 

rolled-up vortices, so for example behind biplanes, 

cruciform-type wings and in other configurations 

such as that of a horizontal tail with a fuselage, for 

instance. Physical pictures of tip vortices are found 

in (3); see also figures 7 and 8. 

Figure I. Flow pattern and downwash distribution behind 

lifting line and/or wings (2 and 3). 
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Downwash Angle. Theory indicates that the opti¬ 

mum lift distribution over the span of a wing, pro¬ 

viding maximum lift for a given angle of attack 

and minimum induced drag for a given value of 

lift, is elliptical. The equivalent stream of air de¬ 

flected by such a wing is that within a cylinder 

having a diameter equal to the wing span b. Apply¬ 

ing now the principle of “force equal to mass times 

added velocity” to that cylinder of fluid, the fluid- 

dynamic force is found to be 

(LorF)=^ (ir/4)b2Vw (1) 

with w indicating the “vertical” downwash velocity 

at some distance behind the wing. The average 

downwash angle is accordingly 

w/V = 2 CL/trA = 2o(j (2) 

where CL = L/qS = lift coefficient, and A = b2/S 

= aspect ratio of the wing considered. 

Induced Angle (2). At the location of lifting line 

or wing, the flow is deflected by an average angle 

which is half the final theoretical downwash angle. 

That angle is the induced angle of attack. As illus¬ 

trated in figure 2, the force “F” originating in a 

direction normal to the average direction of the 

flow in the vicinity of the wing, is therefore tilted 

backward by the induced angle 

■=5t tandq = CL/ir A (3) 

In this manner, the force exhibits a component in 

the direction of flow, which is the induced- drag, 

represented by the minimum coefficient 

CD. = CL tancq = C^/irA (4) 

As simple as this equation looks, it should not be 

forgotten that the indicated drag is only the mini¬ 

mum possible value as found from an over-simplified, 

although extremely successful theory. It should also 

be mentioned that except for elliptical distribution, 

the mean average induced angle (as obtained by 

integration across the wing span) is not correctly 

the same for lift and drag, respectively. The incre¬ 

ment of the lift angle is usually somewhat larger 

than that indicating added induced drag. These two 

types of induced angle always change together, how¬ 

ever; they usually grow together. — The nature of 

the induced drag can be demonstrated by writing 

cD,c = °i/(q c*) = clA (5) 

That is, by referring the drag to the square of the 

chord (c2), a form of coefficient is found which is 

independent of the aspect ratio. 

Aspect Ratio. It can be derived from equation 4 that 

the drag 

DL = W2/(u q b2) (6) 

where W = L = load or weight, respectively, of the 

wing or airplane considered. It is seen in this way 

that the induced drag is a function of the wing 

span b, rather than of the area S, In other words, 

to reduce the induced drag, only an increase of 

span will be beneficial in a given condition. Using 

the non-dimensional coefficients, for lift and drag, 

the aspect ratio takes over the place of the span. 

Writing equations 3 and 4 in the form 

dC^/dC* = doq/dCL = l/(irA) (7) 

Figure 3. Drag coefficient of various wings (profiled ex¬ 

cept for 2 small AR plates) as a function of the 
square of their lift coefficient. 

+ WINTER FLAT PLATE (36,a) 

• A V A FLAT PLATE (4,a) 

• WINTER A - .5, - 1, - 2 (36,a) 

a NACA CLARK-r WINGS (36,b) 

* AVA A - .5, -1,-2 (36,c) 

♦ A = 3 BRUNSWICK (7,b) 

4 A V A A»3»4«5 = 7 (4,a) 

- w NACA TAPERED WINS (4,b) 

4 DVL RECTANGLE (4,4) 

ITCt 
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a theoretical function (representing the induced 

drag angle) is obtained, against which experimental 

results can conveniently be checked. Among the 

hundreds of such results available from various 

sources, some more systematic examples are shown 

in figure 3. By plotting the drag coefficient against 

the square of the lift coefficient, rather than as a 

function of this coefficient as such (l,c), the quad¬ 

ratic nature of the induced drag is conveniently 

demonstrated. At CL -* zero, a basic profile-drag 

coefficient is found (in the order of 0.01 or less). In 

aspect ratios larger than 3, agreement with equation 

7 is comparatively close. The straight functions dis¬ 

continue at higher lift coefficients because of pro¬ 

gressive flow separation upon approaching maximum 

lift coefficient. The limitation is shown in the graph 

for one aspect ratio (A = 3). Plotting now in figure 

4, the slopes dC^/dC^ against (1 /A), agreement 

with theory is found, down to aspect ratios in the 

order of 1 — if taking the slopes near —* zero. 

Generally, however, the experimental values are 
above the theoretical function. An appreciable part 

of the increment (in the order of 0.01 or even 

higher) represents the growth of the profile drag 

against the lift coefficient. The fact that round-ended 

wings have higher drag due to lift ratios than wings 

with sharp lateral edges, is discussed later. 

o,4 
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o / 
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K PROFILED DELTA WINGS (4,c) 
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0 / . 

o.2 o.4 o.6 o.g i.o 12 

Figure 4. Drag due to lift of various series of wings as a 

function of 1/ (aspect ratio). 

drag due to lift is simply a component of the nor¬ 
mal force; thus 

CCL = • sina = CL tanct 

The increment of this drag over the induced drag 

(equation 4) is viscous drag, essentially correspond¬ 

ing to reattaching flow separation behind the sharp 

leading edge. Assuming now that the lift is still ap¬ 

proximately the same as in a profiled wing, the drag 

due to lift of flat plates is theoretically 

In Flat Plates — the theoretically expected suction 

force near the leading edge of the upper or suc¬ 

tion side, cannot develop. Therefore, the pressure 

force “F” is normal to the plate surface, and the 

dCDL/dC^ = dot /dCL l/(2ir) + l/(irA) 

This drag ratio (included in figure 4) is by 0.5/tt 

higher than the induced drag. 

(1) Historical notes concerning lift and drag: 

a) Glauert says in (2,c): “A line vortex is analogous 
to a wire carrying an electric current, the strength 

of the vortex corresponds to the strength of the cur¬ 
rent, and the induced velocity at any point of the 

fluid corresponds to the magnetic force due to the 
electric current”. 

b) Account of Lanchester’s work by Prandtl in 

“Generation of Vortices”, Paper RAS London 1927. 
c) The polar diagram (C^ against CL) was intro¬ 
duced by Lilienthal in “Der Vogelflug”, 1889. 

(2) On general wing theory: 

a) Prandtl’s Wing Theory, Nachrichten Konigl. 

Gesellschaft der Wi’schaften 1918, 451 and 1919, 107. 
c) Glauert, "Aerofoil and Airscrew Theory”, 1926. 

(3) About rolled-up, trailing tip vortices: 

a) Bird, Visualization, JAeron’l Sci. 1952 p.481. 
b) See references (7,b) and (7,d). 

c) Kraft, Flight Tests, NACA Technical Note 3377. 
d) Betz, Vortex Systems, ZaMM 1932 p.164. 

e) Behind swept wings see reference (38,f). 

f) Kaden, Rolling-Up Analysis, Ing-Archiv 1931, 140. 
(4) Results on drag due to lift and aspect ratio: 

a) Ergebnisse AVA Gottingen Vol. I (1921). 

b) Anderson, Experimental and Calculated Charac¬ 
teristics of 22 Tapered Wings, NACA T.Rpt 627. 

c) Results on Delta Wings, ARC RM 2871. 
d) DVL, Tunnel Results, ZWB FB 548 and 914. 

e) NACA, Models at High Speed, Tech Rpt 877- 

2. EFFECT OF SHAPE ON INDUCED DRAG 

Equations 3 to 7 correspond to elliptical distribu¬ 

tion of lift over span of plain monoplane wings 

placed in an infinite stream of fluid. Any deviation 

from the elliptical distribution results in a certain 

increase of the average or effective induced angle 

of attack. There are also other effects of wing shape 

(sweep, dihedral) that make the induced drag 

larger. Various effects of this nature are treated in 
this section. 

Effective Aspect Ratio. The plan forms of airplane 

wings are rarely elliptical. Also the lift distribution 

is usually disturbed in airplanes through the addi¬ 

tion of fuselage, engine nacelles or other parts. In 

such conditions, equation 4 can still be applied, 

however, if using an appropriate correction factor: 

cu q q 

CDL = G+k)— - K- =- 
tA IT A tte A 

(10) 



7-4 FLUID DYNAMIC DRAG 

As will be described in the subsequent sections, 

there are certain increments of the induced drag 

which can be predicted theoretically. Others are 

known on a statistical basis. Instead of saying now, 

that the induced drag is so and so much higher than 

indicated by equation 4, it is in some cases more 

convenient to say that the effective aspect ratio 

“At” = eA, to be used in that equation, be smaller 

by a corresponding fraction than the geometrical 

value. The connection between the two approaches 

is evidently given by 

K = 1 + k = A/A; = 1/e (11) 

o.JS 

It-is* vsrf 
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0 0.2 .4 tie 4.8 l.o 1.2 1-4 1.6 18 

Figure 6. Influence of certain cut-outs in the center of a 

wing upon drag due to lift (6,a,b). 

In performance analysis, equation 10 defines the 

so-called “e” method (see in the “aircraft” chapter) 

used in correlating the drag due to lift of a com¬ 
plete airplane configuration with the theoretical 

minimum. In biplanes, the factor “e” is identical 

to the “span factor” (e > 1), indicating their effec¬ 

tive span (26,b). 

(a) Plan Form and Wing Tip Shape 

Lift Distribution. Correction factors have been cal¬ 

culated for rectangular (2,c) and tapered (5) wing 

plan forms. These factors roughly increase in pro¬ 

portion to the aspect ratio. For tapered (or trape¬ 

zoidal) shapes, figure 5 has been prepared accord¬ 

ingly, presenting the term “k/A”. The value k = 

A(k/A) is to be used in the equation 

CD. = (1 + k) Cl2/itA (11) 

The plan-form-correction represents an induced- 

drag component which is approximately independ¬ 

ent of the aspect ratio. For example, in a rectangular 

plan form A^C^/dC^) = k/ir ~ 0.008. For taper 

ratios between 0.3 and 0.4, the additional drag is 

very small, in the order of 1 or 2% in aspect ratios 

commonly employed in airplanes. Appreciable in¬ 

crements are indicated only in plan forms that are 

either extremely tapered or close to the rectangular 

shape. The theoretical results (figure 5) are appre¬ 

ciably modified, however, by a tip effect to be de¬ 

scribed later. 

Figure 5. Additional induced drag of tapered wings. 

Cutouts. Figure 6 shows the drag-due-to-lift func¬ 

tion of a rectangular wing without and with certain 

cutouts in its center. Only little drag is added by a 

cutout in the trailing edge. A (smaller) cutout in 

the leading edge produces a similar effect up to CL 

*■ 0.65. At higher lift coefficients, the flow evidently 

separates behind the gap in the leading edge (6,c). 

The wing then exhibits essentially the same drag 

as though the center part was cut out entirely; the 

drag is roughly doubled in this case. Changes (or 

sometimes disruptions) of the lift distribution simi¬ 

lar to those illustrated in figure 6, can also be pro¬ 

duced by fuselages, engine nacelles or other com¬ 

ponents attached to a wing. Examples of the corre¬ 

sponding additional drag due to lift are presented 

in the “interference” chapter. Fuselage interference 

of this type, or cut-outs in the trailing edge of the 

wing roots, can be favorable, however, with respect 

to longitudinal stability (by way of downwash). 

Tip Vortices. In low aspect-ratio wings, the lateral 

edges have an important influence upon lift and 

drag (as described later). A similar but smaller 

effect of wing tip shape is also found in other aspect 

ratios. Wing theory assumes that the vortex sheet 

leaving the “trailing edge” would keep its original 

distribution of downwash (as in figure l,a) and 

would have a span equal to that of the wing. In 

reality the vortex sheet starts rolling up into the 

pair of “tip vortices” (figure 1 ,b,c) as soon as any 

pressure gradient has developed between lower and 

upper wing side. Usually, this is near the leading 

(rather than near the trailing) edge, as illustrated 

in figure 7. The flow component coming from the 

lower side combines with the stream along the up¬ 

per side of the wing tip, thus forming a sharply 

defined tip vortex. There is sometimes confusion 

between the pair of rolled-up vortices and those 

which form the mentioned sheet along the wing 

span. The latter ones have been called “roller bear¬ 

ings” (2,c), imbedded in the discontinuity between 

upper-side and lower-side flow. They are not dis¬ 

tinct or individual vortices; surveying the space be¬ 

hind the trailing edge of a wing, rather a spanwise 

sheer flow is found along both sides of the sheet 

representing the sum of the trailing-vortex circula- 



VII —DRAG DUE TO LIFT 7-5 

tion. In the rolling-up process, this circulation is 

transferred onto the pair of tip vortices (figure 8). 

Together with the circulation, the viscous wake 

(imbedded in the trailing sheet) may also be rolled 

up into the tip vortices thus filling their cores. The 

effect that the tip vortices have upon lift and in¬ 

duced drag, is not considered in common lifting-line 

theory (equation 4) and in applications such as in 

figure 5. Certain experimental results in larger as¬ 

pect ratios can be explained, however, by consider¬ 
ing the rolling-up process. 

Flow Around Tips. As a consequence of “rolling- 

up”, the flow can actually get around the lateral 

edges of a wing to a certain extent, as shown in 

figure 8. The effective span is, therefore, shorter 

than the geometrical span. In other words, a “con¬ 

dition” is theoretically assumed to be fulfilled at the 

wing tips, similar to the so-called Kutta-Joukowsky 

condition at the trailing edge of wing sections, to 

(5) Hueber, Characteristics of Tapered Wings, Zts. Flugt. 

Motorluftsch. 1933 p.249 and Lufo 1938 p.218. 
(6) Wings with cut-out plan forms: 

a) Ergebnisse AVA Gottingen Vol. Ill (1927) p.92. 
b) Muttray, Zts. Flugt. Motorluft 1929 p.161. 

c) Similar results in NACA Tech Rpt 480 (1934). 

(7) Influence of wing-tip shape on characteristics: 
a) Hoerner, ZWB FB 248 and Fieseler Rpt 16. 

b) Kesselkaul, Tests of Wings with various wing- 

tip Shapes, Inst.Aircr.Design Braunschweig 1941. 
c) Zimmerman, Small Aspect Ratios, NACA TN 539. 

d) Hoerner, Aerodynamic Shape of Wing Tips, US 
Air Force Technical Rpt 5752 (Wright Field, 1949). 

(?) 

Figure 8. Location of the vortex core in relation to the 
wing tip; (a) with sharp lateral edge, (b) on wing with 
round edge, (c) flow around wing-tip tank. 

the effect that no flow takes place around the lateral 

edges. In reality, there is some such flow; and the 

reduction of effective span as mentioned above, is 

a function of the wing-tip shape. A series of shapes 

has, therefore, been investigated on a basically rec¬ 

tangular wing (7,b). Figure 9 presents the plan- 

form location of the tip-vortex cores. Shapes with 

sharp lateral edges (numbers 1, 5 and 6) are seen 

to give the widest effective spans, while rounded 
edges result in a loss of effective span or aspect ratio. 

Figure 9. Wing-tip shape and tip-vortex location of a 
family of wings (7,b) tested at A = 3 and Rc = 106. 
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Figure 10 presents lift and drag characteristics for 

three representatives of the same family of wings. 

It is seen that the shapes having the widest vortex 

spans, are generally the ones exhibiting the least 

drag due to lift. 

SHAPE A 
d«° 

AAj R 
dq xT 

3.0 18.6 0.123 + ol 1 I06 

2 1 3.o 196 .133 - IS LFA 

c~n 3.0 IS 4 .124 * 0 24-12 

(Ti) 3.o 112 .131 - .19 REF. 

Q.i' 7 
I 

3.0 194 .131 - .20 (7,b) 

[ i i ] So 111 ooc,7 * o s ioE 

64 13.4 .051 - .03 AVA 

a.i. ) 5.2 14.5 o S3 - .of GO 

n.r a 5.2 112 0b0 + .03 REF 

c T 1 3 6 V 13.1 .oSo *. 0 (9.*) 

[ 
1 

i ] S.o H.5 0.071 » 0 2 I06 

[ 
--L_— 
>, 1 ] 5.1 I4.S 073 - 20 REF. 

c ^3^ 5.o !lS .071 = 0 (9» 

Figure 10. Lift and drag characteristics of 3 of the wings 
in figure 9; having A = 3; tested at Rc= I06. 

Plan Form. Theory predicts minimum induced drag 

for elliptical lift distribution across the span, which 

means for un twisted elliptical plan form. Figure 11 

demonstrates, however, directly in one case (num¬ 

ber “a” against “c”) that a rectangular wing (with 

sharp lateral edges) does not have a higher drag 

due to lift than the elliptical wing — while theoreti¬ 

cally the rectangular one should have a lift angle 

higher than that of the elliptical plan form by 0.5°, 

and a drag function higher by 0.003. The effective 

aspect ratios of the shapes investigated have been 

evaluated by comparing their induced angle func¬ 

tions with those as indicated by lifting line theory 

(equation 4). The differentials “A A” thus obtained 

are believed to apply to all aspect ratios higher than 

2. It is seen that the most effective plan forms are 

the rectangular, the moderately tapered ones and 

those which have a long trailing edge. The “cut 

away” shapes, on the other hand, such as “3”, “4”, 

“III”, and again the elliptical wings (particularly 

“II”) are less effective. In other words, to make the 

span of the rolled-up vortex system, or the effective 

span of a wing of given basic shape, as wide as pos¬ 

sible, it is favorable to keep the tip vortices apart 
from each other as far downstream as possible. 

Sweep. Another influence found in the tabulation 

(figure 11) is an angle-of-sweep effect, (a) In dis¬ 
tinction from wing “II”, the elliptical form “c” has 

a straight 0.25 chord axis, meaning some negative 

effective angle of sweep, (b) On the other hand, 

Figure 11. Aerodynamic performance of 3 families of 

wings as a function of plan-form and wing-tip shape. 

shape“IV”in figure 11 has some positive angle of 

sweep built into the wing tips, (c) A third piece 

of evidence is seen in figure 13, where minimum in¬ 

duced drag is found at some 5° positive angle of 

sweep, (d) Finally, characteristics of profiled “delta” 

wings are quoted (having straight trailing edges). 

Theory (figure 5) predicts that their induced drag 

would be appreciably higher than that for elliptical 

loading. Some experimental points in figure 4 show, 

however, that such wings (if tested at higher Rey¬ 

nolds numbers) have induced drag characteristics 

that are as favorable as those of other common wing 

plan forms. — In conclusion, a straight trailing edge 

appears to be desirable with regard to induced drag. 

The rear plan-form corners again appear to be im¬ 

portant for the effective aspect ratio. 

Optimum Wing Shape. The results of the “1” to 

“5” series of wings in figure 11 correlate with the 

vortex span in figure 9 as well as with the force data 

in figure 10 — if taking into account both the plan- 

form influence and the lateral-edge effect. In case 

of number “5", which is the most favorable one 

concerning small drag due to lift as well as to mini¬ 

mum sectional drag, it appears that one additional 

effect is the bent-up shape. Experimental data in 

(7,c), on a small-aspect-ratio wing, confirm that this 

feature is important; and it is suggested that some 
small “end-plate” effect may be involved in this 

result. Combination of shape “5” with a moderately 

tapered plan form is believed to be most effective 
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(7,d); and there are a few airplanes that have this 

type of wing shape. In conclusion, the shape of the 

tips can be more important for the performance of 

an airplane than the plan form of the wing. 

Wing-Tip Tanks. Some wind-tunnel investigations 

have been published (8) regarding the influence 

of a pair of external tanks attached to the wing tips 

as in figure 12. Two effects are evidently involved 

in this configuration; (a) span and area of the wing 

are usually increased after adding the tanks; and 

(b) the tanks may have an effect similar to end 

plates (characteristics of which are discussed later). 
Most results correspondingly show an increase in 

lift-curve slope after adding the tanks; and some 

of the tests also show a decrease of the drag due to 

lift. Estimating the influence of round tanks, the 

fact must be taken into account that the flow passes 

around their outer sides. As suggested in (8,c), only 

half of their diameter can thus be considered to be 

effective as end plates. Using equation 18, the incre¬ 

ment of effective aspect ratio due to end-plate effect 

may, therefore, be A A/A = + d/b. It may further 

be assumed that half of the tank diameter, at each 

wing tip, is ineffective with respect to the aerody¬ 

namic span of the configuration considered. The 

corresponding reduction in effective aspect ratio is 

A A/A = - d/b. In a configuration where the tanks 

are attached in a manner so that the wing span is 

not increased, the two components cancel each other. 

However, in configurations where the tanks increase 

the span, the net increment of effective aspect ratio 
is tentatively 

AA/A = +0.5 (Ab/b) (12) 

where (Ab)max = 2 d = two tank diameters. The 

induced drag can be expected to be decreased cor¬ 

respondingly. There may be a parasitic drag com¬ 

ponent, however, due to interference (with or with¬ 

out flow separation) in the corners between tanks 

and wing tips — which (increasing with lift) would 

reduce the favorable effect indicated by the last 
equation. 

(8) Influence of wing-tip tanks on characteristics: 

a) NACA, Straight and Swept, RM L9J04 + A50K15. 

b) ARC, On Swept Wing, Current Paper 196 (1954). 
c) Hartley, Theoretical Load, ARC C.Paper 147. 

d) RAE, Drop Tanks, ARC RM 2951 (1952). 
(9) Influence of wing plan form: 

a) AVA Gottingen, Ergebnisse Vol.I (1921). 
b) Doetsch, Tests of 3 wings, Yearbk D.Lufo 1940. 

(10) Induced drag caused by wing twist: 

a) Journal Aeronautical Sciences 1936 p.273. 

b) Hueber, Zeitschr. Flugt. Motorluft. 1933 p.307. 
c) Lock, About Wing Washout, ARC RM 1769. 

(11) Pearson and Anderson, Characteristics of Wings with 

Partial Span Flaps, NACA T.Rpt 665 (1939). 

Figure 12. Example of external tank at wing tip. 

(ft) Twist and Related Effects 

Wing Twist. To prevent stalling, the tips of airplane 

wings are sometimes twisted against the wing roots 

so that their angle of attack is reduced. Such twist¬ 

ing changes the lift distribution, particularly in the 

range of low lift coefficients. As indicated in (10), 

the additional induced drag in wings with nearly 

elliptical loading is approximately 

ACDl = 4 (Acx°f/10s (13) 

where AcX = difference in angle of attack of the 

wing tips against the center part. A positive com¬ 

ponent of lift exists in this case in the center of the 

wing; corresponding negative components are found 

near the wing tips. The wing thus leaves behind the 

combined vortex system of one “positive” and two 

“negative” wings — so to speak. The resulting in¬ 

duced drag is appreciable, even though the total 

lift of this wing can be zero. For example, an angle 

of twist Ao( = 5° is expected to reduce the maximum 

speed of a fighter airplane (which may be 500 knots) 

by some 10 knots. — Near C+ = 0, equation 13 is 

also applicable to wings with non-elliptic plan form. 

In rectangular plan forms, at intermediate and 

higher lift coefficients, the distribution across the 

span is expected, however, to change in the direc¬ 

tion toward elliptical, when twisting the wing tips 

to more negative angles of attack. At a certain lift 

coefficient, the induced drag of a twisted rectangu¬ 

lar wing will, therefore, have an optimum value. 
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Wing Flaps. The variation of the induced drag due 

to deflection of partial-span landing flaps, is of prac¬ 

tical importance in the calculation of take-off, climb 

and gliding performance of airplanes. The induced 

drag of such wings is made up of three components: 

CDL = Cl2/<* A) + “v”ClACl+ “w”(AC*) 

with ACl = (dct/dS) 6 (dCj/doC) indicating the two- 

dimensional increment of the lift coefficient in those 

wing parts that are equipped with flaps (S = flap 

angle). The first term of the equation represents 

the basic induced drag, the third term corresponds 

to the twist equation 13. Numerical values for “v” 

and “w” are presented in (11), as a function of 

flap-span ratio and taper ratio of the wing. To give 

some idea on the magnitude of the additional drag, 

average and approximate values may be quoted for 

the various constants involved. Thus assuming for 

dot/dS the value 0.5, and for dC^/da the value of 

0.1, the induced drag coefficient is found to be in 

the order of 

CDl = + klCL(&°) + M50)2 

In rectangular or tapered wings, having conven¬ 

tional airplane aspect ratios, the factor kg, (indicat¬ 

ing the twist effect) varies only slightly for flap- 

span ratios between 0.30 and 0.55; k2 ~ 2.3/106. 

The factor k, (indicating a variation of the lift dis¬ 

tribution along the span), is a function of the plan 

form. Representative values of k( are included in 

the tabulation in the next paragraph. This factor 

is positive for triangular wing shapes (having zero 

taper ratio) ; this means that upon deflecting in¬ 

board landing flaps the concentration of lift in the 

center part is furthermore increased in such wings. 

The factor is negative, on the other hand, for rec¬ 

tangular forms; their lift distribution is brought 

nearer the elliptical optimum, by deflecting the flaps. 

Flaps in Taking Off and Climbing. The induced 

drag due to flap deflection has a practical bearing 

upon take-off and climb performance of airplanes. 

At a lift coefficient of Cj_ = 1, for example, incre¬ 

ments of induced drag over the basic drag, are found 

listed as follows, caused by 10° deflection of a pair 

of flaps at or near the center of a wing with A *= 7: 

for wing shape: k, due to k, due to total 

triangular (max. taper; +5/10* +11% + 5% +16% 
optimum tapered wing zero 0% +5% +5% 
rectangular plan form —3/10^ — 9% + 5% — 4% 

The result agrees generally with flight-test experi¬ 

ence. Only a comparatively small deflection of par¬ 

tial-span landing flaps can be found favorable 

during climb in airplanes having tapered wings. 

Rectangular wings, however, show some increase of 

their lift/drag ratio at somewhat larger flap angles. 

(c) The Form of the Lifting Line 

Angle of Sweep. Swept wings (or certain other wing 

shapes) can have the same induced drag as straight 

wings of the same aspect ratio — provided that the 

lift distribution is the same. The distribution across 

the span of a given wing shape varies, however, with 

the angle of sweep. In swept-back wings lift is more 

concentrated near the wing tips. Such concentra¬ 

tion can theoretically be eliminated by decreasing 

the taper ratio. As indicated in (12,f), a ratio 

Cti'p/Cfoot= 0.15 is needed, for example, to make the 
lift distribution of a wing having 30° sweepback, 

near-elliptical. In conventional airplanes, such shape 

would be extremely hazardous with regard to wing- 

tip stalling. Realistic swept back wings, therefore, 

do not have a distribution which would be approxi¬ 

mately elliptical, and their induced drag is accord¬ 

ingly somewhat higher than indicated by equation 

4. This is not the whole story of the swept wing, 

however. In a wing, swept back in the plane of the 

foil sections, the tips drop below the center part, 

as the angle of attack is increased to positive values. 

The wing assumes in this way an inverted “V” 

shape; and the “lift” forces in each panel are more 

and more tilted backward. As a consequence, the 

drag due to lift (dC^/dC^) is appreciably in¬ 

creased. Experimental characteristics from various 

sources have been evaluated in comparison to simi¬ 

lar but straight wings. By plotting the results in 

the form as in figure 13, a cosine function of the 

sweep angle is found: 

dCL2/dCD — cosA ; dCD/dC* - 1/cosA (16) 

The origin of this function is shifted, however, at 

least by 5°, into the range of positive sweep angles. 

Figure 13. Function indicating the induced drag of swept 

wings (12), all tested at Rc ~ 106. 
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Negative Sweep. Swept-forward wings are rarely 

considered or applied in the design of airplanes, be¬ 

cause of certain unfavorable characteristics in the 

lateral moments. Theoretically, their lift distribu¬ 

tion can nearly be made elliptical by increasing the 

chord in the outboard portions. As demonstrated in 

figure 13, their drag due to lift increases with the 

angle of sweep by the same reasons as outlined in 

the preceding paragraph. It must be said, however, 

that swept wings can be designed in which the 

“V” shape effect is avoided for a certain value of 

the lift coefficient (by giving them a compensating 

positive angle of dihedral). 

Dihedral. As pointed out in (13,a), when raising 

the tips of a straight wing to a V-shape position, 

each wing panel approximately maintains induced 

characteristics, in the direction normal to the panel, 

equal to those of a complete straight wing having 

twice the span of one panel. With reference to the 

“lift” force normal to each panel (denoted by CM), 

the V-shaped wing, therefore, exhibits an induced 

drag corresponding to equation 4 (if assuming ellip¬ 

tical distribution). The lift of such wing (in ver¬ 

tical direction) is smaller, however, than the sum 

of the normal forces (L = N cosf*), while the in¬ 

duced (and the parasitic) drag remains unchanged. 

Expressed in form of coefficients, based upon the 

panel or developed wing area, therefore 

CDi = cuV(irA,cos2r) (17) 

with A.= developed aspect ratio (from panel dimen¬ 

sions) . Upon turning the two panels up, the span 

between the wing tips is evidently decreased, the 

effective aspect ratio reduces accordingly and the 

induced drag function is increased. However, con¬ 

sidering a family of dihedraled wings in which the 

(12) Characteristics of swept wings: 
a) NACA, T.Rpt 627; same as reference (4,b). 

b) Junkers Results, Rpts S. 1943/91 and D.43/46. 
c) Letko and Goodman, NACA Tech Note 1046. 

d) Purser-Spearman, Tests, NACA Tech Note 2445. 

e) Hubert, Yearbk D.Lufo 1937 p.129. 
f) DeYoung and Harper, Theoretical Span Loading 
for Arbitrary Plan Form, NACA T.Rpt 921 (1948). 

g) NACA, Tech Rpt 572 and T. Notes 1093 & 2468. 

h) Brebner, “Cranked” Wings, ARC RM 2947 (1955). 
i) ARC, Tests on 45° Swept Wings, RM 2710 (1953). 

(13) On wings having dihedral or V-shape: 

a) Purser and Campbell, Verification of Vee-Tail 

Theory and Analysis, NACA Tech Rpt 823 (1945) . 
b) Datwyler, Mitlg Aerodynamik Inst. Zurich, 1934. 

(14) Available theoretical results on end plates: 
a) Ergebnisse AVA Gottingen Vol.III (1927) p.18. 

b) Mangier, Analysis, Lufo 1937 p.564 (Transl NACA 
T.Memo 856), and Lufo 1939 p.219. 

c) CAHI (Moscow) Technical Report No. 58. 
d) Rotta, Aerodynamic Characteristics of Wing With 

End Plate at One Tip, Ingenieur Archiv 1942 p. 119. 

span between the tips is kept constant, the induced 

drag function is approximately constant as per equa¬ 

tion 4. Results of a more detailed analysis (13,b) 

are plotted in figure 14. The induced drag is some¬ 

what lower than indicated by the panel approach 

(13,a) ; and we may say that “V” shape includes a 

small effect similar to that of end plates. It appears 

that equation 17 or 4 should be reduced by V (cosl") 

to approximate the result in figure 14. 

Figure 14. Influence of dihedral on the induced drag; (a) 
with constant panels, and (b) with b = constant. 

“V” Shape Applications. Considering the moder¬ 

ately large dihedral angles applied in airplane wings, 

the effect upon drag is comparatively small. For an 

angle of T — 6° (possibly used in common air¬ 

planes) , the induced drag increment (in the defi¬ 

nition as for equation 17) is in the order of 1%. 

V-shaped surfaces have also been applied in place 

of the common tail assembly, combining in their 

two panels the functions of both the horizontal and 

vertical tail surfaces. This combination amplifies 

the complexity of the control characteristics, how¬ 

ever. The “V” tail also induces a torsional moment 

in the fuselage larger than that caused by any ordi¬ 

nary vertical surface. 

(d) Influence of End Plates 

Adding end plates to a wing (see sketch in figure 

15) increases the cross section of the effective cylin¬ 

der of streaming air deflected by the wing. Less 

downwash and smaller induced angles of attack are 
then sufficient in producing a certain lift coefficient. 

Height Ratio. Theory (14) considers a lifting line 

with elliptical loading which is bent up at both 

ends. The induced drag decreases, and /or the effec¬ 

tive aspect ratio increases as a function of the height 
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Viscous Drag. The end plates have some profile 

drag, of course, and some interference drag origi¬ 

nating at their junctures with wing or wing tips. 

On the basis of CDs = 0.008, and using the infor¬ 

mation on the drag of “corners” in the “interfer¬ 

ence” chapter, the viscous drag, referred to the 

wing area S, is found to be approximately 

CDs = 0.008 (SE/S) -f 0.004/A (20) 

Figure 15. Effective aspect ratio of wings with end plates 

(15) ; (a) as a function of height ratio (h/b) ; and (b) 

as a function of area ratio (S£/S). 

The equation shows that the viscous influence grows 

as the geometrical aspect ratio of the wing is de¬ 

creased. Basically, the end plates have at least the 
drag of a pair of added wing-tip extensions (having 

the same area). Any such added area naturally 

produces more lift for the same price of viscous 

drag. Practical application of end plates in airplanes 

and/or guided missiles, therefore, seems to be re¬ 

stricted to such designs where the plates can also 

be utilized for stabilizing or control purposes (16). 

Even then, improved characteristics predominate in 

an increase of the lift curve slope in these applica¬ 

tions, rather than in the induced drag. 

ratio h/b, as shown in figure 15,a. The effect can 

be approximated by 

AA-l/A = k h/b (18) 

where k is equal to ~ 1.9. The effect is rather 

indifferent as to the particular location and posi¬ 

tion of the plates, as shown in (15,h). Within rea¬ 

sonable limits, it thus seems to be unimportant, 

whether the plates are moved up or down in rela¬ 

tion to the plane of the wing, or placed nearer to 

leading or trailing edge of the foil section, or ar¬ 

ranged in vertical or laterally somewhat inclined 

position. Twisting, however, the upper halves of 

a pair of plates against the lower halves has an 

effect upon the induced characteristics (15,g) . 

Area Ratio. Experiments with a family of end-plate 

shapes (15,c) show that their effect increases some¬ 

how as a function of the chordwise dimension. In 

a way, such plates can be considered as “fences”, 

making it difficult for the flow to get around the 
wing tips. Accordingly, a longer fence is more effec¬ 

tive than a shorter one having the same height. 

Figure 15,b presents essentially the same experimen¬ 

tal data as plotted in part a of the illustration, this 

time as a function of the area ratio Sg^/S, with SgE 

denoting the sum of the areas of the two end plates. 

Correlation is found in this manner according to 

AA-l/A = k S2E/S (19) 

where k is equal to ~ 1.1. Examination of experi¬ 

mental sources reveals, however, that any end-plate 

area exceeding the wing-chord length, does not con¬ 

tribute much. No such results are in figure 15. 

Inboard Plates. Plates have also been investigated 

in positions inboard the wing tips. Figure 16 pre¬ 

sents results of a theoretical analysis (14,b). The 

effect of the plates decreases upon moving them 

away from the tips. By reasons of symmetry, their 

effect reduces theoretically to zero upon approach¬ 

ing the center of the wing. An additional “parasitic” 

effect in such configurations is shown in the next 

paragraph. 

Figure 16. Influence of inboard end plates on the effec¬ 

tive aspect ratio of wings (14). 

Single End Plates, placed at only one wing tip 

(14,d), have an effect which is somewhat smaller 

than half of that of a pair of plates; see in figure 

15,a. A practical example of such an arrangement 

is the vertical tail surface of an airplane with the 

horizontal surface placed on top (16,b). Figure 17 

presents some experimental results on such a con¬ 

figuration. With the plate near the top (or near 

the bottom), the effective aspect ratio of the fin is 

increased considerably. With the plate close to i/2 
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of the height of the fin, both the induced lift angle 

(do(J/dCL) and the drag due to lift ratio (dC0/ 

dC^ ) are increased by some 6% because of inter¬ 

ference of the plate with the lift distribution of the 

fin. This effect is further discussed in Chapter VIII 

under the heading “induced interference”. 

Figure 18. Drag-due-to-lift characteristics of rotating cir¬ 
cular cylinders (20,c,e) without and with end disks. Note 

that in this graph too, plotting CD(Cf) gives fairly straight 
lines, parallel to induced theory. 

(15) Experimental results on end plates: 
a) Ergebnisse AVA Gottingen Vol.III (1927) p.95. 

b) NACA Technical Rpts 201 and 267 (1927). 
c) NACA Technical Note 2440, A = 4 at R = 10 . 

d) Wadlin-Others, Hydrofoil, NACA RM-L51B13. 

e) NACA, Tail Surfaces, A = 3 to 6; T.Note 1291. 
f) On 45° swept wing, NACA Tech Note 2229. 

g) Clements, Canted Plates, AE Review, July 1955. 
h) CAHI (Moscow), same as reference (14,c). 

(16) End plate systems in airplanes: 
a) Root, Empennage Design, J.A.Sci. 1939 p.353. 

b) Multhopp, “T Tails”, Aero Digest May 1955. 
c) Riley, Tail Assembly, NACA T.Note 2907 (1953). 
d) Results similar to (c) in T.Note 1050 (1946). 

(18) Explanation of the Magnus effect: 
a) Magnus (1802 to 1870), Abh. Berliner Akad. 
1852, Poggendorf Annalen 1853 p.l. 

b) Prandtl, Die Naturwissenschaften 1925 p.93. 

(20) Experimental results on rotating cylinders: 

a) Ackeret, Zts. Flugt. M’luftsch. 1925 p.49. 
b) Reid, Rotating Rods, NACA T.Note 209 (1924). 

c) AVA Gottingen Ergebnisse Vol.IV (1932). 
d) Thom, Cylinder with Disks, ARC RM 1623. 

e) Without end disks, lift of the “A — 1.7” cylinder 

(c) is so small (in the order of Cj_ = 1) that it can¬ 
not well be plotted in the graph. 

f) Holst, Rotating Wing, ZWB FB 1308 (1940). 
g) Kiichemann, Cylinders and Wings, ZWB FB 1651. 

(22) Applications of rotating cylinders: 
a) Flettner, Werft-Reederei-Hafen 1924 p.662. 

b) Ackeret, Rotorschiff, Gottingen 1925. 

c) "Industrial Applications”, Mech.Engg 1927 p.249. 
d) Klemin investigated the idea of applying rotors 

in aircraft: see Scientific American, 1925 p.343 and 
in the August Issue: also 1932 p.362, where a report 

is given on rotor-lifted airplanes. 
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Figure 17. Effective aspect ratio of a vertical tail surface 

in combination (16,c) with a horizontal plate. 

(d) Rotating Cylinders 

An interesting application and/or confirmation of 

lifting-line theory are circular cylinders rotating 

about their axis (Magnus effect as described in ref¬ 

erences 18). Lift coefficients (based on span b times 

diameter d) of considerable magnitude are obtained 

in this way. Figure 18 presents experimental exam¬ 

ples plotted in the form of CD(Cf). Three phases 

are evident. In the first one, up to velocity ratios 

w/V in the order of 1 or 2„ the drag decreases 

(separation reduces). In the second phase, the drag 

increases considerably together with the lift which 

theoretically reaches a maximum corresponding to 

CL = 4w = 12.6 at w/V = 4. Still higher coefficients 

are obtained, however (on cylinders having larger 

aspect ratios and fitted with end plates) in the 

third phase, by applying velocity ratios w/V in the 

order of 10 or even higher, while the drag increases 

progressively, because of what we may call “super¬ 

circulation”. 

Drag Due to Lift. Lifting cylinders of finite span 

exhibit induced drag, of course. Analysis of figure 

18 suggests a mechanism as follows. Because of the 

blunt ends of the cylinders, their effective aspect 

ratio is reduced, tentatively by A A = 1. After add¬ 

ing end plates or “end disks”, respectively, this re¬ 

duction is essentially recovered, however; and on 

account of the disks as such, the effective aspect ratio 

is further increased, tentatively by A A = 2 (Ad/b) 

A, where Ad = dEP — d = increment of disk over 

cylinder diameter. Figure 18 shows that this mecha¬ 

nism can approximately be correct in describing the 

results. The end disks improve, in other words, the 

flow pattern past the ends of the cylinders consider¬ 

ably. Their application is effective both with regard 

to lift (including CLm0?) and induced drag (20,e). 

Besides a viscous component of drag (in the order 

of ACd = 0.5), the power necessary to rotate the 

cylinder (measured in references 20, a and b) can 

also be taken into account in the form of a drag 

coefficient. Assuming this power to be due to the 
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fluid-dynamic friction on the cylinder surface only 
(that is, disregarding mechanical friction), the 

equivalent drag coefficient is roughly 

ACD = irCf(w/V)3 (22) 

Assuming then, Cp to be «s. 0.003 in the range of 

Reynolds numbers Rw = w d/y between 10s and 
106, this drag component is found to be in the order 

of ACd = 0.01 (w/V)3. For example at w/V = 4, 

producing a lift coefficient in the order of 8, the 

increment is ACp ~ 0.27. This much is approxi¬ 

mately 10% of the induced drag (at 8) of a 

cylinder having an effective aspect ratio of b/d = 10. 

All in all, a rotating cylinder of that aspect ratio 

(with a pair of small end disks) can be expected to 

have a minimum drag/lift ratio D/L « 1/5 at CL 

~ 5. For comparison, a profiled wing, having the 

same span as the cylinder, would produce the same 

maximum lift (in pounds) if made with a chord 

(2/3) of the span. Its drag/lift ratio at a Cl = 

0.75 (on wing area), giving the as same lift (in 

pounds) as the cylinder has at CL= 5, is estimated 

to be D/L = 1 /6. This value is not very different 

from that of the cylinder as quoted above. The wing 

would be much more efficient, however, in the range 

of smaller lift coefficients. 

Flettner Rotor. The lift produced by wind in a 

rotating cylinder is of some importance in the ballis¬ 

tics of spinning projectiles. The only engineering 

application of the Magnus effect attempted so far 

is in Flettner’s “rotor ship” (22). Utilizing the wind 

in a manner similar to that of sailboats, this ship 

has crossed the Atlantic, propelled (or assisted) by 

two cylinders rotating about their vertical axes. — 

Circulation and lift due to rotation are not restricted 

to the circular cylinder. A rod having the cross sec¬ 

tional shape of a “cross” (20,b) and an ordinary 

foil section (20,f) have also been tested and found 

to produce forces similar to those of the cylinder 

when rotating about their axes. 

Figure 19. Effective aspect ratios of biplanes (26). 

3. DRAG IN VARIOUS WING 

ARRANGEMENTS 

Only monoplane wings, unaffected by any bound¬ 

aries in the fluid space, have been considered in 

the preceding sections. Placing now two (or more) 

wings closely together in biplane- , tandem- or any 

other arrangement, they have an effect upon each 

other’s aerodynamic characteristics. Several types of 

such configurations are discussed as follows. 

(a) Biplanes and Similar Configurations 

Biplane. In the early days of aviation, the biplane 

was a very popular type of airplane; and its aero¬ 

dynamic characteristics have theoretically been 

studied, as a function of gap or height ratio, span 

ratio, stagger and decalage (26). All these param¬ 

eters have an influence upon aerodynamic efficiency. 

However, the most important one is that of the gap 

ratio “h/b”. Aerodynamic characteristics of a bi¬ 

plane composed of two identical panels, each carry¬ 

ing approximately half of the combined load, are 

indicated in figure 19, in the form of the effective 

aspect ratio. If defining the geometrical aspect ratio 

as A = b /S, where S = combined wing area of the 

two panels — the effective aspect ratio grows from 

Ax = A at h/b —► 0, to Ax ~ 2A, at h/b -» °°. The 

condition at h/b = 0 means a monoplane with the 

same span, but with twice the chord of a biplane 

panel. For larger values of h, we have evidently two 

wings flying independently of each other. This case 

is treated further under the heading “flying in for¬ 

mation”. In the most efficient biplane, the panels 

are not necessarily equal in dimensions. For example 

(26,b) for rectangular plan form, with cs|10ft/c(on9 

= 0.5, the optimum span ratio is hghort/btng = 0.75. 

Multiplanes. On the basis of constant span, the in¬ 

duced drag ratio (Dx/I?) decreases not only as the 

height “h” of a biplane is increased, but also as the 

number of panels placed within that height is in¬ 

creased. A number of triplanes has actually been 
built and flown during the last 50 years. Theoreti¬ 

cal analysis (26,a) shows that multiplanes approach 

as a final limit the condition of the “boxplane”. The 

two (rectangular) panels of such a configuration 

are connected at each end by means of a piece of 

foil which can be considered to be an end plate — 

thus forming a rectangular “box”. The effective as¬ 

pect ratio of this type is included in figure 19. For 

h —^ oo, the boxplane reaches Ax -* oo, which means 

zero induced drag. 
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Ring Foil. A ring is a shape somehow similar in 
aerodynamic respect, to that of the boxplane above. 
On the basis of a sectional lift-curve slope of 2jt, 
analysis (28,a) shows that the effective wing area 
of a ring-shaped foil is 

“S” = 0.5 tr d c (21) 

where d is wing diameter. The equivalent stream 
of fluid deflected by such a wing is twice the cylin¬ 
der defined by the ring diameter d. Therefore, the 
induced drag is only half of that as indicated by 
equation 4; and the effective aspect ratio is 

Aj = 2 d2/“S” = 4d/(n O (22) 

In coefficient form, based upon “S”, the induced 
characteristics of the ring foil are given by 

dCD. /dC2 = dcydCL = l/irAj = 0.25 c/d 

These equations mean that lift and induced drag 
of ring foils are equal to those of two plane wings 
(flying without affecting each other) having each 
a span equal to the ring diameter and an area each, 
equal to 0.25 the developed ring area. 

Figure 20 presents experimental results on a ring- 
shaped airfoil. Based upon S = 2 (dc), equation 23 
transforms into 

dCDl/< = (c/d)/ir (24) 

This function is verified in the graph, if assuming 
an increase of the profile drag as indicated; a result 
which does not seem to be surprising for the 21% 

(26) Theory and results of multiplanes: 
a) Prandtl, NACA T Rpt 116; Erg. AVA III (1927). 
b) Munk, Biplane, NACA Technical Rpt 151 (1922). 
c) Knight and Wenzinger, Wings, NACA T.Rpt 317. 
d) Munk, Biplane-Triplane Tests, NACA T.Rpt 256. 

(28) Characteristics of ring-type foils: 
a) Analysis by Ribner, J.Aero Sci. 1947 p.529. 
b) Muttray, Experiments, ZWB FB 824/3 (1941). 
c) Weissinger, Ring Aerodynamics, ZFW 1956 p. 141. 
d) A combination of “ring wing” with turbo-jet en¬ 
gine developed in France; see Yearbk WGL 1954. 
e) Richter, Ring Aerodynamics, Yearbk WGL 1955. 

(29) Ground effect on lifting wings: 
a) Theory, AVA Gottingen, Ergebnisse II (1923). 
b) NACA, Experimental Data, Technical Note 705. 
c) Zeitschr.Flugt.M’luftschiffahrt 1932 p.159. 
d) CAHI Moscow, Experimental Result, Rpt 437. 
e) ARC, Experimental Results, RM 1847 and 1861. 
f) Datwyler, Wings Close to Ground, Mittlg Aero- 
dynamik Inst. TH Zurich, 1934; see ZFM 1933 p.442. 
g) Furlong Sweptback Wing, NACA T.Rpt 1218. 

Figure 20. Lift and drag characteristics of a ring shaped 
airfoil (28,b). Theoretical lift as presented in (28,a). 

symmetrical section used in those tests. Ring foils 
can be used in place of fins for the stabilization of 
bombs (or for purposes as indicated in reference 
28,d) . In small aspect ratios, and for small angles 
of attack (only representing the linear lift term) : 

L = q d2ircx and D- = 0.5 l5 / (q d2tr) 

Reference (28,d) presents some experimental re¬ 
sults approximately confirming this lift function at 
an aspect ratio d/c = 0.62. 

Ground Effect. Theory represents the biplane by a 
pair of lifting lines circulating in one and the same 
direction. Reversing now the circulation in one of 
the two vortices, a flow pattern is obtained identified 
by a plane of symmetry half way between the two. 
This plane is the fluid-dynamic equivalent of a solid 
boundary for each of the two “wings”. For the lower 
wing the boundary is a “ceiling” (such as that in a 
closed-type wind tunnel, for example); for the 
upper foil, the boundary represents the same in¬ 
fluence as that of the ground (the airfield or the 
runway) upon an airplane wing during take-off or 
while landing. The downwash behind the wing 
strikes the ground surface; induced angle and in¬ 
duced drag are accordingly reduced. Figure 21 pre¬ 
sents the theoretical prediction (29,a), together 
with a series of points evaluated from lift- and drag 
characteristics as tested in wind tunnels in the pres¬ 
ence of a ground surface. Below h/b = 0.3 or 0.4, 
the decrement may be approximated in terms of an 
increment of the effective aspect ratio: 

AA/A = 0.09 b/h (25) 
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Figure 21. Induced drag of wings flying near ground (29). 

Two pairs of points in figure 21 have been evaluated 

from experimental cx'i and CDj_ results on a 42° 

swept wing. They show that the ground effect is 

also effective in sweepback, with the height h de¬ 

fined to the aerodynamic center of the wing. Con¬ 

sidering conventional dimensions of landing gears, 

the distance between wing and ground is found to 

be in the order of h/b = 0.1. For this ratio, the 

induced drag function is seen to be approximately 

half of that in unlimited flow. In other words, the 

effective aspect ratio is almost twice the geometrial 

one. The ground effect should, therefore, not be 

disregarded in take-off and landing calculations. 

(b) Wings in Tandem and Similar Arrangements 

Tandem Configuration. On the basis of wing theory 

(26,b) lift and induced drag of two (or more) foils 

in tandem arrangement, are expected to be equal 

to those of a single wing having a chord distribu¬ 

tion corresponding to the sum of the local chords 

of the wing panels involved. Using, therefore, an 

aspect ratio based upon the total area, the combined 

minimum induced drag of a tandem system is ap- 

Figure 22. Analysis of the interaction between a pair of 
tandem wings (30,b). 

proximately given by equations 4 to 7. Using in¬ 

duced angles and lift contributions as indicated in 

figures 22 and 23, the combined induced drag of 

the systems investigated is found to be approximately 

in agreement with this prediction. Also in agree¬ 

ment with theory (30,a) the forward foil shows only 

little effect due to the presence of the rear foil (see 

in figure 22). The influence of the forward foil 

upon the rear foil is much more important; the rear 
foil is “climbing”, so to speak, within the downwash 

field coming from the first foil. The angle of the 

downwash has a value of 2 otf , in a not rolled-up 

vortex sheet (figure l,a); actually the average value 

is in the order of only 1,6 o(£. Therefore, the angle 

at which the lift in the second foil of a tandem sys¬ 

tem is inclined to the rear — is approximately: 

«i2 = (CL2/irA2) + 1.6 (CLI /ir A,) 

Investigations in (30,c) give some more insight in 

the mechanism of tandem systems. The larger wing 

in figure 23, having A = 6, has a dCD/dCL = 0.075, 
flying alone (without correction as tested in an 

open-throat wind tunnel). Behind an aspect-ratio-3 

foil, the drag function of the larger foil is increased 

to 0.081, which is not very much above the free- 

flight value. The wider (second) foil, evidently re¬ 

ceives not only downwash, but also upwash (in the 

outer parts of the span), thus recovering some of 

the induced drag produced by the forward foil. 

Figure 23. Experimental results (30,c) on the induced 

characteristics of tandem foils. The values in brackets (not 
available in the source) have been estimated. 

Horizontal Tail. There has been a small French 

airplane “Pou du Ciel” (“Sky Flea”) built in tan¬ 

dem form (combined with some biplane effect). 

Otherwise, the tandem arrangement has hardly been 

used in airplane design, obviously because of low 

efficiency and no structural advantages. The inter¬ 

action of tandem wings has a practical meaning, 

however, in the induced drag of horizontal tail sur¬ 

faces. Depending upon the longitudinal stability of 

the airplane considered, the tail carries some posi¬ 

tive lift load, at least in the range of smaller flyings 

speeds (at higher wing-lift coefficients). Taking into 

account the aspect ratio of the horizontal surface 

(usually between 3 and 5), and considering the 

detrimental effect of the fuselage upon the effective 
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aspect ratio of the tail (as explained in the “inter¬ 

ference” chapter) — the induced drag of the tail 

surface (subscript “H”) is approximately: 

CDiH =CLn(<*iH + £) (27) 

with “£” indicating the downwash angle at the 

location of the tail. The ratio between this drag 

and the basic induced drag of an airplane is then 

DiH A £ CUH A 
| _ j n
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-
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r
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Dio " S 
CL AiH ^cL/j 

To illustrate this equation, values shall be assumed, 

representing common airplane design; SH/S = 0.25, 

Ah/A = 0.4; e/O'i = 1 in gliding condition (with 

fuselage interference), and = 2 in climbing condi¬ 

tion (with propeller slipstream). Using these values 

together with an assumed ratio of Clh/Cl between 

0.1 and 0.3, the induced drag of the horizontal tail 

is found to be between 4 and 30% of the wing’s 

induced drag. This drag component can thus be 

of appreciable magnitude and it should not be dis¬ 

regarded in computing the climb performance of 

airplanes. The additional drag varies greatly, of 

course, with the longitudinal characteristics (static 

Figure 24. Effective aspect ratio of a pair of wings flying 
side by side (31). 

(30) Characteristics of tandem wings: 

a) Glauert, Tandem Theory, ARC RM 949 (1923). 

b) Luetgebrune, Tandem Tests, ZWB FB 1677. 

c) Eiffel, Resistance de l’Air Aviation, 1919. 

d) Munk’s Tests, Vol.If Tech Ber. Flugzeumeist. 
e) Naylor, Wing and Tail, ARC RM 2428 (1954). 

f) See cover picture of A.Eng.Review Novl955. 
(31) influence of longitudinal wing gap: 

a) Prandtl-Betz, 4 Abh. Hydro-Aerodynamik (1927), 
reproduced by Edwards Ann Arbor Mich. 1953; see 
also Durand’s “Aerod. Theory” Vol.IV. 

b) Experiments by Munk and Cario, Technische 

Berichte der Flugzeugmeisterei Vol.I (1917) p.219. 
(32) Schlichting, Analysis of Flying in Formation: 

a) Mitt. D.Akademie Lufo 1942, Transl TMB 239. 

b) Doct ZWB UM 2066 (1944); Transl TMB 240. 

stability) of the airplane considered. Depending on 

these characteristics, the induced drag of the hori¬ 

zontal tail surface can have “unexpectedly large 

values” (30,e) at high speeds (low wing-lift coeffi¬ 

cients) . — Another example of tandem performance 

arises when two airplanes combine in a refueling 
operation (30,f). 

(c) Airplanes Flying in Formation 

It is known that migratory (and some other) birds 

like to fly in a staggered or swept formation. Each 

animal (except for the leader) instinctively takes 

advantage of the upwash coming from the wing tip 

of the preceding bird. Theory confirms that this 

method is suitable to reduce the induced drag. 

Longitudinal Gap. Cutting a wing along its center 

line, roughly means reducing the aspect ratio to 

half. Figure 24 shows how the effective ratio de¬ 

creases as a function of the gap between the two 

halves of such a wing. Theory (31,a) considering 

two lifting lines (having no physical chord), ex¬ 

pects a rapid decrease of A;/A. Experimental results 

(31,b) of a rectangular wing (originally having A 

= 6) show, however, that chord and thickness of 

the square and blunt wing ends are obstructions for 

the flow through the gap, at least for ratios of 

y/c below ~ 0.03. Beyond y/b = 0.04, the configu¬ 

ration in figure 24 approaches the terminal value 

of A;/A = 0.5 along the theoretical function. The 

induced characteristics of a pair of such wings, fly¬ 

ing side by side, can be derived from the graph. 

Flying Side by Side. Considering two or more air¬ 

planes flying so closely side by side that their tips 

touch, their geometric aspect ratio is theoretically 

increased to twofold or manifold, respectively. In 

the theoretical analysis (32) each wing is replaced 

by a “horseshoe” vortex. This is done in such a 

manner that at a nominal distance equal to zero, 

certain gaps are considered to be left between the 

wing tips. Since only the induced drag is affected 

by the interaction, a practical assumption is made 

as a basis for the results presented in figures 25, 26 
and 27. Considering that the basic wing (in free 

flight; alone) would have a C0;/Cx>i0tnl - 0.5, the 
results primarily apply to the optimum lift-drag 

ratio as may be utilized in long-range flight (at 

maximum L/D). As shown in figure 26,a the drag 

decreases as the lateral distance between the planes 

is reduced, in a manner similar to that in figure 24. 

For a fixed lateral distance y = b, meaning zero gap 

between the wing tips (permitting however the tip 
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Figure 27. Average or total reduction of drag in forma¬ 

tion (as in figure 25) as a function of the 
number of participating airplanes (32). 

Figure 25. Distribution of drag within the formation of 

three airplanes (32) flying at y = b and z = 0. Average 
reduction of drag is 14% in all three conditions. 

vortices to develop) — the drag decreases steadily 

as the number of airplanes flying in line is increased 

(figure 27). Considering as a possibility 5 planes 

in such a formation, the savings in drag might be 

in the order of 18%. The effect reduces, however, 

rapidly (as shown in figure 26,b) upon “staggering” 

the formation in vertical direction (letting each air¬ 

plane fly in an altitude which is different from that 

of the next plane by the value of “z”). 

Figure 26. Maximum reduction of drag (32) made pos¬ 
sible by flying in formation (as in figure 25), as a function 
of (a) lateral and (b) vertical separation. 

4. DRAG IN SMALL ASPECT RATIOS 

The principles and results of drag due to lift pre¬ 

sented so far in this chapter, are primarily applicable 

in larger aspect ratios. As the wing chord (not as 

such existing in lifting line theory) is made longer 

and longer, it reaches into the space of the “fully” 

developed vortex system (figure 1 ,c), thus inter¬ 

fering with its pattern; and the vortex field in turn 

affects the flow past the foil sections. Essentially 

there are two locations where such interaction takes 
place. One is within the span between the wing tips; 

satisfactory solutions are known for this effect. The 

other one is at the lateral edges. Only limited in¬ 

formation is available regarding the flow pattern 

past these boundaries and their influence upon lift 

and drag. Certain answers are suggested, however, 

in the following paragraphs. 

(a) First Component of Drag 

Longitudinal Stagger. As indicated by basic theory 

(26,b) the arrangement of a formation of airplanes 

in longitudinal or flight direction, does not have an 

effect upon the total drag — as long as lateral and 

vertical distances are kept constant. As listed in 

figure 25, the total or average drag reduction “E” 

= AD/D is accordingly one and the same — whether 

the center wing is flying in the same line with the 

others, or in front of them or behind. To avoid col¬ 

lisions at the wing tips, therefore, a swept formation 

(with the wing tips somewhat overlapping laterally) 

appears to be most favorable in long-range opera¬ 

tions; and this is precisely the technique applied 

by migratory birds. The distribution of the induced 

drag among the various wings depends upon their 

individual position. Those in front show almost the 

same drag as if flying alone. The wings in the rear, 

on the other hand, show an appreciable decrease of 

their drag, especially if flying in the center position. 

To help an ailing airplane home, two others should 

accordingly fly ahead as indicated in figure 25. 

Circulation in Small Aspect Ratios (35). The 

mechanism of circulation in chordwise direction 

(lifting line), is also present in small aspect ratios. 

However, every wing (having finite span) produces 

lift by deflecting a certain stream of fluid. This 

means that the streamlines passing the foil sections 

have a certain curvature. In small aspect ratios, the 

lift is, therefore, lower than predicted by lifting-line 
theory; the first (linear) term of the lift coefficient 

is only 

CLo = 0.5 tt A sincx (30) 

This function applies to aspect ratios below 1.0 or 

0.5. By referring the coefficient to the square of the 

span, it is seen that the first lift component is no 

longer a function of the aspect ratio; 

CLb = L/(q b2) = 0 5 n since (31) 
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This result indicates that the lift is essentially pro¬ 

duced near the leading edge, and that the rear part 

of the chord is useless, so to speak, in regard to lift. 
In other words, a condition is reached (below A = 1, 

or = 0.5), where maximum possible deflection 

(downwash angle = angle of attack) is obtained 

ahead of the trailing edge. One half of the angle 

of attack (of the first lift term; equation 30) is, 

therefore, induced; and the corresponding induced 
drag is 

CDio = 05 CLotano< ~C10/*A (32) 

In other words, the chord effect considered so far, 

only affects the lift-curve slope; and equation 4 is 

still applicable for this component of drag. 

PROFII FH WINGA 

Figure 28. Drag-due-to-lift function of low-aspect-ratio 

wings, in the range of small lift coefficients; (a) profiled 

airfoils; (b) flat and sharp-edged plates. 

(35) Linear lift theory of small-aspect-ratio wings: 

a) Weinig, Lift in Small Span, Lufo 1936 p.405. 
b) Weissinger, Theory of Swept Wings, ZWB FB 
1553, 1942 (Transl NACA T.Memo 1120, see also 

T.Note 3476) ; also Expansion of Lifting Line Theory, 

Mathematische Nachrichten 1949 No. 1 and 2. 

c) Lawrence, Journal Aeron’l Sciences 1951 p.683. 
d) Jones, NACA Technical Rpt 835 (1946). 
e) Falkner, ARC RM 1910 (1943) and RM 2596. 

(36) Investigations of small AR profiled wings: 

a) Winter, Plates and Wings of Short Span, For- 
schung 1935 p.40 and 67; Transl NACA TM 798. 
b) Zimmerman, Clark-Y Foils of Small Aspect Ratio, 

NACA T.Rpt 431 (1932); also J.Aero Sci.1935 p.156. 

c) Voepel, AVA Rpt 1946, Transl. RAE No. 276. 
d) NACA, Sweepback and AR, Tech Note 1093. 
e) Staufer, Tail Surfaces, Yb.D.Lufo 1940,1,383. 

(37) Experimental results of small AR plates: 

a) AVA Gottingen, Ergebnisse Vol.IV (1932). 

b) Jones-Miles, Triangular, ARC RM 2518 (1946). 

c) Wadlin and Others, Hydrodynamics of Plates, 
NACA T.Notes 3079 and 3249; or T.Rpt 1246. 

d) Bartlett, Edge Shape, J.Aero Sci.1955 p.517. 

First Drag Term. Figure 28 presents results, evalu¬ 

ated at small angles of attack (near C L = 0), in the 

form of (dCL/dCD) which is the inverse of the 

drag ratio (to make the plot linear). It is seen that 

profiled rectangular wings with sharp (blunt) lat¬ 

eral edges closely agree with the theory. Wings with 

round lateral edges have higher drag functions. The 

effective aspect ratio of such wings is obviously re¬ 

duced to some .90 or even 80% of the geometrical 

ratio. A collection of effective aspect ratios is pre¬ 

sented in figure 29. Applying these ratios, the in¬ 

duced drag due to the first lift component can be 

determined through the use of equation 4. 

F□□QAVQQQ 
SHARP: l.oS 1.00 1.00 too 0.90 0.90 I.OS 0.95 

ROUND : 0 22 - 0.90 0.87 _ o 85 0.95 0.85 

Figure 29. Effective aspect ratios (with respect to linear 
lift term) of various “wing” shapes with aspect ratios be¬ 
tween 0.5 and 1.3 at Rc between (0.5 and 1.0) TO* evalu¬ 
ated from (36) and (37). 

Flat Plates. Not having the same nose-suction effect 

as profiled wings, plates are expected to have a drag 

coefficient CD = CLtancx = CNsintx, as in larger as¬ 

pect ratios. Considering small angles of attack and 

not too small aspect ratios, equation 30 (linear lift 

term) yields in this case 

(dCD/dcJ)o= (dot/dCL)o =2/it A (33) 

as plotted in figure 28. Results of plates beveled at 

the suction side (36,a) do not agree with equation 

33. It appears that they develop some favorable suc¬ 

tion at their leading edge, so that their drag is re¬ 

duced. Their function (not included in figure 28) 

is about half way between profiled wings and plates. 

(b) Second Component of Drag 

Zero Aspect Ratio. A second, non-linear lift com¬ 

ponent appears in small aspect ratios. To under¬ 

stand the flow pattern, analysis is useful at A -* 0. 

In a narrow and straight strip of material, a longi¬ 

tudinal circulation is no longer existing. A different 

type of lift develops instead, along the lateral edges. 

A pair of vortices, similar to those in figures 7 and 8 

is found somewhat above and parallel to the edges. 

As derived in (39,a), the normal-force coefficient 

at A = 0, is 

2 o 
CN = k sinCK — CL/cosd; k = CN/sinac* 
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with k = 2 as per theory. The square of the angle 

of attack means physically that the stream of air 

deflected by the “wing”, increases with the angle 

of attack. In a straight “strip” of this type, the drag 

due to lift is simply the horizontal component of 

the normal force; thus 

CQL = C^sinct = Cj_tanc< = 2 sin^oC = ^0.5 

for A = 0 and k = 2. The “two-dimensional” flow 

pattern of the zero-aspect-ratio wing has been inter¬ 

preted as being that of a flat plate with separated 

flow pattern. Applying the cross-flow principle (see 

Index) in combination with the drag coefficient 

~ 2 of such infinitely long plate in normal flow 

(atoL= 90°), equations 34 and 35 are correctly 

obtained. At small and moderate angles of attack, 

the strip considered does not have the same flow 

pattern (vortex street), however, as in the plate 

exposed to normal flow. Therefore, the empirical 

result only seems to be coincidental. The flow pat¬ 

tern of the inclined strip, including the two vor¬ 

tices parallel to the lateral edges, may exist without 

any “true separation” of the flow from the suction 

side. At any rate, the drag due to lift (equation 35) 

is very much different from that as indicated by 

lifting-line theory (equation 4). 

Increased Momentum. In aspect ratios higher than 

zero, the lift of “wings” consists of two components 

— one corresponding to chordwise circulation (equa¬ 

tion 4) and the other one similar to that at zero 

aspect ratio. For this second component, no explicit 

solution (except for A = 0) has been established 

to this time. Two schemes (40) have been suggested, 

however, to explain the non-linear term. The lateral 

edges of a (rectangular) small-aspect-ratio wing are 

either assumed to have an effect similar to end plates 

having a height proportional to the angle of attack, 

or it is proposed that the size of the fluid stream 

tube deflected by the wing is increased by a com¬ 

ponent which is proportional to the angle of attack. 

Both schemes provide a progressive increase of mo¬ 

mentum, and they thus yield a function which some¬ 

how agrees with experimental results of C (<x). 

As far as drag due to lift is concerned, these mecha¬ 

nisms do not give correct answers, however, at least 

not below A = 1. 

Lateral Vortex Pair. By subtracting the linear lift 

component as indicated by equation 30, the non¬ 

linear component ACL can roughly be isolated from 

tested values. Such results have been plotted in fig¬ 

ure 30 in the form of 

(ACL/sin2ot) or (AC^^/sin^cC (36) 

Admittedly such evaluation is somewhat arbitrary, 

depending upon the value of dC,/dot to be assumed 

for lateral-edge shape and plan form involved in each 

wing tested. It is seen that the factor k (to be sub¬ 

stituted for “2” in equation 34) is larger in sharp- 

edged wings than in wings having rounded lateral 

edges. Particularly low components are found in 

delta wings equipped with round lateral edges (37, 

d); they are not plotted in the graph. Evaluation 

of (36,b), not included in figure 30 either, indi¬ 

cates that wing-section camber evidently reduces 

the second lift term. Values of (ACN/sin2oC) near 

A = 0, are discussed in connection with “stream¬ 

line bodies”. 

Second Component. As far as drag is concerned, the 

component due to the non-linear lift term is ex¬ 

pected to correspond to tancx. The total drag due 

to lift is then 

= C^tanofj + AC[_tano( (37) 

where c<^ ^ 0.5 (X. In the present state of informa¬ 

tion, equation 30 may be used for the first and 

equation 34 (with k as per figure 30) for the second 

lift component as an approximation. Figure 31 pre¬ 

sents the example of a rectangular wing having A 

= 0.5. Equation 37 with k = 2 agrees fairly well 

with the experimental results on profiled wings. 

PLAT PLAT E S (37): 

1.4 

1.2 

i.o 

aS 

0.6 

oh 

0.2 

Theoretical (Sq nations 30, 34, 37)t 
with Faotor k = 2, And Por A » 0. 

■ with Faator k - 3, And Par A - 0. 

A T A, Rectangular / Sharp / Profiled (c) 
Winter Rectangular / Square Profiled (a) 
Ditto, With Separated Plow Pattern (a) 
I A Cl Rectang / Square / Profiled (b) 
Winter Rectangular Plat Plate, Sharp (a) 
Winter Elliptical Plat Plate, Sharp (a) 

CD 

0.2 o.¥ 0.6 0.8 

Figure 30. Second (non-linear) lift term of “wings” as Figure 31. Lift- and drag coefficients (36) of profiled 
a function of aspect ratio. "wings” and flat plates, having an aspect ratio of 0.5. 
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Similar results are obtained when checking tested 

characteristics in other small aspect ratios. It is sug¬ 

gested, however, that some (favorable) interaction 

is present between first and second lift and drag 

terms. 

Plates. Many experimental results have been pub¬ 

lished on low-aspect-ratio flat plates (37). They 

show surprisingly high second lift terms; see in 

figure 30. The fact that these values are far above 

the theoretical value at A = 0, suggests again that 

the linear lift term is affected by the second term 

(41). A possible mechanism would be the “end- 

plate” effect mentioned above, thus increasing the 

circulation in the small-aspect-ratio wings consid¬ 

ered. — Applying equation 35, drag coefficients can 

be obtained for flat plates of small aspect ratio. The 

experimental results in figure 31 agree reasonably 

well with that function. The graph also permits a 

comparison between plates and profiled "wings”. 

For a given lift coefficient, there is a certain aspect 

ratio below which the drag-due-to-lift component 

indicated by equation 35 is less “expensive” than 

the first component as per equation 33. This aspect 

ratio is 

A = 2 k C^/tt (38) 

yielding A ~ CL , for example, for k =1.5. This 

result is evidently the reason why in small aspect 

ratios, flat plates (with high k values) can be equal 

(38) Experiments on triangular (delta) wings: 

a) Lange and Wacke, Transl NACA T.Memo 1176. 
b) Tosti, NACA T.Note 1468; see T.Rpt 1105. 

c) Jones & Miles, Plates, ARC RM 2518 (1946/52). 

d) Lippisch, Personal Communication (1946/1947). 
e) Barron, Delta Wing, IAS Student Paper 1955. 

f) The shape of the vortex sheet behind a delta and 
swept wing (combined with a fuselage) is reported 

in NACA T.Notes 3175 and 3720. 
(39) Theory of non-linear lift characteristics: 

a) Bollay, Zero Aspect Ratio, Zts.Ang.Math.Mech. 

1939 p.21; also in J.Aeron’l Sci. 1936 p.294. 

b) Semi-empirical solutions in J.Aero Sci. June 1953, 
in NACA T. Notes 2044 & 3430, and in (40,b). 

(40) Induced-drag analysis in small aspect ratios: 

a) Mangier, in Yearbook D.Lufo 1939 p.1,139. 
b) Weinig, Lufo 1936, 405 & 1937, 434 (TM 1151). 

(41) Theoretical considerations (J.Aeron Sci. 1953 p.430; 

1954 p.134 and 690) indicate a second lift term grow¬ 

ing as : AC^ y/A. Such a trend may account 
for the increment between A = 0 and 0.4, as in fig¬ 
ure 30. 

(42) Lift and drag of 3-dimensional bodies: 

a) AVA, Fuselages, Ergebnisse Vol.II (1923). 

b) Allen-Perkins, NACA T.Rpt 1048 (1951). 
c) Engelhardt, Aero Lab. TH MUnchen Rpt 1/1943. 
d) Muttray, as in (a) Lufo 1928/29 p.37. 

e) NACA, Airships Fuselages, T.R. 394 and 540. 

f) Bates, "Fuselages”, NACA T.Note 3429 (1949). 

g) Kelly, Blunt-Base, J.Aero Sci. 1954 p.549. 
h) The flow field behind a spheroid is shown by 

Harrington in Journal Aeron’l Sci. 1935 p.69. 

or even superior to profiled wings of the same plan- 

form shape. 

Delta Wings. It has also been found (37,d and 38,d) 

that “delta” wings (small-aspect-ratio triangular 

shapes with straight trailing edge) have appreciably 

higher lift coefficients and that they can have equal 

or smaller drag due to lift when equipped with sharp 

(rather than with rounded or profiled) lateral edges. 

It is suggested that the mechanism indicated by 

equation 38 may give the explanation. 

(c) Lift of Streamline Bodies 

As the aspect ratio of a profiled “wing” is decreased, 

the ratio of thickness over span (t/b) increases. 

Shapes similar to those of streamline bodies are thus 

obtained, with round or rectangular cross sections, 

upon approaching A = 0. 

Lift. Theoretically, streamline bodies such as fuse¬ 

lages, for instance, do not develop lift, or cross-wind 

forces in any direction. Actually, they exhibit some 

lift because of the boundary-layer material accumu¬ 

lating at the upper side of their rear end. This lift 

is of the same nature as that of cone-cylinder bodies 

(with blunt rear end) as explained in (42,b and g). 

The upper limit of the linear-lift-curve slope may 

be defined by equation 31. Figure 32 shows that this 

value is approached when plotting dCLb/dcX (on 

“span area” b ) against the basic (mostly skin-fric¬ 

tional) drag coefficient = D/q b2. Figure 33 

demonstrates that the lift of a streamline body is 

considerably increased after the body surface was 

covered with coarse sand. As in wings, the shape of 

the lateral edges has an effect too upon the magni¬ 

tude of the lift produced; bodies with square or 

rectangular cross sections exhibit roughly twice the 
lift of round shapes. 

Figure 32. Lilt-curve slope (at small lift coefficients) of 
streamline bodies (42) (with round and square sections) 

as a function of their drag coefficient. 
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Figure 33. Flow Pattern and lift/drag characteristics of 
fuselage bodies; (a) in smooth condition (42,c) ; (b) with 

rough surface corresponding to k/1 = 1.2/1000 (42,c) ; 

(c) with square cross section (42,a). 

Drag Due to Lift. The inset in figure 33 shows the 

pair of rolled-up trailing vortices originating from 

the upper side of a streamline body. Note that the 

lateral vortex separation is considerably smaller 

than the maximum body diameter. This fact indi¬ 

cates that the effective span is smaller than the geo¬ 

metrical one. In the example of figure 33,a, dCy,/d<X 

= (V/4) 0.007 = 0.0055, a value which corresponds 

to bi/b * 0.0055/0.0274 = 0.20. The value of “k” 

(indicating the magnitude of the second lift term) 
is found to be » 0.26. Using the span ratio, and 

on the basis of 0.26/k = 0.13, (where k = 2 as for 

the plate at A -> 0) we find an equivalent rectangu¬ 

lar plate, giving the same lift and drag (in pounds) 

as the streamline body. In the example considered, 

this plate has a span equal to « 0.20 of the body 

diameter and a length equal to ~ 0.13 the body 

length. — The drag due to lift can be determined 

on the basis of equation 37. Analyzing the results 

in figure 33, the lift function was used as tested, 

however. Here as in other streamlined bodies (for 

example in reference 42,f), very low “k” values are 

found at A—>0; see figure 30. Analysis of figure 

33,b reveals that most of the drag increment due to 

lift is parasitic; and only a minor fraction is induced 

drag. Corresponding to their higher lift coefficients 

(see figure 32), bodies with square or rectangular 

cross sections have drag-due-to-lift coefficients which 

are considerably higher than those of round bodies 

(if taken at the same angle of attack); see for exam¬ 

ple the characteristics of a square fuselage body in 

(42,a). Effective span and effective chord of bodies 

with square cross sections are in the order of twice 

as large as those in round bodies. 

Rotating Sphere. It is shown in the “vehicle” chap¬ 

ter that automobile bodies develop lift. Reference 

(43,a) also demonstrates that a sphere can have 

lift (in the order of CL. = 0.15, while CD. = 0.45) 

provided that some orientation is given to the wake 

by means of a rod placed across the direction of 

flow. Still higher lift coefficients can be produced 

in a manner basically identical to that in circular 

cylinders (as described before in this chapter) — by 

letting the sphere spin about an axis essentially nor¬ 

mal to the direction of flow. Figure 34 shows lift 

and drag coefficient of a sphere as a function of the 

equatorial velocity ratio “w/V”. The maximum lift 

obtained (CLk~ 0.4) is only a small fraction of the 

values tested in rotating cylinders. Assuming that 

all of the drag be induced (Cj^ ** 0.6 at CLx.), 

the effective aspect ratio of the sphere is found 

(through application of equation 4) to be in the 

order of Ax = C^/tc Ch[ = 0.42/jt 0.6 0.09. This 

is only a fraction of (4/?r), the geometrical aspect 

ratio of the sphere. The reduction properly corre¬ 

sponds to the round shape; and we can conclude 

that the drag of the rotating sphere is mostly induced 

drag. — Rotating “spheres” are physically found in 

tennis-, golf-, baseball- and ping-pong balls. The 

latter ones can easily be made spinning and they are 

then seen to travel along a laterally (or otherwise) 

curved path. Regarding golf- and baseballs, it is 

suggested that they are comparatively heavy so that 

any aerodynamic lift that might develop, can have 

only little effect upon their flight through the air. 

Figure 34. Lift and drag characteristics of a sphere (ping- 

pong, tennis-, golf- or baseball) spinning about the hori¬ 
zontal cross-wind axis (43,b). 
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(d) Parasitic Wing-Tip Drag 

The chord- and lateral-edge effects described in the 

preceding sections, do not entirely disappear in 

larger aspect ratios. They are evident there in the 

form of secondary effects. 

Second Lift Term. In figure 30, a quadratic lift term 

is no longer apparent above A ~ 4. This term may 

still be present, however, although compensated by 

a reduction of the first lift term (because of bound¬ 

ary-layer losses). Such a lift component is evident 

in tested pressure distributions of rectangular wings, 

at the blunt lateral edges. The corresponding drag 

due to lift as per equation 37 may also be obscured; 
namely by the end-plate effect of the lateral edges 

as described in (40,a). 

Wing-Tip Shape. The flow around the lateral wing 

edges causes certain frictional and pressure losses. 

This type of drag has been investigated (44,a) by 

means of wake survey across the tip vortices. At 

0.0& 

0.0 (# 

D.oV 

o.o 2 

0 

(44j b) 

□ NO. 1 — SQUARE 

O NO. 2 — ROUNO 

• OTHER SHAPES 

A NO. 5 SHAPE 

O SQUARE (44,b) 

0 0-4 o% 1.2 It, 2.0 

Figure 35. Parasitic wing-tip drag, determined by wake 

survey, mostly in f44,a), on a 12% thick wing of aspect 
ratio 3 at Rc ov 106. Shapes are as in figure 9. 

(43) Lift forces in spheres: 

a) Krey, Zeitschr. Flugt. M’luftsch. 1931 p. 97. 

b) Maccoll, Rotating Sphere, J.RAS 1928 p.777. 

(44) Investigations into viscous wing-tip drag: 

a) Hoerner Experiments, ZWB UM 7815 (1943). 

b) Evaluated from results presented in Prandtl-Tiet- 
jens, “Hydro-Aeromechanics” (1934) II p. 171. 
c) Hoerner, Shape of Wing Tips, see (7,d). 

(48) Aerodynamic performance of birds: 

a) Raspet, Soaring Bird, Aero Engg Rev. 1950 p.14. 

b) Feldman, TH Zurich, Wind-Tunnel Testing of a 
Seagull, Aero Review July 1944. 

c) further references listed in Ybk WGL 1953 p.165. 

(50) Examples for lifting blade rotors: 

a) Wheatley, Autogiro in Tunnel, NACA T.Rpt 515. 
b) Payne, Induced Aerodynamics of Helicopters, 
Aircraft Engg 1956 p.46 and 82. 

c) NACA, Induced Field, Tech Notes 3690 and 3691. 

C |_ = 0, blunt edges have a drag coefficient CDc as 

presented in the “streamline” chapter. Rounded 

and/or sharp edges show some small negative value 

at Cl = 0; because of the three-dimensional charac¬ 

ter of flow past the wing tips. As plotted in figure 35 

the drag coefficient increases approximately as 

CDc = k CL <39) 

where k — 0.01 for sharp, k = 0.02 for rounded, and 

k = 0.037 for blunt edges. The function CDc~ 

is of the same type as that of the second-term drag 
in small aspect ratios (equations 36 and 37). It 

is not known, however, how much the two types of 

drag might be identical. At any rate, thin and sharp 

edges, particularly if bent upward such as number 

5 in figure 9, are most favorable. Reference (44,c) 

gives some instructions on the practical design of 

this type of wing tip. Roughly, the parasite drag 

due to lift of this shape is only some 1%, on the 

average of the induced wing drag. 

V .TOTftLPRESSURE 

Figure 36. Total pressure (in direction of local flow) 
and sidewash angle on vertical axis of tip vortex, tested at 

x = c behind TE of wing shape as shown (No. 2 of 44,a). 

Tip Vortex Pattern. As an example, figure 36 pre¬ 

sents (a) total pressure and (b) sidewash angle 

(w/V) where “w” = lateral velocity, measured on 

the vertical axis of a vortex originating from the 

rounded wing tip shown (shape number 2 as in 

figure 9). A core diameter may be defined by extra¬ 

polating both the theoretical velocity distribution 

outside, and the “rotating” distribution inside the 

core. In the case tested, the diameter is in the order 

of 5% of the wing chord. The diameter obviously 

corresponds to the magnitude of the parasitic wing- 

tip drag. For example, behind the blunt wing tip 

shape number “1” in figure 9, the diameter was 

found to be in the order of 7% of the wing chord, 

so that the cross section of the core is roughly twice 

that of the core in figure 36. Corresponding tip 

drag coefficients are plotted in figure 35 at = 0.65. 
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5. SUPPLEMENTARY NOTES 

Some more of the many available results on drag 

due to lift are presented as follows. 

Birds. The formation flying of migratory birds is 

explained on pages 15 and 16. — A buzzard was 

ingeniously tested in free flight (48,a) by tracking 

(following) him in a sailplane. The L/D or D/L 

ratio of that bird was determined using the cali¬ 

brated characteristics of the plane as a measure. Two 

distinct phases are illustrated in figure 37; namely 

“soaring” and “gliding”. Soaring takes place at low 

sinking speed, with cambered wing section and with 

wing tip “slot” feathers open. The lowest speed ob¬ 

served is 8.5 m/sec, corresponding to a lift coeffi¬ 

cient Cl = 1-3 at a Reynolds number Rc= 1.4 105. 
Gliding takes place between 9 and 23 m/sec. Mini¬ 

mum parasitic drag coefficient on wing area is C&s 

= 0.009; based on total wetted area, CDwej.= 0.0034 

at R^ 2 105. Comparison with figure 5 in Chapter 

II suggests that the flow may be laminar. Figure 

37 also presents aerodynamic characteristics ob¬ 

tained on the plaster model of a sea gull (48,b) 
prepared for testing in a wind tunnel. The drag 

of this model is considerably higher than that of 

the buzzard. It seems that in the plaster model, 

the feathers were not propertly reproduced. — The 

corresponding power loading is 122 kg/HP, while 

(1 /45) HP per kg of animal muscles are considered 

to be available in “continuous” operation. 

Figure 37. Aerodynamic characteristics of birds (48) ; of 

a buzzard (a) and of a seagull (b). 

Lifting Blade Rotors. Any type of aircraft using ro¬ 

tating blades, can basically be considered to comply 

with wing theory (50). Figure 38 shows as an exam¬ 

ple lift and drag characteristics of an autogiro rotor 

(which is a rotor not connected to an engine, but 

driven by the wind). The drag coefficient (based 

on d27r/4) can be split up into a constant com¬ 

ponent (representing parasitic drag) and into a 

component • The increment is evidently 

much higher than the induced drag (equation 4). 

Inasmuch as lift is produced in the blades in a 

direction roughly parallel to that of the rotor axis, 

drag due to lift may approximately be Dl^ L tan« 

where ck = angle of attack measured against the 

axis; and since in small aspect ratios (X ~ 2 cXf, 

drag due to lift corresponds to equation 35. “Half” 

of this drag is equivalent to the energy taken out 

of the wind in driving the blades through the air. 

In conclusion, autogiro rotors are not efficient in 

purely aerodynamic respect. They are very efficient, 

however, in providing lift corresponding to Cl 

(based on “disk” area) up to “1” with a minimum 

of structural material and weight. In case of a 

helicopter, power is supplied to the rotor from the 

engine. As a consequence, the helicopter produces 

“induced” velocity and lift = thrust, down to zero 

speed of advance. Note that the affected mass of air 

corresponds to a cylinder with a diameter equal to 

that of the rotor — in the same manner as in wings. 

Replacing now in equation 1 the forward speed “V” 

by the induced velocity (w/2), the thrust is found 

to be ~ 
T = § SQ w2/2 (40) 

where SQ = d ir/4 and w = slipstream velocity at 

some distance downstream. The power required to 

produce the slipstream is thrust times speed “w”. 

Combining these two equations, the thrust is found 

as a function of net power. 

0 o.l 0.2 o.3 o.4 o.S 

Figure 38. Lift and drag characteristics of an autogiro 

rotor, as tested in a wind tunnel (50,a). 
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CHAPTER VIII - INTERFERENCE DRAG 

Two bodies “1” and “2”, joined so that they touch or 

penetrate each other, usually present a combined 

drag Z)|+2 which is somewhat larger than the sum of 

the individual drag components (Dt -f- D2 ), each 

measured in free flow. The difference AD = £)J+2— 

(Dt -j- ) is the interference drag. This type of drag 

is also present when two or more bodies are placed 

one behind the other, or when two bodies are near 

each other (without really touching each other). The 

mutual interaction between the boundary layer of a 

surface (wall) and small bodies placed on that wall - 

is interference too. Some consideration is given to the 

latter subject in the chapters on “surface imper¬ 

fections’’ and on “skin friction”. Strict calculation of 

interference drag would be complicated and specific 

methods to solve such problems according to the 

principles of theoretical aerodynamics, have not really 

been developed. The physical phenomena of inter¬ 

ference can be stated, however; and approximate 

but nevertheless reasonable functions can be presented 

as in the following sections - essentially on a statisti¬ 

cal basis. 

1. DRAG BETWEEN PAIRS OF BODIES 

Shielding Effect. In case of two bodies placed one 

behind the other, the drag of the second one is usually 

smaller than in free flow, because of reduced dynamic 

pressure within the wake of the first body. In the 

example presented in figure 1, the drag of the second 

disk is even negative, up to a distance of more than 

2 diameters, evidently because of suction behind the 

first plate. As the distance between the two disks is 

increased, the drag of the second one gradually ap¬ 

proaches the value known under free - flow con¬ 

ditions (CD =• 1.17). This type of shielding effect 

can have some consequences in motorcar racing, where 

a competitor may run for a while within the wake of 

another car ahead of him. To mention another ap¬ 

plication, sailing before the wind (using the spin¬ 

naker) is one of the few examples where drag is a 

welcome force (utilized for propulsion). In a sailboat 

regatta it is then possible to keep the wind out of a 

competitor’s sails for a while by maneuvering between 

him and the wind. Figure 1 indicates, however, that 

there is a limit as to the distance within which a 

worthwhile effect can be obtained. 

Figure 1. Interaction between two disks placed one behind the 
other; (reference l,a). 

Circular Cylinders. At the Reynolds number Rd = 

10 , the flow pattern of a cylinder is expected to be 

separated; and the first of the two cylinders in figure 

2, correctly shows corresponding drag coefficients. 

The fact that its drag is decreased within a certain 

range of distance (particularly at x/d * 2), can be 

explained by assuming that the formation of the 

vortex street (see page 3-6) is reduced by the presence 

of the second cylinder. — The boundary layer of the 

rear cylinder is evidently made turbulent by the broad 

wake coming from the first cylinder, thus producing 

a supercritical flow pattern with a correspondingly 

small drag coefficient. 

Figure 2. Drag coefficients of two circular cylinders, one placed 
behind the other. 
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Figure 3. Drag of a pair of strut sections, one behind the other, 
in tandem (2,a). 

Tandem Struts. Interference between the two struts 

in figure 3 is basically different from that of the bluff 

bodies, considered so far. The drag of the rear section 

is increased (up to fourfold at x/c ^1). We have 

to assume that the flow separates from the rear of 

the second strut because of the momentum deficiency 

within the wake coming from the first strut. The 

fact that the drag of the first section is decreased is 

explained (2) by increased static pressure between the 

two struts pushing the first one forward, so to speak. 

Pair Of Cylinders. Upon bringing a pair of circular 

cylinders together, as in figure 5, their drag (at Rey¬ 

nolds numbers below transition) increases somewhat 

upon reducing the clearance distance to y/d = 1. 

Below this distance, the pattern of the vortex street 

switches from that of a pair (originating separately 

from each cylinder) to a combined system (2,b). Note 

that the Strouhal number (see page 3-6) reduces 

from “S” = 0.21 to « 0.10 at y/d -* zero. Upon 

referring the frequency of the pair of cylinders to 

their combined “height” of “2 d”, the “0.1” trans¬ 

forms into “0.2” as approximately for a single cylinder. 

The graph also shows that the drag coefficient passes 

through a minimum, at y/d ~ 0.9. We can assume 

that the amplitude of the vortex street is reduced 

in this case by way of interference with the jet em¬ 

anating form the gap between the two solids. 
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Figure 4. Drag of spheres at supercritical Reynolds numbers, 
affected by the presence of supporting devices (3). 

Figure 5. Drag (2,a) (and vortex-street frequency, reference 2,b) 
of a pair of circular cylinders placed side by side. 

Sting Support. Examples of favorable interference 

by placing one solid behind another one, are given 

in the “pressure drag” chapter (splitter plate and 

similar devices in figure 3-8). Another example is 

shown in figure 4. A “sting”, supporting a sphere 

(tested at Reynolds numbers above transition), fills 

out the space of the wake, so to speak. As the diameter 

of this sting is increased, the flow attaches more and 

more completely to the rear of the body. The final 

drag coefficient, estimated to be in the order of 0.02, 

merely represents the skin-friction drag of the sphere. 

Pair Of Struts. Past the sides of round or streamline 

shapes, the average velocity (just outside the boundary 

layer) is always increased. In case of the pair of strut 

sections in figure 6, the positive pressure gradient 

along the rear, automatically associated with that 

increase of velocity, is evidently responsible for a 

considerable increase of the drag coefficient, particu¬ 

larly below y/t = 1. The two sections form a nozzle 

between them whose expansion ratio increases as 

their lateral distance is reduced. The flow through 

this nozzle separates as the clearance approaches zero. 
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Figure 6. Drag of a pair of struts, one beside the other (2,a). 
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Figure 7. Drag coefficient of square plates attached to a plane 
wall, as a function of their height in comparison to 
boundary-layer thickness. 

2. DRAG OF HALF BODIES ON WALLS 

The drag of bodies attached to plane (or other) walls, 

is similar to that of surface protuberances as presented 

in Chapter V. In comparison to them, the size of the 

half bodies considered in the following paragraphs is 

usually much larger, however. This is especially true 

of aircraft appendages, such as canopies, armament 

turrets and similar component parts, which may be 

added to the outer surface of fuselages or wings. 

Effective Dynamic Pressure. As a simple case, the drag 

of a small plate or disk is considered first, attached to 

a plane wall. Plates in three-dimensional flow have 

a comparatively constant flow pattern; and their drag 

adjusts itself to the local average or effective dynamic 

pressure to which they are exposed. For plate sizes, 

small in comparison to the thickness of the boundary 

layer, the effective dynamic pressure is given in equa¬ 

tion 9 of the chapter on “surface imperfections”. Con¬ 

sidering, however, bodies which are higher than the 

boundary layer, only their bottom is exposed to 

reduced dynamic pressure. The loss of momentum 

can, therefore, be considered to be concentrated in 

a thin sheet. In turbulent flow, the thickness of this 

sheet is in the order of y/8 = 0.25. Hence the effec¬ 

tive dynamic pressure; 

<^=1-0.25(8/1!) (1) 

Figure 7 confirms this calculation. Based upon the 

effective dynamic pressure, circular and square plates, 

attached to a plane wall, show “independent” drag 

coefficients cD> which (on the average) are of the same 

magnitude (sal. 17) as known under free-flow con¬ 

ditions. An average rough value for the thickness of 

the boundary layer originating along the surface of 

aircraft (including some surface imperfections) is 

(1) Interference between bodies one behind the other: 
a) Eiffel, La Resistance de 1'Air, Paris 1914. 
b) Lange (DVL), Antenna Rods. ZWB UM 1238 (1944), 

(2) Drag of pairs of solids: 
a) Biermann and Herrnstein, Interference Between Struts 
in Combinations, NACA T.Rpt. 468 (1933). 
b) Vortex Frequency, J.Aeron.Sci. 1946 p.289. 

(3) Drag of spheres affected by supporting devices: 
a) Hoerner, Experiments with Spheres (Brunswick and 
DVL), Luftfahrtforschung 1935 p..42. 
b) ARC, Wind-Tunnel Turbulence, RM 1662 (1934). 
c) Bacon-Reid, Spheres, NACA T.Rpt 185 (1928). 
d) Nat.Luchtvaart Lab. Amsterdam Rpt A.950 1947. 

(5) Engelhardt, Aerody. Laboratory TH Miinchen: 
a) Fuselage-Tail Interference, Rpts 1 and 3/1943. 
b) Drag of Half Bodies on Walls, Rpt 5/1943. 
c) Interference on Tail Surfaces, Rpt 4/1943. 
d) Hoerner, Influence of Fuselage on Tail (5,a), 
Messerschmitt Rpts TB 54/1942 and 88/1943. 

6 ~ 0.02 x; or 8/x « 2% (2) 

with x = distance from the stagnation point of the 

respective body to the point where the plate (or any 

other part) is attached. Combining equations 1 and 2, 

%l\ = 1 “ 0.005 (x/h) (3) 

Two Dimensional Plates. In the case of two-dimen¬ 

sional plates (strips) or similar protuberances, the for¬ 

mation of a vortex street is possibly prevented by the 

wall to which these bodies are attached. As found in 

( 7 ), their drag coefficient is therefore in the order of 

cD = 1.25, instead of 1.97 as found in free flow. 



Figure 8. Flow pattern behind a disk attached to a fuselage body 
as observed in (5,a). 

Figure 9. Drag of streamline half bodies placed on a plane wall 
as a function of their height ratio (6). 

Flow Pattern Behind Added Bodies. The flow pat¬ 

tern behind a disk or any other single three-dimen¬ 

sional body attached to a wall or to the surface of a 

larger body, has a certain similarity to that of a low- 

aspect-ratio wing. The added body causes some ’‘lift”, 

directed away from that surface. A corresponding 

“downwash” and a pair of tip vortices are found be¬ 

hind the obstacle. Dead air might be sucked into the 

vortex cores. In case of figure 8, a lift was thus meas¬ 

ured corresponding to CL> = 1.4 (based on frontal 

area of the added disk). Similar flow patterns and 

similar lift forces have been observed with other bodies 

too, as for instance in the case of streamline half bodies 

and automobiles over a ground surface (see figure 5 

in the chapter on “vehicles”). 

Streamline Half Bodies. Available experimental re¬ 

sults are plotted in figure 9, indicating the drag of 

streamline half bodies (such as canopies or fairings). 

The location “x” of the added bodies allows an esti¬ 

mate of the boundary-layer thickness. In the range 

of very low height ratios, up to h/x = 2% (that is 

approximately up to h/b — 1), the drag is proportional 

to the effective dynamic pressure as indicated by equa¬ 

tion 9 of the chapter on “imperfections”. Further 

agreement up to h/x 6% seems to be coincidental 

only; rather equation 1 should apply. The suitable 

independent drag coefficient c0< = 0.07 is about twice 

as high as may be expected for such bodies in free 

flow (when restored to complete bodies of revolution). 

It is concluded, therefore, that the drag increment is 

due to interference along the base of these bodies. 

The drag coefficient reduces, however, above h/x » 

0.1. Since the tests considered are made at Reynolds 

numbers well above transition, the drop of the drag 

coefficient cannot be explained on the basis of bound¬ 

ary layer turbulence. Rather the flow pattern of 

streamline half bodies seems to be governed by the 

thickness of the boundary layer along the wall where 

they are placed. Above h/x 10%, a flow separ¬ 

ation, probably existing at the junction between wall 

and bodies, gradually disappears; and at height ratios 

beyond h/x = 0.3, or h/5 = 15, the drag co¬ 

efficient appears to approach the magnitude of 0.03 as 

known for corresponding bodies in free flow. 

Optimum Shape Of Fairings. During the develop¬ 

ment of an airplane, its outside dimensions usually 

prove to be too small in some places, because of addi¬ 

tional equipment to be built in or to be attached to 

fuselage or wing. Fairings are placed over these points 

and parts. The drag of such fairings (bumps or blist¬ 

ers) is a function of their fineness ratio Jj/h; as shown 

in figure 10. Contrary to bodies in free flow, the total 

wetted surface of the combination of half-body and 

wall increases but slowly with the fineness ratio (be¬ 

cause of that part of the wall which is covered by the 

body). Approximately only 1 / 3 of the First term of 

equation 31 in the “streamline” chapter is effective, 

therefore. Assuming Gf = 0.004, the drag coefficient 

of fairings with higher fineness ratios is thus approxi¬ 

mately 

= 0.5 Cf(J/h) = 0.002 a/h) (4) 

As indicated in figure 10, the optimum length ratio 

of such fairings is at least /h =10. This value is 

between two and three times the corresponding op¬ 

timum fineness ratio in free flow, which is J(/d = 0.5x 

{/ h =sr 2. Further evaluation of the results in (5,b) 

indicates that the optimum length ratio (on a plane 

constant-pressure wall) decreases as the height ratio 

h/& is increased beyond the values as plotted in figure 

10, possibly approaching |/h ~ 4. Figure 11 proves 

o.l 

0. 

0.1 

0 
0 

Figure 10. Drag coefficient of fairings (blisters) as a function 
of their length- or fineness ratio. 
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0.049 

Figure 11. Independent drag coefficients of various forms of 
fairings (blisters) on plane wall. 

that it is also favorable to lengthen (and to flatten) the 

forebody of the fairings considered, thus avoiding sep¬ 

aration ahead of their noses. The minimum coefficient 

is in the order of CD# = 0.03. 

Width Of Trailing Edge. The findings of the pre¬ 

ceding paragraph are amplified in figure 12. The drag 

of body “D” (with pointed rear end) is somewhat re¬ 

duced after broadening the rear to a trailing edge 

having a width in the order of e/b 0.3. Such a 

shape has an effect similar to that of a fairing along 

the lateral edges of the afterbody. 

0 I-,-----.---- 
0 Of 0.8 12. 

Figure 12. Drag coefficient of streamline shapes on a plane wall 
as a function of the width of their trailing edge. 

(6) Drag of streamline shapes attached to walls: 
a) See reference (5,b). 
b) Kiichemann, Goettingen Rpt AVA 1945/A/13. 
c) Schmid, Characteristics of Automobiles, Deutsche 
Kraftfahrtforschung (VDI) Heft 1, 1938. 
d) "Others”: Reference (7); AVA Rpt 35/41; Messer- 
schmitt Rpt Me-410/11/1943; Junkers Rpt D. 6725; 
Heinkel Rpt WK 27; NACA T.Rpt 730. 
All these tests are on fuselage bodies. Results as plotted in 
figure 9 have been reduced to plane-wall conditions. 

(7) Wieghardt, Drag of Surface Protuberances, ZWB Rpt 
FB 1563 and Yearbk. D.Lufo 1943; supplemented by 
Tillmann, Rpt K.W.Institut Gottingen 1944. 

(9) Hoerner, Interference Drag on Three-Dimensional 
Bodies, German Document ZWB UM 7818. 

3. DRAG ON TRHEE-DIMENSIONAL BODIES 

A larger or main body (subscript ‘‘m”) shall be con¬ 

sidered in this section to which smaller parts (pri¬ 

marily disks) are attached or added (subscript ‘‘a’’). 

Analysis (9) of experimental results consists of two 

steps; determination of the drag of the added body, 

as affected by the main body, and determination of 

the additional drag arising along the rear of the main 

body, owing to the presence of the added body. 

Drag Of Added Body. Basically, the drag of the added 

body corresponds to the local dynamic pressure (meas¬ 

ured just outside the boundary layer) at the respective 

place on the surface of the main body. This local 

pressure is determined either by static-pressure dis¬ 

tribution tests or through application of theoretical 

methods. 
q^/q = 1 -( Apjj/q) (5) 

Taking into account both, the local dynamic pres¬ 

sure and the effective ratio within the boundary 

layer as per equation 1, the dynamic pressure respon¬ 

sible for the drag of an added body such as plate or 

disk, is 

qe/q = (qx/q) (qe/qp (6 7 * 9) 

Boundary-Layer Thickness. The growth of the bound¬ 

ary layer along the forebody surface of a three-di¬ 

mensional solid is similar to that on a plane wall. 

Along the afterbody, the growth is stronger, however, 

by mere geometrical reasons. The volume of the layer 

in the vicinity of the maximum body thickness is 

transferred from its annular cross section to that of a 

circle at the rear end of the body. The radius of this 

circle is, of course, much greater than the thickness of 

an annulus containing the same area. Therefore, at 

the tail of an airplane fuselage (for example), equip¬ 

ped with the “usual” number of appendages and sur¬ 

face imperfections, there is a boundary-layer circle 

comprising an area almost as large as that of the max¬ 

imum cross-sectional area of the fuselage itself. The 

geometrical increase of the boundary layer can be ap¬ 

proximated by 

8/(0.02 x) = d/dx. (7) 

where d = maximum diameter and d* = local diam¬ 

eter at the station x considered on the afterbody. 

Buoyancy Effect. In wind tunnels, the drag of longer 

models is known to depend upon the static pressure 

gradient prevailing along the axis of the test section. 

For instance, a positive gradient (that is, pressure 

rising in the direction of flow) decreases the pressure 
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MEASURED PRESSURES: 

• ON UNDISTURBED BODY 
X IN PRESENCE OF DISK 

Figure 13. Influence of small disk on pressure distribution along 
the meridian of streamline body (10). 

drag of the tested body; higher pressure affects the 

rear of the body, thus giving a “horizontal buoyancy” 

(similar to the vertical buoyancy of a body floating in 

water). The same effect is present in the case of the 

disk illustrated in figure 13. Two pressure distrib¬ 

utions appear superimposed to each other, the one 

prevailing on the surface of the main body, and that 

due to the flow pattern of the disk. The apparent 

drag of this disk is consequently noticeably lower than 

that corresponding to the local dynamic pressure 

(equation 5). The differential due to buoyancy is 

proportional to the pressure gradient and the volume 

of the body. In the case of a thin plate, a certain dead 

space behind the body must be considered as ‘volume”. 

The pressure is transferred through this space to the 

rear surface of the plate. The experimental results in 

figures 13 and 14, can satisfactorily be explained 

assuming such a space having a length four times the 

height or the diameter of the disk employed. From 

Ap = 4 da (dp/dx) indicating the pressure differential 

on the surface of the undisturbed main body (meas¬ 

ured between the disk and the back of the dead space) 

it follows that the drag due to buoyancy is 

ACD< = -Ap/q = -4dad(p/q)/(dx) (8) 

When a certain positive or negative drag force, re¬ 

spectively, due to buoyancy originates on the added 

body, then by reasons of energy or momentum, a 

corresponding force of the same magnitude, but point¬ 

ing in the opposite direction, may be expected to be 

present on the main body. This pair of internal forces 

does not per se affect the total drag of the combi¬ 

nation, however. In the end, only drag components 

resulting from a change of flow pattern (separation) are 

of interest, either on the main or on the added body. 

Figure 14. Drag of and due to small disk (as in figure 13). Co¬ 
efficients on frontal area of disk. 

Drag Of Added Body. The drag coefficients of the 

disk in figure IS, are plotted in figure 14; and they are 

compared with a calculation as per equations 3 and 6, 

using a basic coefficient of CD> = 1.17. After allowing 

for the differential due to buoyancy (equation 8), 

agreement is found between experiment and calcu¬ 

lation. Equation 8 cannot be generalized, however. 

The flow pattern of a small streamline body, for ex¬ 

ample, added to the main body, may easily be changed 

by pressure gradient and boundary layer (figure 9) 

so that its drag may be increased. 

Interference On Main Body. As seen in figure 13, the 

static pressure on the surface of the main body is 

noticeably decreased behind the added disk. The 

main body thus presents an additional pressure-drag 

component. As mentioned above, part of this drag is 

an internal force. The rest, however, is the net in¬ 

terference drag caused by the added body on the main 

body . Figure 14 shows that this component of drag is 

largest in the vicinity of x/1 = 0.5. For this location, 

the positive pressure differential to be overcome by 

the boundary layer toward the stern of the body, is at 

its maximum. Ahead of x/1 = 0.5, the interference 

drag is considerably smaller. The negative pressure 

gradients, prevailing along the forebody, evidently 

eliminate to a great extent the disturbance caused by 

the added body. 

Pressure Gradient. The interference drag is thus re¬ 

lated to the pressure gradient. Analyzing some more 

experimental data (9), an empirical function is tenta¬ 

tively as follows: 

/Ax - 1.6 (Apx/qf /(Ax/1) (9) 

where Ap*. indicates the static pressure difference be¬ 

tween the trailing point of the main body and 

the location x at which the added body is placed; 

Ax = (1 — x) denotes the distance between these 

two points. The interference drag of the main body 

approximately increases as the square of the pressure 
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Figure 15. Drag caused by small plates or disks attached at 
x/c = 0.5, as a function of main-body thickness ratio. 

difference Ap; it decreases, however, as the distance 

Ax is increased. — Equation 9 does not describe very 

well the interference drag in positions near the stern 

of the main body (see in figure 14). The added disk 

obviously affects the boundary layer of the main body 

by way of increased static pressure (stagnation) ahead 

of its location. This influence can be taken into ac¬ 

count by applying equation 9 for effective positions of 

the disk ahead of the physical locations by Ax a; 2 da 

Thickness Ratio. Bodies of revolution show pressure 

gradients Ap/q which, for a certain location x/1, 

are approximately porportional to their (thickness 

ratiof/2. The term (Ap^/q)2 in equation 9 is con¬ 

sequently proportional to (d/1)3 and the interference 

drag may thus be expected to vary accordingly. The 

few available test points plotted in figure 15, for the 

location x = 0.5 1, confirm the prediction. In case of 

plain fuselage bodies, with d/1 in the order of 0.1 to 

0.2, the interference drag is thus comparatively small, 

in the order of 10% of the drag of the added body. 

It must be remembered, however, that the drag of 

the added body may already be increased on account 

of the aerodynamic influence of the main body, as 

illustrated, for example, in figure 9. In comparison 

to the undisturbed drag of a corresponding body in 

free flow, the total interference drag can therefore 

be appreciable. 

(10) Ower, Aspects of Mutual Interference Between Parts 
of Aircraft, ARC RM 1480 (1932). 

(11) Interference drag of fuselage bodies: 
a) From Messerschmitt Wind Tunnel (1943). 
b) Fuselage with Canopy, German Doct AVA 1935/41; 
this canopy is also evaluated in the "aircraft” chapter. 
c) Schoenherr and Reichel, Flight-Test Determination 
of the Drag of Me/109 Fuel Tank, Messerschmitt Rpts 
109/05/L/1944. 
d) Armament Turret, Junkers Rpt D.6725. 
e) Obenauer-Hoerner, Me-210 Model; ZWB UM 7809. 
f) ARC, Windscreen on Fuselage, RM 2235 (1940). 
g) Tests on an airship hull similar to those in (a) are 
reported in NACA T.Rpt 451 (1932). 

Drag Due to Turbulence. So far, only fully tur¬ 

bulent boundary layer flow has been considered. 

In positions near the nose of the main body, addi¬ 

tional interference drag may arise, however, when 

the boundary layer (originally still laminar in this 

region) is rendered turbulent upon adding a small 

body. For example, such an additional drag increase 

is found in figure 16, ahead of x/1 — 0.3; see also 

(11 ,g). As mentioned in the “friction” chapter, tur¬ 

bulence spreads behind any spotlike obstacle at an 

angle of approximately two times 10°. With 2 (tan 

10°) ~ 0.3, the affected triangular area is, therefore, 

AS = 0.5• 0.3 (xtKans— x)2 , where “trans” indicates 

the original location of the transition line of the 

boundary layer. Using a differential value between 

turbulent and laminar skin friction in the order of 

AC p = 0.003, the additional interference drag due 

to turbulence is estimated to be 

AD/q = 0.15 (xirajr x) 0.003 = 0.00045 (x^- xf 

The smaller the added body, the higher is the drag 

coefficient if referred to its frontal area S.; thus: 

ACd> = 0.00045 (xtr0 — xf/SQ. (11) 

As shown in figure 17, this type of drag is not of 

practical importance in added bodies such as plates, 

at 4./^. = 2%. Considering, however, added stream¬ 

line bodies as illustrated in figures 9 through 12, 

with drag coefficients in the order of but 0.04, the 

limit of importance in relation to the basic drag 

of the added body, may be in the order of Sa./Sm.= 

10%. In other words, in small sizes, added bodies 

(such as a rivet head, for illustration) can cause in¬ 

terference drag many times as great as the basic drag 

of the added body itself. 

2 
Figure 16. Coefficient (on plate area S. = 2 times 9 cm ) of the 

drag due to a pair of square plates added to a stream¬ 
line body (ll,a) as a function of location. 
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b) ON PLATE AREA 
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Figure 17. Drag of and caused by two small plates as in figure 
16, as a function of their size. 

Examples. Knowledge on interference drag of three- 

dimensional bodies, acquired so far, is employed in 

the following paragraphs to check several experi¬ 

mental results on fuselage bodies. Doing this, the 

intention is not to verify the calculation; the available 

data are too incomplete for this purpose. Rather, 

method of calculation and order of magnitude of in¬ 

terference drag shall be demonstrated by analyzing 

tested results. 

(a) Fuselage With Canopy (ll,b). A smooth fuselage 

body with d// = 0.12 and CQm= 0.081 at R^ = 5 106, 

has a smooth canopy with SaJSmm= 0.11 and h/x = 

0.1, attached to the main body at x// = 0.33; Ax// = 

0.67. The drag coefficient of the canopy is estimated 

through the use of figure 9 to be in the order of 0.07, 

if attached to a plane wall. The local dynamic pres¬ 

sure ratio at the location of the canopy is estimated 

to be cjj| /q = 1.07; the drag coefficient of the canopy 

is thus CI)cu= 1.07 0.07 = 0.075. The pressure dif¬ 

ference between canopy location and the rear end 

of the main body is approximately Apx/q = 0.13. 

Using equation (9) the increment ADm/Da = 1.6 

(0.13) /0.67 = 4%. The total drag of, and caused 

by the canopy is thus CDol> = 1.04 0.075 = 0.078. 

With the canopy in place, a coefficient (based on 

frontal area of main body) of 0.089 was tested. Based 

on canopy area., this result indicates a CDo> = (0.089 

— 0.081)/0.11 = 0.073. In comparison to the drag 

of the canopy attached to a plane wall (figure 9), 

the interference drag is but 11%, in this example. 

However, in free flow, the drag of the canopy body 

(completed to an integral body of revolution) may 

only be CD> = 0.04. Compared to this value, an 

interference drag is found in the order of approxi¬ 

mately 80%, most of which arises on the added body 

itself. Similar results can be derived from data in 

(11 ,f) where the drag of, and due to a canopy (ex¬ 

hibiting a “step" in its contour) is found to corres¬ 

pond to CDq> = 0.11. 

(h) Fuel Tank of Me-109 Fighter (11 ,c). An addi¬ 

tional fuel tank attached to the fuselage of the Me-109, 

is illustrated in figure 18. The additional dynamic 

pressure and the static pressure gradient subsequently 

following along the surface of slender fuselage bodies, 

are usually only small. Tentatively estimating for 

the location of the belly tank as in the illustration, 

a Cp = —0.1 and a pressure differential Ap^/q = 

0.2, a drag coefficient is obtained in the order of 

CBa>= 0.1. The actual drag of the, and caused 

by the tank, determined by several flight tests, is 

larger, however, than corresponding to this coeffi¬ 

cient. It is therefore concluded that super-velocity 

and negative pressure transferred from the wing 

roots to the location of the tank under the fuse¬ 

lage, must be taken into account. At CL = 0.15, 

as during the flight tests, the minimum pressure on 

the lower side of the wing section is in the order 

of Cp = —0.4, due to thickness ratio. Assuming half 

of this value to be transferred to the location of the 

tank, the pressure ratios are now Cp = (—0.1 — 

0.2) = -0.3 and Apx/q = 0.2 + 0.2 = 0.4. Taking 

as the basic drag coefficient of the tank body for 

h/x = 9%, from figure 9, a value of 0.08, a CD = 

1.3'1.4'0.08 = 0.15 is finally obtained. Considering 

an additional effect due to propeller slipstream, the 

calculated coefficient satisfactorily corresponds to the 

tested difference in maximum speed of the Me-109 

of AV = — 8 mph, at an original speed of approxi¬ 

mately 300 mph near sea level. The drag coefficient 

of the tank evaluated from flight tests is CD = 0.16. 

(c) Gun Turret (ll,d). In case of the Me-109, the 

added body is at a sensitive place of the main body. 

Contrary to this condition, figure 19 shows an ex¬ 

ample where the drag due to an added body is very 

low. The explanation is as follows: Immediately 

Figure 18. Tank under the fuse¬ 
lage of Me-109 (ll,c). 

ME-109 DATA: 
WING S 

SPEED SL V 

DRAG Cq 

TANK DATA: 

LENGTH I 

HEIGHT h 

WIDTH b 

LOSS Av 

DRAG C 

— 172 ft 

— 320 mph 

— 0.028 

— 7 ft 

— 1.2 ft 
= 2.5 ft 

-8 mph 

— 0.16 
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2 
Figure 19. Drag coefficient on area (d tr/4) of and due to a 
"turret” placed behind the crew's compartment of a fuselage(ll,d). 

behind the cabin of the airplane, there is a region 

with low dynamic and high static pressure, corres¬ 

ponding to negative curvature of the streamlines. 

Putting correspondingly favorable values into equa¬ 

tions 5 and 9, drag values may be found as low as 

they were tested (down to CD> = 0.02). With in¬ 

creasing height, the turret emerges, however, from 

the favorable region; its drag coefficient then in¬ 

creases at a much greater rate. 

Interference Method. Calculation of interference 

drag due to added bodies as described in this section, 

is somewhat complicated. A simple method of de¬ 

termining this type of drag can be applied, however, 

in cases where wind-tunnel models (of airplanes, 

fuselages, nacelles) are tested for drag. Small square 

plates are attached, in a position normal to the local 

flow, at proper places on the surface of the model. 

The drag of and due to these plates is determined 

and compared to their free flow value corresponding 

to C0. = 1.17. If testing in this manner CD> = 2.34, 

for example, the sensitivity of the place investigated 

is characterized by the ratio 2.34/1.17 = 2.0. It is 

Figure 20. Drag coefficient of and due to a small plate attached 
to various points of a fuselage (ll,e), as shown. 

Figure 21. Drag of and due to a plate at various points on the 
meridian of a nacelle (11,e) at C^= 0.3. 

then concluded that other added bodies such as 

bumps, attachments or armament parts, will also 

cause a drag that is two times their own basic drag 

(which may be affected in turn by the conditions on 

the wall of the main body). Testing in this manner 

typical bodies such as wings, fuselages or nacelles, 

data are collected which may generally be used when 

considering the parasitic drag of airplanes. Figures 

20 and 21 present some values indicating the sensi¬ 

tivity of various locations on the surface of fuselage- 

and nacelle bodies. The most sensitive spot on the 

fuselage is that on top of the cabin, with Ca, = (3.9 

1.17) = 4.5. The least susceptible point of this body 

is behind the cabin, where CD. is estimated to be as 

low as (0.3 •1.17). Such a value indicates negative 

interference drag. The nacelle (in figure 21) is 

generally more sensitive than the fuselage. Maximum 

values CQ between 3 and 4 are reached in some places. 

Long Attachments. Long bodies attached to the out¬ 

side of airplanes, such as antenna rods, landing-gear 

legs or any type of struts, affect the flow pattern 

past the main body only by a limited part of their 

length (close to the main body’s surface). The outer 

ends of such attachments, including for example the 

wheels of a landing gear, do usually not affect the 

aircraft body to which they are connected. To study 

the influence of such attachments, the combination 

in figure 22 was tested in a wind tunnel (5,b). In 

Figure 22. Basic test (5,b) showing the drag of and due to a 
piece of rod attached to a streamline body. 
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comparison to a free-flow value in the order of CD> = 

1 (at a Reynolds number below transition), the rod 

causes a drag which is almost 1.7 times as high when 

attached to the comparatively thick main body. A 

circular-plate tested at the same spot had a drag ratio 

of 6.2/1.17 = 5.3. Comparing the two ratios with 

each other, it is concluded that only about 1.7/5.3 = 

0.32 of the total length of the rod is responsible for 

interference drag. The value 0.32 means a length 

equal to about 16% of the maximum main-body 

diameter in figure 22. This value may thus be used 

as a rough rule, indicating the effective height of 

such added bodies when calculating their interfer¬ 

ence drag. Analyzing the drag of a sphere according 

to figure H, suspended by a vertical wire, approxi¬ 

mately the same result is obtained as from figure 22. 

4. WINGS (STRUTS) AND WALLS 

Interference drag also originates at points where 

wings, struts or tail surfaces join or penetrate the 

fuselage, or where different parts of the tail assembly 

join each other. As simplest case, the drag of a wing 

or strut joining a plane wall, is considered first. 

Boundary-Layer Thickness. The interference drag 

originating from foil-wall junctions is expected to 

be a function of the thickness of the boundary layer 

at the wall. Experimental evidence on this question 

is not conclusive. Results in (5,c) suggest that the 

interference drag in thin sections (with t/c ~ 10%) 

decreases as the b’layer is thickened (to a maximum 

of S/c = 8%); most likely on account of the decreas¬ 

ing dynamic pressure prevailing within that layer. 

The experimental data plotted in figure 23 even sug¬ 

gest that the interference drag will be negative, at 

thickness ratios below t/c as 8%. In a similar man¬ 

ner, figure 34 shows negative interference drag for 

the combination of a fuselage with a horizontal tail 

surface — when drag and boundary-layer thickness 

of the fuselage are increased by surface roughness. 

Investigation of a strut section (2,a) with c/t = 3 

indicates, however, that the interference drag in¬ 

creases as the boundary layer at the location of the 

strut grows in thickness, at least up to h/c = 3%. 

The points in figure 23 are valid for ratios in the 

order of h/c = 10%, such as found, on the average, 

in wing-fuselage junctions. The results can be in¬ 

terpolated in the form of 

CD= AD/qc2 — 0.8 (t/cf — 0.0003 (11) 

Interference Drag in Corners. When a wing or strut 

adjoins a wall (or an end plate), the boundary layers 

of both, the wing and the wall join each other. Sub¬ 

jected to the pressure gradient along the rear of the 

foil section, the boundary layer is further retarded; 

and additional pressure drag (i.e., interference drag) 

arises. This type of drag is independent of the span 

of the respective wing or strut. The drag coefficient 

is, therefore, most suitably based upon the dimensions 

of the wing section, that is either on the “chord area” 

c2 or the “thickness area” t2. 

0.3 

0.2 

0.1 

0 

-0.1 

4 
/ 

*/ / 
/ / 

/ 

y/L 
'■ -j o.l o.l o,3 0.4- , o.S 0.6 

I t/c 

• MUNICH - (5,c 
o H 0 E R N B R-(15,a 
A JUNKERS-(15.fi, 
□ GOTTINGEN - -(15.C, 
x N A C A-(16 
♦ LAMINAR SECTION (16 

indicating a value of C£>c = -0.0003 for the flat plate 

(having t/c = 0). Referring the coefficient to the 

thickness area: 

CDt=AD/qt2= 0.75 (t/c) - 0.0003/ (t/cf (12) 

as plotted in the graph. Reference (16) indicates 

that laminar-type sections (with maximum thickness 

at 50% of the chord) have higher interference drag 

coefficients than sections with x/c = 30 or 35%; see 

corresponding points in figure 23. 

Figure 23. Interference drag originating at the junction of wines 
or struts with a plane wall. 

Figure 24. Drag of wings placed between two walls of a water 
tunnel (15,a) and between end plates (16), re¬ 
spectively; as a function of the lift coefficient. 
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Influence of Lift. Because of the lift which a wing 

adjoining a wall, may produce, the pressure gradient 

on the upper side of the junction is increased (and 

that on the lower side is somewhat decreased). There¬ 

fore, as shown in figure 24, total drag and interfer¬ 

ence drag appreciably increase with lift coefficient. 

In case of the 0012 foil, the span of the wing model 

is very small (b = 0.5 c). The coefficient CDt evalu¬ 

ated from the lower part of the graph, for one junc¬ 

tion, is therefore somewhat larger than that of the 

13.4% thick section which was tested at A = b/c = 2. 

At any rate, the interference drag approximately 

increases as the square of the lift coefficient. 

Figure 25. Total drag of the piece of strut as shown (17) as a 
function (a) of the angle of pitch and (b) of the 
lateral angle of inclination. 

Inclined Struts. Figure 25 presents experimental re¬ 

sults on a piece of strut, inclined against the wall (or 

end plate) to which it is joined, (a) Upon tilting 

the strut in longitudinal direction, the pressure-drag 

component decreases corresponding to the “cross- 

flow” principle (as explained on page 3-11). (b) 

When inclining the strut in lateral direction, its 

interference drag grows, most likely because of in¬ 

creased separation in the narrower one of the two 

comers. 
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Figure 26. Interference drag coefficient (on area t2) of wing- and 
strut sections; with and without fillets. 

Strut Junctions. Upon attaching a wing (or a strut) 

to the fuselage at a place of positive pressure gradient, 

the interference drag must be expected to be in¬ 

creased over the values as indicated by equation 11. 

The same problem arises when putting together two 

foils in form of a “T”, or crosswise, as is often done 

in tail surfaces with “end plates” attached to the tips 

of the horizontal part. The pressure gradients of 

the two foils evidently combine with each other in 

retarding the boundary layer. Another example of 

this type of interference is the junction between two 

struts. Such junctions, in the form of a “T”, exhibit 

interference drag as plotted in figure 26. That drag 

can be approximated by 

CDt=AD/ (qt2) = 17 (t/c)?-0.05 (13) 

or based on “chord area”, by 

CD=AD/(qc*) = CDt(t/c f (13) 

The negative term accounts for the reduced dynamic 

pressure within the boundary layers of the two struts. 

The interference drag (without fairing) is compara¬ 

tively high. Assuming, for instance, a thickness ratio 

of t/c = 0.3, which is close to the optimum of strut 

sections in free flow., an interference drag is found 

as illustrated in figure 27. The drag originating from 

the junction of two such struts, is as great as that of 

a piece of strut having a length “b” equal to 10 times 

the strut chord. 

(15) Drag of foil sections between tunnel walls: 
a) Hoerner, Fieseler Water Tunnel Rpt 5 (1939). 
b) 40% Strut Section, Junkers V.1064(194l). 
c) Drescher and Schwenk, Thick Sections in Water 
Tunnel, AVA Goettingen Rpt 1944/J/17. 

(16) Benson, Land and Havens, Struts Between End Plates 
in Towing Tank NACA Memo Rpt 1942. 

(17) Maxen, Wind Tunnel Tests on Struts joining a Wall 
(Plate), Yearb. D. Lufo 1940 p.I,599. 

(18) Interference drag in strut and foil junctions: 
a) Kohler, Strut Junctions, Lufo 1938 p. 143. 
b) ARC Tailplane (at M = 0.5), RM 2138 (1941). 
c) NYU, Tests for Gibbs and Cox, Inc. 1952. 
d) Hoerner, Tail Surfaces, 2WB UM 7812 (1942). 

Figure 27. Demonstration of the magnitude of interference drag 
originating at the junction of two struts. The interference drag is as 
great as the original drag of the larger piece of strut. 
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Tail Configurations produce interference drag at their 

junctions with the fuselage as well, as in the corners 

formed between their horizontal and vertical parts. 

The interference drag of the various types of tail con 

figurations shown in figure 28 was estimated on the 

basis of the following data: Thickness ratio of the 

employed sections t/c = 10%, aspect ratio of the 

horizontal surface AH = 4, of the vertical surfaceAv 

= 2, sectional drag coefficient CDs = 0.01. The drag 

originating on the fuselage walls was taken from 

figure 23 as CDc = 0.05 (t/cf = 0.0005. For a two- 

corner foil junction, a value of CD^ = 0.14 was taken 

from figure 26, thus giving for one corner a coefficient 

(%,. = 0.07 (t/cf — 0.0007. Using the two under¬ 

lined values, the interference drag of the configura¬ 

tions illustrated in figure 28 was calculated corre¬ 

sponding to the number of corners in each case. This 

number varies between 4 and 12. The interference 

drag varies accordingly between 3 and 13% of the 

basic profile drag. Theoretically, the “V” type (num¬ 

ber “a”) is the optimum; there are only four corners 

on such a tail assembly, and these corners are at the 

fuselage. More common types having low interference 

drag are numbers “b” and “g”. Configurations with 

“end plates”, such as numbers “f” or “h”, present 

the largest interference drag, because of the high num¬ 

ber of corners. Moreover, the type “h”, with the hori¬ 

zontal foil laterally extending beyond the vertical 

surfaces, is inefficient with respect to lift-curve slope 

too; the flow around the horizontal parts outside the 

end plates is disturbed on account of the two adjoining 

corners. 

Figure 28. Estimated values of the interference drag originating in 
the corners of various tail configurations. 

Fairing Of Junctions. As can be seen in figure 26, the 

interference drag can appreciably be reduced by 

fairings properly installed in the corners between 

two wings or struts. Employing only a fairing radius, 

the result is but limited, however, as shown in figure 

29. The optimum radius is small, in the order of 4 

to 8% of the wing chord. Only when using fairings 

which extend beyond the trailing edges of the wings 

or struts, can the interference drag be reduced as 

far as mentioned at the beginning of this paragraph. 

As shown in figure 30, the interference drag of a 

strut junction can thus be reduced to 10% of the un¬ 

faired configuration or less by means of a fairing ex- 

teding one strut chord beyond the trailing edges. 

Fillets of this type have especially been developed for 

wing-fuselage junctions (24, a, b). 

Junction Angle. In a manner similar to that in figure 

25, the interference drag between two wings or struts 

increases as the corner angle is decreased from 90°. 

Using the optimum fairing radius as found in figure 

29, the interference drag between a wing (or tail 

surface) and a profiled “end plate” is reduced by 20%; 

Figure 29. Interference drag in corners between wings or tail 
surfaces and walls, fuselages or nacelles, as a function 
of the fairing radius. 
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Figure 30. Influence of various fairings on the interference drag 
originating from the junction of two struts (18,a) 
having t/c = 43.5% each. 

as shown by the experimental result in figure 31. 

Employing the round shape “c”, the interference- 

drag coefficient appears to be negative, if using in the 

evaluation the original foil areas for reference (as in 

“a” or “b” of the illustration). Considering, however. 

0010 SECTION; a, \0b 

LU 
* 

Figure 31. Interference drag originating in the corner where two 
wing or tail surfaces join each other (5,c). 

(20) Information on interference drag of wings: 
a) Jacobs, Airfoil Characteristics Affected by 
Protuberances, NACA T.Rpts 446 and 449 (1933). 
b) Hoerner, Interference Drag of Bodies Attached 
to Wings, ZWB Rpt UM 7844 (1945). 

(21) Induced interference drag in wings: 
a) Fuselage and Horizontal Tail, ref. (5,a,c). 
b) Junkers, Basic Tests on Body-Wing Interference, 
Rpt Stroete V. 7561 and V.7649 (1939). 
c) Muttray, Aeordynamic Combination of Wing and 
Fuselage (Longitudinal Plate) Lufo 1934 p. 131 and 
Ringbuch Luftfahrttechnik Section I A 4 (1937). 
d) Abbott, Airship with Fins. NACA T.Rpt 394 (1931). 
e) Riley, Horizontal Tail, NACA T.Note 2907. 
f) NACA, Plate in Center of Airfoil, W.Rpt L-660. 
g) Huebner-Pleines, Glide Control, ZFM 1932 p.455. 
h) NACA, Pressure Distribution on Horizontal Tail, 
T.Note 1539; and in Wartime Rpt L-227. 
i) W.Rpt L-227 shows load distributions on the horizontal 
tail of the P-40 fighter. The "hole” in the center is 3 
ft wide against 12.8 ft span (s:25%) while fuselage 
width ~ 10% only. 

that upon rounding the corner, the wetted surface of 

the configuration reduces, the positive but small 

interference-drag coefficient CDC = 0.0001 or = 

0.01 is obtained for shape “c” in figure 31. 

5. INTERFERENCE DRAG ON WINGS 

There are two types of interference drag originating 

on wings, first a parasitic component, corresponding to 

boundary layer and pressure losses, and second a 

component of additional drag, caused by derangement 

or interruption of the lift distribution due to an 

added body. 

Parasitic Interference. The drag of, and due to pro¬ 

tuberances placed spanwise on a wing has been 

evaluated from experiments (20,a) in a manner simi¬ 

lar to that on three-dimensional bodies (section 3). 

The drag coefficient of such two-dimensional pro¬ 

tuberances is approximately 

C0a.= D0/(qSJ = c0.fy/q)(qe/qjt) (14) 

with cD> indicating the independent drag coefficient 

(based on effective dynamic pressure as explained 

on page 5-6). The interference drag arising at the 

rear of the wing section, corresponds (20,b) to lo¬ 

cation and pressure gradient in a manner similar to 

that as indicated in equation 9; hence 

ADm/Da= 0.4 (Ap/q)^/(Ax/c) (15) 

Calculations on the basis of the last two equations 

agree fairly well with the mentioned tests, for the 

upper wing side as well as for the lower one, and 

also at smaller as well as larger lift coefficients. Figure 

32 gives an example of this statistical analysis at 

CL = 0.2. 

h/c = (.1 to .2)% 

reduced to 0.55& 

Figure 32. Coefficient (on projected strip area) indicating drag 
of and due to a square strip (20,a) placed along the span on the 
suction side of a wing. 
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Figure 33. Experimental (11,e) and calculated drag of and due to 
a square plate having h/c = 4.1% on the Me-210 wing (t/c 
= 15%; A = 7.2) at = 0.3. 

based on the plate’s frontal area, exhibits values up 

to 5, when placed on the suction side of this wing. 

This value is more than four times as high as the 

coefficient of the plate in free flow, and approximately 

five times as high as that on a plane wall (with a 

boundary-layer thickness equal to that on the wing 
surface). 

Induced Interference Drag. Any bluff obstacle placed 

at a certain point of a wing, somehow changes the 

spanwise lift distribution. Provided that the change 

takes place in a direction away from the elliptical 

optimum of that distribution, the induced drag of 

the wing is consequently increased. This is without 

doubt the case if the disturbing bluff body is of such 

size that the lift distribution is more or less inter¬ 

rupted. The wing may then be compared to one 

having a longitudinal gap; and such a wing, “cut in 

two”, has the characteristics of a pair of wings flying 

closely side by side as shown in figure 24 of the “drag 

due to lift” chapter. Their effective aspect ratio is 

reduced, and in the limiting case (with a sufficiently 

wide gap) lift- and drag forces correspond to the in¬ 

dividual aspect ratios of the two wing parts. 

Isolated Protuberances. Figure 33 shows the drag of, 

and due to a small square plate placed on the upper 

and lower side, respectively, of a 15% thick wing. By 

statistical analysis of several tests (20,a), the follow¬ 

ing equation was found for the interference drag 

caused by such isolated protuberances on the rear 
of the wing; 

ADm/Da= 11 • (Ap/q)2/ (Ax/c) (16) 

The constant in this equation is smaller than that of 

equation 9 (for three-dimensional bodies), but greater 

than that in equation 15 (for spanwise protuberances). 

Figure 33 shows that the resulting drag coefficient. 

Figure 34. Drag of a horizontal tail surface as affected by the 
presence of the fuselage (5,a,d). Drag and lift coefficients are 
based on horizontal area. 

Dynamic-Pressure Hole. An obvious example of “in¬ 

terruption” is found in the horizontal tail surface at 

the end of the fuselage. The “hole” in the distribu¬ 

tion of the dynamic pressure within the wake of 

the fuselage is equivalent to a longitudinal gap as 

above. Lift distributions are presented in (21,h) 

showing a local reduction to approximately half the 

theoretical values at the junctions of a horizontal 

tail with the fuselage. Figure 34 demonstrates how 

the lift of a particular horizontal surface is reduced, 

accordingly, and how the drag due to lift is increased 

at the same time. Analysis of the lift curve slope (by 

way of doq/dCL) indicates that in this case most of 

the drag increment is of induced origin, rather than 

Figure 35. Influence of the fuselage (or other obstructions) upon 
the effective aspect ratio of the horizontal tail (or of a wing, 
respectively). 
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due to parasitic loss of momentum. — A measure for 

the size of hole or gap in relation to the dimensions 

of the tail surface, is the coefficient 

CfH= Dfe/(qSH) (17) 

Figure 35 presents a number of points evaluated on 

the basis of tested “lift angles" (do(/dCL), indicating 

the ratio of the effective aspect ratio “Aj” as a function 

of CfM. This type of interference is also evident in 

(21,f), where a thin friction plate is tested, placed 

at the suction side on the centerline of a wing. Up 

to about Cjm = 0.015, the effect can be approximated 

by 

M/A = — 15 CfH (18) 

The induced drag is then 

C„i= (C«/rA)(l -M/A) (19) 

and (combining with equation 18) the increment of 

the induced drag, for small C-j, values, is found to be 

ACDi ^ (cJ/irA) 15CfH (20) 

Some induced drag is also included in equation 16; 

analysis shows, however, that this component can 

only be in the order of 5% of the parasitic drag of 

the small plates investigated. It is concluded, there¬ 

fore, that two cases must be distinguished in wing 

interference: One case due to small and isolated 

added bodies, behind which the flow closes-in again 

without really affecting the lift (equation 16); and 

the other one due to larger and/or chordwise extend¬ 

ing protuberances, causing lasting separation at the 

suction side of the wing and a noticeable dent in the 

lift distribution (equation 20). It is also obvious 

that two-dimensional protuberances (as per equation 

15) do generally not add to induced drag. 

Horizontal Tail. The induced drag of horizontal tail 

surfaces is basically high, in so far as the tail has to 

“climb” within the down wash of the wing (as ex¬ 

plained in the “due-to-lift” chapter in connection 

with tandem wings). The drag of the tail is further¬ 

more increased because of the reduction in effective 

aspect ratio as indicated in figure 35, possibly in 

the order of 50%. The tail’s total drag due to lift 

can thus reach a magnitude of 20% of the induced 

drag of the wing, assuming conventional airplane 

dimensions. This additional drag seems to be one 

important explanation for the poor lift/drag ratios 

of airplanes when approaching the landing field 

at higher lift coefficients (in power-off flight). 

Glide-Path Control. By deflecting a plate or flap from 

the upper side of a wing, the lift-over-drag ratio can 

very effectively be reduced — if so desired when ap¬ 

proaching a landing field. Assuming an airplane with 

A = 6 or 7, the induced drag is in the order of CBj0 

= 0.05, at CL = 1. Assuming now a plate deflected in 

the center of the wing, near the point of minimum 

pressure, its drag coefficient is in the order of CDa. 

= 10 (as per equation 14). For a plate having a size 

h = b = 10% of the average wing chord; that is 

for Sa.» 0.0015 Sw,-nQ, the coefficient defined by equa¬ 

tion 17, is = (10'0.0015) = 0.015. Figure 35 

gives the resulting effective aspect ratio Aj in the 

order of 0.8 of the geometrical ratio. The induced 

drag with deflected drag flap thus corresponds to 

= 1 /ir 0.8 A = 0.06, at Cl = 1. Referring the 

differential produced by the plate AC^i = 0.06 — 

0.05 = 0.01, to its frontal area, the additional drag 

of the wing, caused by interference, amounts to ACt>, 

= 0.01 /0.0015 = 7; and the total drag coefficient of 

and due to the plate is CD# = 10 —|— 7 = 17. Co¬ 

efficients of this magnitude can be recalculated from 

flight tests with a device as described, reported in 

(21,g). The drag values obtained for constant lift 

are in the order of 15 times the drag coefficient of the 

plate in free flow. 

6. WING-BODY CONFIGURATIONS 

The interference drag originating in wing-fuselage 

and engine-nacelle configurations is also twofold; 

namely parasitic as well as induced. 

Parasitic Interference. The interference drag of a 

number of wing-fuselage and fuselage-tail configura¬ 

tions has been evaluated and plotted in figure 36. 

The function obtained brings to mind the corre- 

engine-nacelle) configurations. 
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sponding curve in figure 14. Interference drag is 

comparatively small with the wing near the body’s 

nose; and the drag reaches a maximum for locations 

somewhat aft of the maximum thickness. Interference 

drag is small again for arrangements near the rear 

end of the body. Figure 36 presents only the inter¬ 

ference component of drag. Actually, when adding 

the body to the wing, the combined wetted area 

reduces, particularly on the wing. Such combinations 

may, therefore, have a total drag which is lower than 

the sum of the free flow drag values of the two com¬ 

ponent parts measured independently — even though 

the interference drag as plotted, has a positive value. 

Practical conclusions for zero or low lift coefficients 

are as follows; 

(a) Wing-Fuselage Junctions. Conventional wing- 

fuselage combinations have locations x/1 (as defined 

in figure 36 ) between 0.2 and 0.4. Their interference 

drag considerably varies, therefore, with the particular 

position of the wing. At any rate, their interference 

drag decreases if moving the wing forward. 

(b) Slender Engine Nacelles. Nacelles usually cover 

the range of intermediate “x/1” values in figure 36. 

In this range, the interference drag is comparatively 

constant; in the order of CDc= 0.004. This amount 

may be compared with the profile drag coefficient of 

the employed wing section. Assuming a CDs= 0.008, 

the interference drag is then found to be approx¬ 

imately as large as the sectional drag of a wing portion 

with the span b = c * (0.004/0.008) = 50% of the wing 

chord. The wing area covered by an average nacelle 

(with a fineness ratio 1/d = 5 and a length ratio 1/c 

= 1.5) corresponds to a span portion Ab = 25% of 

the wing chord. A rough but simple rule is therefore, 

that the parasitic interference drag of engine nacelles 

(at » zero lift) is approximately equal to the section 

drag of a wing area twice as large as the wing portion 

covered by the nacelle. The profile drag as such of 

that piece of wing does not appear, of course, in the 

total drag of the combination, since the piece is cov¬ 

ered by the nacelle. Therefore, the net total of added 

drag is equal to one times the profile drag of the 

part of the wing area defined above. 

(c) Tail Surfaces. The points in figure 36 evaluated 

for horizontal tail surfaces, are comparatively low. 

Increased thickness of the boundary layer near the 

stern of the main body is evidently responsible for 

the result. Figure 34 even proves that the interference 

drag of tail surfaces at the end of fuselages (at zero 

lift) can very well be negative. 

(d) Propeller Blades may be considered to be foils. 

The interference drag originating at their roots can 

then be appraised on the basis of figure 36. Usually 

the roots have sections which are much thicker (in 

relation to their chord) than wing sections. Assuming, 

for example, t/c = 50%, a value of CDt = 0.4 is 

found in figure 23. Considering a propeller with 

three blades and a disk loading coefficient C-p = 

thrust/ (dynamic pressure) per (disk area of the pro¬ 

peller) = 0.10 (corresponding to high-speed con¬ 

ditions of average airplanes), the decrease of propeller 

efficiency due to interference drag of the blade roots 

is found to be in the order of 1 % of the thrust. This 

effect may be considered to be small. It can be con¬ 

cluded, however, from figure 36, that the most favor¬ 

able location of roots (and hub) of a propeller will be 

at the very nose of engine nacelle or fuselage, respec¬ 

tively. In other words, covering the hub of the pro¬ 

peller by an extra large spinner, is not found to pro¬ 

duce higher propulsive efficiencies (22). 
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“OC Flow. At lift coefficients different from zero, the 

displacement of a fuselage (or nacelle) produces in¬ 

creased angle of attack or angle of flow at the wing 

roots, corresponding to what we may call " <X flow” 

(23,c). A pair of peaks appears accordingly in the 

span-wise lift distribution, as shown in figure 37. The 

circulation of wing or wing roots is transferred to 

fuselage or nacelle, to some degree (as predicted by 

theory). Including some lift originating at the rear 

end of the body (owing to separation; indicated by 

dotted line in the illustration), the configuration 

may even exhibit a lift curve slope slightly higher 

than that of the wing alone. For example, wind- 

tunnel tests in (24,a) indicate an increment in the 

order of 4% for a body having a diameter equal 

to 1/10 of the wing span. Referred to the piece of 

wing covered by the fuselage, the increment is in the 

order of 30 or 40% of the lift ordinarily produced by 

that part of the wing. The effect can, therefore, be 

considered to be similar to that of a local increase of 

wing chord. Because of the parasitic losses along the 

wing roots, as shown in the upper part^of figure 37, 

the drag increment due to lift (dC^/dC^) of the con¬ 

figuration can be expected to be larger than in the 

wing alone. Such result is evident in most of the 

configurations presented in figure 38. Here as in sim¬ 

ilar arrangements, it may also be that the lift distrib¬ 

ution (particularly of a rectangular wing) is made 

“more elliptical” because of fuselage interference, so 

that the induced drag of the configuration might be 

slightly reduced. 

(22) Tests on the aerodynamic effect of spinners: 
a) Biermann and Hartmann, NACA T.Rpt 642 (1938). 
b) Stickle Kreiger Naiman, NACA T.Rpt 725 (1940). 

(23) Theoretical treatment of wing-body configurations: 
a) NACA, Loading of Wing + Fuselage, RM L52j27a. 
b) Vandrey, Yearbk D.Lufo 1938 p.I,158. 
c) ''CX” flow is described by Multhopp Lufo 194lp.52, is 
shown in Ybk D.Lufo 1941 p.I,ll, and further evaluated in 
Ybk D.Lufo 1942 p.I,ll and 366. 
d) Pepper, Wing Fuselage, NACA T.Note 812. 

(24) Experimental data, wing-fuselage configurations: 
a) Jacobs and Ward, Interference Wing and Fuselage, 
509 Combinations, NACA T Rpt 540 (1935). 
b) Sherman, Interference of Wing and Fuselage, NACA 
T.Rpt 575 (1936); and T.Notes 640,641,642 (1938). 
c) Moller, ZWB Rpt FB 1318 and Ybk D.Lufo 1942. 
d) Gimmler, Pressure Distribution on Wing-Fuselage 
Combination, German Doct ZWB FB 1710 (1942). 

(25) Experimental data on wing-nacelle configurations: 
a) NACA, Nacelle Position, T.Note 1593 (1948). 
b) ARC, Summary on Nacelles, RM 2406 (1939). 
c) Wind-Tunnel Tests on Ju-288 in DVL Tunnel, 1940. 
d) Others: Junkers Rpt S.392; Me-328, DFS Rpt 1942/6. 
e) Junkers, Engine Nacelles, Rpt S.392 (1941). 
f) Ellis, Drag of Nacelle, NACA W.Rpt L-696 (1942). 

(26) Novotny, Wind-Tunnel Investigation of Me-264 Model, 
German Doct ZWB (AVA) 1942/W/341. 

Body Displacement. Because of the displacement of 

the fuselage (or engine nacelle), the average flow ve¬ 

locity at the wing roots is increased along the upper 

side in low-wing configurations; and it is increased 

at the lower side in high-wing arrangements. The lift 

is shifted accordingly by more or less constant differ¬ 

entials AC. , which are positive in low-wing and neg¬ 

ative in high-wing configurations. The variation can be 

considered to be the equivalent of that due to a wing 

flap deflected in the center of the wing. The differen¬ 

tials are suitably referred to the wing area correspond¬ 

ing to the width of the fuselage or nacelle (subscript 

“b”). For a fuselage with d = 0.1 b, the CLbis in the 

order of -(-or— 0.1. The longitudinal position of wing 

versus fuselage has an effect too, upon AC^. Reference 

(25,a) indicates that with the wing far forward, the 

ACLof a high-wing configuration switches from neg¬ 

ative to positive, while for positions of the wing far aft 

(as usual in engine nacelles) AC^ is appreciably more 

negative in the high-wing arrangement tested. Engine 

nacelles (one nacelle tested in the center of a wing 

model) exhibit considerably higher differentials, in 

the order of AC|_ == i (0.2 or 0.3), for low-wing and 

high-wing installations, respectively. Figure 40 pre¬ 

sents an example in this respect. E' nacelles have an 

effect upon the circulation of the wing section, around 

which they are placed, similar to flaps. In fact, the 

AC|_ value can easily be changed by deflecting the 

trailing edge (or some sheet-metal tab) behind a 

nacelle (25,c). An example of this effect is illustra¬ 

ted in figure 16 of Chapter XIII. 

Wing-Fuselage Angle. In a symmetrical mid-wing 

configuration (with symmetrical foil section) lift and 

induced drag are zero at zero angle of attack. How¬ 

ever, when the fuselage is set at some angle of inci¬ 

dence in relation to the wing, certain lift differen¬ 

tials are obtained. For explanation, the fuselage has 

been considered a “wing”. This might be correct 

for fuselages having sharp lateral edges. It cannot 

Figure 38. Drag coefficient as a function of the square of the 
lift coefficient as tested (24,a,b) on various wing- 
fuselage configurations. 
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be claimed, however, that a fuselage with well-round¬ 

ed cross-section shape would perform as a wing. Rath¬ 

er an accelerated flow around the sides of the fuselage 

(the "ot” flow) is started (or changed) as the fuselage 

is turned to a certain (usually negative) angle of 

attack against the wing. The resulting lift differen¬ 

tial evaluated from results in (24) is in the order of 

ACLb = -0.07 Act0 (21) 

where (Act) indicates the angle of the fuselage axis 

against the wing’s zero lift line. 

Induced Drag Due To Body. In the preceding two 

paragraphs, certain displacement effects of fuselage- 

and nacelle bodies have been reduced to equivalent 

local changes in the wing’s angle of attack. It is, 

therefore, possible to estimate the increment of the 

induced drag on the basis of ACL values, by applying 

the theory of partial-span wing flaps as presented in 

the “drag-due-to-lift” chapter. In the range of bb/b 

= 0 to 0.2, where “bj,” indicates the body, the con¬ 

stant in equation 10 of that chapter is on the average 

0.035. Applying that function, additional induced 

drag is obtained for small lift coefficients as follows: 

ACDb = 0.035 (ACJ (22) 

with the subscript “b” indicating that the coefficient 

is based on the area (c times bb). Figure 39 gives 

some proof for the correctness of this equation, with 

AL referred to S, (rather than to the %b” area.) 

Equation 22 reads accordingly 

ACQ- « 0.015 (ACl/ (23) 

Example. In conventional airplanes, the fuselage may 

be set to an angle in the order of minus 4 or 5 against 

the zero-lift line of the wing section. Equation 21 

indicates a corresponding CLb = —0.32. An addition- 

Figure 39. Drag of engine nacelles (tested in the center of wing 
models; reference 25) as a function of the lift differential caused 
by installing them. 

al value of Cq, = —0.10 applies for an assumed high; 

wing configuration. For a total of —0.42, equation 22 

yields an additional induced drag corresponding to 

ACdj= 0.0007 for an assumed bb/b = 0.1. This 

component represents about 3.5% of the high-speed 

drag coefficient of an average fighter airplane (with 

a total drag coefficient of * 0.02). The equivalent loss 

in maximum speed is in the order of 1.5 %. Based 

upon the maximum cross-section area of the fuselage, 

the induced drag increment is in the order of ACD4 = 

0.1, representing at least 50% of the drag which a 

smooth fuselage may have in free flow. Based upon 

the “chord area” (c2), a CDc = 0.0035 is obtained. 

Comparing this value to those in figure 36, the cal¬ 

culated induced drag appears to be in the same order 

of magnitude as the parasitic interference drag origi¬ 

nating in the wing-fuselage corners. However, in 

case of a low-wing configuration, the influences of 

angular and vertical position of the fuselage in re¬ 

lation to the wing, more or less cancel each other. 

Figure 40. Lift differentials caused by, and drag forces of and 
due to engine nacelles when added to a wing in various positions 
(25,e). Drag coefficients are based on the nacelle's frontal area; 
the lift differentials are referred to the area (c times b^). 



VIII - INTERFERENCE DRAG 8-19 

Nacelles. Equation 22 is also believed to be roughly 

applicable for those places on the wing span where 

the engine nacelles are usually installed. Figure 40 

shows the results of a systematic investigation of the 

comparative merits of low- and high-wing configura¬ 

tions. It is seen that the mid-wing arrangement has 

the lowest drag coefficient. High-wing and low-wing 

combinations exhibit higher coefficients correspond¬ 

ing to their positive and negative lift differentials, 

respectively. Drag differentials calculated through the 

use of equation 22, explain at least half of the in¬ 

crements as tested. The other half is most likely a 

parasitic component. 

Still larger values can, of course, be expected at 

higher lift coefficients. Protuberances on wing fillets, 

such as bolt heads or sheet-metal joints are thus very 

undesirable. Figure 42 also illustrates the effect of 

interference plates in various places of an airplane 

model, for two lift coefficients. Two of the locations 

tested are seen to have low sensitivity; and their 

sensitivity does not increase as the lift coefficient is 

increased. One of these is above or below the forward 

end of the fuselage (a); the other one at the upper 

or lower side of the engine nacelles (d). Locations 

on the wing roots (b and c) are again found to be 

very sensitive, particularly at higher lift coefficients. 

6. CONCLUDING REMARKS 

Figure 41. Drag of and due to a square test plate on the upper 
wing-root fillet of an airplane model (ll,e). 

Interference Method. The same testing technique as 

described for three-dimensional bodies can also be 

used in the investigation of interference effects on 

wings. One very sensitive location is on the wing 

roots (in the corner between wing and fuselage). 

Figure 41 indicates in this case a maximum value of 

CL =7 and a drag ratio 7/1.17 = 6, at C. = 0.3. 

(28) Jones (NPL), Experiments on Rigid Parachute Models, 
ARC RM 2520 (1953). See also (51) in Chapter XIII. 

Besides the examples presented in this chapter, there 

are other configurations shown in other parts of this 

book whose characteristics are, or may be considered 

as being the result of mutual interference between 

components. Typical examples are: 

(a) “splitter” plates (v’street) page 3-7 

(b) body with guide vanes page 3-26 

(c) wing-tip fuel tanks page 7-7 

(d) automobiles and ground page 12-1 

(e) windshields and canopies page 13-2 

(f) radial engine cowlings page 13-4 

(g) wing and engine nacelles page 13-6 

(h) external stores (tanks) page 13-16 

(i) slipstream effect page 14-15 

Figure 42. Interference investigation of an airplane model (26) 
by means of small test plates. The plates were somewhat less 
than one square inch in size, attached to the points as marked. 

Location of Plates Representing Cd.(0.2) CD.d.O 

a) Above or below windshield 
the fuselage or gun turret 1.7 1.7 

b) On wing fillet surface, skin 
near wing nose imperfections 3.6 7.8 

c) Wing-root fillet imperfections 
near 1/2 chord or attachments 3.6 5.4 

d) Above or below oil cooler or 
the nacelles carburetor inlet 1.6 1.6 

e) On the sides of engine parts. 
the nacelles exhaust stacks 3.5 2.5 
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Biplane and tandem wings too (pages 7-12 and 7-14) 

represent an interference mechanism. Roughness ele¬ 

ments may also be considered as interfering with the 

surface on which they are placed; see turbulence 

stimulation on pages 2-10 and 6-19, and roughness on 

laminar-type foil sections (page 2-13). Vice versa, 

the boundary layer interferes with roughness elements 

(such as imperfections, page 5-6). Interference effects 

of appreciable magnitude are also found in Chapters 

X and XI, caused by the free surface of water (wave 

drag, spray and ventilation). More and different ex¬ 

amples of interference are furthermore presented in 

Chapters XV, XVI and XVII, dealing with compress¬ 

ible and/or supersonic flow conditions. 

Parachute. As a final example of interference drag, the combination of 
a parachute cap with a comparatively large and bluff “load” (simulated 
by a disk) is presented in figure 43. It is seen that the canopy’s drag co¬ 
efficient reduces appreciably when placing the “load” as shown. Note 
that not only the drag of the canopy, but also the total drag of the com¬ 
bination is decreased below that of the canopy alone (connected to the 
wind-tunnel balance). 

Figure 43. Drag of a parachute canopy (sheet-metal model) without, 
and in presence of a large and bluff "load” simulated by a disk (28). 
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CHAPTER IX - DRAC DUE TO INTERNAL-FLOW SYSTEMS 

This chapter deals with the aerodynamic character¬ 

istics of radiators and cowlings (used for aircraft en¬ 

gines) and with ventilation systems in any type ve¬ 

hicles. The aerodynamic drag connected with these 

installations consists of an internal component corre¬ 

sponding to the loss of momentum encountered by 

the flow when passing through the internal system, 

and an external component — which is parasite drag 

originating from inlet, housing (if any) and outlet of 

the system. 

A. MECHANISM OF DUCTED SYSTEMS 

All internal flow systems can be reduced to the mech¬ 

anism of a duct with inlet, an expanding part (diffu- 

sor), an obstruction, a contracting part (nozzle) and 

an outlet. As an example of such system, one type of 

radiator installation is shown in figure 1. A certain 

stream tube is isolated from the outside flow, led into 

the aircraft or vehicle, and discharged somewhere, 

back into the outside flow (1). 

Loss Coefficient. As illustrated in figure 1, the flow 

of air varies considerably in velocity, dynamic pressure 

and static pressure on its way through the duct. 

Under loss-free conditions, the sum of static and dy¬ 

namic pressure would remain constant all the way, 

as indicated by Bernoulli’s theorem (see Chapter I): 

p == p -f- q = constant (1) 
total 

Actually, the air flow encounters momentum losses, 

primarily due to obstacles (such as the radiator core) 

and expansions of the cross-section area of the duct. 

The corresponding decrements in total pressure are 

best given in the form of the loss coefficient 

5 <2> 

where w indicates the average velocity in the cross 

section of the duct in which a particular loss occurs. 

The term 

$(w/V)2 = Apfeta,/(0.5 9 V2) (3) 

refers each loss component to the dynamic pressure of 

the undisturbed external flow. All losses can thus be 

added up. Because of (w/V)^, the smallest cross 

sections tend to contribute the largest losses, and vice 

versa. 

Intake Diffuser. To reduce the velocity through the 

duct system, a diffuser is usually placed directly be¬ 

hind the intake opening. A considerable part of the 

desired deceleration occurs ahead of the opening, how¬ 

ever, as indicated in figure 1. In case of air scoops, 

used as intake for the combustion air of engines or 

for ventilation purposes, frequently no diffuser is 

provided at all; and the deceleration entirely takes 

place in front of the opening. In either case the 

efficiency of the intake is indicated by 

% = ( APw + %)/ (°-5 9 y2) = APwtofal/fl 

where “w” indicates conditions at the end of the 

diffuser or in a suitable cross section inside the duct. 

Combining equations 3 and 4, the loss coefficient of 

the diffuser is found to be 

(i„ = (1 -1. „)/<»/V)! (5) 

Figure X. Pressure variations in a ducted radiator system. Condi¬ 
tions as shown, roughly correspond to r)m = 90%, 

^ core = 7, and w/V = 0.25. 
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where ^ltl tends to be constant in many installations. 

As a consequence, q;n usually decreases with w/V, 

as illustrated for example in figure 5. In the form of 

equation 5, the diffuser losses (which can be con¬ 

siderable because of boundary-layer separation) can be 

added to other loss components (as per equation 3). 

The Rate Of Flow through the duct is a function of 

the difference in total pressure between intake and 

outlet, and therefore a function of the internal losses 

of momentum. The sum of these losses shall be 

written as 

- [5<w/v>’] <6> 

where n indicates the cross section in which the indi¬ 

vidual loss is incurred. The average dynamic pressure 

in the outlet opening is then indicated by 

<W/tl = (P-totout- Pout)/*! 

= 1 - [§(w/V)2] - Cpoui (7) 

where Cpou^ = Apout /q = static pressure coeffi¬ 

cient in the plane of the outlet. Equation 7 can be 

solved for the velocity ratio through the outlet: 

"U/V = l/l~B(w/V)a]-Cpout (8) 

The rate of flow through any other cross section (Sw) 

of the duct corresponds to the respective area ratio; 

hence 

w/V = (WSu)V1 -[^/Vfl-Cpout (9) 

By varying the outlet area (by means of an adjustable 

flap), the rate of flow through an internal system can 

conveniently be controlled. In the limiting case of 

large outlet openings, that is for qou^/q 0, equation 

7 yields the velocity ratio 

(w/vLr lA1 - CJ/ U <“» 
where “ ^w” denotes the sum of the internal losses, re¬ 

ferred to the dynamic pressure of the considered cross 

section (subscript “w”). 

Intake Area. Within certain limits, the rate of flow 

through the duct system is independent of the cross- 

sectional area of the intake. However, for a very small 

inlet area, increased momentum losses are likely to 

occur along the diffuser which necessarily follows the 

narrow entrance. If on the other hand, the inlet area 

is too large, with the air “overflowing” the edges, 

certain losses will originate on the outside because of 

flow separation. 

Internal Losses. The internal losses of momentum re¬ 

sult in external drag. This means that some fraction 

of the engine power of a considered airplane or 

vehicle is consumed to maintain the flow through 

every ducted system. The drag corresponding to the 

internal losses of momentum (“M”) equals (mass 

flow) times (velocity decrement); thus = 0: 

Dm = ? Saw (V ~ woui) = 2 SBqw(V - woui)/w 

where “w” indicates conditions in the cross section 

(SQ ) of the duct chosen for reference. In the case 

of radiator installations, for example, this reference 

section is that of the core. 

Outlet Pressure. The static pressure around the out¬ 

let opening is not always a; equal to the ambient 

pressure. Because of a scavenging effect of the external 

flow upon the outlet, Apou(. is often somewhat nega¬ 

tive. Through application of flaps, deflected to a 

position extending into the external flow, it is also 

possible to obtain pressures to the order of Cpou{. = 

— 0.5. The outlet presents the corresponding drag 

component 

4D = <12> 

to be added to equation 11. The two functions then 

give the drag coefficient 

(13) 

So = 2 (w/V) (1 - w„„t/V) + 

By introducing equation 8 into this function, the 

coefficient of drag due to internal losses of ducted 

systems from inlet to outlet is found to be 

c0o =2 »/v [* -i/i-[s(w/vq-c„„t] 
+ C„*S„l/S0 (14) 

For Cpout-* 0, the equation is plotted in figure 2. 

Figure 2. Drag due to internal losses of ducted radiator systems 
(equations 14 and 19) for C ^ = 0. 
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B. DRAG OF RADIATOR INSTALLATIONS 

The “internal” drag of ducted engine radiators cor¬ 

responds to theory as presented in the preceding 

section. The external drag is found through eval¬ 

uation of experimental results. In a realistic analysis, 

it is also necessary to consider the influence of heat¬ 

ing as well as some effect of compressibility upon the 

flow through the system. 

1. Considerations For The System. 

Surface Cooling. Every transfer of heat between two 

fluids is proportional to the area of the partition 

adjacent to both mediums. Radiators or heat ex¬ 

changers are consequently designed with as large a 

surface as practicable. A surface of considerable size 

is available in the wings of airplanes; and attempts 

have been made, at least experimentally, to use the 

wings as radiators. The turbulent skin-friction drag 

is theoretically expected to decrease somewhat with 

an increase of temperature within the boundary layer 

(2,a). Considering, however, the heated wing as a 

ram-jet mechanism (2,b), the location must be taken 

into account at which heat is transferred. A pro¬ 

pulsive force (negative drag component) can only be 

expected when and if transfer takes place in a region 

where the static pressure is higher than the ambient 

pressure. Since the average differential Ap is negative 

over most of the wetted wing surface, the resultant 

thermodynamic thrust may thus be negative or 

identical to drag. For this and other practical reasons 

(such as vulnerability), surface cooling has never 

really been utilized in airplane design. 

Aircraft Radiators. Roughly 15% of the heat pro¬ 

duced by burning gasoline in reciprocating engines 

has to be removed from the cylinder walls. In liquid- 

cooled engines this is accomplished by means of radi¬ 

ators. Concentrating a system of tubes and fins within 

a small volume, an internal surface is obtained which 

is in the order of 100 times the frontal area of the 

radiator core. This size cooling area is thus of the 

same order as that of the airplane wings. 

(1) Mechanism and analysis of ducted systems: 
a) Schlupp, Ringb.Luft'technik III A 24 (1940). 
b) Capon, Cowled Systems, ARC RM 1702 (1936). 
c) RAE, Cooling Aerodynamics, ARC RM 2498 (1947). 

(2) Analysis of wing-surface cooling: 
a) Fedjajewski, Skin Friction of Heated Bodies, CAHI Mos¬ 
cow) Rpt 516 (1940). 
b) Surface Cooling, Ringb.Luft’technik III A 23. 
c) Gloster and Supermarine Wing, ARC RM 1311 (1929)- 

Ducting Of Radiators. The transfer of heat through 

the cooling elements of a radiator core is approxi¬ 

mately proportional to w° 8 of the internal flow. The 

skin-friction within the openings of the core is, on 

the other hand, proportional to w18 , considering 

turbulent boundary-layer flow. From these two re¬ 

lations results the ratio 

pressure loss w1-8 
- — —— — w (15) 
heat transfer w 

The internal drag of a radiator, therefore, reduces as 

the velocity of the cooling air flow is reduced. Low 

velocities are obtained by placing the radiator within 

a duct; that is, behind a diffuser as illustrated in 

figure 1. After passing through the radiator core, the 

air is accelerated again by means of a convergent 

duct (nozzle) and discharged through an outlet. 

Figure 7,d presents one example where the total 

drag of and due to a belly-type radiator installation 

is very high, because of insufficient ducting. 

Radiator Size. The frontal area of the radiator core, 

required to give the desired heat transfer, is Sp — 

1 /w0'8. Large cores are consequently needed for 

low velocity ratios “w/V”. Besides being heavy, such 

radiators may also present a higher external drag. 

Development of aircraft radiators has arrived at core 

sizes which, under climb conditions of an airplane, 

require a maximum rate of flow in the order of 

w/V = 0.3. The rate at maximum aircraft speed is 

then only in the order of w/V = 0.1 (depending of 

course, upon the speed range of the respective air¬ 

plane). The corresponding ratios of the dynamic 

pressure within the duct are q^/q = (w/V) — 0.32 

= 0.09 and = 0.12 = 0.01, respectively. Such con¬ 

ditions are very effective in reducing radiator drag. 

2. Internal Radiator Drag. 

Since the frontal area of the core SD is the most 

significant parameter of a radiator installation, the 

aerodynamic characteristics, that is the drag coefficient 

CDn, the internal velocity w, and the loss coefficient 

, are consistently measured in, or referred to this 

area. 

Radiator Cores are tested for pressure drop in closed 

channels. Between front- and rear side, there is a 

difference in pressure Apcol.e which, based upon the 

constant dynamic pressure of the channel flow shortly 
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Figure 3. Pressure-loss coefficient of typical radiator cores, tested 
in closed channels (3). 

ahead or behind the core, gives the loss coefficient 

Lore = AP«re/qw = (P, ~ P2 )/(°-5 9 W2) (16) 

Conventional radiator cores have §cor<? between 5 

and 10. The pressure differential is mostly due to 

skin-friction drag within the openings of the core; 

the loss coefficient decreases, therefore, with the 

velocity w (that is, with the Reynolds number), as 

shown in the examples of figure 3. Above w a? 20 

ft/sec, the drag of the tested cores appears to be rough¬ 

ly proportional to the turbulent skin-friction coeffi¬ 

cient (as treated in Chapter II): 

Lore- 1/w'^ (17) 

Diffuser Efficiency (4). Radiator intakes, installed at 

the surface of fuselages, wings or nacelles, can severely 

be affected by the boundary layer originating ahead of 

them. For example, in the arrangement illustrated in 

figure 4, the flow is completely detached from the 

upper side of the diffuser; there is even a return flow 

through the upper part of the core. Such conditions 

lead to losses comparable to those in a sudden ex¬ 

pansion of the cross section of the duct. Based upon 

the dynamic pressure in the duct following such 

expansion, theory (4,e) predicts: 

= <Vsin)2 (18) 

where “in” denotes the inlet section of duct or diffu¬ 

ser, respectively. The example in figure 4 (without 

BL control) essentially corresponds to this maximum 

loss coefficient. The diffuser efficiency is q|rl 65% 

at w/V = 0.13; the equivalent loss coefficient (equa¬ 

tion 5) is = 21, based on 0.5 q w2 (where w = 

average nominal velocity across the section in which 

the core is located). This § value is in the order of 

twice the loss coefficient of the core. The total drag 

of the radiator system is correspondingly high, and 

the maximum rate of flow available for “fully” 

opened inlet and outlet flaps is comparatively small. 

Boundary-Layer Control. Through addition of a small 

slot at the entrance, in figure 4, providing “bleed-off”, 

it is possible to remove the boundary layer before it 

enters the diffuser and to obtain an efficiency n. = 

97% (at the velocity ratio of w/V = 0.13). The"cor¬ 

responding loss coefficient is only = 1.5. Drag- 

and rate-of-flow characteristics are improved accord¬ 

ingly. It must be considered, however, that the flow 

through the slot too, presents some loss of momentum. 

Its magnitude is estimated to correspond to ACDd~ 

0.02, as far as the configuration in figure 4 is con¬ 

cerned. Another method of preventing the boundary 

layer from getting into the diffuser, is illustrated in 

figure 5. The intake opening is somewhat removed 

from the surface of the aircraft; the boundary layer 

is guided sideways by means of a “neck” or a “groove". 

The resultant loss coefficient of the diffuser ^in. = 

3.2 is considered to be low for an expansion ratio of 

So/Sin — 6- Ratios of this magnitude, with diffuser 

efficiencies above 90% are superior to values quoted 

for diffusers placed in longer ducts (4), where the 
boundary layer is fully developed. 

Figure 4. Drag characteristics of a wing radiator (6,d) with (and 
without) boundary layer control. Similar results are 
reported in l,c). 
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Figure 5. Aerodynamic efficiency of a well designed inlet dif¬ 
fuser (6,b). 

Momentum Drag. For certain configurations and in 

the range of lower flow rates it may be permissible to 

assume poot = pamb;, meaning Cpout = 0. Using 

furthermore the approximation/(l-x) * (1—0.5 x), 

equation 14 is simplified to 

- (“/vf L <>9> 
where “w” indicates that" $" is defined for the duct 

section where the velocity is “w”. This function for 

the internal drag indicates the trend which is usually 

found when testing the drag of radiator installations. 

As illustrated in figure 2, the equation is sufficiently 

accurate, only if used for values of (w/V) 0.4, 

however. 

Drag Due To Leaks. With the outlet flap near the 

closed position, such as under high-speed flight con¬ 

ditions, there is a positive pressure within the duct 

in the order of magnitude of the dynamic pressure 

0.5 g V2. Since this pressure can be appreciably 

high, a noticeable volume of air may be forced out 

of the radiator housing through the cracks and gaps 

which usually exist on mass-production installations. 

From flight reports (6,e) it is learned, for example, 

that in the case of the Me-109, the air flow through 

such leaks attained a rate of flow (measured in the 

cross section of the core) corresponding to w/V be¬ 

tween 0.05 and 0.10. Passing through leaks, the air 

is usually not discharged in down-stream direction. 

The momentum of the outflow is, therefore, mostly 

lost; and equations 14 and 19 must be changed, to 

indicate the maximum possible internal drag co¬ 

efficient. 

C 
Da mox 

2 (w/V) (20) 

In case of the Me-109 (similar to the installation in 

figure 4) the drag due to leaks is estimated to be in 

the order of ACDa = 0.1, with “closed” outlet flap. 

This drag component is larger than the external 

parasitic drag of the installation. 

3. External Radiator Drag. 

Outlet Pressure. Figure 4 shows that equation 14, 

applied with 0^* = 0, sufficiently well describes 

the internal drag up to flow ratios in the order of 

w/V «=» 0.3. To obtain ratios higher than this, the 

outlet flap must be opened into the outer flow, so 

that a negative outlet pressure is obtained. Those 

points in the graph, highest in both drag coefficient 

and flow ratio, can be checked by equation 14, if 

pressure values in the order of Cp0U|- = — 0.2 are used. 

(3) Pressure loss across radiator cores: 
a) Dickinson-Kleinschmidt, NACA T.Rpt 63 (1919). 
b) Ducted Radiators, Ybk D.Lufo 1938 p.II,28l. 
c) see in reference (9,b). 
d) Becker-Baals, NACA Wartime Rpt L-6 (1944). 

(4) Efficiency of diffusers: 
a) NACA Tech Notes 1610, 2888, 3066, 3124. 
b) Aircraft Engg 1939 p.267,'ARC RM 2751 (1953). 
c) Ing. Archiv 1940 p.36l; VDI Forsch.Heft 76 (1909); 
Naumann,ZWB FB 1705(1942) ; ViillersZ.VDI 1933 p.947; 
Nikuradse, Forsch.Arbeit VDI No. 289 (1929); Kroener, 
Forschungs Arbeit VDI No. 222 (1920). 
d) Little-Wilbur, NACA T.Rpt 1201 (1954). 
e) Borda, Experiences sur la resistance des fluides, Mem. de 
1'Academie Royale des Science Paris 1763 and 1767. With 
regard to minimum efficiency of diffusors see engineering 

handbooks. 
f) ARC, Conical Diffusers, RM 2751 (1953)- 
g) NACA, Two-Dimensional Diffusers, Tech Note 2888. 
h) NACA, Roughness in Diffuser, Tech Note 3066 (1954). 

The external drag of a radiator installation depends 

upon location, shape, and size of the enclosure in 

which it is housed. Results of a basic wind-tunnel 

study are presented in figure 6. Shapes, suitable to 

house radiators, near or at the trailing edge of the 

wing, show drag coefficients in the order of CD> = 

0.06, based upon the protruding frontal area. 

0.01 m2 I 

= 0.o65 

Figure 6. Drag coefficients of three shapes (6,a) suitable to house 
wing radiators. 
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Own =0-10 

(a) Dornier (b) wind- 
tunnel investigation 

(b) CAHI, Moscow (c) 
on fuselage model 

- .21 cold 

= .18 hot 

(c) Early Me-109 
installation (o) 

(d) Example in short housing 

Figure 7. Shape and drag of several belly-type radiator installa¬ 
tions (8). 

Evaluation Of Tests. In wind-tunnel tests, the “ex¬ 

ternal” and “internal” drag components are usually 

measured together. Considering, however, that the 

momentum drag is comparatively small up to w/V 

0.1, and assuming reasonable values for the in¬ 

ternal loss coefficient > it *s possible to analyze 

experimental results and to find approximate values 

for the external drag. From the data presented in 

figures 7 and 8, conclusions are derived as follows: 

(a) Drag Near w/V — 0. Within a certain range of 

flow ratios, the total-drag function of a radiator in¬ 

stallation runs roughly parallel to the curve of the 

momentum drag. The difference indicates minimum 

external drag. At or near w/V = 0, this type drag 

is sometimes considerably higher than at interme¬ 

diate rates of flow. The additional drag is caused 

by boundary-layer losses and flow separation at the 

outside of the radiator housing. At (w/V) —*- 0, the 

air in front of the radiator duct is forced to turn 

sideways and to flow around the rim of the intake 

opening. The duct is thus overflowing, similar to a 

vessel into which too much water is being poured. 

(b) Belly-Type Radiator. Among the various install¬ 

ations, the belly type shows the highest external drag 

coefficients, evidently because of added frontal area. 

It is possible to decrease this area by placing the 

core inside the fuselage (or the nacelle), and thus to 

reduce the external drag of the installation. The 

external coefficient is between CDq — 0.1 and 0.2, 

as shown in figure 7. To keep the internal drag low, 

it is of primary importance for this type radiator to 

remove the boundary-layer in front of the intake. 

(c) Ring Radiators. The most favorable type of install¬ 

ation appears to be the “ring” radiator (figure 8), 

placed within the nose of fuselage or nacelle. The 

low drag coefficients observed for this type (C^g 

0.04) seem to be attributable to the elimination of 

any added frontal area. Variations of the ring radi¬ 

ator are the “double spinner” and the “drum radiator” 

(figure 8), both designed to obtain maximum utiliza¬ 

tion of the limited space between propeller and 
engine. 

Wing Radiators. Figures 4, 5 and 9 illustrate several 

wing installations. Locations on the lower wing side 

can produce small external drag coefficients, particu¬ 

larly in designs where the core is recessed into the 

wing. Note that the high total drag coefficient of the 

Me-109 configuration in figure 9 is caused by blunt 

shape, external roughness and internal leakage. Two 

examples in figure 9 (a and b) show that installations 

within the wing proper, with intake through the 

section nose and outlet at the suction side can also 

have low drag coefficients. Local flow angles at the 

nose vary considerably, however, with the angle of 

attack of the wing. Internal efficiency is, therefore, 

restricted to a certain range of the lift coefficient. 

Figure 10 presents an example of the wing-nose inlets 

investigated in (9,d). For the staggered position of the 

inlet lips as shown, internal recovery is qt-n sw 100% 

between CL — 0.2 and 0.6 

Lift Due To Intake. At lift coefficients above 0.5, the 

drag coefficients of the wing with the inlet opening 

as shown in figure 10, are somewhat lower than those 

of the bare wing at equal lift coefficients. It is sug¬ 

gested that the intake and the flow into the wing (and 

from there sideways out of the wind tunnel) have an 

Figure 8. Shape and drag of ring-type radiators (5). 
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Figure 9. Shape and drag of several wing type radiator instal¬ 
lations (6)(9). 

effect similar to that of boundary layer control by 

suction, thus improving the flow past the upper side 

of the wing (at higher angles of attack). The fact that 

the maximum lift coefficient (in the order of CLmax 

= 1.35) is slightly increased after adding the intake 

opening, seems to confirm this explanation. At any 

rate, as far as drag is concerned, carefully designed 

wing-nose inlets can be favorable. Duct and radiator 

arrangement inside the foil section, may be problem¬ 

atic, however, with respect to the spar or other 

structural members of the wing. 

C. DRAG OF ENGINE INSTALLATIONS 

There are particularly two types of engines for which 

internal and external aerodynamics have been in¬ 

vestigated; namely air-cooled (radial-type) recipro¬ 

cating engines and the modern turbo-jet powerplants. 

^ 63-012, c-4-ft; j?c = 4 to5 6 * 8 9 10 

SIDEWAYS INTO BLOWER 

Figute 10. Shape of a favorable wing-nose inlet (9,d). 

(5) Investigations of ring-type radiators: 
a) Junkers, Ring Radiators and "Double Spinners , Rpts 
D.5673 (1936), S.278 and S.367 (1941). 
b) Daimler-Benz, Wind-Tunnel Investigations of Ring Radi¬ 
ators, Rpt 21 (1941) and Rpts by Luftschiffbau Zeppelin 

600/185 (1941) and 600/237 (1943). 
c) Heinkel, Wind-Tunnel Investigation of Ring and Drum- 
Type Radiators, Rpt ENB 82 (1942). 

(6) Wind tunnel investigations of wine radiators: 
a) Braune, Cowlings, Blohm and Voss Rpt S322 (1944). 
b) Ehrhardt, Nacelle-Type, ZWB DM 7858 (1944). 
c) Kanold, Radiator, Messerschmitt Rpt TB 111. 
d) Junkers, Wing-Installed Radiator with Boundary-Layer 
Control, Wind-Tilnnel Rpt S. 1942/103. 
e) Messerschmitt, Me-109; Rpts Feb 1932, Aug 1939, Nov 
1939; also 109/10/L/1941 and 109/15/L1/1942. 

(8) Belly-type radiator installations: 
a) Barth, Yearbook D. Lufo 1943. 
b) CAHI, Various Installations, Rpt 517 (1940). 
c) see reference (6,e). 
d) Worth, Engine Cooling, J.SAE 1937 p.315. 

(9) Characteristics of wine-nose inlets: 
a) Winter, Radiator, Messerschmitt Rpt Sept. 1944. 
b) Harris-Recant, Ducts, NACA T Rpt 743 (1942). 
c) Nelson-Czarnecki, NACA W.Rpt L-407 (1943). 
d) Dannenberg, LE Inlets, NACA T.Note 3126 (1954). 

(10) Characteristics of radial-engine cowlines: 
a) Theodorsen, NACA T.Rpts 592 through 594 (1937). 
b) Theodorsen, Principles, J.A. Sci. 1938 p.169. 
c) Theodorsen, Nose-Slot, NACA T.Rpt 595 (1937). 
d) Schlupp, Ringb.Luft'technik, III,A,25 (1940). 
e) Robinson-Becker, NACA T.Rpt 745 (1942). 

1. Engine Cowlings. 

Air-cooled engines are usually housed within cowlings 

of the type developed by the NACA (10,a,b,c). This 

is not only done to reduce the considerable drag of 

an open installation (see in Chapter XIII), but also 

to improve the cooling of the engine cylinders. 

Internal Characteristics. Although the appearance of 

a cowled radial engine is very similar to that of a 

ring-radiator installation (figure 8), the internal flow 

conditions are somewhat different: 

a) The opening ratio or “conductivity”, that is the 

ratio of the open area across the cylinder- and baffle 

system to the total frontal area of the engine, is 

smaller than that of conventional radiator cores; f = 

Sope„ /Sn ~ K< 0.1. 

b) The pressure drop between the intake and the 

space behind the baffled cylinders is higher than 

that through an average radiator core. 

c) The flow velocity between the cylinder fins is 

approximately twice as high as that through radiator 

openings. The flow ratio w/V, on the other hand, 

(with w = Q/S0, where Q as defined below) is in 

the order of only 1 /4 of that of an average radiator 

installation. 

Internal characteristics of air-cooled engines could 

very well be handled through the methods presented 

for radiator installations. Because of the differences 

outlined above, analysis is preferred, however, in the 

form as follows 
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Conductivity (10). For a given cowling design, the 

pressure differential between front and rear of the 

engine is a measure for the rate of flow. Between the 

cylinder fins, the velocity is on the average 

wf./V = k |/Ap/q (22) 

where k is a factor smaller than, but near unity. From 

measurements taken on a test stand, the “conductiv¬ 
ity” of an engine is found to be 

K = Q/ (SaV/Ap/q ) (23) 

where Q denotes the volume of air passing through 

the system per unit time, and S0 the frontal area of 

engine cowling or nacelle. The corresponding veloc¬ 
ity ratio is approximately 

w/V = Q/ (SQV) = K y/A^Tq (24) 

In average air-cooled aircraft engines, this ratio is 

in the order of 0.10 during climbs and in the order 

of 0.03 at high flying speeds. Combining equations 
22 and 24 

f = WSc = K/k (25) 

Assuming k = 1, the value K~ f = Sopen/SQ 

represents the effective opening ratio or conductivity 

of the engine. The magnitude of K is between 5 and 

10% for baffled installations. Without baffles the 

conductivity would be in the order of K = 0.3 to 0.6. 

Internal Losses. Substituting in equation 24 the term 

5 (w/V) for Ap/q, the loss coefficient is found to 
be 

§ = 1/K2; and K = l/j/f (26) 

For K = 0.05 to 0.10, high loss coefficients are found 

in this manner for baffled engines, in the order of ~ 

100 to 400. By comparison, therefore, the losses 

occurring in the intake diffuser are of little practical 

significance. — Combining and substituting equations 

24 and 26 into equation 14, the internal drag co¬ 

efficient of radial engines is found to be 

cDn = 2 K|/(Vq) [l - l/l - (Ap/q) - CM„t] 

- Cp.Al7Sn> <27> 

For small flow ratios, the approximation 

\j 1 - (Ap/q) » (1 - 0.5 Ap/q) (27) 

can be used; and the outlet pressure Cpou.j. may be 

assumed to be zero. The resulting simple formula for 

the internal drag is: 

CDa =K(Vq)3/2 (28) 

by means of various "skirts" 

Da 
<C0o with engine) — (CD[J streamline body) 

Figure 11. Drag due to cooling of a radial engine, tested (10,a) 
and analyzed for two values of conductivity. 

The experimental points plotted in figure 11 are 

obtained from tests with an unheated engine installa¬ 

tion, for two different values of conductivity. Equa¬ 

tion 28 expresses the internal drag with sufficient 

accuracy up to about Ap/q = 0.4. Beyond this flow 

ratio, the more complete equation 27 must be used 

to describe the drag. Here, as in the case of radiators, 

assumptions must also be made for the magnitude of 

the outlet pressure at high flow ratios. For example, 

the highest test points in figure 11 are around Ap/q 

= 1-2. The corresponding outlet pressure coefficient 

must be C|,cu(. = 1.0 — 1.2 = — 0.2. Putting this value 

into equation 27, theoretical points are found which 

agree sufficiently well with the experimental results 

in that particular condition. 

External Drag. As in the case of ring radiators (figure 

8), the increment of external drag, caused by the 

cowled installation of a radial engine can be com¬ 

paratively small. In figure 11 for example, CD)tD=s 

0.035. Some more experimental data on cowled radial 

engines are presented in Chapter XIII. 

Streamline Cowling. The engine nacelles and cowl¬ 

ings investigated in (10), represent modest aircraft 

installations as around 1937. Cowlings and nacelles 

have been developed since, so that they are suitable 

for higher speeds, having higher critical Mach num¬ 

bers (10,e) and (12,c). The arrangement in figure 12 

can be considered as an extreme example, with the 
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.06 

■o4 

.02 

0 

C Dn 

Figure 12. Total drag coefficient (on maximum frontal area SD ) 
of radiator or engine installation housed in a streamline nacelle, 
without and with turbulence stimulation (11). 

powerplant (whatever type it may be) assumed to be 

located near the maximum diameter of the streamline 

nacelle- or fuselage shape. After subtracting the in¬ 

ternal drag (which is not at issue in the investigation 

quoted), the external drag is obtained. Both the 

streamline body without openings, and the ducted 

body at flow ratios (based on frontal area of the body) 

between 0.3 and 0.6, have some laminar flow along 

the forebody. The drag is equally increased in both 

conditions, after fixing transition near the nose by 

means of a carborundum strip. At any rate, the ex¬ 

ternal or parasite drag caused by inlet and outlet of 

the cooling flow, is practically reduced to zero in 

these conditions. However, at small rates of flow and 

without stimulation of turbulence, the ducted con¬ 

figuration shows higher drag coefficients than the 

solid body. The inlet opening is evidently “over¬ 

flowing” in this case; and the flow around the rim of 

the opening produces boundary layer turbulence in 

a manner similar to that as caused by the carbo¬ 

rundum strip. — As an alternative for the discharge 

through the rear end of the body, an annular outlet 

slot (at 63% of the body length) has also been in¬ 

vestigated (see in figure 12). The external drag of this 

configuration is somewhat higher than with the tail 

outlet (ACDq is between 0.005 and 0.010). With 

either outlet, the external drag coefficient (0.04 to 

0.06) is considerably smaller than those of the old-type 

nacelle installations quoted later, in Chapter XIII, 

(having total drag coefficients between 0.15 and 0.21). 

(11) Becker, Streamline Body, NACA T.Rpt 1038 (1951). 
(12) Development of body-nose inlets: 

a) Blackaby-Watson, NACA T.Note 3170 (1954). 
b) Baals-Smith-Wright, NACA T.Rpt 920 (1948). 
c) Nichols, With Spinner, NACA T.Rpt 950 (1949). 

(13) Fuselage inlets for turbo jet engines: 
a) Lockheed F-80 side inlets and McDonnell wing-root in¬ 
takes, Aero Digest April 1951 p.75. 

b) Holzhauser, Air-Induction, NACA RM A51jl9a. 
c) Keith, Wing-Root Inlet, NACA T.Note 3363 (1955). 
d) Nichols, Submerged Scoop, NACA T.Note 3437 (1950). 

2. JET-ENGINE INSTALLATIONS 

“The change in aircraft propulsion from the piston 

engine to the turbojet engine moved the slipstream 

from outside the airplane into its interior” (13,a). 

Engine thermodynamics are not a subject of this book. 

The external drag caused by the air inlet of these 

engines, shall be considered, however. 

Body-Nose Inlet. Figure 13 presents a basic body-nose 

inlet suitable for higher and possibly supersonic 

speeds. At velocity ratios (with w defined for the 

inlet area) above w/V = 0.6, the external drag of the 

configuration is «= equal to that of the solid stream¬ 

line body (tested on the sting support as shown). The 

internal recovery is close to 100% up to w/V = 1. 

0.2o 

0.15 

0.05 

S. , 12 In 0 

Cn 

SHARP INLET LIP 

T 
BOBy WITH SOLID NOSE 

0 .2 .4 .6 .8 to 1.2 

Figure 13. External drag of a ducted body of revolution (12,a). 

Internal Characteristics. Inlet openings (scoops) at 

both sides of the fuselage are employed in several 

modern fighter airplanes (13,a). To obtain adequate 

internal efficiency (recovery qin ), boundary layer con¬ 

trol is frequently applied by means of a “bleed-off” 

slot between wall and scoop opening. It seems, how¬ 

ever, that certain installations for turbo-jet engines 

are markedly different from radiator installations 

with respect to the average or predominant value of 

the inlet velocity ratio; which may be in the order of 

w;„ /V = 1. To obtain such ratios, engine instal¬ 

lations do not necessarily rely on aerodynamic pres¬ 

sures at in- and outlet opening. The flow is maintained 

down to zero speed of advance — by means of the 

engine compressor. As a consequence, stagnation of 

the boundary layer ahead of the intake opening may 

not be such a problem as in radiator inlets. The in¬ 

stallation in figure 14 (with a small “hump” inside 

the opening) has an internal loss coefficient § — 0-1 

at flow ratios w/V between ~ 0.6 and ~ 1.7. The 

configuration in figure 15 does not have either, a spe¬ 

cific control of the boundary-layer at the side of the 

fuselage. Yet the recovery ratio is qin 0.9 at w/V = 

0.3 to 1.5 and at CL between 0.4 and 1.0. 
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Figure 14 Characteristics of a scoop-type air-induction system 
designed to be used for a jet engine (13,b). 

Scoop Intake. Figure 14 presents characteristics of an 

“air-induction” system to be installed as a pair at the 

sides of a fuselage. In the vicinity of w^ /V = 1, 

the external drag caused by the intake is zero. At 

ratios below w/V = 0.8, the inlet opening is “spill¬ 

ing”; considerable parasite drag is caused by separa¬ 

tion from the outside, up to CDa = 1 (based on 

opening area). At flow ratios higher than unity, a 

negative drag component is evident. It is suggested 

that the inlet favorably affects the external flow past 

the afterbody by way of what we may call boundary- 
layer control. 

I 

Figure 15. Triangular inlet for a turbo-iet engine in the wing 
root (13,c). For comparison (left) : wing without inlet! 

Wing-Root Inlet. Another location for a pair of in¬ 

takes is at the wing roots as in figure 15. The inlet 

lips are properly staggered (as in figure 10), to pro¬ 

vide internal efficiency at intermediate and higher 

lift coefficients. To compensate for the increase in 

wing thickness (necessary to house one engine at each 

side, half in the wing and half in the fuselage), the 

root chord is increased roughly 100%. In a manner 

similar to that of the wing-nose inlet in figure 10, the 

external drag of the configuration with inlet reduces 

steadily with the lift coefficient — in comparison to the 

bare wing configuration (left side of drawing) at equal 

lift. Here again, the flow past the outside (along the 

wing-root corners) is evidently improved on account 

of boundary-layer “suction”. The lengthened wing 

root may also be considered as a fairing. At any rate, 

lift at equal angle of attack is increased through ad¬ 

dition of the engine installation. With the engines 

built-in, the same lift coefficient is, therefore, obtained 

at an angle of attack which is smaller than that of 

the bare-wing configuration. Comparing, however, 

drag coefficients at equal angles of attack, slightly 

positive increments of the external drag coefficient are 

found for the configuration including the engine in¬ 
stallation. 

Lift Due To Inflow. Another way of analysis also 

helps to explain the increment of lift as found in the 

wind-tunnel test. The mass of air taken-in through 

each opening is deflected into the direction of the wing 

chord. The corresponding component of lift is 

CLq = 2 (w/V)sinc< (29) 

Applying this equation to the configuration in figure 

15 as a correction, external drag coefficients due to 

the engine installation are obtained in the order of 

CDXQ = 0 at CL = 0 and CDxn = 0.05 (based on 
inlet area) at CL = 1. 

Figure 16. Example for a submerged-type air-induction system, 
utilizing boundary layer suction, investigated for a high-speed 
turbo-jet engine installation (13,d). 

Flush-Type Intake. On account of forced flow in 

turbo-jet engine installations, a flush-type intake open¬ 

ing can be applied such as in figure 16. Note that 

the boundary-layer control slot at the entrance does 

not effect the external (parasite) drag. The suction 

slot is helpful, however, in raising the internal effi¬ 

ciency from qjf1 = 70% (without slot) to the order 

of 90% (at w/V = 0.5 to 1.5), when applying suction 

quantities corresponding to 

C<M =Q/(v44b,„) * 2 (50) 

where 5^ indicates the displacement thickness of the 

boundary layer ahead of the opening and b;n the 

spanwise dimension of the opening. The external 

drag coefficient due to the engine installation (on 

inlet area), including a component corresponding to 

the suction quantity “Q”, is between CL = 0 and 

0.03, at w/V = 0.8 to 1.6. 
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D. HEAT AND COMPRESSIBILITY EFFECTS. 

So far, radiator and engine installations have been 

treated without consideration of heat. Heat is trans¬ 

ferred, of course, in engine-cooling systems. Heat is 

also introduced through compressibility at higher 

speeds as applied in modern airplanes. Heat as treated 

in this section, changes the internal conditions of 

cooling systems; and it thus changes their momentum 

drag. 

1. Influence Of Cooling Heat (14) 

Radiator Core. Because of heat transferred from the 

cooling liquid, the air flow is accelerated along the 

core openings. The friction drag within the open¬ 

ings increases accordingly. Also, the acceleration 

requires an additional pressure differential. The loss 

coefficient under “hot” conditions is therefore: 

l = $o(Tomb+ 0 5 AT)/Tamb + (2 AT)/(f2Tamb) 

where f = area ratio of the openings to the total cross 

section of the core, Tamb — temperature of the am¬ 

bient air, AT = temperature increase of the air while 

passing through the core, and (TQm(, 4- 0.5 * AT) = 

average temperature of the heated air within the core 

openings. Full-scale experience shows that the tem¬ 

perature increment is in the order of 

AT == 0-7 (T(,quc| Xmb) (32) 

Practical core designs have opening ratios in the order 

of 0.7. The average temperature difference (T[-qu(Ci 

— TatT,bi ) is in the order of 120°F for water and 

some 190°F if glycol is used as cooling medium in 

place of water. In practical cases, equation 31 yields 

an increase of the loss coefficient between 10 and 20%. 

Propulsion. The heated radiator duct is, in principle, 

a ram jet. The diffuser provides the compression 

needed for the operation of such a system, and the 

core adds the heat to the air. Finally, the portion of 

the duct between core and outlet serves as nozzle 

through which the jet is discharged. The resultant 

(14) Influence of heating on radiators: 
a) Goethert, Aerodynamic Drag of Radiators Including 
Heating, Lufo 1938 p.432; Trans NACA T.Memo 896. 
b) Meredith, Cooling in Ducts; ARC RM 1683. 
c) Schlupp, see in reference (l,a). 
d) Rauscher-Phillips, J.Aeron.Sci. 1941 p.167. 
e) More correctly, heat transfer is ~ (w)°-“. 

force (drag or thrust) of the heated radiator system 

can be calculated by the same methods as previously 

outlined for unheated systems. Taking into account 

the reduced density of the air passing through the 

outlet: 

</Aw = Toui/TQmb =1 +(AT/Tamb) 

equation 8 (applied for Cpou|_ — 0) then becomes 

«u/v = \ZD - [ Pswi <34> 

and equation 14 transforms into 

CBd= 2 (w/V) 

(35) 

1 ~ V[‘ - [f*(w/V)2J](1 + (AT/T-b)) 
The “hot” loss coefficient as indicated by equation 31 

must be used in this equation. Depending, therefore, 

upon the magnitude of "5 and the flow ratio w/V, 

the resultant differential of internal drag can be either 

positive or negative. 

Practical Conclusions. Figure 17 shows as an example 

the calculated drag coefficients of a ducted radiator 

system for both the cold and the heated condition, for 

two representative loss coefficients. In the range of 

low flow ratios, up to w/V — 0.10 of even = 0.15, 

a propulsive force can be expected. Its magnitude is 

small, however, in comparison to the external drag 

(listed for instance in figures 4, and 6 to 8). Up to 

about w/V * 0.10, the difference between the cold 

and the heated radiator is roughly 

ACdMq = - (0.1 to 0.2) w/V (36) 

At higher flow ratios, beyond w/V = 0.2, or = 0.3, 

the increased pressure loss across the core is predom¬ 

inant; and heated radiators then have drag values 

larger than in cold condition. Wind-tunnel results 

are presented in (14,a) qualitatively confirming the 

results derived above. 
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In Air-Cooled Engines, the average temperature 

differential between the cylinders and the am¬ 

bient air is higher than in radiators; (T^. — Tq^ 

is in the order of 250 to 350°F, and (T(j u — Tomb)/ 

^ambi = 0.5 to 0.7. The parameter (AT/%m(,) 

needed in equations 31 and 35, therefore, attains val¬ 

ues up to 0.5. Under high-speed flying conditions, 

with (A p/q)cold —0.15 and (w/V)colcj 0.03, 

for example, an engine with Kcoy 0.07 is ex¬ 

pected to show a conductivity that is decreased as per 

equations 26 and 31 to 0.063. The dec¬ 

rement is some 10%, which means that the loss co¬ 

efficient is increased from & 200 to about 240 (that 

is, by some 20%). Because of the temperature par¬ 

ameter in equation 35, the resultant coefficient of 

internal drag is nevertheless decreased from CDn = 

0.006 to —.003. Considering the internal system alone, 

the engine installation thus shows a propulsive thrust 

component (negative drag). In the range of higher 

flow ratios (corresponding to climb conditions of av¬ 

erage airplanes), the heated stream of cooling air is 

still expected to provide a drag reduction in the order 

of ACDa = —0.005, in comparison to the cold en¬ 

gine at the same mass rate of flow. 

2. Influence Of Compressibility. 

The external drag of radiator installations increases at 

subsonic Mach numbers according to the principles 

outlined in Chapter XV. In this section here, con¬ 

sideration is limited to the influence of compressi¬ 

bility upon internal characteristics. 

Increase Of Temperature. Ahead and within every 

cooling system, the air is decelerated from the flight 

velocity V to the velocity within the openings of the 

radiator core or between the fins of the engine cyl¬ 

inders. This velocity is w/f where “w” = nominal 

velocity within the cross section of core or engine 

cowling, and “f” = opening or porosity ratio ^opn/^n 

of core or engine area, respectively. Because of the 

increase of pressure associated with deceleration, a 

corresponding part of the dynamic energy of the 

air flow is transformed into heat. The increase of 

temperature (16) within the cooling openings is 

given by 

AT7Tamb = 0.2 M2 [l - (w/V)8/f] (37) 

This increment has a certain influence upon the in¬ 

ternal flow characteristics of radiators and air-cooled 

engines. Since there is no additional energy being fed 

into these systems, a propulsive component similar 

to that as found in connection with radiator heating, 

cannot be expected from compressibility, however. 

Radiators. Assuming, for example, in an average 

radiator installation w/V = 0.15, f = 0.7 and M = 

0.8, the air temperature within the core openings is 

increased by some 40°F. For water, the average tem¬ 

perature difference between the hot fluid and the 

cooling air is thus reduced from some 120 to 80°F. 

To maintain the same cooling effect, the flow ratio 

w/V must therefore be increased, at least in pro¬ 

portion to 120/80 = 1.5, in this case (14,e). The 

internal drag is consequently increased, as found 

through application of equation 35, by some 150%- 

However, at flow rates in the order of w/V = 0.1 

(as can be assumed to be prevailing when flying at 

M = 0.8), an increase of the internal drag by 150% 

only means an increment in the order of AC[ja = 

0.01, a value which may be small in comparison to 

the external drag of such an installation. 

Air-Cooled Engines. Since the velocity through the 

openings between fins and baffles around air-cooled 

engine cylinders is generally higher than that through 

the openings of radiator cores, the increase in tem¬ 

perature as indicated by equation 37 can be com¬ 

paratively small. For an engine with K = 0.07, for 

example, with Ap/q = 0.2 and w/V = 0.03 (as in 

high-speed operation of an airplane), the expected 

temperature increment at M = 0.8 amounts to some 

20°F which is in the order of not more than 7% of 

the average temperature differential (T —Tornb-L) 

of air-cooled engines. The corresponding increase of 

internal drag may be negligible in many cases. 

(15) Becker-Baals, Heat and Compressibility Effects in Internal 
Flow Systems, NACA T.Rpt 773 (1943). 

(16) Derived from treatment in Chapter XV. 
(18) Drag characteristics of air scoops: 

a) Boeck, Air Scoops, Messerschmitt TB 38 (1941). 
b) Barth, Tests, Tech Berichte, ZWB 1939 p.95. 
c) Schirmer, Ventilation, Tech Rpt Luftsch. Bau Zeppelin 
No. 500/237 (1931) and 500/264 (1932). 

(19) Drag of ventilation openings: 
a) Rogallo, Internal-Flow Systems, NACA T.Rpt 713. 
This source presents experimental results on many different 
types of openings, and some theoretical information. 
b) Winter, Tests at TH Graz, reported by Hoerner, German 
Doct, ZWB UM 7843 (1945). 
c) Rokus and Troller, J.Aeron,Sci. 1936 p.203. 

(20) Winter and Jacklitsch, Suction Effect Behind Radiator Flaps, 
ZWB Tech Berichte 1944 p.309. 

(21) Hewins and Reilly (Newport News), Condenser Scoop 
Design, Trans Society NAME 1940. 

(22) Characteristics of vents and drains: 
a) Baeuerle, Pipe Ends, ZWB UM 3220 (AVA 1945). 
b) Vick and Silhan, Drains Discharging into Subsonic Tran¬ 
sonic Streams, NACA T.Note 3359 (1955). 
c) Dewey and Vick, Outlets, NACA T.Note 3466 (1955). 
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E. INLET AND OUTLET OPENINGS 

Air scoops are primarily used to feed air into the 

cylinders of reciprocating aircraft engines. Similar 

intakes are sometimes employed in ventilation sys¬ 

tems. After passing through the airplane cabin or 

the vehicle compartment that is to be ventilated, 

the flow of air may then be discharged from some 

type of outlet. The internal drag of such systems can 

be calculated on the basis of the equations presented 

in section “A” of this chapter. The drag of inlet and 

outlet devices can also be studied separately. 

1. Drag Of Air Scoops 

Momentum, Drag. The minimum drag of the intake 

device of a ducted system is equivalent to the momen¬ 

tum of the stream tube which is diverted from the 

external flow into the opening. Disregarding the 

boundary layer on the body surface at which the 

intake is mounted, the momentum drag of a scoop 

corresponds to equation 20. In fact, three of the 

shapes illustrated in figure 18 and the two in figure 

19 are designed in such a manner that the boundary- 

layer does not get into the opening. In the scoop 

in figure 20, some volume of boundary layer is ob¬ 

viously taken in. Therefore, here as in figure 21, the 

definition of C0= 2 (w/V) is no longer perfect; the 

momentum drag must be expected to be somewhat 

smaller. For example, results in figure 22 suggest a 

constant of 1.8 in place of the “2” in equation 20. 

Figure 18. Shape, internal recovery and drag of several airscoops 
(18,a>. 

Figure 19. External drag coefficients of two airship-type engine 
scoops (18,c). 

The External Drag of an air scoop or inlet opening 

is found after subtracting the internal or momentum 

drag from the measured total drag. In figures 18 to 21, 

the external component is seen decreasing with the 

flow ratio. A minimum is found in the vicinity of a 

certain “w/V” value which depends upon external 

and internal shape, particularly of the “mouth”. Be¬ 

low this ratio the openings are “overflowing”; for 

sharp opening edges, the external drag coefficient then 

reaches values of CDxa up to 1.0, at w/V 0. By 

reducing the entrance diameter in relation to that of 

the duct, it is possible to obtain optimum shapes for 

certain desired flow ratios. The range of these ratios 

is increased by rounding the rim of the inlet opening. 

The most favorable scoops present external coefficients 

below 0.1. 

Figure 20. External and internal coefficients of a scoop (18,b) 
evaluated on the basis of C _ = 2 w/V 

Internal Losses. As far as drag is concerned, it does 

not matter how the momentum is “lost” inside a duct¬ 

ed system. For the operation of an engine it is im¬ 

portant, however, how much of the dynamic pressure 

is recovered. Figures 18 and 20 give several examples 

in this respect; and equation 5 indicates the connection 

between the recovery ratio q;n and the intake loss 

coefficient f . It is seen that those shapes in figure 

18 whose inlet opening is somewhat removed from 

the wall, have much lower loss coefficients than the 

other scoops including that in figure 20, which have 

the opening adjacent to the wall. 
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2. Drag Of Ventilation Systems 

Ventilation is needed to supply fresh air to the in¬ 

terior compartments of aircraft and other vehicles, for 

venting of fuel tanks, and to cool engine parts or other 

equipment. 

(a) Drag of Inlet Openings. 

Drag coefficients of some typical inlet openings are 

presented in figures 21 to 23. The smallest drag coeffi¬ 

cients (CDn = 0.1) are found for “streamline” open¬ 

ings similar in shape to the air scoops of figure 18. 

Blunt Scoops. Obliquely cut-off pipe ends have the 

highest external coefficients, up to Cqq = 1.5, de¬ 

pending upon the ratio of height to diameter. Figure 

23 shows three scoops with “blunt” entrance shape. 

The total drag coefficient of two of these shapes is 

approximately constant (independent of flow ratio) 

as shown in the graph for one of them. Upon in¬ 

creasing w/V, momentum drag evidently replaces 

more and more the external (parasite) drag. Drag is 

large, particularly in the flared shape. 

Figure 21. Drag of two sheet-metal ventilation intakes (19,b); 
(a) scoop type, (b) conical inlet. 

Flush Inlets. External drag is, of course, a function 

of the protruding frontal area of the inlet scoop. The 

recessed type in figure 24 has an average pressure co¬ 

efficient in the order of Cp = + 0.32. With respect 

to drag, the graph indicates some value at w/V 0. 

In the range of higher flow ratios, the total drag is 

considerably below the value as per equation 35. It 

is suggested that in this case (where only boundary- 

layer material is taken into the duct), the momentum 

drag coefficient (referred to the cross-section area of 

the duct) roughly equals the pressure coefficient Cp. 

SHAPE OF OPENING ^Dmiri & 
1.0 >1 2.7 
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bi %■:. 

.15 09 2.0 
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Figure 22. Aerodynamic characteristics of several inlet openings 
(air scoops), tested in (19,a). Height (diameter) of the scoops 
h = 2 to 6 inches; thickness of boundary layer (without openings, 
at same location, 6 = 1 inch. Drag coefficient based on d*ir/4. 

Internal Characteristics. With regard to internal 

losses, figure 20 presents the inlet efficiency of a stream¬ 

line opening. As mentioned before, the total pressure 

inside the intake is a function of the boundary layer 

originating ahead of the opening. Although in the 

case as illustrated, the thickness of this layer is but 

1% of the height of the opening, the pressure re¬ 

covery at w/V = 0 is only 81%. The boundary layer 

evidently accumulates in front of the inlet. The loss 

coefficient (equation 2) reaches a minimum of $ = 

0.58 in that example, in the vicinity of w/V = 0.7. 

— Holes, simply cut into the surface of a wall, have a 

recovery close to zero. Such openings can only take-in 

air by means of positive static presure superimposed to 

the location of the opening, or if there is a negative 

pressure gradient provided somewhere inside the duct, 

such as by a blower. However, the recessed type of 

opening in figure 24, has a recovery in the order of 

30% without artificial help. Still better character¬ 

istics are obtained with the opening in figure 28, 

designed to be used in the condenser cooling system 

of steam-powered ships. 

Figure 23. Characteristics of three ''blunt" scoops. 
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0 o.l 0.2 o,3 o.4 V 

Figure 24. Drag of a recessed type of air intake (19,c). 

(b) Drag of Outlet Openings 

In some ventilation systems, outlet openings are not 

provided at all. The flow of air fed into the passenger 

compartment of an airplane or under the hood of an 

engine, may escape at random through gaps or open¬ 

ings in the skin of the craft. Under such conditions, 

the momentum of the outflow is usually wasted, so 

that equation 20 represents the final value of the in¬ 

ternal drag of such systems. It is more economical, 

however, to install suitable outlet openings such as 

the more favorable ones in figures 25 to 28. Provided 

that the outlet discharges in downstream direction, the 

internal drag in these systems reduces, and the rate of 

flow is increased. 

(24) Ramshorn, Wind-Tunnel Investigation of Double-Spinner 
Models, Rpt by BMW (Munich) presented at Propeller 
Meeting at DVL April 1940. 

(25) NACA, Rotating Cowling, Rpt RM A54G14. 
(26) Efficiency of three-dimensional diffusers: 

a) Gibson, Diffusers, Proc.Roy.Soc. London A No.563 1910 
p.366 and Trans Roy.Soc. Edinburgh 1913 Part 1 p.97. 
b) Peters, Ing.Archiv 1931 p.92; NACA T.Memo 737. 

Momentum. Equation 9 (indicating rate of flow) and 

equation 14 (indicating momentum drag) are also 

applicable to ventilation systems. It is convenient, 

however, to measure w in the cross section of the 

inlet- or outlet section, respectively; to refer the drag 

coefficient to the corresponding cross-section area, and 

to reduce the internal loss coefficient of the system to 

the same area. Considering an outlet opening sep¬ 

arated from the rest of the system, a thrust component 

is obtained (originating within the elbow or some 

other place ahead of the discharge opening). Applying 

equation 13, this thrust, equal to negative drag, is 

found to be 

CDootn = - 2 KW (40) 

By subtracting this component from the drag measured, 

for instance, on a wind-tunnel balance, the external 

drag coefficients are obtained as plotted or listed, re¬ 

spectively, in figures 25, 26 and 27. 

V 

a) conicol sheet-metal shape (19,b) —.25 

30 m/«c 

b) ditto, with estimated (19,b) —.18 0.20 
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Figure 26. Suction pressure and external drag coefficient at zero 
flow, of several outlet openings. 

Drag Analysis. In figure 25, an analysis is presented 

of the drag of a typical outlet opening. After sub¬ 

tracting the “negative” internal component, indicated 

by equation 40, there remains an external drag coeffi¬ 

cient. This component is subdivided into two parts, 

some parasite drag originating on the exterior of the 

outlet, and the “base” drag which corresponds to the 

negative pressure (if any) behind the opening. As far 

as outlet nozzles (directed downstream) are con¬ 

cerned, analysis of experiments (20) indicates that 

this pressure varies with the flow ratio roughly as 

Cpoo+ = C^to [(V - wou0/v]6 (41) 

where C pou-tQ indicates the negative “base” pressure 

at w/ V = 0, corresponding to the shape of the outlet. 
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2 
Figure 27. External drag coefficient (at w/V = 0.5; on d ft/4 ) 
and suction pressure coefficient (at w/V = 0) of several outlet 
shapes (19.a1. Boundary-layer thickness 6 = (0.3 to 0.5) d. 

A plot of this function helps to understand the vari¬ 

ation of the drag coefficient in figure 25. Referring 

velocity ratio and drag to the downstream-directed 

outlet opening (Sn) the total drag coefficient of a 

ducted system is 

CDq= D/qSQ = 2 k (w/V) - 2 (w/vf + CW~Cpout 

The first term is as in equation 20. The second term 

represents the jet thrust of the stream leaving the 

system. “CDxQ ” indicates the external (parasite) 

drag, excluding the suction pressure at the outlet (if 

any), which in turn is added as the last term of the 

equation. The factor in the first term is k = 1 or 

somewhat smaller than that (in cases where boundary 

layer material is taken into the system). 

Streamline Openings. The most favorable inlet open¬ 

ings may be the scoop types (in figures 18 through 22). 

Among the outlet openings (shown in figures 25 to 

28), the hood-like shapes have the lowest drag coeffi¬ 

cients. Judging, however, the merits of inlets and 

outlets, the pressures provided by them, must be con¬ 

sidered too. It is favorable in this respect, to place a 

diffuser directly behind the intake. In regard to the 

outlet it is usually favorable to place a diffuser ahead 

of that opening and to increase its geometrical size, 

rather than to employ an outlet shape which, on ac¬ 

count of its more negative pressure coefficient, may 

help to obtain the desired rate of flow. 

Figure 29. Characteristics of several flush-type discharge openings 
(22,c). Subscript "o” indicates w/V = 0; subscript ".5" denotes 
conditions at w/V == 0.5. 
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Figure 28. Pressure coefficients (and estimated drag coefficients) 
of several marine-type condenser-water outlets (21) and of one 
inlet opening. 

Outlet Thrust. Wind-tunnel tests (22,c) on various 

flush-type outlet openings give information on drag 

as a function of discharge ratio (w/V). Figure 29,c 

indicates zero drag for w/V = 0. Shape “d” has a small 

external drag coefficient (in the order of 0.06). As¬ 

suming that in the straight outlets, the discharging 

jet does not turn around the downstream corner where 

the pipe meets the outer surface — the thrust “T” of 

the outlet is theoretically 

CT = T/ (q SQ) = 2 (w/vf cosot (44) 

Tested coefficients are larger, however, as listed in 

figure 29,a and b for w/V = 0.5. Some suction evi¬ 

dently originates at the downstream edge of the open¬ 

ings, thus pulling the discharged stream somewhat 

around. 
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Vent Openings. Figures 30 and 31 present outlet pres¬ 

sures and drag coefficients of various pipe ends used 

as vents (without in- or outflow) for aircraft fuel tanks 

and as drains in places where oil drippings or water 

may accumulate. The highest suction pressures are 

produced by pipes cut off in a direction parallel to 

the general flow. The lowest drag coefficients (on 

frontal area) are found in the inclined shapes. 

*1 I— 
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, s„ - d y* 
yes rff/s/S/fcsr*U'• 

square end with: 

CDa = 0.8 and Cp= - 0.7 at Rd below 3 * 1(1 
CQa = 0.4 and Cp =* — 0.8 at Rj above 5 * 1 Or 

cut off at 45° with 

CDa = 0.9 and Cp = + 0.5 in positive direction 

W =■ 0 f ^jl C0o = 0 8 and Cp “ ~ 0 6 in n®9Qtive direction 

■ tf11 'S/S',/'/'/, '/"1" 

POSITIVE 

’bl 
NEGATIVE 

Figure 30. Drag and suction pressure of simple vent openings 

Figure 31. Drag of various simple types of protruding vents 
(22,b) at w/V = 0. Shapes (a) to (c) are pipe ends; shapes 
(d) and (e) are of elliptical cross section. Drag coefficients on 
projected frontal area. 

SUPPLEMENTARY NOTES 

Efficiency Of Diffusers. There are several definitions 

of efficiency possible. We will apply the pressure ra¬ 

tio as follows; 

>iP = (p2- i>)/(q,- q2) (50) 

where “2” indicates average conditions at the larger, 

and “1” those at the smaller end of the diffuser. Effi¬ 

ciency is a function of the area ratio (S2/S,) as well 

as of the opening angle “2 e ”. Figures 32 and 33 

present experimental results on diffusers placed within 

ducts, where the velocity distribution ahead of the 

expansion may have reached a final shape similar to 

parabolic. This is not the condition found in air- 

intake openings of engine or ventilation systems. It is 

felt, however, that the material presented may help to 

understand the mechanism of “diffusion”. — As a 

function of area ratio, equation 18 indicates a lower 

limit for the efficiency. Figure 32 shows that diffusers 

with opening angles (2 £■) above 90° follow that 

equation closely. Figure 33 demonstrates maximum 

Figure 32. Efficiency of conical and similar diffusers as a function 
of the expansion ratio (Sj/S, ). 

efficiencies in the order of 90% for diffuser angles 

(2 £) between 5 and 10°. Above this range, efficiency 

decreases rapidly to (and below) the level as indicated 

by equation 18. Between (2 £) = 50 and 100 , it is 

suggested that fluctuations, with the flow swinging 

from one side of the diffuser to the other, produce 

additional losses of momentum. Flow separation can 

be reduced or postponed by certain obstacles such as 

screens or by vanes. One obvious remedy is the appli¬ 

cation of partitions, dividing a diffuser into a num¬ 

ber of smaller units, each having a reduced angle. — 

Analysis of the experimental material leads to certain 

optimum dimensions of a diffuser. The optimum 

length ratio is very roughly 

(1/d,)opt= 3 (VS.) - 1 (51) 

This empirical function applies to three-dimensional 

diffusers, under the conditions as stated above, at area 

ratios (Sj/Sj) between 1 and 5. 

• conical, S,/S, =* 2.34 (26,b) 

Figure 33. Efficiency of conical and similar diffusers as a function 
of the expansion angle (2 S). 
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Figure 34. Three examples of intake openings for jet engines Figure 35. Two examples each (19,a), of inlet and outlet openings 
housed within the fuselage. in a streamline foil section. 

Fuselage Inlets have been discussed on pages 9-9 and Ventilation Openings. Figure 35 presents examples 

-10. Figure 34 gives an illustration of three different of inlet and outlet openings demonstrating the influ- 

methods of getting the required volume flow of air ence of location on a simple type of wing section. In- 

into jet engines housed within the fuselage- The nose take is favorable either at the stagnation point or 

inlet “N” takes-in air with high efficiency; it is sub- within the boundary layer near the trailing edge. In 

sequently difficult, however, to get the air flow ducted regard to outlet, a forward location provides more- 

past the pilot’s compartment into the engine. The negative pressure coefficients, while aft locations give 

other two types of intake need some boundary layer a lesser drag coefficient (down to zero). Attention 

control as noted, in order to obtain adequate internal is invited to other valuable statements made at the 

efficiency. end of reference (19,a). 

Figure 36. Drag coefficient of three smooth nacelle models (having a-1 ft diameter 
and 1/d = 5), designed to house a radial engine, tested at 37 m/sec and RL = 
4 • tO6. The outlet openings are closed and faired (zero internal flow). The slender 
forebody shape of the last two forms provides smooth external flow and a high critical 
Mach number (M = 0.8 in comparison to 0.6 in the first shape). The reduction of 
drag between second and third shape is essentially due to decreased wetted area. The 
source (24) also gives some proof for the correctness of equation 29 (indicating lift 
produced by internal flow). To accommodate a propeller, the cowling has to be cut at 
the location marked by arrow. The resultant "Double spinner” (rotating with the pro¬ 
peller) is a device considered for application in modern turbo-prop installations; see 
for example (25). 
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CHAPTER X - HYDRODYNAMIC DRAG 

Within the larger field, of fluid dynamics, the term 

“hydrodynamic” can refer to incompressible flow 

characteristics in any fluid, including air at low Mach 

numbers. Water tunnels have accordingly been used 

for aerodynamic testing. In the following, however, 

“hydrodynamic” is meant to indicate flow character¬ 

istics which are typical of liquids. Among the liquids 

involved in engineering applications, the water is pre¬ 

dominant by far. Therefore, “hydrodynamic drag” 

essentially means that of bodies moving through water. 

Boats and ships are not treated, however, in this place. 

The chapter is subdivided, describing characteristics 

in fully submerged condition, in cavitating flow, and 

those of bodies piercing the surface. 

A. FULLY SUBMERGED BODIES 

All that has been said in previous chapters about 

boundary layer, Reynolds number, skin friction, flow 

separation, pressure drag, lift (if any) and so on — 

basically also applies to bodies placed in a stream of 

water. Disregarding the phenomenon of cavitation, 

therefore, the following first section primarily needs 

to amplify the aerodynamic findings by presenting 

characteristics which are peculiar to water and possibly 

different from those of the same shapes in air. 

Skin Friction. It should be noted that in the ‘‘skin 

friction” chapter, experimental results are included 

on skin friction, obtained by towing plates or pon¬ 

toons in water tanks. Schoenherr’s function of the 

turbulent drag coefficient (equation 26 in that chap¬ 

ter; based on experiments performed both in air and 

in water), is becoming more and more the preferred 

formulation, used in the prediction of skin-friction 

drag of ship hulls. So, basically there is no difference 

between water and air with respect to frictional drag, 

if using the non-dimensional formulation of drag 

coefficient as a function of Reynolds number R^. 

Fish. Observation of fish has led to the conclusion 

that the hydrodynamic efficiency in moving through 

water is high. Fully laminar flow must be assumed, 

for example, to explain speeds up to 40 ft/sec as pro¬ 

duced by a barracuda (l,a) having W — 30 lb, 1 = 

4 ft and R^ ~ 107. Rather than claiming that the 

slimy skin (l,e) of such animals would reduce the 

frictional drag — it is suggested that the absence of 

any noisy, rattling or vibrating mechanisms (such as 

in all man-made craft or in wind tunnels and towing 

tanks) favors maintenance of laminar boundary-layer 

flow, up to and beyond a Reynolds number Rj= 107. 

This appears to be quite likely upon inspecting 

figure 9 in the “skin friction” chapter (l,d). 

Critical Reynolds Number. Partly laminar skin-fric¬ 

tion is a continued difficulty in the tank testing of 

ship hulls; it makes their viscous drag indeterminate. 

Forced stimulation of turbulence is, therefore, now¬ 

adays applied at least in smaller models and in fuller 

shapes. Disregarding such stimulation, there appears 

to be some systematic difference, however, in the 

transition Reynolds numbers as found in water and 

in air, respectively. As explained in the chapter on 

“pressure drag”, drag coefficient or rear-side pressure 

coefficient of smooth spheres or circular cylinders can 

be used as an indication for the turbulence level 

in a stream of fluid. Results of such tests are plotted 

in figure 1, against the critical speed Vrt.;p = Rcry/d. 

It is seen that the critical Reynolds number gener¬ 

ally increases with speed. This means that in one 

IN RESTING AIR (3): 
o NACA, Autogiro (a) 
• DVL, in flight (b) 
IN WIND TUNNELS (3): 
■ NACA 20 ft. tunnel (a) 
° DVL, tunnels (b) 
♦ ARC, CA Tunnel (f) 
O ARC, W'tunnel (e) 
* NACA, VDT tunnel (a) 
A Brunswick tunnel (b) 
IN WATER (5 and 7): 
D Krey, spheres (5,c) 
A AVA, water tunnel (5,a) 
x Eisner, cylinders (7) 
* Hoerner, sphere (2) 
+ CAHI, cylinders (5,b) 

0 50 100 ISO 200 

FIGURE 1. Transition R’number of spheres and cylinders, in air 
and in water, as a function of critical speed. 
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and the same tunnel, for instance, a smaller sphere 

passes the critical phase at a somewhat higher, and a 

larger sphere at a somewhat lower Reynolds number. 

Experiments in water are generally at lower speeds 

than those in air (with sphere diameters in the same 

order of magnitude). Plotting against the critical 

speed, shows that the available experimental points 

correlate fairly well with each other, on several levels 

of turbulence. Whether or not the result is accidental 

or is justified by some physical law is not known, how¬ 

ever, to the author. It appears, at any rate, that under 

similar stream conditions (resting or moving fluid, 

respectively), the critical number in water may rough¬ 

ly be in the order of half of that in air. 

Foil Sections. The turbulence effect in water is also 

demonstrated in figure 2, where the profile-drag co¬ 

efficient of a laminar-type foil section, tested by wake 

survey in a towing tank (4,a) is seen to be on the 

turbulent level — while in a wind tunnel, the same 

section^shows predominantly laminar flow up to Rc 

= 710- Results on the 0012 foil section in air and 

water, are also plotted in the graph. Variation of the 

drag coefficient against R’number, appears to be shift¬ 

ed, approximately in a ratio of 1 : 2, because of the 

turbulence effect mentioned above. 

Surface Roughness. It is explained in the chapter on 

“surface imperfections”, that the influence of surface 

roughness on turbulent skin-friction drag only starts 

at certain “critical” Reynolds numbers. For sand-type 

roughness, the coefficient Cp is then only a function 

of the roughness grain size "k”. Figure 3 has been 

prepared for average water, with a viscosity v" *• 

1.3/105, (ft^/sec). The critical or “permissible” 

sand-grain size is approximately 

=8/v«> 
Comparing conditions in water at comparatively 

small speeds, with those of airplanes at their much 

higher speeds, the permissible sand-type roughness 

FIGURE 2. Minimum drag coefficient of 0012 and of laminar- 
flow-type foil sections, tested by wake survey in towing tanks and 
in wind tunnels (4). 

Y 

FIGURE. 3- Permissible size (“diameter”) of particles or grains 
on surfaces in tangential water flow. 

size in these two cases, appears to be in the same small 

order of magnitude; for example, of 0.5 mil at 16 

knots in water. The rough and average values in 

table A show that in ships, the grain size is usually 

well above the permissible. For example, surfaces 

treated with common marine paint, grow too rough 

at speeds in the vicinity of 4 knots. Information on 

drag above the critical roughness Reynolds number 

is given in Chapters VI and XI. 

Type of Surface k (mil) 

polished — shining — smooth--0 

aeronautical production paint - —-- 1 

“smooth” marine paint (6,a)-— 2 

bare steel plating (6,c) — — — — —-2 

average galvanized metal (6,c) - — —-6 

Navy hot plastic coating (6,a)--9 

ordinary wood in water (6,c) - - —-20 

average concrete surface (6,c) --— — 50 

average barnacle growth (6,b)-200 

Table A. Rough indication of average grain sizes 
(diameters) in physical surfaces. 

Pressure Drag. Some of the experimental results on 

spheres and cylinders presented in the chapter on 

“pressure drag” have been obtained in water tunnels 

or towing tanks. Results in water, on other deeply 

submerged, two-dimensional bluff shapes in non-cavi- 

tating and non-ventilating flow are presented in figure 

4. Most of the coefficients can be checked against 

those of corresponding shapes listed in the illus¬ 

trations of the Chapter III. The coefficients of such 

□ 0012 wind tunnel (TN 1945) 
■ 0012 Stevens tank-(4,d) 
x in tunnels EQH-1260-(4,a) 
• in tank — Reference-*■ (4,a) 
O 66-116 in wind tunnel— (4,c) 
k 66-021 in towing tank — (4,b) 
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C^.- 0.W 0.33 

_ t _ 
06V a29 082 &63 o.2o o2o 0.10 

A A A 

FIGURE 4. Drag of various shapes (7,a) in two-dimensional 
flow, towed in water (between end plates'); c ~ 1 ft, V = 12 
ft/sec, Rc « 10e, c/t = 6. 

(1) Information on drag of fish: 
a) Gero, Power and Efficiency of Large Salt-Water 
Fish, Aeron’l Engg Review January 1952 p.10. 
b) Taylor, Analysis of Swimming Animals, Proc. 
Roy. Society (London) Ser.A 1952, No. 1117 p.158. 
c) Gawn, Fish Propulsion, Trans INA 1950 p.323. 
d) The alternative explanation is that the bio¬ 
logical efficiency of fish is higher than expected. 
The thrust/weight ratio is up to 2.5 and 5.0; see 
"Novitates”, Am. Mus. Nat. History No. 1601, 1952. 
e) Tank Experiments on Pikes, Zts. der Verglei- 
chenden Physik 1932 No. 2.A pike was towed alive 
(anesthetized), with and without slime, and also 
a wax model. 

(2) Hoerner, experiments on spheres: 
a) Towing in Air by Airplane, Reference 3,b. 
b) Gibbs & Cox Gorp. In Water by Boat, 1952. 
c) In Water-Tunnel, Fieseler Rpt 2 (1939). 

(3) Characteristics of spheres tested in air: 
a) Mostly in Wind Tunnels, NACA Tech Rpt 558. 
b) Hoerner, Experiments with Spheres Turbu¬ 
lence Roughness Lufo 1935 p.42; Translation 
NACA T.Memo 777. 
c) DVL in Large High-Speed Tunnel, see in (b). 
d) AVA (Winter), Large Tunnel (No. VI), 1939. 
e) In Wind Tunnel, British ARC RM 1662. 
f) In Compressed-Air Tunnel, ARC RM 1832. 

(4) Characteristics of foils tested in water: 
a) Fage and Walker, Laminar-Flow Aerofoil in 
Froude Tank, British ARC RM 2165 (1948). 
b) Townsin, Low-Drag Hydrofoil, Paper INA, 1954/S. 
c) For Comparison in Wind T unnel, N AC A TR 910. 
d) Locke, 0012, Stevens ETT, T. Memo 42 (1939). 

(5) Critical Reynolds numbers in water: 
a) Drescher, Spheres, Yearbk D.Lufo 1941, p.1,714. 
b) Konstantinov, Cylinders, see reference 18,e. 
c) Krey, Sand Grains and Spheres in Water, Mit- 
teilungen Pr.Versuchsanstalt W’bau Schiffb. Berlin 
Rpt No. 1 (1921). 

(6) Influence of roughness in physical surfaces: 
a) Couch, Friction Tests of Ship-Bottom Paints, 
Taylor Model Basin Rpt 789 (1951). 
b) Amtsberg, on Ship Hulls, Schiffbau 1937 p.135. 
c) Hopf-Fromm, Z.A.Math.Mech. 1923 p.239, 339. 
d) Kempf, Ybk.STG,1937,159; TransINA 1937, 159. 
e) Todd (TMB), Trans Society NAME 1951 p.315. 
f) Moody, Pipe Friction, Trans ASME 671 (1944). 

(7) Drag of bluff shapes in water: 
a) Eisner, Drag Characteristics of Cylinders in Tow¬ 
ing Tank, Mitt.Pr.VAWS Berlin 1929, No. 4. 
b) ARC, Drag of Sea Anchors, ARC RM 425. 
c) Guide Vanes on Cylinder, TMB Rpt 504. 

shapes can be considered to be comparatively constant 

with regard to Reynolds number. Figure 5 gives drag 

characteristics of several “sea anchors” and “disks”. 

The “bucket” shape has characteristics similar to 

those of parachutes (Chapter XIII). The high drag 

coefficient of the “collared” disk is caused by wig¬ 

gling and swaying motions; these too are similar to 

those of parachutes. 

q.6,'4, 

PLAIN DISK ON TOW POD 

MV 

DISK WITH COLLAR 

■XI c„~ I.80 

FIGURE 5. Drag coefficients (on S.) of sea anchors and disks 
(7,b) tested in towing tank. 

Guide Vanes. Results on reducing drag due to sep¬ 

aration, by means of guide vanes, are presented near 

the end of the “pressure-drag” chapter. Figure 6 dem¬ 

onstrates that the drag of cylinders (at subcritical 

R’numbers) can be reduced by adding a pair of 

guiding plates or vanes, respectively. Vibrations 

caused by the “vortex street” originating from the 

cylinder are successfully eliminated in this manner, 

or changed to permissible frequency and amplitude, 

for example in submarine periscopes. 

FIGURE 6. Drag coefficient CD of a cylinder (d = 15/16 inch, 
length = 2 ft below end plate) tested in water (7,c) at 7 knots 
(at Rj = 7 lCr). Drag and oscillations are reduced by means of 
guide vanes as shown. Screws placed 2.5 cylinder diameters apart. 
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FIGURE 7. Drag coefficient of a torpedo having 1 /d ~ 15, model 
and full scale; (8) and (17,e). 

Streamline Bodies. The drag of streamline bodies 

basically corresponds to the drag coefficients presented 

in the chapter on “streamline bodies”. Figure 7 pre¬ 

sents as an example the drag coefficient of a torpedo, 

tested in a wind tunnel, towed in a tank and as 

evaluated from full-scale runs (where fins and surface 

roughness are present, not simulated in the models). 

In proximity of the water surface, additional drag 

originates in these and in any other type of bodies — 

because of the deformation and a wave pattern pro¬ 

duced in that surface by the displacement of the 

moving solid. This drag component is treated in the 

chapter on “ships and boats”. 

B. DRAG CHARACTERISTICS IN 

CAV1TATING FLOW 

To be complete, it is mentioned here that the com¬ 

pressibility of water is “very” small. The corres¬ 

ponding speed of sound (or of pressure propagation) 

is very high in water (in the order of 4700 ft/sec). 

Hence there does not seem to be any practical appli¬ 

cation in sight, where compressibility would have to 

be considered in streaming water. However, the phe¬ 

nomenon of cavitation restricts very much the speed 

up to which a flow pattern in water can be expected 

to be identical to that around the same shape in an 

air stream. Above a critical speed, a mechanism takes 

over which is different from that in non-cavitating 

condition. Two aspects of cavitation can be presented 

with engineering accuracy as of this time; the critical 

speed and/or pressure at which cavitation starts, and 

the drag of selected bodies in the final phase of full 

cavitation. 

1. Fundamentals Of Cavitation 

FIGURE 8. Standardized critical cavitation speed (defined in text) 
as a function of 0. 

80 

60 

20 

kNOTS ~2jm: 

\ 

Mechanism Of Cavitation. Some fundamentals and 

analyses of cavitation are presented in (10). Vapor¬ 

ization is the growth of a bubble. Gas-filled bubbles 

(usually microscopic in size, called nuclei) must be 

present first, either within the stream of water or 

hidden in “crevices” at the surface of solid obstacles 

or walls. Without them, water does not vaporize (boil 

or cavitate) at all. In most engineering applications, 

the volume of air contained in water is near or even 

above saturation, a status which, for example, corres¬ 

ponds to some 2% of air measured by volume, in 

"standard” open-surface water. Therefore, vapor¬ 

ization (boiling or cavitation) usually starts at or 

close to the vapor pressure, which is a function of the 

water temperature. The static pressure of a certain 

stream tube of water reduces when entering the low- 

pressure field at the sides of an obstacle. Approaching 

r 
CRITICAL CAVITATION NUMBER <% 

4 .8 1.0 1.2 14 1.6 1.8 .2 •6 
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the level of the vapor pressure, very small air-filled 

bubbles appear first. Subsequently, the water vapor¬ 

izes into these bubbles, thus forming continuous and 

larger voids (steady-vapor or “sheet” phase). At the 

rear end of or behind the obstacle, the vapor con¬ 

denses again, while air bubbles (in some form) remain 

in the wake. 

Cavitation Number. The tendency or preparedness of 

a water flow to cavitate, is indicated by the cavitation 

number (10,d) 

— (Pambi _ Pvap.)/^ (2) 

2 
where q = 0.5 9V. At standard temperature 

(59°F) the vapor pressure is comparatively low; 

= 331b/ft2, corresponding to a head of 0.53 

ft fresh water. This is less than 2% of the sea-level 

atmospheric pressure. Therefore, disregarding the 

value of pvapC)r (at pan,b;*nt equal to or higher than 
the atmospheric pressure), the cavitation number 

appears approximately as the ratio of the undisturbed 

static to the dynamic pressure of a flow of water. 

Erosion. There are two consequences of cavitation, a 

change in hydrodynamic forces, and erosion. With 

regard to erosion, it seems that the predominant 

effect is the mechanical hammering (impact) at spots 

where vapor-filled cavities suddenly collapse upon the 

surface of the body involved. As an example, figure 17 

presents the cavitation phases of a hydrofoil- or tur¬ 

bine-blade section (in two-dimensional flow). There 

is a final “super-cavitating” flow pattern in which the 

cavity collapses behind the body. Erosion does not 

occur in this phase; that is, not on the body that pro¬ 

duces cavitation and cavity. 

2. Onset Oj Cavitation 

In engineering applications, it is usually desirable to 

avoid cavitation. Knowledge of the critical conditions 

at which cavitation first starts, is therefore important. 

Critical Speed. Disregarding the value of p vapor , the 

critical dynamic pressure at any free water surface is 

05 9 v=2nt =Pat/6; (3) 

where <&i = “incipient” cavitation number. On the 

basis of an atmospheric pressure (at sea level) of paj. — 

2120 lb/ft2 (corresponding to a water head of 34 ft), 

and for an average sea-water mass density of q = 2 lb 

sec^/ft^, the corresponding “standard” critical cavi¬ 

tation speed at the free surface of water is 

Vcnt = 46/\^T (ft/ sec) = 27/(knots) 

as plotted in figure 8. For bodies submerged at some 

depth “h” below the surface, the critical speed is 

higher in proportion to \/(34 -f h)/34, with h in ft. 

Critical Cavitation Number. The static pressure ex¬ 

hibits a minimum value somewhere at the surface of 

an obstacle. The corresponding reduction of the static 

pressure is indicated by 

(Pmln — Pamb)Al = Cpmin (5) 

For the critical condition of pmin = pvapor > com¬ 

bination of equations 2 and 5 tentatively leads to the 

critical cavitation number 

= Cptnin = |Cpm;n| (6) 

where the subscript “i” (from incipient) indicates 

the onset of cavitation. In experiments, the onset is 

determined by visual observation, by watching the 

sound level associated with the collapse of vapor 

bubbles, or by the divergence of lift-, drag- or other 

hydrodynamic coefficients from their undisturbed 

levels. 

(8) Drag of Torpedo, German Doct ZWB UM 6421. 
(10) Information on the mechanism of cavitation: 

a) Ackeret, Investigations in Cavitation, Tech 
Mech & Thermodynamik Vol. 1 of Forschung 
Ing’wesen 1930 p.l; Transl TMB No. 20 and 
NACA T.Memo 1078. 
b) Eisenberg, Mechanism of Cavitation, TMB Rpts 
712 (1950) and 842 (1952); see also in Forschungs- 

hefte fur Schiffstechnik No. 3/4 (1953). 
c) Knapp, Cavitation, Mech Engg 1954 p.73. 
d) Thoma, Trans World Power Conf. 1924, 2p.536. 
e) Daily, Layer, ASME Paper No. 1955-A-142. 

Three-Dimensional Shapes. Figure 9 presents the 

critical pressure coefficients of a series of three-di¬ 

mensional head shapes (at zero flow angle), as a 

function of their length ratio x/d. In slender shapes 

(as long as the flow is attached to the sides), the 

critical number is approximately equal to the abso¬ 

lute value of the minimum pressure coefficient. It is 

seen that the cone-cylinder combinations have con¬ 

siderably higher critical coefficients than the more 

streamlined forms; this means, of course, that the 

streamline shapes can stand a considerably higher 

speed before cavitation starts. 
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FIGURE 9- Pressure coefficient and incipient-cavitation number of 
2 series of three-dimensional head shapes (11). 

Vortex Cavitation. The minimum pressure around 

a given obstacle does not always occur at its surface. 

The minimum may be found within the vortex cores 

originating from the tips of propeller blades, for ex¬ 

ample. Vortices are also present in the separated flow 

pattern past blunt or bluff bodies, such as plotted 

near x/d = 0 in figure 9. In these shapes, cavitation 

starts within the fluid (at some distance away from 

the body’s surface) at cavitation numbers <4 which 

can be appreciably higher than the absolute value of 

the minimum-pressure coefficient as measured on the 

surface of the solid. In the conical shapes of figure 

9, flow separation is, of course, more predominant 

than in the rounded forms. The transition from sep¬ 

arated to attached flow conditions is possibly discon¬ 

tinuous. 

Disk. Figure 10 presents the flow pattern past a fully- 

cavitating disk. The pressure within the cavity is com¬ 

paratively constant and ^ equal to the vapor pressure. 

A steep positive pressure gradient accompanies the 

transition (or collapse) of the cavity into the wake. 

The critical cavitation number of the disk is <o\ = 0.73, 

indicating onset of cavitation in a ring-shaped vortex 

(18,b). Steady-state cavitation from the rim of the 

disk starts at <5 = 0.55; this value is practically equal 

to the non-cavitating pressure coefficient at the rear 

of the disk (Cpreat. = — 0.54) as reported in that 

source. 

A i.o 
DISTANCE *. ./d 

Rahtotuii 

r DYNAMIC PRESSURE LEVEL - 
s 

“ d * 1.5 e’n. 
V - 2.6 f*/«c 
<V- U 

FIGURE 10. Flow pattern of a cavitating disk, and static pressure 
along the axis (18,b). 

Round Bodies. Critical cavitation numbers of cir¬ 

cular cylinders (tested between walls) are marked 

in figure 15. Cavitation starts in the separated space 

behind the cylinder (d; >|Cpwin|). The coefficients 

also depend upon the basic flow pattern corres¬ 

ponding to subcritical or supercritical Reynolds num¬ 

ber, respectively (see in the “pressure-drag” chapter). 

At subcritical numbers, deviation of the drag co¬ 

efficient only starts at cavitation numbers which are 

appreciably lower than (si as defined by the first 

appearance of cavities. Roughly, drag divergence 

starts when 6 =; |Cpm,n| on the cylinder surface. — 

The incipient cavitation number of the sphere at 

supercritical Reynolds numbers is in the order of 1.8, 

while Cpmi(1as — 1.1 in this case (16). 

FIGURE 11. Pressure coefficient at the sides of symmetrical foil 
sections (at zero lift-) and cavitation number. 

Streamline Sections. Figure 11 presents pressure char¬ 

acteristics of symmetrical foil sections at zero angle of 

attack. Assuming that the influence of the afterbody 

upon the flow pattern past the forebody may be of 

secondary importance, the coefficients are seen to in¬ 

crease in proportion to the thickness ratio of an 

equivalent, approximately elliptical section as illus¬ 

trated. The result 

~ l^pmcol - 2.1 (t/2x) (7) 

exhibits a constant which is close to the theoretical 

value of 2.0 for elliptical sections. 

Delay Of Cavitation. Even on the basis of a suffi¬ 

cient number of “nuclei” in the water, cavitation may 

not exactly start at reaching vapor pressure. As dem¬ 

onstrated in the lower right-hand part of figure 9 

and in figure 11, good agreement between <4 and 

iCpminl is evidently obtained in non-separated flow 

patterns, up to values in the order of 1.0. Experiments 

at such values (16) on small-size bodies have shown, 

however, that the onset of cavitation is delayed (it 

occurs at d^lCpminl). Substituting the low-pressure 

field of a body for its size, the same effect is found at 

the leading edge of a foil section such as in figure 12, 

at lift coefficients sufficiently different from C|_opt , 

where high ICp^ml values appear in a narrow peak. 

Possibly the height of this peak is cut down somewhat. 
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FIGURE 12. Comparison of d-L and Cpm,ti for 4412 section, tested 
in water- and wind tunnel, respectively. 

because of air-bubble content, before the onset of 

cavitation becomes visible. Whatever the explanation 

may be, there is a delay in the onset of cavitation (as 

plotted in figure 13) in the order of 

Aeli = 0.08 Cpwm (8) 

Similar (and even larger) differentials are found when 

comparing the cavitation tests in (14,c) with the pres¬ 

sure distribution for the 64-006 section used, as re¬ 

ported in (15,b). It can be argued, however, that in 

the latter investigation the Reynolds number is almost 

10 times that in the towing tank. In conclusion, crit¬ 

ical cavitation numbers are not always «=: equal to 

the values; they may be higher (in separated 

flow patterns) or somewhat lower (in small body sizes 

or narrow minimum-pressure peaks'). 

(11) Characteristics of three-dimensional head shapes: 
a) Rouse & McNown, Cavitation and Pressure 

Distribution, Iowa State Univ. Engg Bull.32 (1948). 

b) Knapp, Ogives and Spherogives, CALTECH 

Hydrodynamics Laboratory Rpt 1945. 

Pressure distribution of symmetrical sections: 

a) Forces and Pressures on Airfoil Sections, Ger¬ 

man Doct ZWB (DVL.) FB 1621 (1943). 

b) 15% Foil Section, Ybk. D. Lufo 1941 p.I,101. 

c) Series of Joukovsky Sections, ARC RM 1241. 
d) Schubauer, Elliptic Cylinder, NACA TR 652 (1939). 

(13) Cavitating stmt sections, see in Chapter X X. 

(12) 

S 

h- 
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• / 
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/> 
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- - o.o 8 Cp** 

E(8) 

AT • 4412 SECTION, CALTECH - - (a) 
O AT NEGATIVE LIFT COEFFICIENTS 
A CIRCULAR-ARC SECTIONS - - <b) 

6-C 'P*nin 

FIGURE 13. Statistical analysis of the "delay” of cavitation in 
peaked pressure distributions (14). 

3. Drag Coefficients In Cavitating Flow 

Sharp-Edged Bodies. In fully cavitating condition, 

the drag of an obstacle evidently corresponds to an 

average positive pressure component on its face and 

to the uniform negative pressure within the cavity 

(at the rear side). For e> = 0 (that is, for cavity 

pressure equal to ambient pressure, distribution and 

value of the face pressure have been calculated for 

wedges (17,a) and they have experimentally been 

determined for cones (17,b), as a function of the 

half apex angle These functions are plotted 

in figure 14. Since the flow pattern is essentially de¬ 

termined by the shape of the face in these bodies, the 

drag is (within reason) independent of the form of 

the afterbody. Upon increasing <& from zero to finite 

values, the flow pattern past the forebody changes as 

explained in (17,b). The drag coefficient of the type 

Figure 14. Drag coefficients of wedges 
and cones at zero cavitation number, ac¬ 
cording to theory and as evaluated from 
experiments (17). 

WEDGES : 

- two-dimensional theory — (17#a) 

—linearized Cjjq « 4£/$r — (17»d) 

V British Armament HD Estab (17,i) 

A CALTECH - water tunnel — (17#h) 

Cl St.Anthony - Minneapolis (17,f) 

CORES: 
—-- British theory - see Chapter X X 

9 Reichardt - GBttlngen — (17,b) 

O Iowa (evaluated from) — (11,a) 

X CALTECH - reported in — (17#e) 

+ CALTECH, water tunnel — (17,c) 
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of bodies considered is accordingly expected to in¬ 
crease as 

CD — CD0(1 + <=) (9) 

where CQo = coefficient for — 0. The exper¬ 

imental results for disks and of cones in figure 15 
confirm this mechanism very well. As demonstrated 

in Chapter XX, the drag functions of slender wedges 

(struts) and of slender cones are different, however. 

Spheres and hemispherical heads (noses) have a drag 

coefficient at zero cavitation number CDo = 0.29, as 

indicated by analysis (18,f) and confirmed by tests 

(18). The coefficient as plotted in figure l^a, then 

begins to increase as indicated by equation (9). It 

seems, however, that spherical shapes do not have 

a fixed minimum pressure point (from where cavita¬ 

tion would start at all speeds). As a consequence, upon 

approaching the line CD< =C, there seems to be a 

tendency for the coefficient to grow along that line. 

This means that drag in cavitating condition would 

be equal to that due to the negative pressure in the 

cavity at the rear side or base of sphere or hemisphere. 

CIRCULAR CYLINDERS i 

Q Ruaaian tests - (18,e) 

<> Martyrer (German) - (18,d) 

♦ ditto, at saperorltlcal HN 

x Anthony Minneapolis (I7,f) 

SPHERICAL SHAPES l 

® sphere entering - (18,o) 

O Aokeret - sphere — (10,a) 

• 1/2 epherioal head (18,h) 

A Iowa, 1/2 spherical (11,a) 

FIGURE 15. Drag coefficients of various bodies in 
cavitating flow as a function of cavitation number. 

Circular ClyUnder. On circular cylinders (in cross 

flow) cavitation must be expected to start from the 

minimum pressure point, somewhat ahead of the max- 

mum thickness. Figure 15 demonstrates that the 

transition to non-cavitating flow, is a function of the 
Reynolds number. Below the critical number, which 

is somewhere above Rd= 10* the flow pattern 

changes from cavitating to separated, without any 

spectacular consequence. On the other hand, when 

testing at Reynolds numbers above (3 or 4)10S, flow 

pattern and drag coefficient change from the attached 

condition at higher cavitation numbers, to the cavi¬ 

tating type, at cavitation numbers around 2. In other 

words, at Reynolds numbers above the critical (see 

Chapter III) the drag coefficient of circular cylinders 

in cross flow, doubles or triples after cavitation has 

started. As the cavitation number is further decreased 

toward zero, the coefficients both above and below 

the critical R'number reduce together, approximately 

following equation (9); and they evidently meet the 
theoretical (18,a) value C = 0.5, atC= 0. 

FIGURE 16. Drag of a water-entry missile fl7.eV The groove 
near the nose is expected to produce a cavity into which the missile 
then enters with small drag. 

Figure 16 presents drag characteristics of a particular 

part-conical missile shape (designed for under-water 

application). As the cavitation number is decreased, 

the drag coefficient reduces steadily, while the cavity 

grows longer and longer. As the cavity reaches the 

body’s base, the coefficient is CD>=^ 0.05 (or slight¬ 

ly less); and it stays approximately constant from 

there to <0 = 0. For a true cone of the same thick¬ 

ness ratio, (d//) ~ 0.19, equation 12 indicates a 

coefficient CDo> — 0.063. Both values are but a 

fraction of the “terminal” value in non-cavitating 

flow (which is slightly above CD. = 0.20). 

Figure 15a. Drag coefficients of circular cylinders, spheres and 
hemispheres, as a function of cavitation number. 
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from « 0.5 c, upper side 

• • j• •• danger zones of erosion 

• for comparison t/c = 7.5% 
section with round nose 

FIGURE 17. Cavitation phases of cir¬ 
cular arc section (19,a). 

(14) Cavitating foil sections (cambered): 

a) Daily (Caltech), Cavitation on Hydrofoil Sec¬ 

tion, Trans ASME 1949 p.269. 
b) Balhan, Propeller-Blade Sections in Cavitating 

Flow, Wageningen Publication 97 (1951). 

c) King and Land, Sweepback and Cavitation of 

Hydrofoils, NACA Rpt RM L52J10. 

(15) Pressure distributions tested: 
a) On 4412 Section, NACA Tech Rpt 563 (1936). 
b) On 64-006 Section, NACA T.Note 1923 (1940). 

(16) Kermeen, McGraw, Parkin (Caltec); Cavitation 

Inception and Scale Effects, Trans ASME 1955. 

(17) Drag of Cavitating Wedges and Cones: 
a) Wedge Theory, in Lamb’s Hydrodynamics 

(paragraph 78); or in Birkhoff’s “Hydrodynamics”. 

b) Reichardt, Cavitation Bubbles German Docts 

ZWB UM 6606, 6616, 6620 and 6628 (1944 & 1945); 

Transl 766 Brit.Ministry of Aircraft Production. 
c) Plesset-Schaffer, Cavity Drag, Rev. Modern Phy¬ 

sics 1948 p.228 and J.Appl’d Physics 1948 p.934. 
d) Tulin, '2-Dimensional Theory, TMB Rpt 834. 

e) Albring, Fluid-Dynamic Characteristics of Weap¬ 
ons, German Doct ZWB UM 6421 (1944). 

f) Silberman, St.A.Falls Hydr Lab Minn Rpt 59 (1958). 
h) Waid, Wedges, CALTECH Rpt E-73.6 (1957). 
i) Cox & Clayden, Wedges, J.Fluid Mech 1958 p 615. 

(18) Characteristics of round bodies in cavitating flow: 

a) Brodetzky, Theory, Proc. R. Soc. London A No. 

b) Eisenberg, Cavities, TMB Rpt 668 (1948). 

c) Sphere Entering Water, J.Appl.Phys. 1948, 1109. 

d) Martyrer, Cylinder and Foils, in “Hydrody- 

namische Probleme", Hamburg 1932. 
e) Konstantinov, Circular Cylinders, Russian 1946; 

Transl TMB No. 233. Note: Drag coefficients have 

been reduced by 10% for tunnel influence. 

f) Sphere, Annalen der Physik 1927 p.697 

(19) Experimental results on cavitating foil sections: 

a) Walchner, Circular-Arc Sections in “Hydrodyn. 

Probleme”, Hamburg 1932, Transl NACA T. 
Memo 1060; Continuation on round-nosed sec¬ 

tions in Rpts and Transl No.330 (1947) Brit.Min. 

Aircraft Production. 
b) Martyrer, Cylinder and Foils, see (18,d). 
c) Numachi, Sections 12% thick in Forschung 

1940 p.303; 6% thick in Trans ASME 1953 p.1257. 

d) Kermeen, Water Tunnel Tests of NACA 4412 

and Walchner Profile “7” Noncavitating and Cavi¬ 

tating, Rpt 47-5 by Hydrodyn.Lab. Caltech (1956). 

e) Parkin, Circular Arc and Flat Plate, Rpt 47-6 

by Hydrodynamic Laboratory Caltech (1956). 

Size Of Cavity. Referred to the maximum cross-sec¬ 

tion area of the cavity SD , the drag coefficient is gen¬ 

erally CQa = D/qSQ «=• <o . The size of the cavity 

in two-dimensional or three-dimensional flow can, 

therefore, be estimated on the basis of drag coefficient 

and cavitation number. 

4. Cavitating Hydrofoils 

Certain rudders (under the stern of ships), the various 

fin-like rudders of submarines and the “fins” presently 

used in the electro-hydraulic control of rolling ship 

motions — are basically hydrofoils. We may also con¬ 

sider the blades of propellers to be “foils”. Not to 

speak of hydrofoil boats (in Chapter XI), cavitation 

is bound to occur in all these applications, as a certain 

critical speed is reached or exceeded. 

The Inception Of Cavitation in symmetrical foil sec¬ 

tions (at zero lift) has already been indicated in figure 

11. Considering now a lifting foil, its pressure dis¬ 

tribution is composed of a component due to thick¬ 

ness (equation 7) and a component corresponding to 

lift. In cambered sections, there is an “optimum” lift 

coefficient, at which the streamlines meet the section 

nose smoothly. As a function of camber ratio (f/c), 

this smooth or “symmetrical” entrance occurs (in 

non-cavitating condition) at 

CLopt = (10 to 12) f/c (13) 

Figure 17 gives an illustration of cavitation zones as 

determined for a circular-arc section with f/c = 0.5 

0.075 = 3.75%, having a CLopF = 0.45. With re¬ 

spect to minimum pressure and incipient cavitation, 

operation in the vicinity of C^opt provides the high¬ 

est possible speeds without cavitation, for a given foil 

section. Assuming now that the pressure differentials 

due to lift and due to thickness (equation 7) are super- 
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ACpmin AND AC>i 

pressure side) in two-dimensional flow, is theoretically 

(21,a) for <£ — 0: 

o.i 

o.6 

ok 

o.2 

0 

/■ 

/ ♦ 
,/UfttS 
/ =0.75 

NUMACHI (19,c)l x_ 
RINGBUCH (20,a)' c 
AACHEN (19,b)| - 
GUTSCHE 
HOLL 
GUTSCHE 
AVA 

-Lopt 

v,b)i » 
(20,c) J .3 
(20,b)l - 
(20,c)> 
(19,o)J .5 

0 0.2 Ok 0.6 0-8 l.o 1.2 

2 ir since 

4 + Tf since 

(15) 

Figure 19 presents this function and some exper¬ 

imental results (obtained between tunnel walls) con¬ 

firming the theoretical prediction. For 0, ref¬ 

erence (21,d) presents the solution 

CL = 0.5 it ex (1 + <=*) (16) 

FIGURE 18. Due-to-lift component of pressure coefficients for 
foil sections in the vicinity of their optimum lift 
coefficient; "C” = cavitating, "P” = pressure dis¬ 
tribution test. 

imposed to each other, the component due to thick¬ 

ness can be subtracted. Figure 18 presents the re¬ 

maining component “Aex”, thus attributable to lift. 

It seems that the experimental points are grouped 

according to the location of maximum thickness along 

the section chord. In each group, cavitation results 

are seen to be in good agreement with the minimum- 

pressure coefficients. The component due to lift is 

approximately 

A^l = |ACpm;n! = kCL (14) 

where k is between 0.75 and 0.85. It is emphasized 

that this function applies only in the vicinity of CLopt- 

Figure 17 shows that upon operating a foil section 

beyond some differential ACL above or below Cj_op(., 

values are obtained which are considerably higher 

than those determined by application of equations 

7 plus 14. The graph also shows that the differential 

+ -ACl of a slightly round-nosed section is appre¬ 

ciably higher than that with a sharp leading edge 

(having same thickness and same thickness location). 

Cavitating Plate. T he normal-force coefficient of a 

cavitating flat plate (or thin foil section with flat 

l.o 

o.8 

0.6 

»k 

02 

, / 
C' - 

f/ 

k* *■ liner 

s 

,// /CD’CHiina x. 
V / \ 

/ X. 

AWCU OF ATTACK 

\| 
30 60 Of SO 

FIGURE 19. Characteristics of flat plates (or of plane pressure 
sides) in two-dimensional fully-cavitating flow 
(21,a) at & r= 0. Experimental points ( + ) are for 
circular-arc sections (19,a) with t/c = 2.5 to 7.5%. 

thus including the suction side pressure (6). Note 

that the first term of this equation represents a quar¬ 

ter of the lift in non-cavitating (two-dimensional) 

flow. The same result in the first term is also obtained 

from equation 15 for small angles of attack where 

“'rrsincx” in the denominator is negligibly small in 

comparison to “4”. Unfortunately, equation 16 is no 

longer correct enough at cavitation numbers exceeding 

certain small values. For «. =10°, the limit is below 

<o = 0.1, for example. 
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FIGURE 20. Lift and drag coefficients of circular arc sections 
tested between walls at ot = 5°, as a function of 
cavitation number (.19). 

Circular Arcs. The pressure drag of a cavitating flat 

plate in two-dimensional flow, is simply a component 

of the normal force; 

CDp — CN sinct = C|_ tanct (17) 

Figure 20 presents the variation of lift and drag co¬ 

efficients of thin circular arc sections (tested at «. = 5° 

between walls) as a function of cavitation number. 

In fully cavitating condition (with cavity extending 

from leading edge to beyond trailing edge) these sec¬ 

tions are expected to have the same characteristics as 



X - HYDRODYNAMIC DRAG 10-11 

flat plates. Figure 20 shows several phases with respect 

to cavitation number, (a) In non-cavitating condi¬ 

tion, indicated in the right-hand part of the graph, 

the lift coefficient corresponds to angle of attack and 

camber of the sections involved, (b) As the cavi¬ 

tation number is reduced below a certain critical 

range (where cavitation develops), the lift coefficient 

decreases, while the drag coefficient increases some¬ 

what. (c) Approaching = 0, lift- and drag co¬ 

efficient decrease together. — Equation 16 only applies 

below ~ 0.1, in the example plotted. Between 

there and ~ 0.6, the experimental results some¬ 

how agree with the numerical results of reference 

(21,d). There are other points (19,a), however, which 

would not fit very well into the presentation of figure 

20. It is suggested that the Reynolds number (which 

is below 106 in all experimental results available so 

far) may have an appreciable influence particularly 

in sections with a more or less rounded leading edge. 

Another theoretical function proposed in (21 ,b) 

seems to set an upper limit for the lift in cavitating 

flow: 

= 0.5/rrcx4-^ (18) 

1.0 

o.S 

0.6 

0.4- 

0.2 j/ 

-•-*--■''J-THEOW ©U) 

/ 
^^0N-CAy/rr*TiN6; da/dC^ - 10s 

x Walchner t/c = 3.9% (o) 
+ ditto, non cavitating (a) 
* Numachi t/c = 6% (c) 
a CALTECH t/c =11% (d) 
o flat plate, extrapolated (e) 

•5 ”~^="”o^CLo « 0.5 it sin« 

a° 

& 10 12 

FIGURE 21. Lift coefficient of circular arc sections and of flat 
plate at constant cavitation numbers (19). 

and experimental results quoted from (19,d). Wher¬ 

ever equation 18 applies, the drag of cavitating flat 

plates or that of flat pressure sides (in two-dimensional 

fully cavitating flow) will be 

CD= (2/ir)CL-(CL—d) + Cf (19) 

This equation (also plotted in figure 20) appears 

adequately to describe the lift of flat pressure sides 

in two-dimensional fully cavitating flow, roughly at 

angles of attack oC < (10<3) and/or at cavitation 

numbers & ==» 0.1 •( c<"). At the other ends of the 

ranges thus indicated, “full” cavitation will also be 

limited; (a) above certain “ <j ” values, the cavity 

will no longer reach beyond the trailing edge; and 

(b) below certain angles of attack, the cambered side 

of circular-arc sections such as evaluated in figure 20, 

is bound to interfere with the formation of the cavity. 

Figure 21 gives another example where equation 18 

seems to be confirmed by experimental points. Note 

that in this illustration the lift coefficient diverges 

from the straight line representing the equation, at 

both ends of the angle-of-attack range tested. Above 

= 5°, transition takes place to theoretical function 

(20) Pressure distribution on cambered sections: 

a) Ringbuch Luftfahrt-Technik, Section I A, 11, by 

German Ministry of Aviation, 1938. 

b) Holl, Propeller Sections, Forschung 1932 p.109; 

see “Hydrodynamische Probleme”, Hamburg 1932. 

c) Gutsche, Mitt. Pr.VAWS Berlin, Vol.l0(1933); 

Ybk.STG 1936 p.277, 1938 p.f25 and Vol.41 (1940). 

(21) Theory of cavitating foil sections: 

a) Green, Gliding Plate, Proc. Cambridge Phil. 

Soc. 1936; also 1935 and 1938. 

b) Betz, Proc. 3rd Internat. Congr. Tech Mech¬ 

anics Stockholm 1930, Vol.I p.411. 

c) Bollay, Planing, Proc. 54th Internat’l Congr. 

Appl. Mechanics 1939 p.474. 

d) Wu, 2-Dimensional Fully Cavitating Hydrofoils, 

Caltech Hydrodynamics Lab. Rpt 21-17 (1955). 

e) Tulin, Supercavitation, TMB Paper (NPL;1955). 

f) Wu-Perry, Hydrod. La'b. Caltech Rpt 47-4. 

where Cr = friction drag coefficient of the pressure 

side. 

Cambered Plate. Although lift and drag of even the 

simplest type of cavitating hydrofoil is not susceptible 

to plain and explicit treatment, some qualitative 

statements can be made on the influence of camber 

upon the characteristics. In non-cavitating two-di¬ 

mensional flow, the lift of a cambered plate is 

CL = 2 -ir sin (<x -f- 0.5y) (20) 

where y = angle of the trailing edge against the 

chord line of the arc. In fully cavitating flow, theory 

(21,d,f) indicates that the component due to camber is 

dCL/d£ = t(7/16) (21) 

thus presenting a slope which is (7/16) of that in 

equation 20. The lift component produced by cam¬ 

ber is also independent of - Both suction side 

and pressure side have forwardly inclined resultant 

forces, so that the drag due to lift is smaller than that 

of the flat plate. A cambered plate has been tested in 

(19,e); for lift coefficient of CL = 0.3, for example, 

at £ = 0, the flat plate requires an angle of attack of 

c* = 14° while a plate corresponding to y = 8° 

(camber ratio f/c = 3.5%) needs an angle (measured 

against chord line) of only « = 6.5°. The pressure 

drag ratio decreases accordingly from Dp/L « 0.2 to 

^ 0.1. It is proposed that the pressure-side drag can 

be zero (except for friction) while (in fully cavi¬ 

tating condition) the suction side drag corresponds to 

(L sinot). The drag due to lift can thus be reduced 

appreciably by proper pressure-side camber. 
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Airfoil Sections with round leading edges, such as 

“Clark Y” (19,c) and “NACA 4412” (19,d and e), 

have also been tested in cavitation tunnels. Since in sec¬ 

tions of this type, value and location of the minimum 

pressure are not fixed as in thin plates or circular 

arcs, cavitation may not at all be a steady-state phe¬ 

nomenon (see the results on 4412 in reference 19,d). 

Finite-Span Foils. Utilizing equation 18, the angle of 

attack of fully cavitating finite-span (but higher-as¬ 

pect-ratio) hydrofoils may tentatively be 

« = (2/ir) (CL- «) + (CL/ff A) (27) 

Note that (within the limitations of equation 18) 

the “e ” component of lift does not require a sectional 

angle of attack. The last term of equation 27 is the 

induced angle of attack (see in Chapter VII). The 

pressure drag (including induced drag) of flat plates 

or that of sections having plane pressure sides, corre¬ 

sponds again to equation 17. It can be concluded 

from (21,d) that this analysis holds only for com¬ 

paratively small angles of attack. For each angle of 

attack, the validity limit is approximately indicated 

by the lift coefficient that the section would have in 

non-cavitating flow (indicated by C^ = 2 ir sinot). 

Two foil sections have been investigated in a towing 

tank (22), simulating cavitation by ventilation. Em¬ 

ploying the same technique as described in connection 

with the half-body in figure 26, ventilation was ob¬ 

tained at angles of attack above 10°. Figure 22 shows 

that in ventilating-cavitating flow, the cambered sec¬ 

tion is much more favorable than the flat plate. 
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'CAMBERED SECTION : 
• VENTILATING 
o PLAIN FLOW 

V — 10 ft'sec, ^ 0.16; h - c = 3 inch 

A r 4 (between struts); Rc ~ 2 >0* 

FIGURE 22. Characteristics of two “foil" sections, towed be¬ 
tween end struts in tank near surface (22); with 
and without ventilation. 

In Small Aspect Ratios (below A = 1), only the linear 

term of the lift coefficient (see in the ‘‘drag-due-to- 

lift” chapter) can tentatively be predicted. Keeping 

the induced angle as in non-cavitating flow (oq = 

C^/tA) and increasing the sectional angle fourfold. 

FIGURE 23. Lift of a ventilated square flat plate (22). Note 
that the hump at oc ~ 12° would probably not occur in cavitating 
flow. The "cavitation" number is explained in the section on 
surface-piercing bodies. 

the total angle of attack of fully cavitating small-as¬ 

pect-ratio flat plates is tentatively 

« = (5/ir) (Cn/A) - (4/ir) (<=/A) (28) 

A square plate (A = 1), has been tested in a 

towing tank (22), simulating cavitation by ventilation 

(through a hollow strut). The lift coefficient CL = 

CN cosot , plotted in figure 23, shows basic agreement 

with the theoretical equation. The lift increments 

at angles of attack higher than ~ 14°, represent the 

second, non-linear lift term in the small aspect ratio 

tested. This component (explained in the “drag-due- 

to-lift” chapter) is not included in equation 28. The 

total pressure drag of the flat plate is indicated by 

equation 17. 

For Zero Aspect Ratio, consideration of the velocity 

component normal to a plate-like strip of material 

(cross-flow principle; see reference 21,c) in combi¬ 

nation with the flat-plate value in figure 14, leads to 

CN = (1 +<£) 0.88 sin2* (29) 

Pressure drag simply corresponds to CD = sin a. 

(22) Hoerner, Square Plate and Cambered Sections in 
Gibbs & Cox, Inc. Towing Tank (1953). 

(23) Wave-drag of surface-piercing struts: 
a) Havelock, Proc.R.Soc. London A 1923 p.571. 
b) Tank Tests by Shiells, Trans INA 1953. 

(24) Experiments on surface-piercing struts: 
a) Kaplan, Stevens ETT Rpt 488 (1953). 
b) Ramsen and Vaughan, NACA T.Note 3420. 
c) Coffee and McKann, NACA T.Note 3092 
(1953) . This reference also describes the method 

of separating the wave drag from the total drag of 
such surface-piercing struts. 
d) Benson and Land, Hydrofoils in NACA Tank, 
NACA Wartime Rpt L-578 (1942). 
e) Hoerner, Gibbs & Cox Corporation (1953). 
f) Dingee, Stevens ETT Rpt 472 (1953). 
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C. DRAG OF SURFACE PIERCING SOLIDS 

Besides cavitation, the most important effect which 

makes flow patterns in water different from those in 

air, is that of the free surface. Bodies such as struts 

or submarine periscopes, in a more or less vertical 

position, penetrating through the water surface, are 

treated in this section. At higher Froude numbers, 

the predominant characteristics of such solids are spray 

and ventilation. 

1. WAVE AND SPRAY DRAG 

X NACA (b.c) 
A ETT (o) 
k VENTILATED (a) 
o HOERNER (e) 

FIGURE 25. Sprav-drae coefficient (on x2) as a function of fore- 
body thickness ratio. 

At Small Froude Numbers. Reference 26 reports on 

flow pattern and resistance of surface-piercing circular 

cylinders and of flat plates (normal to the flow). At 

F —s» 0, their drag coefficient is identical to that of 

shapes having vertical length equal to twice the sub¬ 

merged dimension h. In other words, the water sur¬ 

face has the same effect as a solid “ceiling”; it does 

not change its plane shape. The drag coefficient at 

F —j- 0 is accordingly in the order of CD, = 1.2 for 

the flat plate in figure 28; and it is roughly between 

0.7 and 1.0 for the circular cylinders in figure 27, de¬ 

pending upon their height or length ratio 2h/d (see 

in Chapter III). 

Wave Drag. Considering now a surface-piercing strut 

having a streamline shape, its friction or profile drag 

is comparatively small. As the Froude number is in¬ 

creased from zero, a deformation of the water surface 

takes place. Water is piling up at the front, and a 

certain hollow forms behind the solid. The resulting 

additional drag is wave drag. Figure 24 shows the 

theoretical coefficient of this component of drag for 

double-arc sections. After two or three initial steps 

(humps and hollows), the wave-drag coefficient 

reaches a maximum at the Froude number Fc ~ 0.5; 

above which it steadily reduces to zero — as far as 

theory goes. 

Spray Drag. As usual, theory only considers infinitely 

small deformations of the water surface, a condition 

which is truly correct for a strut section with t/c —»• 

0. Actually, the wave produced by the penetrating 

strut, breaks up, so to speak, at Froude numbers above 

Fc = 0.5. Water piling up along the forebody of the 

strut section continues upward and sideways into the 

air, thus forming “spray”. Jets of water, “shot” into, 

the air, evidently mean another component of drag. 

Evaluation of towing-tank tests (figure 24), yields the 

spray-drag coefficient (based upon forebody length x; 

CD>, = D/qxa) as plotted in figure 25. Further eval¬ 

uation leads to the general spray-drag coefficient 

CDt = Dspray/(qt2) = 0.24 (31) 

an empirical function which applies to Froude num¬ 

bers, roughly above Ft = 3. Figure 25 shows that in 

the neighborhood of t/x = 0.4, something happens 

to the flow pattern (possibly ventilation at the trailing 

edge?). At thickness ratios above t/x «= 0.4, the 

spray-drag coefficient is only in the order of CDt= 0.12. 
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2. DRAG DUE TO VENTILATION 

Mechanism Of Ventilation. One obvious condition 

for the formation of air-filled spaces is the presence 

of a negative pressure field into which air can be 

attracted by way of suction. The second prerequisite 

for the maintenance of larger and permanent air-filled 

cavities (ventilation, see reference 27,b) is evidently 

a “duct” through which air is channeled from the 

water surface down to the negative-pressure area. 

Ventilation And Cavitation. Under certain conditions, 

cavitation can be simulated by feeding air into the 

separated space behind a blunt or bluff body. In true 

cavitation, the pressure within that space is equal to 

the vapor pressure. The equivalent cavitation num¬ 

ber of a ventilated pattern is then found by replacing 

the vapor pressure (in equation 2) by the absolute 

static pressure in the air-filled void. Such simulation 

is satisfactory for a certain class of sharp-edged bodies 

(as for example very nicely demonstrated on cones in 

reference 17,b). — Ventilation of the half-body pre¬ 

sented in figure 26, was made possible by means of 

hollow (air-ducting) end plates, between which the 

strut model was towed in horizontal position. The 

static pressure in the air-filled pocket is, therefore, 

equal to the atmospheric pressure; and the pressure 

differential is 

AP = (Pambi - Ppacket) = <1 Cp = Jfh (32) 

where y = weight density of water and where the 

pressure coefficient Cp — Ap/q, is a function of 

the particular body shape. The depth can also be ex¬ 

pressed by a Froude number (see in the chapter on 
“water-bomecraft”) on depth h: 

Fh = vA/feUj (33) 

Combining the two equations, it is found that in 

ventilating flow patterns, the negative pressure at the 

rear side of an obstacle corresponds to 

t*) 
lCpl = I Ap/ql = jflhl / (0.5 s V2) = 2 /Fh2 = ah 

This means that in these conditions, (2/F^) re¬ 

places the "6" number of a tentatively equivalent 

cavitating flow pattern. 

Half-Body. In case of the shape in the lower part of 

figure 26, the minimum surface pressure occurs some¬ 

where between leading and trailing edge. The flow 

passes the trailing edges essentially in a direction 

which is parallel to the axis of the body. From the 

experimental fact that the drag coefficient of this body 

is approximately 

CD. = = 2/Fh2 (35) 

it must be concluded that the drag of the forebody is 

close to zero (28). Result and flow pattern are basic¬ 

ally different from those in cavitating flow. Cavi- 

tational separation would start from the minimum- 

pressure points, rather than from the trailing edges. 

Similar reasoning seems to apply to the case of the 

blunt shape in the upper part of figure 26. In con¬ 

clusion, drag coefficients in ventilating condition are 

not generally the same as in cavitating flow, 

Depth Of Pocket. In case of bluff surface-piercing 

bodies (rods or cylinders), a natural ventilation chan¬ 

nel is evidently provided by the separated space at 

the rear side of such shapes. “Dead” liquid is sucked 

down through the channel and replaced by air. The 

negative pressure required for the formation of a 

ventilation pocket, is a function of shape as well as 

velocity. Applying equation 34 for the bottom of the 

FIGURE 26. Drag coefficients of two "strut” sec¬ 
tions (tested between end struts) and of two 
surface-piercing "struts” in ventilating flow, "h” 
indicates average static depth of submergence of 
the bodies tested. 

x+ Between hollow end struts- (25) 
• circular cylinder- (figure 27) 
— streamline strut-(figure 29) 

0 l-o IS 
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pocket (having the depth h), evaluation of under¬ 

water photographs (24,a) and/or the tested functions 

of CD (Fh) yield values as follows: 

shape of body figure ^-•pbot ^hcfifc 

wedge section 29 -0.19 3.2 

circular cylinder 27 -0.62 1.8 

normal flat plate 26 -1.00 1.4 

The listed Froude numbers also represent the “crit¬ 

ical” speed at which the pocket reaches the bottom of 

a strut having the submerged length "h”. 

Circular Cylinder. In fully-ventilated condition, the 

average pressure differential between pocket and 

ambient liquid evidently corresponds to 1/2 the sub¬ 

merged length h. Equation 35, therefore, changes 

for the surface-piercing condition to 

ACd> = 1/F* = ^ (36) 

The equation represents a rear-side drag component 

which is constant (in pounds or in any other unit at 

Froude numbers above Fhverl^_) for a given body at 

h = constant. Figure 27 shows that this function 

serves very well in the interpolation of the exper¬ 

imental points of various circular cylinders (at sub 

critical Reynolds numbers), on the basis of a constant 

“residuary” coefficient in the order of CQi = 0.49 

•3s 0.5. The total drag coefficient of such surface¬ 

piercing cylinders, at higher Froude numbers, is 

therefore 

CD. - 0.5 + (1/Fh2) = 0.5 + <sh/2 (37) 

Note that in this equation the function is different 

from that in cavitating flow (equation 9). 

(25) Hoerner, Towing-Tank Tests on Ventilated Bodies, 

Gibbs & Cox for ONR, Tech Rpt 15 (1953). 

(26) Hay, Princeton School of Engineering Rpts: 

a) Investigation of Cylinders, October 1947. 

b) Experiments on Parallelepipedons, May 1947. 

(27) Saunders, “Hydrodynamics in Ship Design”: „ 

a) Text to be published by Soc.NAME, 1959- 

b) Saunders differentiates between "ventilation” as 

in flying-boat steps, for instance, and “air leakage” 

as it may occur in hydrofoils, for example. A third 

term is “air entrainment”. 

(28) It is pointed out in Chapter III that physical “half 

bodies” can have negative drag. 
(30) VonKarman, in Trans. Soc.NAME 1936 p.327. 

(31) At F’numbers above 2, the results in figures 27 through 30 
can be represented by straight lines, if plotting against 
(1/F2). 

(32) The hydrodynamic characteristics and examples 

presented in this chapter are by no means complete. 

The criterion that the author has applied in 

selecting and evaluating them, is availability of 

results rather than the need for specific information. 

0 2 4 6 $ 10 

FIGURE 27. Drag coefficient of surface-piercing circular cylin¬ 
ders (on area d times h), as a function of Froude 
number (26,a). 

A Surface-Piercing Plate (normal to a ventilating 

flow) has separation points which coincide with the 

minimum pressure points. Cavitation theory can, 

therefore, be applied. Using for rectangular small- 

aspect-ratio plates the value = 0.8 (see in figure 

14), equation 9 together with = 1 /Fh2, yields 

the drag coefficient in fully ventilated condition: 

CD. = 0.8(1 +e^ = 0.8 + (0.8/Ff) (38) 

Some additional drag must be expected as a conse¬ 

quence of the deformation and disturbance of the 

water surface. At the higher Froude numbers con¬ 

sidered, this drag component is of the type corre¬ 

sponding to a constant coefficient based upon width 

(thickness) such as that of the spray-drag in figure 24. 

Analysis of the experimental points in figure 28 sug¬ 

gests a CD^ = 0.3. Referred to the frontal area 

(b h), the spray drag component is 

ACD. = 0.3 b/h (39) 

Corresponding lines are shown in the graph. 

wave and/or spray 
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FIGURE 28. Drag coefficient of surface-piercing flat plates (on 
area b times h) as tested in (26,b). 
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Ventilated Strut. Figure 29 presents the drag co¬ 

efficient of a slender surface-piercing strut. The blunt 

trailing end of the 1/2 ogival section facilitates ven¬ 

tilation. Analysis yields a skin-frictional, a spray- 

drag and a ventilation component of drag. Assuming 

a suitable section-drag value (see in the “streamline” 

chapter) and a CDt = 0.24 (from figure 25), a con¬ 

stant part ACds = 0.008 + 0.003 = 0.011 is ob¬ 

tained. The remaining component corresponds to 
equation 36: 

piercing strut, a fence-like “subsurface plate” (27) 

can be used (as for example in outboard motor shafts). 

Adding such a plate (closely below the water surface) 

to the strut in figure 29 , ventilation is completely 

eliminated. As tested at a Froude number Fc = Fh 

= 6> the drag coefficient is considerably increased, 

namely from 0.015 to 0.067. Including the drag of 

the plate proper, the new value represents a base-drag 

coefficient (on area S. ) of CDB =0.057/0.15 = 0.38, 

a value which appears to be in line with similar values 

presented in the “pressure-drag” chapter under the 
heading of “base drag”. 

Inclined Shaft. Upon inclining a surface-piercing 

circular cylinder (such as the inclined propeller 

shaft of a hydrofoil boat, for example) to an angle 

of attack “cc”, the “cross-flow principle” (see Index) 

can be applied. Equation 37 then changes to 

CDn = 05 sinS<* + (sincVFh) (41) 

based on diameter times wetted length of the shaft. 

This equation agrees well with the experimental 

points in figure 30, after adding a value of 0.01 for 
skin friction. 

ACD5== ^/c) = (4°) 

where “s” indicates “section” as in Chapter VI. 

Ventilation Plate. In the ventilating examples con¬ 

sidered (figures 27, 28 and 29), the total drag coeffi¬ 

cient decreases as ventilation takes place. To prevent 

air entrainment or “leakage” (27,b) along a surface¬ 

Angle Of Yaw. Figure 31 presents the hydrodynamic 

coefficients of a slender surface-piercing strut (having 

a rounded lower end; a shape which might possibly 

be used as a rudder), plotted against angle of yaw 

“j3”. At (3 « 15°, ventilation suddenly takes place; 

the lateral lift reduces considerably. Drag in this con¬ 

dition is somewhat higher than CD = C|_ tana. An 

explanation is found in the convex shape of the pres¬ 

sure side, which can also produce negative lateral lift 

forces at smaller angles of yaw. 

FIGURE 30. Drag coefficient of an inclined surface-piercing (and 
ventilating) shaft (25). 

FIGURE 31. Coefficients (on area c times h) of a surface-piercing 
"strut” as a function of yaw angle (24,f). 
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CHAPTER XI-RESISTANCE OF WATER-BORNE CRAFT 

Principles of drag in water are presented in Chapter 

X, including such influences of a free surface as spray 

and ventilation. Depending upon speed, most of the 

drag components explained in that chapter can be 

involved to certain degrees in the various types of 

water-borne craft. In addition, a disturbance of the 

free water surface is usually left behind every moving 

ship or boat, the equivalent of which is “wave re¬ 

sistance’’. This type of drag is particularly discussed 

in the first section of this chapter, dealing with “dis¬ 

placement vessels’’. Resistance components related to 

wave drag are found in “planing” boats, treated in 

the second section. Principles, characteristics and per¬ 

formance of “hydrofoil boats” are then presented at 

the end of this chapter. 

A. RESISTANCE OF DISPLACEMENT VESSELS 

All larger ships carry their weight by means of buoy¬ 

ancy, a fact that is evident in the term “displacement 

vessel”. Detailed drag characteristics of hulls are ex¬ 

tensively presented in various textbooks (1). In con¬ 

trast to these books, the following section shall pri¬ 

marily explain the basic aspects of the subject; it shall 

then give results in a more general fashion; and it 

shall present only examples of specific hydrodynamic 

characteristics, rather than a complete treatment of 

hull resistance. Inasmuch as the text corresponds with 

the general fluid-dynamic approach of this book, this 

section is likely to appear as unorthodox to naval ar¬ 

chitects who are used to somewhat different terms 

and concepts. The author’s aerodynamic background 

is also responsible for the fact that “viscous” form drag 

is treated more extensively than wavemaking drag. 

Naval architects speak of "resistance" rather than "drag". Both 
terms are alternatively applied, however, in this text. 

1. GENERAL PRINCIPLES 

Notation. Certain terms and many symbols as applied 

in the aerodynamic chapters of this book (listed in 

Chapter I), are also used in this section, as far as ap¬ 

plicable. Beyond these, to describe the shape of hulls, 

a system of coefficients is widely used, which in non- 

dimensional form can be written as follows: 

length-beam (on waterline) ratio l/b 
beam against draft ratio b/h 

prismatic coefficient CprlS = V/1S. 
volumetric coefficient C^ = v/13 
wetted surface ratio, either as s/i 
or on displacement volume: s/v% 

where 1 = waterline length, V = W/y- = displaced 
volume of water (with W = weight of the craft in 

lb, and = weight density of water in lb/ft3) S. = 

maximum submerged cross-sectional area (“maxi¬ 

mum section”) and “S” or Swep = wetted surface area. 

Some of the coefficients and ratios listed, are still wide¬ 

ly used in dimensional form. — The displacement 

weight is usually given in tons, and then denoted by 

“A” in this text. Among the many definitions of ton¬ 

nage, three are important here, the “short ton” = 

2000 lb (in aviation), the “long ton” = 2240 lb (in 

naval architecture), and the metric ton = 2205 lb (in 
Continental Europe). 

Resistance Coefficients. In presenting resistance or 

drag, two methods are basically used: 

(a) Presentation of the ratio drag “D” over weight 

“W” (where W corresponds to the displaced volume 

of water); this ratio is very convenient in engineering 

applications. 

(b) A coefficient based on dynamic pressure (q = 

0.5 q V^) and upon the wetted area of the hull, is 

more significant in presenting the frictional or “vis- 
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cous” components of resistance: 

Cm*fc = D/(q S) = 2 (D/W) (V/13)/((F/(S/12;) 

The drag/weight ratio is obtained as follows: 

(D/W) = 0.5 CDwet F* (S/12)/(V/13) (2) 

The wetted surface area of a hull is not only a func¬ 

tion of its size, but also of its shape. Surface ratios 

should be presented together with the results in every 

towing tank investigation. In case of the Taylor series 

of hull forms (l,b and 13,a), the wetted surface ap¬ 

proximately corresponds to 

S = 2.6 v'V 1 ; S/12 = 2.6 /V/l3 (3) 

Model Testing. The drag of displacement hulls con¬ 

sists of two predominant components; skin friction 

and wave resistance. Since the two are governed by 

different laws (the one corresponding to Reynolds 

number, the other to Froude number), it is basically 

impossible to simulate correctly full-scale conditions 

in towing tanks (unless full-scale dimensions can be 

used). The common procedure is to satisfy the dyn¬ 

amic law (producing the proper wave pattern), and 

to correct (reduce) the skin-frictional component on 

the basis of Reynolds number. It should be noted in 

this respect, that the gap in R’number between tank 

models and full-scale vessels is very great, in the order 

of 1 to 100, as can be seen in figure 9, for example — 

or even 1 to 1000, when comparatively small models 

are used investigating larger and/or faster vessels. 

Turbulence Stimulation. In 10 to 20 ft long hull 

models, towed at a Froude number of F^ =0.1 

(where wave-making is usually negligibly small), the 

Reynolds number is between (3 and 4) 10 . On the 

basis of what is presented in Chapter II, mostly turbu¬ 

lent flow might thus be expected to exist within the 

boundary layer. However, the negative (that is, de¬ 

creasing) pressure gradient produced by hull shape 

(displacement), can stabilize the boundary layer flow 

along the bow up to larger R’numbers. As shown in 

two examples in the left-hand part of figure 1, the 

“viscous” drag coefficient may then vary as a function 

of R’number in a manner similar to that of stream¬ 

line bodies or sections as presented in several figures 

of Chapter VI. Stimulation of turbulence by means of 

certain generators placed near the stem (7) is there¬ 

fore advisable and it is nowadays applied in routine 

tank testing. However, depending upon the size of 

such stimulators (sand strips, wires or pins placed 

on the model’s bow), the resistance of hull plus stim¬ 

ulation elements can vary appreciably at one and the 

same speed or Reynolds number (as demonstrated for 

example in figure VI-26). 

The Froude Number, named after William Froude 

(1810 to 1879), is an indication of the ratio of “dyn¬ 

amic” forces (such as lift or frictional drag) to the 

“static” forces (representing gravity and weight) in¬ 

volved in the flow and wave pattern in proximity of 

and at the surface of water. Considering a body, such 

as a ship’s hull, moving along the surface — there are 

two types of pressures acting upon the obstacle, static 

or buoyant pressures, and dynamic pressures. The 

latter ones are proportional to (l2 (> V2), with 1 in¬ 

dicating a suitable dimension of the body; and the 

former ones are proportional to the submerged vol¬ 

ume of the body, or to l3. The ratio of the dynamic 

to the static pressures or forces is thus 

dynamic forces 1 q V V 

static forces gl 

The root of this ratio is the so-called “Froude num¬ 

ber” F^ = v/jg 1. This number is one of the most 

useful tools in the analysis of tests in, or in proximity 

of the water surface. Also, problems in the field of 

aviation involving size (weight) and aerodynamic 

forces could or should be studied on the basis of a 

Froude number. The number represents, in this re¬ 

spect, the “square-cube” law, meaning that the weight 

of any structure grows at a higher rate than any of its 

areas exposed to fluid-dynamic forces (in wind or 

water). As far as ships are concerned, the square of the 

Froude number (based on a suitable dimension of the 

hull) can also be interpreted as a wave length ratio. 

The length of the transverse waves (in deep water, 

from crest to crest) formed by the ship’s motion is 

X = 2ir V2/g (6) 

The square of the F’number (on hull length 1) is 

then a measure for the ratio 

A /I = 2ir(V2/gl) = 2irFf (7) 

This equation means that at one and the same Froude 

number, the wave pattern produced by model or full- 

scale ship has the same shape and the same dimensions 

in relation to those of the hull. 

(1) Texts dealing with ship hydrodynamics: 
a) The Papers of William Froude (1810-1879) by Inst. 
Naval Architects, London 1955. 
b) Taylor, Speed and Power of Ships, Washington Govt. 

Printing Office 1933 and 1943, see reference 13,a. 
c) Rossel-Chapman, Principles of Naval Architecture 
Soc.NAME and MIT, 1939, 1949 (to be revised 1957). 
d) Van Lammeren, Troost, Koning; Resistance Propulsion 
Steering of Ships, Stam (Holland) 1948. 
e) Saunders, Hydrodynamics in Ship Design, to be 
published by Soc.NAME in 1957/58. 
f) Lap, Fundamentals of Ship Resistance, a series of lectures 
published in Internat.Shipb.Progress 1956 and 1957. 

g) Todd, Fundamentals of Testing, Tr. SNAME 1951 p.850. 



XI — WATER-BORNE CRAFT 11-3 

Figure 1. Non-wave-making or "viscous" resistance coefficient 
(at Froude numbers below = 0.15) of various hull models and 
of some model families (geosims), compared with Schoenherr. 

"VICTORY- SHIP" MODEL FAMILY ( 2 ) 
"SIMON BOLIVAR" MODEL FAMILY ( 1,d) 
LINER AND CRUISER MODELS ( 2,c) 
DOUBLE MODEL - - BERLIN ( 4,o) 
DITTO, REVERSED DIRECTION ( 4,o) 
"LUCY ASHTON" MODEL FAMILY ( a) 
"LIBERTY" WITH STIMULATION ( o) 
HUGHES (F) - Cblock = 0.76 <7,b> 
DITTO — (L)- — = 0.36 (7,b) 
W'OUT STIMULATION, -SWEDISH (7,d) 

- -foo4 

1—* l-l^ - . .003 

4- ooi 

2. DRAG CAUSED BY FRICTION 

Skin-friction along the hull usually plays the pre¬ 

dominant part in larger displacement vessels. For ex¬ 

ample, in trans-Atlantic liners, frictional drag (in 

the definition of this book, including form and rough¬ 

ness effects) accounts for more than 75% of the total 

resistance. In freighters and tankers the percentage 

is even appreciably higher, approaching some 95% 

at Froude numbers below 0.15. 

Extrapolation Method. The prediction of full-scale 

ship resistance is traditionally based on towing-tank 

tests. The procedure (first introduced by William 

Froude) is generally as follows: 

(a) After subtracting a standardized minimum value 

for the skin-frictional drag (in England corresponding 

to Froude’s plank experiments, in the United States 

according to Schoenherr), the so called “residual” drag 

ratio is obtained. 

(b) For each full-scale speed, this component is then 

combined with frictional resistance determined for 

full scale Reynolds number through the use of the 

same friction function (Froude or Schoenherr, re¬ 

spectively). 

(c) Since all this is done with and for smooth hull sur¬ 

face, full scale resistance is never correctly obtained. 

In the United States, the discrepancy is then elimin¬ 

ated by a “roughness allowance” corresponding to the 

incremental coefficient AC^ = 0.0004. 

(d) Another method advocated in some European 

quarters, is to assume a certain equivalent sand-type 

roughness (as explained in Chapter V) thus provid¬ 

ing a constant friction drag coefficient. The corres¬ 

ponding grain sizes are between 0.1 mm for smaller 

“boats” and 0.2 mm for larger vessels under realistic 

service conditions (8,f). 

Inasmuch as the details of these methods are some¬ 

what obsolete in comparison to the present state of 

at least qualitative hydrodynamic knowledge, they are 

not treated further (not in their original and still ac¬ 

cepted standard form) in this text. This is particularly 

true for the "residual” component of resistance which 

is a mixture of wavemaking with “viscous” or para¬ 

site drag. 

Turbulent Friction. The most suitable formulation of 

skin friction drag as a function of Reynolds number, 

is the “Schoenherr line”, presented in Chapter II. At 

small Froude numbers (where we do not expect any 

wave drag worthwhile to be considered), towing-tank 

tests on scale families of hull models (called “geo¬ 

sims”) with smooth surfaces (and with suitable tur¬ 

bulence stimulation, at least in the smaller sizes) have 

repeatedly shown that their drag varies in proportion 

to (or parallel to) this function of the plane-wall skin 

friction drag coefficient C^; see figure 1. This illu¬ 

stration is very similar to the graph in figure 23 of 

Chapter VI, in which the smooth, but turbulent drag 

coefficient of airplane hulls is presented. Other skin- 

friction “extrapolators” have been promoted in re¬ 

cent years (2,e) — more on statistical grounds than on 

the basis of strict physical reasoning. They are part 

of a discussion now going on for 50 years on this sub¬ 

ject. Approach and analysis as in the following para¬ 

graphs are not generally accepted; they rather reflect 

the author’s opinion on the mechanism of “viscous” 

resistance. 
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Three-Dimensionality. The latest word regarding skin 

friction is “three-dimensional extrapolator”, suggest¬ 

ing that bodies such as hulls may have a slope of the 

frictional drag coefficient Cp against R’number Rji 

that would be significantly different from the plane- 

wall function. Nature and magnitude of the three- 

dimensional “edge effect” in rectangular plates are ex¬ 

plained on page 2-8. On the same page, it is also 

pointed out that the skin-friction drag of a circular 

cylinder (having a length 1 = 10 d) in axial flow (tent¬ 

atively representing the hull of an average ship) does 

not have a skin-friction drag coefficient significantly 

different from that of a plane surface; that is, not 

above a Reynolds number of R^ 10^. Lateral curva¬ 

ture should, therefore, be disregarded in the discus¬ 

sion of full-scale resistance of ships. Slopes of CQwe^ 

against Rj, larger than that of Schoenherr’s function 

are suggested, sometimes to be the result of difficulties 

in the stimulation of turbulence (particularly in 

“geosim” families and in fuller bow shapes). 

Thickness Effect. Flow separation from the afterbody 

is or can be avoided in slender streamline shapes. As 

pointed out in the “streamline” chapter, the drag of 

such bodies increases, nevertheless, with the thickness 

ratio (diameter/length), because of increased mo¬ 

mentum losses in the boundary layer. The increment 

is twofold. 

(a) Equation 26 of the “streamline” chapter indicates 

an increment of frictional drag due to increased mean- 

average velocity along the sides of streamline bodies, 

in proportion to (d/1j/2. Using in displacement ves¬ 

sels, the volumetric coefficient V/l3 in place of the 

thickness ratio “d/1”, the drag increment due to su¬ 

pervelocity (mean-average increment of tangential 

speed along the hull) can thus be expected to be 

C„«,~ A7P <9> 

This function is confirmed in figure 2 within the 

range of smaller volumetric coefficients. Increased ve¬ 

locity means reduced static pressure at the bottom of 

the hull. “Squatting” (an increase of draft “h” while 

under way) is therefore a measure for this component 

of additional drag (4,d): 

A CL/CL « 0.5 g Ah/V2 (10) 
T to 

The squatting effect is expected to grow with the b/h 

ratio of the hull. It may therefore be more than co¬ 

incidence in figure 2, that hulls with a beam ratio 

b/h = 3 show appreciably higher increments than 

those with b/h = 2. 

(b) A second increment of “parasitic” drag caused 

by skin friction in streamline solids, is a component 

of pressure and possibly separation drag (see in Chap¬ 

ter VI). This term is approximately of the form 

ACf ~ (V/l3)0 (11) 

where o ■=*• 1. As demonstrated in (4,d) and (10,b), 

the pressure drag component is also increased by 

shortening the length of the so-called run in a hull 

(that is, by making the afterbody shorter and/or 

fuller). 

Surface Roughness. Principles of fluid-dynamic rough¬ 

ness are explained in the first section of Chapter V. 

As far as ships are concerned, this author believes 

that an explanation of the discrepancies in frictional 

resistance mentioned above, can easily be found in the 

complex roughness structure of the wetted surface of 

the full-scale ships. It has been mentioned in this re¬ 

spect (on page 10-2) that clean hulls with common 

marine paint on their plating, will grow hydrody- 

namically rough at a speed of 4 knots. In distinc¬ 

tion from the laboratory type of sand roughness (see 

in the chapter on “imperfections”), the grain size is 

not uniform, however, in commercial paints or coat¬ 

ings (9,a). Because of this and/or because of reduced 

roughness concentration, the influence of which is ex¬ 

plained on page 5-4, there can be a very extended 

transitional range of the Reynolds number, in which 

the slope of the skin-frictional coefficient Cf against 

R’number gradually reduces. Surface imperfections 

such as butts, laps, welds and rivet heads in the plating 

Figure 2. Non-wave-making, "viscous" resistance of bare hulls 
(with maximum beam at ^ midship), as a function of 

their volumetric coefficient. 
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of a ship (flow mechanism and drag of which are ex¬ 

tensively treated in Chapter V ) can also be consid¬ 

ered to be roughness with low concentration. An 

example of their drag coefficient as a function of 

R’number is presented in figure 6 of the chapter men¬ 

tioned. The transitional phase can very well be so 

extended that a terminal constant skin-friction drag 

coefficient is not yet reached at the highest speed of 

a ship. This mechanism, further treated in (8,b) and 

supported by the experimental evidence in figure 8, 

provides an explanation why in many experiments on 

full-scale vessels (as for example in 8,c), a constant 

drag coefficient (as expected on the basis of sand-type 

roughness) usually does not come true. 

Fouling. Grain sizes likely to be found in physical 

surfaces, are listed in tables on pages 5-3 and 10-2, in¬ 

cluding those in marine-type paints and coatings. For 

most practical purposes, the wetted surface of ships 

must be expected to be in the "rough” regime of hydro- 

dynamic boundary-layer flow. Consideration of rough¬ 

ness still has to go further in ships, however. Even 

if the skin plating would be made sufficiently smooth 

in building a ship — fouling (marine growth) will 

make a hull hydrodynamically "rough” within a com¬ 

paratively short time. To give an indication of the 

magnitude of the effect, some statistical information 

on total drag at specified speeds, taken from (l,b) 

has been plotted in figure 3 against the time after 

docking (cleaning and painting). It is seen that after 

a year in service, the total drag (mostly frictional, 

at cruising speed) of naval vessels may possibly be 

doubled. As a biological phenomenon, fouling (such 

as start and growth of barnacles) depends very much 

upon environmental conditions, such as in ports and 

(2) Correlation of resistance along friction line: 
a) Weitbrecht, Tank Tests, Yearb.STG 1933 p.329. 
b) VanLammeren-VanManen-Lap. Scale Effect on "Victory 
Ships,” Trans INA 1955 p.l67. 
c) O. Schlichting, Yearbook STG 1951, p.55. 
e) "Extrapolators” different from the Schoenherr line are 
proposed by Telfer (Trans INA 1927 and 1950) by Troost 
and Lap (Intern.Shipbldg Progress 1954 p.5 and 1956 p.573) 
and by Hughes (Trans INA 1950 and 1954; see also Dis¬ 
cussion in Schiff and Hafen Feb and July 1955 by Wieghardt, 
and comments in the following reference). 
f) Granville, Viscous Resistance, Trans SNAME 1956. 

(3) Experimental results on barge shapes: 
a) Hay, Tank Tests, Princeton Univ.Engg. Rpt 1946. 
b) Hay and Runyon, Parallelepipedons, 1947. 
c) Hay, Blunt Forms, Mar. Engr. Nav. Arch. 1950 p.339. 
d) Allan, Barges, Trans INA 1948 p.154. 
e) Taggart, Barge Hulls, Am.Soc.Naval Eng. 1956 p.781. 
Additional drag due to skegs, needed for stabilization, is be¬ 
tween 30 and 100% of the basic hull resistance. 

(4) Information on "viscous” form drag: 
a) Graff and Horn, STG Forschungsheft 10 (1939). 
b) Tamiya, Intern’l Shipbldg. Progress 1954 p.55. 
c) Nordstrom, Swedish StateExp’t Tank Rpt 1954. 
d) Graff, Form Resistance, Yearb.STG. 1934 p.193. 
e) Hughes (NPL), Form Resistance, Trans INA 1954. 
f) Eggert, Trans. Soc.NAME 1935 p.l 39; 1939 p.303. 

Figure 3. Increase of total resistance (which is essentially fric¬ 
tional plus appendage drag) of ships due to fouling. 

anchorage areas. Figure 3 proves in this respect that 

when lying still, fouling progresses considerably faster 

than when moving. Investigation of certain test plates 

lying in Chesapeake Bay (8,d) also shows that fouling 

stops during Winter time, while it increases at an 

alarming rate (in that case) in the Summer. In conclu¬ 

sion, the frictional drag coefficient of ships is "never” 

constant; it usually increases appreciably with time 

because of fouling. Docking can therefore be of 

greater importance with respect to the performance 

of a ship than hull shape and other design character¬ 

istics. The period between dockings for a well-kept 

liner, is in the order of half a year. 

3. MODEL-FULL-SCALE CORRELATION 

In finer shapes, wave resistance is negligibly small at 

Froude numbers below ~ 0.1. Even after excluding 

this component, correct perdiction of “viscous” or 

“parasitic” full-scale resistance remains problematic, 

however. 

Drag of Barges. To show in form of an extreme ex¬ 

ample, that non-wavemaking drag is not always ex¬ 

plicitly related to skin friction, drag of barge-like 

“boxes” is presented first. — Besides the pressure drag 

cumulatively caused in round shapes and also in 

streamline bodies by boundary-layer losses (as ex¬ 

plained on pages 3-4 and 6-6), there is also the more 

"violent” type of pressure or “eddy-making” drag 

originating from bluff obstacles by way of flow sep¬ 

aration. Particularly in case of sharp edges from 

which separation takes place, this type of drag does 
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Figure 4. Drag coefficient of simple barge forms (3,a,b,c) on 
statically submerged frontal area. 

usually not, or at least not appreciably vary as a 

function of skin friction along the forebody. The 

drag coefficient of such bodies is, therefore, compar¬ 

atively constant when plotted against Reynolds num¬ 

ber, as shown in numerous examples in Chapter III. 

Figure 4 presents drag coefficients (on projected sub¬ 

merged frontal area “S”) of some barge-type hulls. In 

the form of a blunt “box”, pressure drag caused by 

flow separation is very high. In fact, in the example 

as shown, the drag is roughly 10 times as high as the 

frictional drag estimated on the basis of the wetted 

surface area of the box. By rounding the forefoot 

edge, the drag coefficient can be reduced to 0.4, as 

shown in figure 5. Similar reductions are obtained 

(3,b) by bending up the ends of the bottom. Round¬ 

ing the ends in plan form, is suitable too for reducing 

the “eddy making” drag of such barge shapes (figure 

4). Rounding is generally more effective at the bow 

than at the stern. It is desirable, however, in prac¬ 

tical applications, to keep the plan form «= rectang¬ 

ular and to have symmetrical ends, so that the barges 

can be towed in either direction. — Barges are used 

at small speeds. For example at V = 3 knots, the 

Froude number of a 200 ft long barge is below F^ 

= 0.1. Wave-making is, therefore, considered to be 

negligibly small. Reference (3,a,b,c) gives informa¬ 

tion, however, regarding the resistance of various 

“boxes” at higher Froude numbers. 

Figure 5. Drag of a "box" or barge shape as a function of its 
forefoot radius (3,a,b,c). 

Hull Appendages are either additions indispensable 

( such as rudders, propeller shafting, struts or bos¬ 

sings); or they are desirable in the operation of vessels 

(such as bilge keels, stabilizing fins and possibly cer¬ 

tain naval equipment). Appendages may sometimes 

have a bluff shape (such as possibly in struts support¬ 

ing the propeller shaft); and they may then have a 

basic drag coefficient (due to flow separation) which 

is high and which, in a manner similar to that of the 

barges noted above, does not decrease with R’num- 

ber. “Streamline” shaping of appendages has widely 

been accepted, however, in modern ship design. In 

models equipped with appendages, laminar separa¬ 

tion may also take place from certain of these appen¬ 

dages (such as struts in particular) thus leading to 

total drag coefficients appreciably higher than corres¬ 

ponding to the Schoenherr line. Such appendages 

are, therefore, usually not reproduced in tank models 

when testing resistance; and their drag is added on the 

basis of experience. 

Frictional Appendage Drag. The drag of bilge keels 

may be estimated on the basis of their wetted area; 

experiments (9,b) seem to confirm such analysis, if not 

taking into account the fact that a strip of the hull 

surface is covered by the keels. An increment of 2 or 

3% of the “viscous” hull resistance is thus found for 

this item. In rudders, sharp edges (if any) and gaps 

(if any) between them and “deadwood” or rudder- 

post should be taken into account. Including such im¬ 

perfections and certain parts needed to support and 

to move the rudder, a section-drag coefficient of at 

least 0.02 (on projected lateral area as in Chapter VI) 

may be assumed. Depending upon configuration (sin¬ 

gle behind deadwood; or twin in less disturbed flow), 

the mean-average dynamic pressure of the wake flow 

passing the rudder is less than the full pressure cor¬ 

responding to the ship’s speed. Assuming a ratio of 

0.5, the drag coefficient on the rudder’s wetted area 

is then .5 (0.02) 0.5 = 0.005. For a wetted rudder area 

possibly in the order of 4 % of the hull’s surface, the 

drag contribution of the rudder is then estimated to 

be some 6% of the total “viscous” drag of a ship. Sta¬ 

bilizing fins (such as developed by Denny Brown or 

Sperry) may have a projected “wing” area of 200 ft2 

for a 400 ft long ship. On the basis of CDs — 0.01, 

their drag may then be in the order of 3% of the 

“viscous” ship resistance (5,c). 

Propeller Shafting. In twin- (and in quadruple-) screw 

ships, the propeller shafts are either supported by 

struts (or “brackets”); or they are housed in and sup¬ 

ported by fin-like bossings. Investigations on an ex¬ 

perimental twin-screw craft (9, a) show that the two 

methods, illustrated in figure 6, roughly yield the 

same net drag increment in the order of 6 or 7% of 

the hull’s total “viscous” resistance. Referred to the 

bossing’s added wetted area, a coefficient of Cp = 
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Figure 6. Example of propeller shafting tested full scale (9,a) 
(a) with struts (brackets) and (b) with "streamline” bossings. 

0.008 is obtained. This value is more than 3 times 

the hull’s coefficient which is CDwgp = 0.0024 (as plot¬ 

ted in figure 8). We therefore have to assume that the 

bossings have some form drag, and/or that they also 

cause an appreciable amount of interference drag 

along the hull, of the type as described in Chapter 

VIII. As a rough rule, we may thus assume that bos¬ 

sings have a drag corresponding to wetted area, in¬ 

creased 100% (or more) because of interference. Anal¬ 

ysis of the shaft plus strut system as in figure 6,a, 

shows that approximately 45% of the drag increment 

are due to shafting and bearings (corresponding to a 

value of Cp ~ 0.005 on their wetted area), and that 

the other 55% evidently originate from the struts, 

(5) Resistance of ship appendages: 
a) About Bilge Keels, Ybk. STG 1933 p.360. 
b) Propeller Shafting see in reference (9,a) 1955. 
c) The estimate does not include increments to be expected 
from the motions of a vessel at sea, and in faster ships those 
possibly caused by cavitation. 
d) The fact that drag of certain appendages is of frictional 
nature, thus expected to decrease as a function of Reynolds 
number, is taken into account by referring the added resist¬ 
ance to that of the hull. 
e) Mandel, On Appendages, Trans SNAME 1953 p.464. 

(6) Aerodynamic resistance of ships: 
a) Fottinger, Yearbook STG 1924. 
b) Hughes, Model Experiments, Trans INA 1930 p.310. 
c) Hemke-Carson, Streamlining Superstructure of Ships, 
Marine Engineerg. Shipping Review 1936 p.603, 685. 
d) Wind resistance of "Lucy Ashton” (9,a) corresponds to 
Cc. = 1.25 to 1.36 at zero wind angle. 
e) Aerodynamic drag coefficient of "Victory Ship” model 
(tested by Endert, Trans INA 1955 p.167) is Q>. = 0.95 
at zero angle, and Co. = 1.25 between (i=(20 and 23)°. 
f) Frontal area above waterline may be =r 0.5 ba. 
g) Report on Wind Resistance Experiments by Shipbuilding 
Research Association of Japan No. 1 (1954); quoted in 
(l,f), indicates CD. ~ 0.8 in head wind, 1.0 in wind 
from astern, Co, = 1.25 in beam wind (based on lateral 
area). Removal of all equipment (mast, derricks, bulwarks, 
rails, winches) reduces the aerodynamic drag by 7%; round¬ 
ing of bridge-house front by 12%. 

having t/c = 1/3, and their junctions with hull and 

bearings, respectively. Applying the interference co¬ 

efficient CD-p = 0.25 (taken from figure 23 in Chap¬ 

ter VIII) for a total of 8 junctures, a total drag of 

the shaft and strut system is obtained which is roughly 

double the tested value. It can be concluded that the 

average or effective dynamic pressure along the stern 

and at the location of the struts (and their junctures) 

is roughly half of the undisturbed pressure (corres¬ 

ponding to 0.5 q V2). Tank-model tests, also repor¬ 

ted in (9,a) on the same configuration of shaft and 

struts, show an increment of the ship’s drag coefficient 

which is on the average double the increment as tested 

full scale. For the Reynolds numbers in the model 

tests, on strut chord (between 10^ and 10^) figure 

2 in Chapter VI proves that flow pattern and drag 

coefficient can be expected to correspond to laminar 

separation (with CDs ~ 0.10). This result thus bears 

out what is said above about tank testing of such ap¬ 

pendages. — Reference (l,f) explains in particular 

how in twin-screw vessels, size (wetted area) and 

drag percentage of shafting vary as a function of the 

hull’s prismatic coefficient. Added resistance in a ship 

having Cp^;s = 0.8 may only be as high as 3 or 4%. 

Condenser Water. Some inlet (scoops) and outlet 

openings used to drive cooling water through the 

condensers of a ship are shown on page 9-16. Since 

the water is usually discharged in a direction normal 

to the skin of the hull, its momentum (whatever there 

is left) can be considered to be completely lost. As 

derived from the principles set forth in Chapter IX, 
the “internal” drag therefore corresponds to 

D/q — Q/V (15) 

where Q = volume of water per unit time. Statis¬ 

tically, a certain percentage of thrust = resistance 

of the ship is to be expected for the condenser-water 

component of drag. This component is roughly in the 

order of 1% of the total resistance. 
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1 . ; ^ 
"PRESIDENT HOOVER" (c) Cu. = 0.68 1 

STREAMLINE DESIGN (c) CD. = 0.17 

i'll J—Li 
"LONDON MARINER" (b) CD< - 1.22 

"MODEL P" (a) I = 400 ft CD- = 0.32 

Figure 7. Aerodynamic or wind resistance of several ship models 
(6). The coefficient is based on projected frontal area of 
hull (above waterline) plus superstructure. 

Sum of Increments. The drag components considered 

in the preceding paragraphs, add up as follows: 

shaft bossings 7% (9%) 
rudder 6% (7%) 
bilge keels 2% (2%) 
condenser water 1% (1%) 
wind resistance 3% (3%) 
total increment 19% (22%) 

Reliable experimental information confirming the 

various components is limited. The total of their re¬ 

sistance (not referring to items such as wind drag) is 

usually quoted ( 1 ) to be between 15% of the hull 

resistance for single screw vessels and some 30% for 

multiple-screw ships (equipped with shaft bossings 

or struts). Although the estimate made above may 

not be correct quantitatively, the mechanism proposed 

in the following paragraph may nevertheless be true. 

Wind Resistance. Considering the mass-density ratio 

of water against air in the order of 840, the air drag 

of hull and superstructure may not appear to be im¬ 

portant. However, heading into the wind, the dynamic 

pressure corresponds to the square of ship-plus-wind 

speed. As a consequence, the aerodynamic drag can 

be an appreciable fraction of the total resistance that 

a ship encounters on her way through the elements. 

Figure 7 presents a few samples of the aerodynamic 

drag coeffiicient (based on frontal area of the ship 

above the waterline), as tested in wind tunnels (6). 

With respect to the apparent wind (wind in relation 

to the moving ship), the component of aerodynamic 

drag in the direction of motion increases above the 

values given in the illustration, by 20 or 30% to a 

maximum at wind angles between 20 and 35° off the 

bow. Figure 7 also shows certain attempts of stream¬ 

lining. To demonstrate the relative importance of 

such efforts, we may consider a freighter with an as¬ 

sumed ratio of Swe^-/S<= 15 (where “wet” indicates 

the area wetted by water, while S4 is the frontal area 

of the ship above the waterline). Using a CDwe^. = 

0.003 (at speeds without much wavemaking resis¬ 

tance) and a CD> = 1.1 (assumed on the basis of 

figure 7 and reference 6,d), the function 

Dair/Dwater = (Co.AW) (S. /Swet)/840 (16) 

then leads to a ratio of some 3%. Thus, wind resis¬ 

tance is not entirely negligible. This component of 

resistance (as well as that due to condenser water flow) 

does not appear, however, in accepted formulations 

of ship resistance. Considering next a head wind with 

a speed (against water) equal to that of the ship, the 

aerodynamic drag will be quadrupled, thus possibly 

amounting to 12%. Applying a streamline type of 

superstructure, at least half of this component could 

be avoided. 

Friction Belt. The drag caused by appendages is a 

function of size and location. In regard to location, 

practically all of the appendages are usually placed 

well inside the “friction belt” (expression for bound¬ 

ary layer and/or wake). Increasing now the Reynolds 

number from that of a model investigation (say at 

10^) a 1000 fold (to R^ = 109), the thickness of belt 

and wake is appreciably reduced. In two-dimensional 

flow, boundary-layer thickness is proportional to the 

skin-friction coefficient Cf - Comparing conditions at 

R^ = 109 with those at 106, the BL thickness is 

therefore reduced in proportion to Cfg/C^ = 0.35. 

As explained in the chapter on “imperfections”, the 

drag of bodies located within that boundary layer is 

consequently increased to (0.35)-^ ~ 1.4. The ap¬ 

pendages “emerge”, so to speak, more and more from 

the deeper layers of the friction belt. For an assumed 

drag of the appendages concerned, in the order of 

15% of the total, another 6% may thus be added 

(5,d) at an R’number of 109. Repeating, however, 

the analysis for three-dimensional conditions (as they 

certainly exist around the stern of a hull) a factor of 

«=• 1.2 is obtained, and a corresponding increment 

of only 3%, as listed in parentheses in the tabulation 

above. Note that as a consequence, the appendage 

drag is expected neither to be a constant percentage 

of the Schoenherr Line resistance, nor to correspond 

to a constant ACL ,. 
uwet 
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FIGURE 8. Correlation of model and full-scale total drag coefficients of 
various vessels. Note that the "Greyhound” and "Youdachi” results are not 
the same as presented in (8,c) and that certain points have been omitted 
purposely. Also the "Hamburg” results are joint with those of the "Victory 
Ship” model family, which is meant to be a possibility rather than a fact. 

Vessel and Source 1 m Ct>wei kmrn 

▲ "Lucy Ashton 
very smooth (9,a) 

52 .0020 O
 

o
 

2
?

 

ship with fresh 120 .0028 0.18 

* 
marine paint 
same ship, but 

(9,d) 
120 .0045 2.6 *) 

badly fouled 0 
"Yudachi" 

(9,d) 

a 
<9, c) 

71 .0030 0.14 
evidently clean 
"Bremen" from a 275 .0031 0.55 
skin plate <8,c) 
"Hamburg" from 201 .0030 0.48 
skin plate (8,o 

O "Greyhound" 
by W. Froude (9,b) 

52 .0039 0.37 

naval vessel as 
(10 ) 

116 .0029 0.08 
in figure 9 +) 

A "LUCY ASHTON" MODEL FAMILY (9,o) 
O "VICTORY-SHIP" MODEL FAMILY (2,b) 

+) measured predominant grain size in mm 
•) measured barnacle size = 3.5 mm 
x) equivalent sand roughness grain size 

corresponding to terminal Cp level 

(7) Stimulation of turbulence in hull models: 
a) Couch and Hinterthan, Methods for Stimulation, TMB 
RPT 726 (1950). Results---are for 20 ft 
model of "Liberty Ship.” 
b) Hughes and Allan(NPL), Trans. Soc.NAME 1951 p.281. 
c) Ridgely-Nevitt (Webb), Appendix in ref. (13,e), 
d) Nordstrom, Publ. No. 18 Swed. Shipb. Exp. Tank(1951). 

(8) Surface roughness in hulls: 
a) See in reference (9,a) 1953 and 1955. 
b) Hoerner, Mechanics of Roughness — Concentration, 
Journal Am.Soc. of Naval Engineers 1954 p.497. 
c) Kempf, Werft-Reederei-Hafen 1924 p.521, 1929 p.234; 
Yearb.STG 1937 p.159; Trans INA 1937 p.109. 
d) McEntee, Drag due to Fouling, Trans SNAME 1915. 
e) Results of a "plank ship” (9,c) are plotted in figure 6 
of Chapter V, showing reduced slope of Cp(R^). 
f) Weitbrecht, Standardized Roughness, Internat. Towing 
Tank Conf. Berlin 1937, Mitt.Pr.VAWS No. 32 p.20. 

(9) Full-scale investigations of ship resistance: 
a) Denny, Conn, Lackenby, Walter, Livingston-Smith; Re¬ 
sistance of "Lucy Ashton”, Trans INA 1951 p.40, 1953 
p.350, 1955 p.109 and 1955 p.525. 
b) "Greyhound” by W. Frouae; see reference (l,a). 
c) Hiraga, Planks and Ships, Trans INA 1951 p.284. 
d) Amtsberg, Roughness, Schiffbau 1937 p.l35. 

(10) Analysis of one particular vessel: 
a) These data on a Naval vessel have been made available 
by the Taylor Model Basin. Appendages were reproduced 
in the model. Trials conducted in 1950. 
b) Hoerner, Analysis of Viscous Ship Resistance, Internat. 
Shipb.Progress 1954 p.l56. 

Propulsive Efficiency. Inasmuch as full-scale perfor¬ 

mance is also a function of propulsive efficiency, it is 

mentioned here (a) that the recovery of momentum 

obtained by the propeller operating within the wake 

of the hull (“wake fraction’’ minus “thrust deduction”) 

is known to be full-scale a few percent lower than de¬ 

termined in model tests (see reference 1); and (b) 

that propeller efficiency as determined in a uniform 

tunnel flotv, may in actual operation be a few percent 

lower because of the deep velocity and dynamic-pres¬ 

sure “holes” found behind deadwood, bossings or shaft- 

strut systems. 

Roughness. Figure 8 presents a re-evaluation of sev¬ 

eral sets of experimental results obtained on full-scale 

vessels. While these data are “old”, interpretation 

by the author is new. The most important result is 

that all of the results show a more and more reducing 

slope of Cp (R), in a manner explained on pages 

5-4 and 11-4. Assuming, for example, for the “Ham¬ 

burg” a basic ratio (due to thickness) of Cp /CpQ = 

1.2, the frictional resistance of this vessel at cruising 

speed (without wave-making and appendage drag, 

but including roughness) corresponds to Cp 2 Cpo 

where CpQ — smooth-turbulent coefficient as defined 

by the Schoenherr function. Average Cp /Cp0 ratios 

of the ships tested, also tend to correlate with each 

other when plotted against their average cruising 

speed. The fastest vessels tested tend to have the 

highest ratios, in this respect and vice versa; a result 

which corresponds to the fact that the critical speed 

in regard to roughness depends upon the grain size 

rather than the dimensions of the craft (see on pages 

5-2 and 10-2). 
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Figure 9- Tank-model and full-scale trial tests (45 days after dry¬ 
docking and painting) of a naval vessel (10); having 1 = 283 
ft, A = 3200 tons and V/I5 = 2/1000. 

Correlation. Figure 9 presents the example of a 

naval vessel, analyzed through application of the 

methods and principles mentioned. The drag 

increment corresponding to hull thickness ratio 

(figure 2) is estimated to be 15% of the Schoen- 

herr function. The drag area (D/q) of the appen¬ 

dages (rudder, shafting and others), reproduced in 

the model is assumed to be constant, corresponding to 

a ACp = 0.0006 (which is ~ 20% of the “viscous” 

resistance at full-scale Reynolds number ). Trials of 

the vessel were undertaken after 45 days out of dry- 

dock and painting, in Atlantic waters at 80° F. With 

respect to surface roughness under these conditions, 

it is suggested in the illustration, that a constant drag 

coefficient would be reached at speeds slightly above 

the maximum of the ship. From the smooth-turbu¬ 

lent drag function of the model to that constant level, 

a transition line is shown whose slope reduces grad¬ 

ually from that of the Schoenherr line (at R/ = 107) 

to zero (when reaching the constant level, if at all). 

Beginning, shape and termination of the transition 

are governed by concentration (see page 5-4) and size 

distribution of the roughness “grains” or “elements”, 

as found in the wetted surface of the vessel tested, 

under the fouling conditions at the time of trial. Some 

of the assumptions made in producing figure 9, are 

heuristic, of course. None of them is believed to be 

unreasonable, however, and the agreement thus ob¬ 

tained suggests that the analysis is physically correct. 

As far as the vessel as such is concerned, “viscous” or 

“parasite” resistance at R^ = 10^ corresponds ten¬ 

tatively to the drag coefficients (on wetted area) as 

follows: 

Schoenherr Line value Qp = 0.0015 

added drag due to roughness = 0.0005 

added drag due to thickness = 0.0003 

drag of model appendages = 0.0007 

aerodynamic resistance = 0.0001 

total non-wavemaking cf = 0.0031 

On the basis of this breakdown, roughness accounts 

for 1/3 of the increment over the Schoenherr value. 

It is suggested, however, that some fraction of what 

is labelled “appendages” (as tested on the model) 

should rather be blamed on roughness too. A final 

conclusion derived while making this analysis, is sim¬ 

ply that in the end, summation of a sufficient number 

of comparatively small components helps very much 

in arriving at resistance values compatible with full- 

scale experience. 

Extrapolation Method. Considering the mechanics 

of viscous form drag, appendage resistance, inter¬ 

ference and “polytropic” roughness as described above, 

it can be concluded that none of the simple “extrap- 

olators” proposed (2,e) can directly lead to a correct 

prediction of full-scale resistance. A physically cor¬ 

rect breakdown of drag (as attempted in these para¬ 

graphs) should open the door, however, to more real¬ 

istic formulations. Indeed, figure 9 represents an at¬ 

tempt of doing that by taking steps as follows: 

(a) use the smooth-turbulent Schoenherr function 

as basis; 

(b) estimate the increment due to thickness on the 

basis of figure 2; 
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(c) determine the drag of the appendages by exper¬ 

iments or through application of the methods set 

forth in certain chapters of this book; 

(d) find the terminal level of the “viscous” drag 

coefficient on the basis of an empirical or stand¬ 

ardized skin roughness grain size; 

(e) determine the coefficient due to aerodynamic 

drag (and that corresponding to condenser-water 

flow); 

(f) find or assume a transition from the line corres¬ 

ponding to smooth-turbulent skin friction to the 

constant terminal level. 

(g) add wave resistance, which is to be evaluated 

from towing-tank tests in a manner similar to the 
method used in splitting off the “residual” drag. 

A procedure possibly to be utilized for the step in “f”, 

is indicated on page 5-4. The “limiting” grain size 

(as proposed in step “d”) representing the roughness 

of the “smooth” spaces in between the larger “grains”, 

brush marks, imperfections and fouling particles of 

the hull’s surface — may of course vary very much 

with time and between different ships. This grain 

size is k ~ 0.05 mm in the illustration. A magnitude 

of k = 0.1 mm could possibly be adopted as a realistic 

standard, thus taking into account some fouling. A 

larger vessel will then correctly be on a lower drag 

level than a shorter ship. Figure 8 gives some con¬ 

firmation of this mechanism in combination with the 

principle of the more and more reducing slope of 

C p(R). It is felt that among the existing methods, 

that of the American Towing-Tank Conference, of 

adding to the Schoenherr function the residual resis¬ 

tance as well as a standardized roughness allowance of 

AC_p = 0.0004, comes closest to the result outlined 

above. 

(12) Wave-drag theory, presented by: 
a) Havelock, numerous studies between 1908 and 1952; a 
bibliography is given in (e). 
b) Wigley, Calculated and Measured Wave Resistance, 
Trans INA 1944 p.4l, 1948 p.92 and 1949 p.4l. 
c) Weinblum, Papers between 1930 and 1952 partly in 
Yearb.STG, also in other places, such as in J.Am.Soc.Nav. 
Engs. 1952 p.251. A systematic treament of the subject is 
also given in Yearb.STG 1953 p.186. 
d) Havelock, Water Effect, Trans SNAME 1951 p.13. 
e) Lunde, Linearized Theory, Trans SNAME 1951 p.25. 

4. WAVE RESISTANCE 

Nature of Wave Drag. Leonardo da Vinci (1452 to 

1519) is quoted to have stated that a hull “pushes 

aside and in front of itself a great quantity of water”. 

This is not correct in finer shapes; in fact in a non- 

viscous and non-spraying liquid, the particles will 

eventually return to their original location, after a 

ship has passed. Corresponding to the increased static 

pressure at the bow of a hull, the water level rises 

in the vicinity of the stem. On the other hand, 

at the sides of the hull, particularly in the 

vicinity of the shoulders, the static pressure is de¬ 

creased. Since gravity tends to reduce any devia¬ 

tion from level condition, a wave system originates 

from the bow (beginning with a crest), and a similar 
(but weaker) system from the stern (beginning with 

a trough) of every displacement vessel. Each of these 

systems has lateral and tranverse components, as ex¬ 

plained in textbooks on the subject (1). In each wave, 

water particles perform a so-called orbital motion, up 

and down, back and forth, approximately in circles 

(in the manner of a Ferris wheel). Thus the particles 

esentially remain at their original location; and it is 

only the wave shape that appears to travel along the 

water surface. The momentum transferred from the 

moving vessel onto the water particles travels with the 

waves, however. Wavemaking is thus a dissipation 

of energy which means resistance against the motion 

of the ship. As far as the hull is concerned, wave drag 

appears in the form of a net longitudinal component 

of the pressure distribution along the hull. 

Humps and Hollows. Theory of drag due to 

wave-making has been developed (12). After inte¬ 

gration of the static pressures around a given hull, 

it is possible to predict wave resistance. It is demon¬ 

strated in (12,e), that on the average, the transverse 

and the divergent part of a wave system, each roughly 

contributes half of the wave drag. The transverse 

waves determine, however, the interference between 

bow and stern system. Depending upon whether the 

two systems are in phase or not, they can add to each 

other or they may partly cancel each other (12,b). As 

a consequence, the drag coefficient of displacement 

hulls shows “humps” and “hollows” as a function of 

speed, as shown in figure 10. Based upon the length 

“ A ” (from crest to crest) of the transverse waves, 

humps of the wave-drag coefficient appear at Froude 

numbers 

Fa = V/j/gA = l/^2itn = 0.4/|/iT ; 

where n = 2, 4, 6 . . . . 
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Figure 10. Comparison of calculated with tested wave drag by 
Wigley (12) for hull No. 829; having b/h = 1.5; 
Cpris = 0.64 and mid-section coefficient = 2/3. 

The corresponding critical numbers are 0.28 and 0.20, 
while at 0.16 and 0.14 and so forth, wave drag is com¬ 
paratively small. Actual critical numbers based on 
the hull’s water-line length (rather than on its effec¬ 
tive wavemaking length) are higher than the theo¬ 
retical ones; among them, * 0.3 indicates the most 
important hump. Another “last” hump appears in the 
vicinity of F^ = 0.45. The corresponding hump 
speeds are approximately 

l 0' <19> 

The drag coefficient hollows are between these speeds. 
— Because of the viscous wake at and aft of the stern, 
the second wave system is always weaker than the bow 
system. As a consequence, interference is smaller than 
predicted by theory. As pointed out in (12,d), the 
greatest discrepancy between theoretical analysis and 
experience is in the hollow between Fj =0.3 and 
0.4, a fact which is also illustrated in figure 10. 
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Figure 11. Residual drag coefficient (form + wave drag) of Tay¬ 
lor Series (13,a) for constant prismatic coefficient, 
plotted against the square of Froude number. 

Froude Number. Since theory is complex (no ex¬ 
plicit, let alone simple formula is available), the mag¬ 
nitude of wave resistance is customarily derived from 
model tests in towing tanks. Some trends of this 
drag component can be stated, however, as indicated 
by theory (12,c). As a function of Froude number, 
for example, the average wave drag (disregarding the 
humps and hollows) is expected to grow as 

Vw ~ (20) 

where m 4. Because of the humps and hollows 
superimposed, this trend is not clearly evident in ex¬ 
perimental results. Optimum designs, such as in fig¬ 
ure 15, show however, that equation 20 is confirmed 
in a limited range of Froude number. Figure 9 also 
demonstrates that wave resistance (including humps 
and hollows) is essentially the same in full scale as in 
model testing. Minor changes can be expected, how¬ 
ever, on account of the fact that the thickness of the 
friction belt in full scale (affecting the formation of 
the stern system) is smaller than in any tank model 
It may be stated in this connection that even with¬ 
out a second system (from the stern) humps and hol¬ 
lows must be expected, depending on whether or not 
one of the transverse waves coming from the bow 
“lifts” the stern up, thus pushing the hull forward. 

Volumetric Coefficient. Under limited conditions, 
theory also predicts that wave drag tends to grow as 

Dw ~ b" (22) 

with n = 2 or smaller. Some evidence of this trend 
is seen in figure 11 at higher Froude numbers, where 
b is represented by (V/l^). Small values of the vol¬ 
umetric coefficient in the order of = (lor 2)/1000 
are therefore preferable at such numbers, as for ex¬ 
ample in destroyers. To say it in other words, vessels 
designed for operation at higher Froude numbers are 
made as long and slender as practicable in order to 
reduce wavemaking. However, if increasing the draft 
in proportion to the beam, volume and displacement 
weight also grow as b2. Asa consequence, the residual 
resistance ratio (D/W) is not very much affected by 
an increase of C7. Even in the vicinity of the last 
hump (at F^ ~ 0.5 for example in figure 9), Taylor’s 
Series of hull forms (13,a) indicates (for CpriS = 
constant) that (D/W) is comparatively constant (be¬ 
tween 0.04 and 0.05), at least up to C 7 ~ 2/1000 which 
is as far as tested at higher speeds. In the range of 
small Froude numbers, variation of between 3 and 
7/1000 does not affect the “residual” resistance co¬ 
efficient (on wetted area) very much. Cargo ships and 
tankers are, therefore, made comparatively fat and 
bulky in order to carry as much volume as possible 
in a given length of hull. 
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Figure 12. Residual drag coefficient of a typical (bare) tugboat 
hull (13,c). 

Prismatic Coefficient. In contrast to the volumetric 

coefficient (indicating “thickness” as such), the pris¬ 

matic coefficient indicates distribution of thickness. 

Figure 12 shows that by increasing this coefficient 

(making bow and stern fuller), wave resistance co¬ 

efficient (and bow-stern interference) at ~ 0.3 are 

considerably increased. Figure 13 presents as an ex¬ 

ample, the drag ratio D/W for F^ = 0.3. In the vi¬ 

cinity of the hump, found at this Froude number, “it 

pays to reduce the prismatic coefficient as far as pos¬ 

sible” (12,c). The graph shows accordingly an op¬ 

timum Cprj^ * 0.5. Such a coefficient means narrow 

entrance angle and hollow shape at bow and stern; 

see figure 13. Reducing the coefficient further (while 

V/l is constant), results in shapes that are extremely 

wide in beam and extremely fine at the ends. Taking 

into account frictional resistance (which is not inclu¬ 

ded in figure 13), prismatic coefficients are considered 

optimum in modern vessels, approximately as follows: 

for motorboats, destroyers, cruisers, 

liners, battleships Cpn's ~ 

for average passenger ships ~ 

for average freighters ~ 

for very slow cargo ships ~ 

0.60 

0.65 

0.70 

0.80 

(13) Tank-model results on displacement hulls: 
a) Gertler, Reanalysis of Test Data for Taylor Series, 
TMB Rpt 806 Govt.Printing Office, Washington, D.C. 
b) Todd-Forrest, Experiments on Merchant Ship Forms 
Series 57 and 60, Trans SNAME 1951 and 1953. 
c) Roach-Taggart, Tugboats, TransSNAME1954 p.593. 
d) Almy, Hughes, Meek, Ferguson; Experiments on a 
Series of 0.65 Block Coefficient Forms, Trans INA 1954. 
e) Ridgeley Nevitt, Trawler Hulls, Trans SNAME 1956. 
f) St.Denis, Transom Stern, Mar.Eng. July 1953 p.53. 
g) Hunnewell, Coast Cutters, Trans SNAME 1937 p.81. 
h) Bragg, Bulbous Bows, Trans SNAME 1930. 
i) Resistance can also be influenced by a hydrofoil placed at 
the forefoot; Abkowitz Trans SNAME 1953 p.65. 

Maximum Section. It has been mentioned that the 

wave system originating from he stern is compara¬ 

tively weak. With regard to wave resistance, it is, 

therefore, favorable to make the forebody of a ship 

finer than the afterbody. Doing this, the maximum 

cross section of the hull (or the parallel middle body, 

respectively) is naturally moved aft. Shortening of 

the afterbody may lead to “viscous” flow separation 

from the stern, however; at least in hulls with larger 

volumetric coefficients. The finer forebody shape may, 

therefore, be confined to the waterline, while the sec¬ 

tion area curve is more or less kept symmetrical fore 

and aft. Experimental results on this subject (12,b) 

show that a shorter bow increases wave resistance, par¬ 

ticularly in the vicinity of F^ <= 0.24 and « 0.33 (in 

the type of hull investigated). The center of buoyancy 

should accordingly be somewhat aft of midships at 

Froude numbers between 0.15 and 0.30. How¬ 

ever, at Froude numbers below 0.15, a position of the 

center of buoyancy ahead of midships is preferable 

with regard to “viscous” form drag originating along 

the stern, as mentioned above. 

Wavemaking Length. Alterations of hull shape may 

be considered in terms of wavemaking length. The 

effective length of a hull (with respect to humps and 

hollows) is reduced (and the effective Froude num¬ 

ber is increased) by raking or cutting away the stem 

(as for example, in the “Maier Form”) or by applying 

a “counter stern”. The wavemaking length is increased 

(and the effective Froude number is decreased) by 

adding a “bulbous bow” and by “cruiser” or transom 

type sterns. By proper design, it is thus possible to 

make the cruising speed of a ship coincide with a hol¬ 

low in the wave-making resistance, rather than with a 

hump. Such design efforts are particularly rewarding 

in regard to the hump at F^« 0.3. Figure 12 dem¬ 

onstrates, as an example, how this hump is not only 

decreased but also shifted (whatever there is left) to 

higher speeds, by reducing the prismatic coefficient 

Figure 13. Residual drag (form + wave drag) of Taylor series 
(13,a) at hump Froude number Fj^ = 0.3. Note that at this 
Froude number, results for different b/h ratios and for different 
volumetric coefficients are roughly the same. 
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In Shallow Water, the propagation speed of a wave 

has the limiting maximum value 

Vf = P (22) 

where H = depth of water. For example, in 40 ft 

of water, the critical speed is 36 ft/sec = 21 knots. 

A displacement craft going at this speed, then pro¬ 

duces a solitary wave, similar to that at the last hump, 

at 0.45, in deep water; and its wave drag (in 

lb or in the form of the D/W ratio) in this condition 

is approximately as high (14,a) as in deep water at 

that F’number. At lesser speeds, wave resistance is 

roughly as high as in deep water at such a higher 

Froude number at which the transverse system has 

the same wave length, and the same position of humps 

and hollows along the length of the hull as in the 

shallow-water condition. Resistance in shallow water 

can thus be presented in terms of 

V/V, = V/JgH =FlfWH (23) 

Up to some 0.7 of the critical speed, the influence of 

shallow water on ship resistance is considered to be 

very small. Shallowness is, therefore, not so much a 

problem in itself. Rather, it grows important in com¬ 

bination with a lateral restriction as we may find it 

in inland waterways, such as particularly in canals. 

The flow pattern is much more complicated then. 

Theoretical solutions are available, however, for such 

conditions (14,c,d,e), both for wave resistance and for 

“viscous” drag (affected by blockage). 

In Seaway. The drag of displacement vessels has been 

discussed so far on the basis of a perfectly smooth 

water surface. Actually, the water is rarely calm; and 

ocean waves have been reported with heights up to 

70 feet between crest and trough. Not too much is 

known in a systematic way, about the influence of a 

seaway upon the hydrodynamic drag of ships. Figure 

14 shows one example, however, in which a model 

was towed against regular waves (considered to be 

“long”) in a tank. The increment of the mean-aver¬ 

age total drag is in general moderately high; and the 

increment is suggested to be proportional to beam 

times wave height. However, in a comparatively nar¬ 

row speed range, time-average resistance is roughly 

doubled; and it may even be increased more in other 

combinations of vessel and seaway. In this range, the 

frequency of wave encounter is in synchronism with 

the natural pitch and heaving motions of the vessel 

investigated. As a function of the predominant wave 

length, therefore, ocean-going ships have a critical 

speed at which not only the resistance is very much 

increased, but where also their structural strength 

and the comfort of the passengers is considerably af- 

Figure 14. Resistance of a dynamically similar merchant-ship 
model, tested in regular tank waves (15,b). At synchronism, heav¬ 
ing and pitching show amplitudes larger than those of the wave 
train. 

fected. At this speed, the drag increment is predom¬ 

inantly of the wave-making type due to plunging in 

and out of the water (15,a). Ocean waves are not 

regular and records of their predominant height and 

length in a developed storm are not always consis¬ 

tent. To give some indication of the parameters in¬ 

volved, it may be mentioned, however, that the crit¬ 

ical speed of a larger liner is between 20 and 30 knots 

and those of a 400 ft “Victory” ship between 15 and 

20 knots, when going against a seaway produced by 

one of the more severe storms on the Atlantic. Not 

only because of drag, but also with regard to discom¬ 

fort and possible damage (slamming), a ship must 

then either stay above the critical speed, or after 

“falling out of step”, continue at a speed somewhat 

below the critical range (15,d). 

(14) Resistance in shallow water: 
a) O. Schlichting, Yearbook STG 1934 p.127. 
b) Schmidt, Torpedo Boats, Schiffbau 1938 p.100. 
c) Kreitner, Theory, Werft-Reederei-Hafen 1934. 
d) Schuster, Flow Pattern, Yearbk STG 1952 p.224. 
e) VanManen and VanLammeren, Model and Ship Trials 
in Shallow Water, Trans Soc.NAME 1956. 

(15) Resistance in sea waves: 
a) Kreitner, Resistance, Trans INA 1939 p.203. 
b) 7th Intern.Conf. Ship Hydrodynamics, Sweden 1954. 
c) Kempf, "San Francisco” in Waves, Trans SNAME 
1936 p.195 (also in Werft-Reederei-Hafen 1936 p.363). 
d) Motions in Waves, Trans SNAME 1955 p.140, 190. 

(16) Performance of various types of displacement ships: 
a) Woollard, British Vessels, Shipb. and Marine Eng. 
Builder July 1956; J.Am.Soc.Naval Engrs 1956 p.727. 
b) Parkes, German and Japanese, Trans INA 1949 p.427. 
c) Stewart, Ore Carriers, Trans NE Coast Institution Engi¬ 
neers Shipbuilders 1953/4 p.409. 
e) Ship dimensions are restricted by passages such as 
through the Panama Canal, to b =■ 110 ft; and by the low- 
tide depth of water in ports, to a draft of some 35 ft. 
f) Super-tankers are being built in sizes up to 85000 tons, 
and considered to be built up to 100000 tons. To stop them 
from 15 knots, may take 15 minutes and/or 2 miles, at full 
backing power. 
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5. TYPES OF DISPLACEMENT VESSELS 

Statistics. For the reader not so familiar with naval 

architecture, table A gives a rough idea on dimen¬ 

sions, speeds and similarity parameters with which 

we are dealing in ships. “Optimum” total resist¬ 

ance ratios of vessels and boats have also been collec¬ 

ted from various sources, and presented in figure 15. 

Below 0.2, drag is essentially proportional to the 

square of the speed (skin friction, no wave making). 

Humps and hollows (due to wave resistance) are not 

found in the statistical plot; they are evidently avoided 

by proper hull shape in each particular design. Be¬ 

tween F| = 0.3 and 0.4 we find drag increasing as 

the 4th power of speed. This trend reflects the theo¬ 

retical expectation of wave resistance growing at this 

rate (12). Beyond F^ « 0.5 (representing the speed 

of the so-called "last” hump) the slope of D (V) re¬ 

duces again. The ratio Pin/ (V W), in pounds of 

“engine thrust” per pound of displacement weight, 

with Iin indicating installed or brake horsepower, is 

higher than the resistance ratio D/W as derived from 

model tests, because of mechanical losses, propeller 

efficiency and factors such as method of rating and 

reserve power provided. Thus, what we may call to¬ 

tal efficiency “q” is between 0.6 and 0.7, indicating 

the difference between the two functions plotted in 

the graph. The discontinuity at Fj( ;= 0.6 is due to 

various differences between the adjoining two classes 

of craft (“destroyers” and “motorboats”). The over¬ 

all increase of the drag ratio as a function of Froude 

number is very large. The ratio ranges from well be¬ 

low 1% in slow merchant vessels to nearly 10% in de¬ 

stroyers; and it grows beyond that in all types of 

motorboats. 

TYPE OP SHIP Eef. tons l,ft 1/b V/l3 c . pns 
BHP V,kts P1 R1 

average tank model (-) 1 20 - — — _ 4 0.27 1 107 

6 m sail boat (P.19) 4 23 4 1.20# — — 6 0.36 1 107 

small motorboat ( —) 5 30 4 0.65# .60 150 15 0.80 6 107 

a "launch." 03, g) 30 55 4 0.60# .60 300 14 0.59 1 108 
average blue whale (—) 85 80 - 0.16# — __ 10 ? 0.33 1 108 
small C.G. cutter (13,g) 200 85 4 0.60# .60 500 14 0.38 2 108 
average tug boat (13,c) 300 100 4 1.05# .59 1000 10 0.30 2 108 
av'ge fishing boat (13,e) 300 100 5 1.05# .65 600 10 0.30 1 108 
coaster motorship (1,e) 750 155 6 0.70# .75 400 11 0.25 3 108 
submarine surfaced (20) 800 200 12 0.35# .50 2500 17 0.35 5 108 
Coast Guard cutter (13,g) 2000 300 - 0.26# .— 5000 18 0.32 7 108 
average destroyer (1,e) 3000 400 10 0.17# .60 70000 36 0.50 2 109 
average cargo ship (1,d) 9000 400 7 0.50# .75 4000 14 0.18 6 108 
old-type cruiser (16,a) 9000 650 9 0.20# .— 80000 32 0.38 3 109 
average tanker (1,d) 20000 500 7 0.58# .75 5000 14 0.18 8 108 
cargo-passenger (l,e) 20000 600 8 0.33# .70 15000 20 0.23 1 109 
modern tanker (-) 40000 600 7 0.55# .70 20000 17 0.20 1 109 
Atlantic liner (—) 60000 900 9 0.30# .60 100000 29 0.31 3 109 
average battleship (16,a) 45000 800 8 0.31# .65 1 60000) 30 0.32 3 109 
aircraft carrier (-) 60000 900 8 0.30# .65 280000) 32 0.32 4 109 

new super-tanker (16,f) 100000 950 7 0.42# — 45000 18 0.17 2 109 

TABLE A. Dimensions and performance characteristics of various displacement-type 
vessels. Data in each type actually may vary very considerably as a function of time and 
conditions of operation and so on. Therefore, this list is only intended to show the pos¬ 
sible order of magnitude of dimensions and similarity parameters involved. Power in 
Naval vessels is usually "secret”; it is possible, however, to make estimates on the basis 
of figure 15. Values shown in parentheses, are estimated in such a manner or by other 
methods. The various numbers listed do not necessarily represent vessels that have ex¬ 
isted at one time or another, or which may be existing at this time. 



11 - 16 FLUID-DYNAMIC DRAG 

l.o 

• (? 

4 

.2 

0.1 

■ 06 
• 04 

.01 

.02 

■ 0l 

.006 

.oo4 
.003 

.002 

SLOW MERCHANT 

-00| —L 

0.1 

Motorboats. Small boats, going at higher speeds, 

have Froude numbers exceeding those investigated 

in the Taylor Series. Figure 16 presents the char¬ 

acteristics of a bare round-bilge hull, up to F 95 1.1. 

The maximum of the coefficient (at F = 0.5) is * 3 

times that of the skin friction drag. Beyond the 

hump, the coefficient reduces to the level of 0.004. 

Referring this coefficient to the square of the beam, 

b, the value = D/qba = 0.02 is obtained. A 
considerable part represented by this coefficient is 

spray drag. All components, viscous, spray, append¬ 

age, air drag, of such boats seem to end up as D ^ V2, 

in the range of very high Froude numbers. 

--2— 1- "M 
NiNfc WLC 

Figure 16. Wave- and spray-drag coefficient of round-bilge motor- 
boat hulls (18). 

♦ PLANING FROM POWER.(I7,q) 
• DITTO D/W RATIO.(35) 

A DITTO FOR SCHNELL BOATS • - - (17,b) 

* CUTTERS, FROM POWER.(13) 

+ DITTO, FOR RD. BOTTOM BOATS • (IS) 

X P;„ /VW, FROM VARIOUS SOURCES • ) 
a Dto. BRIT. NAVAL VESSELS - - (16,a) 

O D/W, FROM SAUNDERS.(I,e) 

D DITTO, FROM OTHER SOURCES.) 

- SUBMARINES AT SURFACE - - - (20) 
I DITTO, SUBMERGED, FROM POWER (20) 

w BRITISH SUBMARINES.(20,d) 

I DITTO, SUBMERGED FROM POWER (20,d) 

Figure 15. Statistical survey on drag-weight ratio of all types of 
boats and ships. The lower values represent total D/W ratios as 
derived from tests on tank models; the higher values indicate an 
"effective” drag ratio (including losses in the propulsion system) 
as derived from installed hors’power in full-scale trials. For ex¬ 
planation of planing and hydrofoil craft, see later in the text. 

Planing ? The round-bilge hulls in figure 16 should 

not be confused with planing hulls (see in section B 

of this chapter). Converting the drag coefficient into 

the resistance ratio (equation 2), it is seen that their 

(D/W) does not reach an approximately constant level 

as in planing boats (see in figure 15). Also, the drag 

ratio increases to much higher values as the Froude 

number is increased. Round bottoms or hulls with 

round bilges are poor in regard to planing; they do 

not produce much lift, if put at an angle of trim. In 

fact, reference (34) demonstrates that there is basic¬ 

ally no lift at all in a streamline body (having a 

tapered afterbody). Because of their cambered shape, 

such bodies even develop negative lift (suction) at 

their bottoms (see equation 10), the amount of which 

becomes objectionable at Froude numbers above 

:=; 1. Operation of such hulls simply becomes im¬ 

possible at these speeds; and it is only after adding 

"chine strips” (making the flow break away from 

the sides of the body) that some positive planing 

lift is finally obtained. To avoid squatting in destroy¬ 

ers, certain measures are taken in the design of their 

hulls. Part of such efforts is the transom shape of the 

stern (13,f), which helps to keep the bottom straight, 

thus reducing suction. As far as motorboats are con¬ 

cerned, many of them are not of the planing type 

either (as long as they have round bilges). Just a 

transom stern is not enough to make them planing. 

6 8 10 
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V -a 

/ -H /D 
\' ' f 
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SURFACED: 

A — 770 

V = 17.7 MAXIMUM 

P = 2800 (DIESEL) 

Q = 2.5/1000 

SUBMERGED: 

A = 870 TONS 

V = 7.6 KNOTS 
P = 375 BHP (ELECTRO) 

| — 222 FT 

Figure 17. Shape and principal dimensions of the German sub¬ 
marine, Type Vile, predominant during World War 
II. Horizontal surfaces added by author, 

SUBMARINES. Although specific towing-tank data 

on submarines are not available, information on the 

German “U” boat development during World War 

II has been published (20). Figure 17 shows the es¬ 

sential dimensions of their predominant design (type 

“VII”) during World War II. Drag ratios, evaluated 

for this and other boats, are included in figure 15. In 

surface operation, submarines show resistance ratios 

slightly higher than those of other displacement ships. 

The difference can be explained on the basis of skin- 

friction drag (due to smaller Reynolds number and 

because of their long and slender shape). 

(17) Information on "Schnell11 Boats: 
a) Tietjens, Schnellboote, Yearb.D.Lufo 1937 p.I,36l and 
Werft-Reederei-Hafen 1937 p.87 and 106. 
b) Graff HSVA, Werft-Reederei-Hafen 1935 p.334. 

(18) Round-Bilge Motorboat Hulls: 
a) De Groot (Wageningen), Resistance of Motorboats, 
Intern.Shipb. Progress 1955 p.61. Series includes volumetric 
coefficients between 2 and 7/1000. 
b) Nordstrom, Small Boats, Teknisk Tidskrift 1936. 

(20) Characteristic of submarines: 
a) Schade, German Development, Trans SNAME 1946. 
b) Starks, "U” Boats, Trans INA 1947 p.291. 
c) Hilmar, Undersea Craft, Paper SNAME 1952. 
d) Sims, British Submarines, Trans INA 1947. 

(21) Wave drag of submerged streamline bodies: 
a) Weinblum, Amtsberg and Bock; Tests on Wave Re¬ 
sistance of Immersed Bodies of Revolution, Mitteilungen 
Preussische Versuchsanstalt Wasserbau Schiffbau, Berlin 
1936; also Schiffbau 1936; Transl.234 by Taylor Model 

Basin. 
b) Weinblum, Bodies of Revolution with Minimum Wave 
Resistance, Ingenieur Archiv 1936 p.104. 
c) Wigley, Trans INA 1953 p.268; also in Shipbuilding 
and Marine Engine Bldr. 1953 p.273. 

In Submerged Operation — the wetted area of a 

submarine is appreciably increased over that in 

surface operation. Analysis of the boat as per figure 

17, gives a total drag coefficient (based on maximum 

frontal area including conning tower, and for an as¬ 

sumed propulsive efficiency of 70%) — in the order of 

CD>= 0.15. For a fineness ratio 1/b = 1/h = 12, this 

value is considerably higher than that of smooth bod¬ 

ies as found in the “streamline” chapter. Referring 

the coefficient to the estimated wetted surface area, 

CDwei= 0-0048 is obtained. At the Reynolds nutn- 

ber corresponding to the boat’s trial conditions, at 

R^ = 3 108, the skin-friction coefficient is Cp = 

0.0018. Thus, the resistance as tested is 2.7 times the 

Schoenherr value. Most of the increment is evidently 

caused by the open-type conning tower, having a 

frontal area of almost 30% of that of the hull body. 

Other contributions come from the periscopes, guns, 

rails, all types of attachments and the many openings 

in the outer hull needed for filling or emptying the 

buoyancy tanks. As a consequence, the resistance of 

submarines in submerged condition, is usually higher 

than in surface operation (at the same speed). Figure 

15 also shows (in the left hand side) that in the ab¬ 

sence of any noticeable water-surface reaction, the 

drag ratio approximately varies as the square of speed 

or square of Froude number. This means an approx¬ 

imately constant drag coefficient, in the order as de¬ 

rived above. It can then be concluded from the graph, 

that at Froude numbers around F^ == 0.5, deeply sub¬ 

merged submarines (without wave drag) can have a 

smaller drag coefficient than in surface operation. 

Another advantage in deeply submerged boats, both 

in regard to resistance and passenger comfort, is the 

elimination of bad-weather effects (waves). 

Streamlining. On the basis of wind-tunnel and 

towing-tank investigations, the Germans also devel¬ 

oped the more advanced submarine type “XXI”. The 

hull had a continuous shape; the conning tower was 

more streamlined; and the guns were integrated into 

the tower. Based on a realistic engine-power value 

(20,a), the improvement over type “VII” is appre¬ 

ciable (see point marked in figure 15). 

SUBMERGED BODY. Deeply submerged, a stream¬ 

line body may have the same low drag coefficient as 

the hull of an airship. In proximity of the water 

surface, such a body experiences wave drag, however, 

in basically the same manner as surface vessels do. 

Figure 18 presents the theoretical prediction (21,c) 

on the magnitude of the wave-drag of slender spher¬ 

oidal bodies, plotted against Froude number for sev¬ 

eral values of the submergence ratio h/1. After sub¬ 

tracting values for the basic, mostly skin-frictional 

drag of certain bodies tested (21,a) their wave-drag 

component has been separated. The results agree 

sufficiently well with the theoretical prediction. The 
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wave drag has a maximum “at” the surface (at h 

« 0). To give the graph a scale, the viscous drag 

of the tested bodies is indicated at CD>«- .05. The 

wave drag decreases sharply with submergence. It 

may roughly be said that this drag becomes unim¬ 

portant at ratios larger than h/d = 5. Submarines 

may travel below h = 5 d. However, with the peri¬ 

scope out of the water or in “snorkeling” operation, 

their submergence is between 1 and 2 hull diameters. 

Considering now as a theoretical example, a length 

in the order of 200 ft and a speed of 20 knots, the 

Froude number is right at the maximum of the wave 

drag in figure 18. Thus, when operating in prox¬ 

imity of the water surface, the wave drag of a fast 

submarine can roughly be of the same order as its 

basic streamline-body drag; and her total resistance 

ratio will then be very high (figure 15). 

Figure 19. Full-scale resistance characteristics of 6-meter sail boat 
"Jill”, predicted from model tests (25,a) upright as 
well as heeling,as indicated,with corresponding leeway. 
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Figure 18. Wave-drag coefficient of submerged streamline bodies, 
as predicted by theory and as tested (21), as a function of Froude 
number and submergence ratio. 

Sailboats. Performance of sailing craft rests in the 

combined application of aerodynamic forces (in the 

sail system) and hydrodynamic effects in the hull. 

Within the scope of this book, only the hydrodynamic 

aspects shall be considered, however. As an example, 

figure 19 presents drag coefficients of a 6-meter yacht. 

Wave Drag. The volumetric coefficient of sailing 

yachts is comparatively high. The 6-meter boat in 

figure 19 has such a coefficient in the order of Cp 

— W/ y l3 — 12/1000; while displacement ships usu¬ 

ally have between 1 and 4/1000. An appreciable 

fraction of the displacement is concentrated in the 

keel and deeply submerged, accordingly. For exam¬ 

ple, the 6-meter boat quoted has a static draft h ap¬ 

proaching the size of the beam b, while displacement 

ships may have beam ratios b/h between 2.2 and 3.5. 

The total drag ratio of the yacht in figure 19 (without 

heeling) as a function of Froude number is approx¬ 

imately equal to that of other “optimum” displace¬ 

ment vessels (as in figure 15). 

Induced Drag. A deep and usually slender keel (or 

center board) is needed in sailboats to resist the lat¬ 

eral component of the wind forces produced in the 

rigging. This lateral component Ffa^ is a complex 

function of wind speed and sailing geometry. In 

reference (25,a) this force was determined by a com¬ 

bination of full-scale with tank-model experiments 

by way of the heeling angle. Sailing close to the wind, 

this angle (produced by the moment of the aerody¬ 

namic against the hydrodynamic lateral forces) in¬ 

creases as a function of wind speed; for example to 

30° at ~ 15 knots absolute wind speed or 20 

knots relative speed, as reported in (25,a). The fluid- 

dynamic coefficient of the lateral keel force is 

ClatK = Flat/Cl SK = (VSk) (Cffifs/840) 
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where “840” indicates the density ratio of water 

against air, “S” = sail and “K.” = "keel”. For ex¬ 

ample, in the 6-meter yacht as per figure 25, the lateral 

area of the keel (plus hull to the static waterline) is 

in the order of 70 ft2, while the sail area is between 

400 and 500 ft2. The lateral lift coefficient in the sails, 

based on a dynamic pressure corresponding to an ap¬ 

parent or relative wind speed "V;" assumed to be 15 

knots, may be in the order of C[a^5 = 1.0. The 

lateral coefficient of the hull (based on craft speed 

against water, V^, in the order of 5 knots) is then at 

the level of less than 0.1. Figure 19 shows, neverthe¬ 

less, an increase of hull-drag caused by sideslipping 

(leeway) and heeling (in close-to-wind condition) up 

to more than 50% of the total drag in straight and 

upright motion. Assuming that frictional and wave¬ 

making drag of the hull is not appreciably changed 

by the angular position, the increment must essen¬ 

tially be “due to lateral lift”. Calculation of such 

drag in small aspect ratios (A ~ 0.3 in the sub¬ 

merged part of the hull in figure 25) is unfortunately 

complex (see Chapter VII). It is possible, however, 

through numerical application of equations 32 through 

37 of the chapter quoted, to obtain by order of mag¬ 

nitude the increments (and their progressive trend) 

as reported in the illustration. 

Beam Wind. The mechanism of induced drag found 

in sailing craft, can also exist in displacement vessels 

proceeding in a beam wind. Based upon their lateral 

projected area above the waterline, reference (6,e) in¬ 

dicates an aerodynamic drag coefficient in the order of 

CD> = 1.2. To counteract the corresponding lateral 

force in hull and superstructure, an angle of yaw in 

the order of 10° may be required in a wind having a 

velocity equal to the ship’s speed of advance. The re¬ 

sultant hydrodynamic drag due to lateral lift is then 

estimated (on the basis of equation 35 on page 7-18) 

to be in the order of 10% of the vessel's non-wave- 

making resistance. 

(25) Fluid-dynamic characteristics of sailboats: 
a) Davidson, Studies of Sailing Yacht, Trans SNAME 
1936 p.288; also Trans ASME (Jl.Ap. Mech’s) June 1936. 
b) Croseck, Segel Theorie, Springer Berlin 1925. 
c) Wells, Scientific Sailboat Racing, 1950. 
d) Morwood, Sailing Aerodynamics, New York 1954, 
e) Sail Aerodynamics are also treated in Trans SNAME 
1915 p.l, and in 1925; J.RAS 1930 p.880; Yearbk.STG 
1933 p.228; ZAMM 1941 p.308. 

(30) "Circulation" does not mean that fluid particles really go 
around a foil sectfon in something similar to a "circle”. The 
term only means an added component flow velocity. In case 
of a planing plate, the water surface approximately repre¬ 
sents the streamline meeting the stagnation point. This line 
has something of a discontinuity, insofar as the spray is a 
component of the flow which should go over the top of the 
surface in order to make the pattern perfect. 

(31) Basic theory of planing: 
a) Wagner, Gliding, Z.Ang.Math.Medil932, p.193 or 
Yearb.STG 1932 p.205. Transl. NACA T.Memo 1139. 
b) Weinig, Lufo 1937 p.314; NACA T.Memo 845. 
c) Bollay, Proc. 54th Int.Congr. Appl’d Mechs 1938 p.474. 

B. CHARACTERISTICS OF PLANING CRAFT 

Planing means “gliding” or “skimming” over the sur¬ 

face of water, rather than “plowing” through it as 

displacement vessels do. Beginning with the earliest 

experimental versions, particularly all water-based 

airplanes seem to have been equipped with planing- 

type floats. Also, all modern power-driven racing 

boats are of the planing variety, reaching top speeds 

between 70 and more than 200 mph in various classes. 

1. THEORY OF PLANING 

No theoretical solution for lift and drag of planing 

surfaces has been established so far. Hundreds of 

tank tests are available, however; and a large biblio¬ 

graphy reporting and discussing them. 

Two-Dimensional planing can be understood as a 

limiting case of hydrofoiling (with submergence h 

—0). At high Froude numbers (no buoyancy and 

no “wave” drag), a properly cambered surface with 

b = oo (in two-dimensional flow), riding on top of 

a solitary wave, can be considered as the lower face of 

a foil (30) in infinite flow (31). Its lift curve slope 

is simply half of that of the complete foil; the lift 

angle is accordingly 

da/dCL = 1/ir = 57.3/V = 18.3° (21) 

The drag due to lift of this theoretical surface is zero. 

Real planing surfaces are essentially straight (no cam¬ 

ber). Assuming that their lift (in two-dimensional 

flow) may still correspond to equation 21, their drag 

due to lift is no longer zero, however; rather it is a 

component of the force normal to the surface con¬ 

sidered. Momentum or energy is dissipated in the 

form of spray. This is about all the information 

available by way of exact theory. All other formula¬ 

tions (33) are statistical; a number of them are adap¬ 

tations of aerodynamic wing theory, “corrected” for 

aspect ratio and other effects on the basis of experi¬ 

mental results. 
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BUOYANT LIFT. In a flat plate inclined against the 

water surface at the angle of, the trailing edge is sub¬ 

merged at h — 1 of, where 1 is the not very well de¬ 

fined average wetted length. The component of buoy¬ 

ant lift corresponds to the displaced volume of water; 

hence approximately 

Lb = 0.5 jf h 1 b = 0.5 yo< l2 b (22) 

The lift thus obtained is basically the same as that due 

to “<&” in cavitating or ventilating flow (6 = I/Fhz), 

as explained in Chapter X. The coefficient based on 

the square of the span is then 

= V (0.5 9 V2 b2) = g lof/(V2A) = of/(A F^) 

where A — wetted aspect ratio = b/1. However, 

since the wetted length is usually somewhat longer 

than corresponding to submergence, the component 

of buoyancy lift can be somewhat smaller (33,a) than 

indicated by the equation. In high-speed and low- 

angle operation, the component comes to be neglig¬ 

ibly small - because of the magnitude of F^2 . 

Beginning Of Planing. At small Froude numbers, 

the buoyant component of lift can be an appreciable 

if not predominant fraction of the total lift. There 

is no well-defined Froude number, however, at which 

it could be said that planing “begins”. The only 

designation possible is to define arbitrarily a certain 

percentage of buoyancy in comparison to the total 

weight (which includes the dynamic lift) of a planing 

craft — as the condition where planing can be con¬ 

sidered to be established. Because of the complex 

nature of planing, such a definition cannot easily be 

derived. Considering, however, small angles of attack 

and excluding very high wetted-length ratios, only the 

linear small-aspect ratio lift term (of equation 26) 

may be taken into account. Using equation 23, the 

ratio is then 

Buoyant lift CX / (A F,2) 4 \ 

Dynamic lift ex ir/ 4 it 

Arbitrarily assuming now that planing is considered 

to “take over” where this ratio is equal to 20%, the 

corresponding Froude number is 

^ = 1.6; or F^ = 1.6 iX (25) 

This value is indicated in figures 23 and 26; and it 

is seen that a point of increased devitation in the 

functions plotted, is roughly met by the equation. 

SMALL ASPECT RATIOS. Many practical appli¬ 

cations of planing exhibit small wetted aspect ratios. 

As explained in the chapter on “drag due to lift”, 

there are two components of lift in such ’wings) a 

linear term corresponding to circulation (30), and an 

approximately quadratic term originating along the 

lateral edges. The two types of lift are found in plan¬ 

ing surfaces too. Below A 1 (or above A = I), 

interpretation of experimental results on flat and 

rectangular planing “bottoms” (at higher Froude 

numbers) is tentatively possible on the basis of 

C^ =L/(q b2) = (V4)sino(cosc< + k(sinc(/A) coscx 

where A — 1/A = wetted length ratio. The factor 

k is a function of the aspect ratio possibly similar to 

that as shown in the “drag-due-to-lift” chapter. Note 

that the experimental points plotted in figure 20, 

follow curved lines, which means that k is not con- 
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stant. In fact, k may be expected (31,c) to reduce to 

0.88 as \—*- ©o , resulting in a lift- or normal- 

force coefficient as given in equation 29 of the “hydro- 

dynamic” chapter. One difficulty in the analysis is 

evidently proper definition of an effective length “1”. 

Spray increases the “wetted” length; and it is not 

clear that the length indicated by the “heavy spray 

line” has sufficient significance in regard to lift. Cor¬ 

relation of the experimental points in figure 20 with 

the equation (applied for k = 2) is quite good when 

using the static wetted length (at rest, rather than 

the running length). Another definition of length 

would be to the stagnation line as tested in (32,f). 

For small angles, the function reduces to 

CLb= (ir/4)«+ kAc<2 (26) 

In Higher Aspect Ratios, a planing surface may also 

be considered to be a foil in “cavitating” flow, with 

the air space being a large cavity having the cavitation 

number «= zero. Using the two-dimensional theory 

as plotted in figure 19 of the “hydrodynamic” chapter, 

the force on the pressure side of a flat plate in this 

condition, at small angles of attack, approximately 

corresponds to 

CL CN * 0.5 ir (<x — oil) (27) 

Introducing for the induced angle at the surface 

— 2 C^/tr A, where “2” = biplane factor, the 

(32) Experiments on prismatic bottoms: 
a) Sottorf, Planing Experiments, Werft Reederei Hafen 
1929, 1932, 1933; Trans NACA T.Memos 661 and 739; 
also Yearbk D.Lufo 1937 p.I,309 and 320, also Lufo 1937 
p.157; see NACA T.Memos 860 and 1061; 
also Yearb.D.Lufo 1937 p.I,320. 
Sambraus, Lufo 1936 p.269; NACA T.Memo 848 (b). 
c) NACA Tech Notes 509 (1934), 648 (1938), 2804, 
2842, 2876, 3052 (1952 & 1953). 
d) Weinstein and Kapryan, Planing Characteristics of Flat 
Plates, NACA T.Note 2981 (1953). 
e) Korvin-Kroukovsky and Others, Stevens ETT Investi¬ 
gations, Inst.Aeron’l Sci. SMF Papers No.166 through 170, 
229, 244, FF-2, FF-6 and FF-11 (1948 to 1955). 
f) Kapryan and Boyd, Pressure Distribution of Prismatic 
Surfaces, NACA T.Note 3477 (1955). 
g) Springston-Sayre, 50° Deadrise, TMB Rpt 920 (1955). 
h) Christopher, Shallow Water, NACA T.Note 3642. 
i) McBride, Spray by Planing, NACA T.Note 3615(1956). 
k) Further towing tank results up to l/b = 7 and c< = 
30° together with a comprehensive evaluation of practically 
all available results from other sources, are presented by 
Shuford, "Theoretical and Experimental Study of Planing 
Including Effects of Cross Section and Plan Form”, NACA 
T.Note 3939 (1957). 

Figure 2|. Lift angle of flat planing surfaces (32,d), mostly at 
higher wetted aspect ratios. 

lift angle of planing plates having larger wetted as¬ 

pect ratios is found to be approximately 

dcX/dCL = (2/ir) + (2/irA) 

dot/dCLb=(2A/T) + (2/ir) 

= 36.5° (1 + A) (28) 

The first term is the “sectional” angle of attack, while 

the second term represents the “induced” angle. Fig¬ 

ure 21 shows that agreement with experimental 

points is very good at aspect ratios above 4. Below 

this value, a transition takes place to the constant 

value of 73° (first term in equation 26) for small 

aspect ratios. 

Drag of Planing Plates. The pressure drag of flat 

planing plates is a component of the normal- or 

lift force, respectively: 

Dp = Di + Drpray = N sin<* = L tancx (29) 

The increment of this drag over the “induced” drag 

represents the spray produced by straight bottoms. 

Including now a skin-frictional component, the drag 

(at higher Froude numbers) is indicated by the co¬ 

efficient 

~ k( tanot + kg (30) 

and the drag-lift ratio is 

D/L = k( tanc( -f- kgC^/C^ 

= k, tand + k2 H Cp/ 

To solve this equation, the function Cbb(c\) has 

to be known; and that is the reason for presenting 

above, all the functions on planing lift. 
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Figure 22. Drag/lift ratio of flat planing surface (32,d) for 
= 0.2 = constant. 

The Skin Friction component in the last equation 

is a function of wetted length. Figure 22 shows the 

drag/lift ratio of a flat plate at constant lift coefficient 

(CLb, based on the square of the beam). When in¬ 

creasing the angle of attack, wetted length and wet¬ 

ted area and the A. ratio, therefore, decrease. Under 

these conditions, drag reaches a minimum at an 

angle at which pressure drag is approximately equal 

to skin friction drag (at ot 7° in the graph). The 

skin friction drag can be laminar, in smaller models; 

and it can be expected to be turbulent in full-scale 

applications. As to its magnitude, it has been stated 

(32,a,d) that at higher angles of trim, spray rubbing 

against the foremost part of the surface (essentially in 

the direction of motion) reduces the frictional com¬ 

ponent noticeably. In fact, the data in figure 22 

(from two different sources), with D/L dropping 

below the theoretical minimum corresponding to 

tan of, force us to postulate a negative skin-friction 

drag component. The only means of explaining this 

result seems to be the presence of a stream of spray, 

strongly increasing as a function of the angle of 

attack. There is another reason, however, because of 

which frictional drag can also be somewhat higher 

than corresponding to one of the well-known skin 

friction functions. The streamlines passing along the 

bottom diverge to the sides. A number of them thus 

leaves the surface not at the trailing, but at the 

lateral edges. Average “rubbing” length and effective 

Reynolds number are thus smaller than correspond¬ 

ing to wetted length; and the drag coefficient can 

then be higher than indicated, for example, by the 

Schoenherr function. Evidence of this influence (in 

the order of 5%) is found, for example, in (32,d 

and i) at angles of and below 6°; read also (33,e). 

Camber. Straight (prismatic) surfaces have been con¬ 

sidered in the preceding paragraphs. The drag due 

to lift could be reduced, however, by proper camber. 

Experiments (32,a and 38) confirm this prediction, 

showing optimum drag ratios in the order of 12% 

for A. in the order of 1.0 — thus indicating drag 

reductions (in comparison to straight plates) between 

15% and 40% respectively. However, in planing 

boats, camber is usually zero along the afterbody; 

and it is more or less negative along the forebody. 

Planing On Shallow Water has been investigated in 

(32,h). Down to clearance distances of “z” = b, hard¬ 

ly any influence is noticeable of shallow water upon 

lift and drag. At lesser distances, lift obtained for 

a certain angle of attack, increases; for example 40% 

for z = b/4 (where z is measured from the trailing 

edge). Drag corresponds, of course, to the angle of 

attack (equation 31), and thus reduces when getting 

into shallow water. 

Figure 23. Drag-load ratio of a flat planing surface (32,a) as 
a function of Froude number; for o< = 5°« optimum, b = 
300 mm, W = 50 kg, W/ ^ t? = 1.85 = constant. 

(33) Statistical analysis of planing: 
a) Locke, Flat-Bottom Planing, Navy BuAer Rpts (1948 to 
1950) ; J.Aeron Sci 1949 p.184. 
b) Shuford, Review of Planing Theory and Experiments, 
a comprehensive study. NACA T.Note 3233 (1954). 
c) Sottorf, Ybk.D.Lufo 1937 p.I,320; NACA TM 1061. 
d) Proposed empirical formulations for flat rectangular 
bottoms, when planing at higher Froude numbers, are: 
Cj_ ~ /A, for (X = constant (33,a and c) ; ACL~-c\2 

for second lift term (33,a); and , to account 
for ACj_ (32,e). 
e) The wetted length increases at higher angles of attack 
over the static value (so for example at at = 18° in figure 
20). Reference (32,d) reports, however, that the wetted 
length is reduced because of aerodynamic stagnation within 
the narrow space under the forebody, at angles of attack of 
and below 6°. 
f) Murray, On Planing Hulls, Trans SNAME 1950 p.658. 
g) A thorough theoretical analysis of planing facts is pre¬ 
sented in (32,k). Results of that study (published while 
this chapter was being printed) are similar to those given in 
this section. 
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2. CHARACTERISTICS OF PLANING CRAFT 

There are essentially two engineering applications 

of planing; in faster motorboats and in seaplane hulls 

and/or floats. 

Function of Froude number. The example of a plan¬ 

ing surface in figure 23 shows that above a certain 

hump speed or Froude number, approximately indi¬ 

cated by equation 25, drag due to planing reduces 

steadily. The wetted length ratio A = 1 /b decreases 

in this phase. The drag ratio then approaches a con¬ 

stant final value corresponding to D/W = tan of. 

V-Shaped Bottoms. To reduce impact (operating 

in waves), the bottoms of planing boats are generally 

V-shaped (they have dihedral or deadrise). Corre¬ 

sponding to the angle of attack normal to each half 

of the bottom, the lift can then be expected to be 

decreased in proportion to the cosine of the deadrise 

angle “F ”. The “V” shape also seems to have an in¬ 

fluence upon the effective span of the bottom, similar 

to that upon the drag coefficient of wedges in cavi- 

tating flow as presented in figure 14 of the “hydro- 

dynamic” chapter. Approximating the shape of that 

function by another cosine, an equation is obtained 

suitable for the interpolation of lift produced in V- 

Figure 24. Reduction of lift (at o< = constant) as a function 
of ”V”-shape or deadrise angle in planing bottoms. 

Cj_r 
cUo 

1.2. 

o.2 . 

o.6 ■ 

e.4- 

o.2 

■v 
\.C 

a ETT \ - 2 (32,e) 
• Locke ETT (33,a) 
o NACA = 2 (32,d) 
n Sottorf = 4 (32,a) 
O TMB X - 2 (32,g) 

\ 
DIHEDRAL ANGLE f 

-30* to 0° 

type planing bottoms: 

Cy/C|_o = cosT cos (0.6F + 0.4‘90°)/cos (0.4-90°) 

The constants have been selected to suit the experi¬ 

mental results in figure 24. The decrease of lift with 

the angle of deadrise is considerable. With respect 

to inverted “V” bottoms (at negative angles in figure 

24), the function developed suggests a somewhat in¬ 

creased lift efficiency; although impact may be ob¬ 

jectionable in this type of bottom. The drag of 

V-shaped planing bottoms is approximately 

D/L = (tanOC + X C^/C^/cosF (33) 

Considering as an example, a deadrise angle F = 
+ 15°, the pressure drag of an average straight plan¬ 

ing bottom is found to be some 20% higher than that 

of a plane plate having the same wetted dimensions. 

As found in (32,c), the decrease of lift due to V- 

shape and the D/L ratio can appreciably be reduced, 

however, by horizontal flare (at the lateral edges) or 

by vertical chine strips as sketched in figure 24. These 

modifications evidently increase the effective span, 

without increasing impact in waves. 

Motorboats. In figure 15 is shown that displacement- 

type motorboats experience a continued increase of 

their drag-weight ratio as a function of Froude num¬ 

ber. By planing, it is possible to keep the drag ratio 

in the order of 18%, up to appreciably higher speeds. 

Figure 25 presents some towing-tank results on a 

family of planing-type hulls (35). At intermediate 

Froude numbers, the drag ratio reduces as the beam 

is increased. This variation corresponds to that in 

figure 26 where for a certain speed and load, span or 

beam is varied in a family of flat plates. The increase 

of span has practical limits, however, in V-bottom 

shapes. 
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Figure 26. Drag-weight ratio of flat planing surfaces (32,a) with 
W = 18 kg, V = 6 m/sec, oi = 4* «= optimum, as a function 
of beam or span ("b” between 0.15 and 0.60 m). 

TRIM — has an important influence upon planing 

characteristics (see in figure 22). In hulls such as in 

figure 25, trim depends on shape, center-of-gravity 

location, and speed. The variation is best demon¬ 

strated in the hull having b/JL = 1/3. At “F” num¬ 

bers between 0.5 and 1.0, the trim angle (against the 

static waterline as shown) is comparatively high; «=4°. 

Between = 1 and = 2, the angle decreases, how¬ 

ever, down to T. The drag doubles in the same inter¬ 

val, because of skin friction along a wetted area which 

is too large for that speed range. At high speeds, op¬ 

timum planing would be on the rear end of the 

bottom at a reasonable trim angle, a condition which 

is not compatible with any fixed center-of-gravity 

location in this type of craft. At Froude numbers 

above 1.0 or 1.5, the drag ratios of the hulls in figure 

25 are nevertliless lower than those of displacement- 

type motorboats such as in figure 16, for example. 

POWER AND SPEED. Drag ratios and full-scale 

results of motorboats are plotted in figure 15. Com¬ 

paring them to bare-hull results (figure 25), it can 

be found that the contribution of appendages to drag 

in these craft is considerable (in the order of 30% 

of the bare-hull resistance). Between 1^=1 and 2, 

planing motorboats show an approximately constant 

drag-ratio level. In this range, the installed power 

for boats including appendages corresponds to the 

ratio P/(V W) ~ 0.24. Consequently: 

VK ar 550/(0.24 1.7 2240) (BHP/A ) 0.6 BHP/A 

where = 550«(BHP) = installed power, VK — 

speed in knots and A = displacement in long tons. 

At higher speeds, planing craft are less efficient; there 

may be losses due to cavitation in the propeller, and 

some aerodpnam/e dray ts Co be expected fhspom ted 

out in the “hydrofoil” section). As a consequence, 

power required is somewhat higher than indicated 

by the last equation. 

Seaplane Hulls (and floats) usually have a “step” 

in their bottom (36,d) to facilitate their balance and 

to control their aerodynamic angle of attack. As the 

speed is increased, these craft rise onto the step (lo¬ 

cated below the center of gravity). Figure 27 shows 

as an example the drag characteristics of such hulls 

for certain loading coefficients 

CA = W/^b3 (34) 

(not to be confused with C^). The drag ratio reaches 

a maximum at a Froude number in the order of 

Fb = 3, which corresponds to F^ between 1.0 and 

1.5 in the examples shown. The reduction of drag 

theoretically to be expected in the planing phase 

(above = 3) is not clearly evident in most of the 

towing-tank results available (36). The formation 

of spray and its interaction with the hull is responsible 

for added resistance, as explained in the next para¬ 

graph. Details of afterbody shapes suitable to mini¬ 

mize the spray effect are described in (36,f). The 

hydrodynamic drag in planing condition (at the level 

of D/W « 18% as in figure 27) is of appreciable 

magnitude. Resistance above hump speed decreases, 

however, by one reason not shown in figure 27; 

D = (D/W) W reduces naturally, as “W” = weight 

carried by water is “unloaded”, when the aircraft 

becomes more and more air borne. Also, resistance 

is not at all the only consideration in the design of a 

suitable hull. Modern development of flying boats 

prefers comparatively large length-beam ratios (in 

the order of 1/b = 15.) A narrow beam provides for 

smooth landing (small impact accelerations) in rough 

water, while increased water resistance (during take¬ 

off) is made up in these designs by powerful engines. 

Note that a hull shape with a height in the order of 

h = 3 b (corresponding to narrow beam) also helps 

keeping the propellers out of waves and spray. 

fSf -- (^b „ 72 o4i(,i766) 

Figure 27. Examples for the drag/weight ratio of typical Hying- 
boat hulls. 
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Figure 28. Drag-weight ratio of an airplane float (32,a) as a 
function of Froude number. Float data: DVL No.7, at CX — 1° 

= constant, I/b = 9.2, b = 0.3 m. Coefficient = W/ y b5. 

Floats. Figure 28 presents the hydrodynamic drag 

characteristics of an airplane float. Here again, favor¬ 

able trim angles are made possible by application of 

a step. For the angle of 7° as investigated, the drag 

ratios plotted for various loading coefficients C^, 

should theoretically all end up at the level of (tan 7°)/ 

0.94 = 0.133, where “0.94” is as per equation 33 for 

20° angle of deadrise. At higher speeds, only a very 

small wetted area is sufficient, however, to support the 

given load. Because of the bottom’s V-shape, the wet- 

(34) Hydrodynamics of streamline bodies: 
a) Weinflash, Streamline Fuselage NACA RM L9L21a 

(1949). 
b) Weinflash-Fontana, Streamline Bodies, NACA RM 
L54K22. See also L52B11 and L55F20 on pressures. 

(35) Davidson and Juarez, Tests of 20 Related Models of V- 
Bottom Motorboats Series 50, Stevens ETT Rpt No. 170 
for TMB (No. R-47) (1941, revised 1949). 

(36) Hydrodynamic characteristics of flying-boat hulls: 
a) NACA T.Notes 464, 470, 488, 491, 504, 509, 535, 
539, 541, 545, 551, 563, 566, 574, 590, 635, 638, 656, 
668, 681, 716, 725, 836, 858, 1782, 2297, 2481, 2503, 

3119. 
b) Parkinson, NACA T.Rpts (543) (1937) and 766. 
c) ETT, NACA W-105 (1944) and T.Note 1182 (1947). 
d) Attempts of eliminating the step introducing air by 
means of ducts and discharging same through exit vents 
onto the afterbody planing bottom, are reported by Hamil¬ 
ton, Full Scale Flying Boat Hull, ARC RM 2899 (1956). 
e) Parkinson, In Waves, NACA T.Note 3419 (1954). 
In regard to take-off resistance, this reference reports a 
"large effect” of rough water (against waves). Methods of 
analysis have not yet been established for such conditions. 
f) Owen, In RAE Seaplane Tank, ARC RM 2976 (1955). 
g) Sottorf, Characteristics of Floats, Yearbk D.Lufo 1937 
p.I,309; Translation in NACA T.Memos 704 and 860. 

(37) "Slo-Mo-Shun”, quoted from various magazines. 
(38) Characteristics of water-borne skis: 

a) Wadlin, NACA RM L7I04(1947) and L9C03(1949). 
b Dingee, "Skids”, Stevens ETT Rpt 742 (1953). 
c) Wadlin-McGehee, 6 Hydro-Ski Forms, NACA RM 
L9L20. 
d) See also results in reference (32,k). 

(39) "Bases Unlimited”, Aeron’l Engg Review June 1955. 

ted span reduces, therefore, to that of a small tri¬ 

angle as indicated in the drawing. As a consequence, 

spray washes sideways and along the bottom of the 

afterbody, thus increasing the drag considerably. To 

avoid this effect, the afterbody of seaplane hulls (in 

which the same effect takes place as shown in figure 

28) is very often cut away at the bottom and at the 

sides. 

Skis. Rather than using floats, attempts have also been 

made of starting and landing airplanes on skis (see, 

for example, reference 39). Figure 29 shows the drag 

ratio of one such arrangement as tested in a towing- 

tank. At low velocities, with fully submerged skis, re¬ 

sistance is comparatively high. After emerging (get¬ 

ting the airplane onto the skis), the drag reduces, 

however. The pressure drag then corresponds to the 

trim angle X. as marked plus the angle at which the 

skis are set against the fuselage axis (4.5°). 

RACING BOATS. All modern power boats used in 

the various racing classes, are of the planing variety 

(so-called “hydroplanes”). As an example, the re¬ 

peated Gold-Cup winner “Slo-Mo-Shun” (37) may 

be mentioned, having: 

1 = 28 ft W = 4300 lb 

P = 1600 HP \ = 178 mph 

This boat is planing on two side “sponsons”, and 

“riding” on the half submerged propeller aft. The 

overall ratio of the craft at the very high Froude 

number (on hull length) of = 8.7, is approxi¬ 

mately 

P[ri/(v W) = (1600 550)/(260 4300) = 0.8 

Besides the low efficiency of the fully-ventilated pro¬ 

peller, an appreciable component of aerodynamic 

drag is included in the “total” resistance ratio. 

Figure 29. Total (aerodynamic and hydrodynamic) drag ratio of 
an airplane model on skis (38,a). Dimensions are indicated full 
scale. The pressure drag corresponds to the trim angle '■C* as 
marked, plus the angle at which the skis are set against the fuselage. 



11-26 FLUID-DYNAMIC DRAG 

C. HYDROFOIL BOATS 

A hydrofoil is the equivalent of an airfoil; it serves 

to produce lift by “flying” in water. Basic character¬ 

istics of submerged foils are presented in Chapter X. 

Their most specific application is in hydrofoil boats 

which have been slowly developing during the last 50 

years. Characteristics of hydrofoils moving in hori¬ 

zontal direction, in proximity of the water surface, 

are therefore treated as follows. 

WAVE DRAG IN TWO DIMENSIONS. Deeply 

submerged, a hydrofoil is basically expected to have 

the same fluid-dynamic characteristics (in terms of 

lift-and drag coefficients, aspect ratio, induced angle 

of attack and so on) as an airplane wing flying in air. 

In proximity of the water surface, these characteris¬ 

tics are usually considerably different, however. If 

disregarding the range of the smallest Froude num¬ 

bers (below V//g h a: 0.4, where h = submergence 

of a horizontally arranged foil) the water surface is 

deformed by the pressure field around the moving 

hydrofoil. In two dimensional flow (with infinite 

span), a wave train originates above the foil as 

sketched in figure 30. The orbital motions in this 

train represent a transfer of momentum from foil to 

water. The hydrofoil, therefore, has a drag due to 

lift, even in two-dimensional condition, stemming 

from its “bound vortex” or “lifting line”. Figure 30 

presents a theoretical prediction of this type of wave 

drag, as a function of Froude number based on depth 

of submergence “h” (to the quarter point of the foil 

chord). The wave drag coefficient reaches a maxi¬ 

mum at F^ = \]2 ; and it reduces to zero as F^—>—co . 

For higher Froude numbers (say above Fh = 5), 
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wave drag is approximately 

CDWh = V(q bh) = 0.5 C^/F2 (40) 

where F^ = V/f g h, and the coefficients are based 

on the area span b times submergence h. In conven¬ 

tional notation (on foil area equal to span b times 

chord c), the drag coefficient is 

CD = CDh h/c 

dCD/dCU = (dCDh/dCLh> c/h (41) 

If presenting equation 40 in this form, it is seen that 

at Fc = constant, wave drag attenuates rapidly as the 

depth of submergence “h” is increased. 

Induced Drag. Typical hydrofoil boats are designed 

to operate at higer Froude numbers, where the wave 

drag as per figure 30 is of lesser importance. Be¬ 

cause of the limited span of their foils, they have a 

“trailing-vortex” drag, however. In deep submer¬ 

gence, this type of drag is identical to the induced 

drag of airplane wings (as described in Chapter VII). 

Upon approaching the free water surface, the in¬ 

duced drag is considerably increased. Approximately 

beyond or Fc = 10, a horizontal hydrofoil of 

finite span has approximately the same fluid-dynam¬ 

ic characteristics as the lower panel of a biplane. Ap¬ 

plying, therefore, mechanism and results of biplanes 

as presented in the chapter on “drag due to lift”, the 

function in figure 31 is obtained, thus indicating the 

minimum “induced” drag of a hydrofoil moving un¬ 

der the free surface: 

CDL ** K c£/ (it A) ; dCD/dC^ * K/ (tt A) 

with K between 1 and 2. Strictly, lift, induced angle 

and induced drag are not equal in the otherwise 

equal two panels of a biplane. The average effective 

dynamic pressure of the lower panel is somewhat re¬ 

duced. Its induced drag is consequently somewhat 

higher than indicated in the equation. As pointed 

out in (51,c), the lift in the lower panel of a symmet¬ 

rical biplane is accordingly reduced some 5%; and 

the induced drag in the definition as in equation 42 

may be increased some 10%. 

Figure 30. Universal function of hydrofoil wave drag (30) ir 
two-dimensional deep-water flow. 
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Figure 31. Biplane and boxplane factors for the calculation of 
drag due to lift in hydrofoils, adapted from (51,a) and extra¬ 
polated above h/b = 0.3 Solution for h/b—«-■» in (53,a). 

EXPERIMENTAL (52) 
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End Struts. In hydrofoil boats, a structural connec¬ 

tion is needed between foil and hull, by means of 

struts or bent-up foil ends. One possibility is the 

“boxplane” arrangement as included in figure 31. 

Both from there and in figure 32 it is seen that the 

drag due to lift of such configuration is appreciably 

lower than without the end struts. With respect to 

structural foil strength and in regard to lateral sta¬ 

bility, this type of arrangement may not be feasible, 

however. The struts (or additional supports) are usu¬ 

ally placed about 1/3 halfspan inboard. 
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Figure 32. Drag-due-to lift ratio of a hydrofoil with and without 
end struts (52,a) as a function of submergence. 

STRUT INTERFERENCE. As described in the “in¬ 

terference” chapter, some additional parasite drag 

originates in the corners between struts and foil. The 

lift distribution across the span of a hydrofoil is affec¬ 

ted to some degree by the presence of struts; and the 

induced drag may be increased as explained in the 

"interference” chapter. For example, a single strut in 

the center of the foil may increase the drag due to 

lift by some 10%. In a pair of struts (each at 2/3 of 

the half span) their interference effect may combine 

with a partial end-strut effect, similar to the one de¬ 

scribed above, in such a way (51,b) that the drag due 

to lift of the configuration is (by coincidence) approx¬ 

imately equal to that of a plain foil (without struts). 

This seems to be the explanation for the fact that 

many of the experimental results on strut-supported 

foils (52) agree well with biplane theory, which does 

not take into account neither parasite nor induced 

strut interference. 

WAVE DRAG IN FINITE SPAN (53). At higher 

Froude numbers (say above F^ — 10), the “bound- 

vortex” wave drag can be approximated by 

CDwh = 0.5 k C2u/Fh2 (43) 

where k as plotted in figure 33. This component is 

important only in large-size hydrofoil boats at low 

speeds (higher lift coefficients). 

(50) Keldysch, Lawrentjew, Kotschin, Vladimirov; Wing Below 
Surface of Water (Two-Dimensional Theory and Biplane 
Concept), Summarized in CAHI(Moscow) Rpt 311(1937) ; 
Translations ATI157689, ZWB No. 311 (German), 
R.Bull.1-8 SNAME and NACA T.M.1341 (see also 1335). 

(51) Biplane and boxplane factors: 
a) Adapted from Ergebnisse AVA Gottingen Vol.II 
(1923) and Vol.III (1927). 
b) Hoerner, Influence of End Plates Struts and Nacelles, 
Gibbs & Cox for ONR Tech Rpt 14 (1953). 
c) Diehl, Biplanes, NACA Tech Rpt 458 (1933). 
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Shallow Water can reduce wave drag appreciably. 

At the critical speed __ 

V* = fi“H (44) 

in any consistent system of units, where H = depth 

of the water — the bound-vortex wave drag reduces 

to zero. Towing-tank experiments on hydrofoils are 

very often performed above the critical speed. This 

is the reason why in the material presented on the 

following pages, “wave drag” is no longer mentioned. 

Every finite-span hydofoil retains, however, the “in¬ 

duced” drag as outlined above (60). 

Wave Angles. Characteristics of airplane wings 

in tandem arrangement are discussed in the chapter 

on “drag due to lift”. In hydrofoils (in horizontal 

position near the water surface), the problem is more 

complex, because of the wave pattern generated in 

that surface. In two-dimensional condition, a wave 

train follows the hydrofoil, with a propagation speed 

equal to foil speed. As presented in (50) for deep 

water, the flow angle within that train (against the 

horizontal, positive for upwash) at a submergence 

h equal to that of the foil, is 

e/CLh = (cos (1/F,2 ) )/(Fh2 e(2/F^) (45) 

with x = distance behind the quarter point of the 

foil chord. The humps and hollows in the train are 

thus a function of the separation Froude number 

F* = V/V g x (46) 

The wave angle has its first positive (upwash) maxi¬ 

mum at 

cos^/F^) = + 1; F^ = 0.5/2nj x =2ttV2/g 

If now placing at this location, a second two-dimen¬ 

sional foil at the same submergence as the first foil, 

producing the same lift, it is possible to recover the 

wave drag of the first foil. The second foil cancels in 

this case the wave motion behind the first foil, leaving 

behind a completely undisturbed water surface. Real 

foils are, of course, not two-dimensional. Their 

“bound-vortex” wave train has reduced amplitudes; 

and the drag corresponding to their lateral wave sys¬ 

tem (“induced” or “biplane” type) cannot be recov¬ 

ered. Therefore, at higher Froude numbers, wave- 

drag recovery does not seem to be promising. 

TANDEM FOILS. As pointed out in the chapter on 

“drag due to lift”, the rear wing in a tandem config¬ 

uration operates in the downwash field produced by 

the first wing. Here again, the water surface has an 

appreciable influence upon the How pattern. A swept 

or “V” shaped lateral wave system originates above 

each foil tip. The outer branches of these two systems 

carry sideways momentum, corresponding to part of 

what is called in this text “induced” drag. The inner 

branches meet at a distance behind the foil which is 

theoretically ~1.4 b; and there they form a “roach”. 

Evaluation of the flow field behind a hydrofoil (52,d) 

shows that below and behind that peak, the flow 

angle is comparatively constant and slightly negative, 

thus indicating downwash. The downwash angle is 

evidently that of a wing in presence of a solid “ceil¬ 

ing”. Such ceiling effect is equal to the ground effect 

as explained in the “lift” chapter. Therefore, the 

average downwash angle below and behind the roach 

is approximately 

£/Cl= 2“k”/(it A) (48) 

where “k” = (2 — K), with K as plotted in figure 31 

as a function of the submergence ratio h/b. 

Figure 34. Drag-lift characteristics of surface piercing "V” shaped 
hydrofoils. 

Surface-Piercing Foil. Figure 34 shows the drag 

characteristics of two hydrofoils, having “dihedraled” 

surface-piercing ends. Hydrodynamic coefficients and 

aspect ratio of such foils are based upon the pro¬ 

jection of the submerged area, with b measured 

between the piercing points. At C|_2 0.16, one 

of the two foils shows a minimum dCD/dCL- The 

corresponding lift coefficient C[_ — 40.16 = 0.4 

is the “optimum” or “symmetrical” value correspond¬ 

ing to camber ratio f/c of the foil section used: 

CLopt- <10 to 12) f/c (49> 

Above and below this coefficient, parasitic losses are 

caused by flow around the sharp leading edge of that 

particular foil. The effect can considerably be re¬ 

duced by applying aviation-type rounded leading 

edges, as shown in the other foil in figure 34. It 

should generally be noted that aspect ratio and drag 

due to lift of the surface-piercing type of hydrofoils 

considered, change appreciably with submergence, 

because of the geometrical variation of span as a 

function of submergence. 
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V-SHAPED FOIL. The induced drag of V-shaped 

wings is explained in the chapter on “drag due to 

lift”. Dihedral as such does not affect the induced 

drag function CDj (C[^ ), with coefficients and aspect 

ratio as defined above. Replacing now foils as those 

in figure 34, by a “box” having equal submerged span 

and equal enclosed area between panels and water 

surface, approximate induced characteristics can be 

determined (through the use of equation 42 and 

figure 31. The boxplane factor for such foils, tenta¬ 

tively corresponds to the average submergence ratio 

hav/b = 0.25 tanF (50) 

where T" = angle of dihedral. Figure 35 demon¬ 

strates, however, that the drag due to lift is higher 

than calculated, even at the optimum lift coefficient. 

It must, therefore, be concluded that effective span 

and aspect ratio are smaller than the projected geo¬ 

metrical values, and that probably some parasitic 

drag (spray) originates at the piercing ends. 

(52) Towing tank tests on fully-submerged hydrofoils: 
a) Wadlin, Fontana, McGehee, Shuford; End Plates, End 
Struts, Submergence; NACA Tech. Rpt 1232 (1955). 
b) Wadlin, Ramsen, McGehee; Aspect-Ratio-10 Hydrofoil, 
Report by NACA RM L9Kl4a (1949). 
c) Sutherland and Kaplan; Various Hydrofoils, Stevens 
ETT Rpts 406, 410, 417, 418, 429 (1951). 
d) Wadlin-Ramsen-Vaughan, Flat Plates in Water, NACA 
Technical Rpt 1246 (1955); also T.Not* 3908• 
e) Hydrofoils, NACA W.Rpts L-757, L-766 (1942). 

(53) Theory of finite-span hydrofoils: 
a) Wu (Caltech), J.Math and Physics (1954). 
b) Breslin, G&C Tech Rpt for ONR No.16 (1954). 

(54) Tests on surface-piercing hydrofoils: 
a) Sottorf, German Doct ZWB FB 1319 (1940). 
b) Benson and Land, NACA W.Rpt L-758 (1942). 
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Figure 35. Variation of drag-lift function (at Clopp) of sur- 
face-piercing hydrofoils (54) against their "V” shapeP angle. Co¬ 
efficients and aspect ratio are based on submerged projected span 
(between piercing points). 

VENTILATION. At higher lift coefficients, “ven¬ 

tilation” breaks in, along the piercing foil ends, thus 

causing a considerable reduction of lift coefficient 

and lift-curve slope. Figure 36 shows the critical lift 

coefficients for a particular family of hydrofoils having 

sharp-nosed sections. The critical values C^x (where 

full ventilation occurs) are obviously related to the 

optimum lift coefficient corresponding to section cam¬ 

ber (equation 49). Here again, a moderately rounded 

leading edge improves characteristics. Another means 

of preventing (or postponing) ventilation are “fen¬ 

ces” (54,a) placed at the upper foil side near the 

piercing points. 

Figure 36. Lift coefficient at which ventilation takes place (all 
over span), as tested for a particular family of sur¬ 
face-piercing hydrofoils (54,a). 
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Figure 37. Example of Hydrofoil Boat. Design Schertel-Sachsen- 
berg (55,b), completed by Russians in « 1946. Su- 

HYDROFOIL BOATS have necessarily more than 

one foil (required for balance and stability), some¬ 

how involving a tandem effect. The struts (or bent- 

up ends) needed to connect the foils to the hull, also 

add to the drag by way of spray — as presented in 

Chapter X. As a consequence, and also including the 

drag of a rudder and of propulsion parts, the basic 

“parasite” drag of such boats (in flying condition) 

is roughly twice the profile drag of the foil proper. 

On account of the biplane effect, some downwash, 

some wave drag; owing to additional section drag due 

to lift; and because of the induced strut-interference 

phenomenon described above, the drag due to lift 

may roughly be twice the minimum induced drag as 

indicated by lifting-line theory (C[j*L — C^/it A). 

Therefore, to indicate the order of magnitude of their 

drag, the following equation can be applied to aver¬ 

age hydrofoil craft: 

CD = CDo+ CDL ~ 0016 + 2 CL2/ir A (51) 

For exa. for A = 6, this equation gives a minimum 

drag ratio for Cl~ 0.4 in the order of D/L = 8% 

— which is about the average optimum (at cruising 

speed) for this type craft. Figure 57 shows, as an ex¬ 

ample, the tested ratio D/W of such a boat with a 

surface-piercing foil system in tandem. The craft has 

a take-off hump, a minimum-drag-maximum-range 

speed, and a top speed — all similar to the phases in 

the operation of an airplane. 

POWER AND SPEED. Some survey on hydrofoil 

boats is presented in (55,a). Such craft have been 

built between 1 and 80 tons, with 20 to 5000 HP, 

going at up to 60 knots. In designing hydrofoil boats, 

the drag ratio at design speed can be considered to 

be constant. In other words, this ratio is approxi¬ 

mately independent of craft size, speed, or Froude 

number, if keeping the lift coefficient Cl constant. 

This coefficient can be considered to be the equiva¬ 

lent of a Froude number, however. The power re¬ 

quired to propel this type craft is then 

Pjn ~ D V ~ W V ; P;n/A ~ V (52) 

Figure 38 presents tested maximum speeds of hydro¬ 

foil- and planing boats, plotted against their power 

loading P/A . In addition to the hydrodynamic re¬ 

sistance, there is evidently some aerodynamic drag 

too. Considering a narrow size range in the category 

of motorboats, the aerodynamic component is roughly 

P2/A — V3 (53) 

The graph gives evidence of such a component. Some 

cavitational losses in the screw propulsion are prob¬ 

ably involved too. — Also included in the graph are 

results of some planing and displacement-type motor- 

boats. Dynamically-lifted craft are superior in per¬ 

formance above some 30 knots; or more precisely, at 

Froude numbers above Fj_ = 0.8 or 1.0, as shown 

also in figure 15. At equal power loading, hydrofoil 

craft have a 30% higher speed than planing craft. 

n SCHERTEL HYDROFOIL BOATS (35,b) 
• VARIOUS HYDROFOIL BOATS 
o VARIOUS PLANING CRAFT 

* DISPLACEMENT-TYPE BOATS (12,a) 

Figure 38. Statistical analysis of power and speed of planing and 
hydrofoil craft (with displacements between » 1 and —100 tons). 
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SMALL ASPECT RATIOS. Hydrofoils considered 

so far, usually have “higher” aspect ratios, comparable 

to those as applied in airplane wings. However, for 

the purpose of lifting water-based airplanes out of the 

water (take-off) and to withstand the impact upon 

landing (at comparatively high speeds, and into 

waves), much smaller ratios (and smaller relative 

sizes) are considered suitable. As explained in the 

“lift” chapter, theory of such “wings” has not been 

completely established. Analysis of small-aspect-ratio 

hydrofoils is accordingly limited. As an example, the 

normal-force coefficient of one such foil or plate, re¬ 

spectively, is presented in figure 39 for two submer¬ 

gence ratios. Deeply submerged, with h > (0.2 c) = 

1.6 b at the leading edge (LE), the function is evi¬ 

dently of the same type as presented for similar 

“wings” in the “drag-due-to-lift” chapter (with a “k” 

value above 3). At the shallow submergence of hLE 

= 0.025 c = 0.2 b, lift is reduced. It is suggested 

that part of the reduction corresponds to the biplane 

effect as outlined before. — The drag of the flat plate 

considered is simply CD = C^tancv; plus some small 

frictional component. 

(55) On Hydrofoil Boats: 
a) Survey by Buermann, Leehey, Stilwell; Trans Soc. 
NAME 1953 p.242. See also "Life” 27 Sept 1954 p.56. 
b) Schertel-Sachsenberg Boats, Chapter on "Hydrofoil 
Boats” in Handbook der Werften, Hansa Hamburg 1952. 
Seealso "Schiff und Hafen” 1953 p.103; "Hansa” 1952 
p.1090, and Sachsenberg Docts. No. 24 and 30 (Towing 
Tank Hamburg, 1943). 
c) Biilfer, Hydrofoil Boats, Yearb.STG 1952 p.119. 
d) Grunberg, Sustentation Hydrodynamique par Ailettes; 
L’Aerotechnique No. 174, Supplement of l’Aeronautique 
No. 217 June 1939 p.6l; also Tank Tests by NACA in 
RM L52D15. 

(56) Wadlin, Ramsen, Vaughan; Rectangular Plates (Hydrofoils) 
Having Aspect Ratios of 1.0, 0.25 and 0.125; NACA T. 
Notes 3079 & 3249 (1954), or T.Rpt 1246. 

(57) Hoerner, Gibbs & Cox Corporation Towing Tank (1953). 
(60) It is a matter of choice whether to call the drag due to 

lift of a hydrofoil "induced” or "wave drag”. However, in 
order to distinguish between the two components, the terms 
are used as explained in the text. Consideration of the com¬ 
bined vortex and wave system of a hydrofoil also leads to 
the statement that a water wave represents a vortex. The 
wave resistance of ships is thus realized to be the equivalent 
of a vortex system; and it becomes in this way also related 
to certain examples of vortex-bound pressure or separation 
drag as described in Chapter III. 

Figure 39. Normal-force coefficient of a small-aspect-ratio flat 
plate (56) at two different submergence ratios. Chord c = 20 
inch, A = 0.125, V = 25 ft/sec. 

VENTILATION along the strut employed to sup¬ 

port the plate in figure 39, occurs as indicated. Apply¬ 

ing low-aspect-ratio wing theory with a sectional lift 

angle (dot/dC[_) equal to 4 times (0.5/it ), the 

linear term of the lift- or normal-force angle of a ven¬ 

tilated plate is found to be 

0C= 4 Cn/(itA)+ K Cn/ (ir A) - 4(Sh/(?A) 

where K = biplane factor and <=h = as ex' 
plained in the “hydrodynamic” chapter. Figure 23 

of that chapter presents, as an example, the lift co¬ 

efficient (CL = CN cosoL) of a square flat plate 

(having A = 1) as tested in a towing tank, ventilated 

by means of a hollow supporting strut. For a sub¬ 

mergence ratio of h/b = 1.0, the biplane factor is 

K — 1.01 ~ 1. The last function, therefore, re¬ 

duces to equation 28 of the “hydrodynamic” chapter, 

under the conditions as tested. An application of 

small-aspect-ratio hydrofoils, ventilated or in plain 

flow, is found in aircraft-type “hydro-skis”, in sub¬ 

merged operation during take-off or “landing”; as de¬ 

scribed in the section on “planing craft”. 
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Hydro-Skis. When using plate-like skids or skis simi¬ 

lar to the plates just described, in airplanes, their 

planing characteristics are at least as important as 

their performance in submerged condition. Reference 

(38,c) gives some information on shape details in 

hydro-skis. Some D/L ratios evaluated from the ex¬ 

perimental data, are plotted in figure 40. The influ¬ 

ence of shape is as follows: 

(a) Lateral curvature in otherwise straight skis, can 

be expected to reduce lift and efficiency below that 

of a flat bottom. No clear indication is found in 

this regard, in figure 40. 

Figure 40. Lift-drag ratio of four differently shaped hydro-skis 
(38,c). Evaluation for W = L = 4 to 6 lb, at V = 25 to 30 
ft/sec planing speed. Wetted area in the order of 0.1 to 0.3 ft2 
at ot = 4° and of 0.02 ft2 at 20°. 

(b) A comparison between the rectangular and tri¬ 

angular shapes shows a small difference in favor of 

rectangular plan form. 

At higher angles of attack, the drag/lift ratios of all 

ski shapes in figure 40, are for practical purposes 

equal to tanof. 



XII - LAND-BORNE VEHICLES 12- 1 

CHAPTER XII - DRAG OF LAND-BORNE VEHICLES 

Drag or resistance of land-borne vehicles such as auto¬ 

mobiles and railroad conveyances, is twofold; namely 

mechanical (in the wheels or at the points in contact 

with the ground) and aerodynamic. Essentially the 

latter is treated in this chapter, being presented in 

the form of the non-dimensional drag coefficient 

(based on the frontal area Sa). Chapter I must be con¬ 

sulted to determine the drag (in pounds) as a function 

of speed for a given-size vehicle. 

A. DRAG OF MOTOR VEHICLES 

Among land-borne vehicles, the automobile is par¬ 

ticularly interesting as far as aerodynamic drag (1) is 

concerned — because “everybody” drives or uses this 

facility so often. 

1. EXPERIMENTAL METHODS 

Road Tests. A number of investigations on the road 

are known, such as described in (2), measuring the 

drag of automobiles according to the principle of 

“drag equals mass times deceleration”. Since drag 

values resulting from this method include the drag 

components originating in the tires and within part of 

the mechanical system of the vehicle, additional tests 

are required on special stands (9) to determine the 

“rolling resistance”. This resistance is to be sub¬ 

tracted from the total drag as determined by road 

tests in order to arrive at the net aerodynamic drag. 

Wind Tunnel Tests. Modern wind tunnels, devel¬ 

oped for aeronautical research, are also very suitable 

for measuring the aerodynamic drag of automobiles, 

either on models or by placing the vehicles themselves 

into larger test installations. Contrary to road con¬ 

ditions, the artificial air stream is blown against the 

resting vehicle, in such investigations. Proper rep¬ 

resentation of the road surface, which in actual oper¬ 

ation is not fixed in relation to the vehicle, must 

therefore be given consideration. 

Ground Plate. The simplest reproduction of the 

ground is a plane plate placed under the vehicle. 

Since such a plate is exposed to the same air flow as 

the automobile model itself, a boundary layer orig¬ 

inates which, by way of interference, can consider¬ 

ably change the flow pattern around the model. Re¬ 

sults obtained with this type of ground representation 

are listed and compared with other methods in figure 

1. It is seen that a fixed plate leads to drag coefficients 

that are usually slightly higher than with proper sim¬ 

ulation of the road surface. To reduce or to avoid 

ground-plate interference, attempts have been made 

(3,d) and (4,e) to remove the boundary layer by 

suction. It appears, however, that drag coefficients 

obtained in this way are somewhat too high. 

Image Method. In the so-called image method (3,c,e) 

and (4,c), the ground plate is entirely omitted. A sec¬ 

ond, identical or symmetrical, model of the vehicle is 

placed upside down with the wheels against those of 

the first model. Theoretically, because of the sym¬ 

metry of the system, no air particles will penetrate the 

imaginary road surface — in an ideal stream of air. 

Figure I. Drag coefficients of several automobile models, 
determined by various techniques of simulating road or 
ground surface; (a) ground plate with suction, (b) values 
in brackets were obtained on similar shapes. 

WIND - TUNNEL TECHNIQUE 

FIXED - PLATE o — o 
STREAMLINE CAR (JARAY) (3,.) 0.19 (89*) 0.23 (107* _ _ 0.21 (100* to.24) (114* 

V2 STREAMLINE CAR (3,«) 0.36 (97*) 0.38 (102* — — 0.37 (100* (0.38) (102* 

1936 PASSENGER CAR (3,.) 0.50 (97*) 0.53 (103* 0.53 (10A* 0.52 (100* 0.52 (100* 

STANDARD CAR (3,e) 0.52 (96*) 0.56 (103* 0.55 (102* 0.54 (100* 10.57) (104* 

| LAY AUTOMOBILE MODEL (4,®) 0.29 (97*) 0.27n (88*) 0.31 (104* — — — b — 
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Actually, the flow between the two models is more 

or less turbulent and separated, however. Velocity 

components are, therefore, crossing the plane of 

symmetry back and forth. Also, the formation of the 

vortex system aft of the vehicle may be affected by 

the non-existence of the road surface. It is suggested 

that the method could be improved by placing a 

plate behind the double model, thus preventing the 

motion of larger vortices across the plane of sym¬ 

metry — without interfering directly with the flow 

pattern past the underside of the vehicle. 

Moving Ground. The most perfect reproduction of 

the road surface in a wind tunnel is through the use 

of a belt, moving at proper distance (close to the 

wheels) under the model, in the same direction and 

with the same speed as the artificial flow. The test 

results listed in figure 1 show differences between the 

various test methods. As far as available, data obtained 

by the moving-belt technique are considered as most 

representative of full-scale conditions. The differ¬ 

ences in drag coefficient found for other methods 

are comparatively consistent. Except for extreme 

streamline shapes, the fixed plate also appears to 

give reasonable results. 

0.6 

0.4 

0.2 

STANDARD PASSENGER CARS:: 

♦ (5,«) o (3,«J « (3,45) 

STREAMLINE CARS 

* (3,«) A (3,«) h (3*g) 

IHDOI TYPE A (10,b) 

PULL SCAI£ OPEL * (2,c) 

PULL -SCALE POINTS O 

0 ~Sf 10* 

Figure 2. Drag of several automobile shapes (mostly 

tested in wind tunnels) as a function of Reynolds number. 

ments and the rough and open underside were re¬ 

produced as accurately as possible. On the average, 

the full-scale drag values seem to be slightly higher 

than the model results. Usually we can be satisfied 

with wind tunnel results under two conditions; 

namely that the model similarity is adequate (in¬ 

cluding underside and internal air flow) and that 

the ground representation is adequate. Results on 

a number of passenger cars are presented in figure 

3, obtained either by such wind-tunnel testing or 

from full-scale investigations on the road (5). 

2. DRAG OF BASIC SHAPES. 

There are numerous wind-tunnel results available 

concerning the aerodynamic drag of automobiles; 

a few of them are presented in the illustrations. 

Readers who are more deeply interested in the find¬ 

ings of such tests, may study references 3 and 4. 

Certain mechanisms of drag are discussed as follows. 

Reynolds Number. In agreement with facts as pre¬ 

sented in other chapters on the influence of R’ 

number on skin friction, separation and drag, some 

effect should be found in automobiles too. Figure 2 

shows a small decrease of the drag coefficient with 

R’nuinber (speed) as found in wind tunnel tests. 

A sudden drop is found in one example, reminding 

of the behavior of rounded bodies as explained at 

length in the “pressure-drag” and “streamline” 

chapters. Two full-scale points are included in the 

graph at R^ = 10T Whether they are on the same 

level as, or higher or lower than the model results, 

is also a function of geometrical similarity. 

Model Similarity. Proper representation in models, 

of all protuberances and other details of the actual 

vehicle (including, for example, the shape of the 

underside) is of importance. A number of automo¬ 

bile types have been tested (3, g), both full-scale on 

the road and through tunnel models, in which in¬ 

ternal air flow, window frames, door hinges, orna- 

Trri^ftn 

(e) HUDSON 1949 to 1953 (5,b). 

0.51 

Figure 3. Drag coefficients of “standard” passenger cars, 
tested either in wind tunnels on geometrically similar 

models or by deceleration of the full-scale vehicles. 
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Skin-Friction Drag. Considering average passenger 

cars traveling at ~ 50 mph, the Reynolds number 

is in the order of R^ = Vl/V'ss 107, where 1 = to¬ 

tal length of the vehicles. The corresponding skin- 

friction drag coefficient (for mostly turbulent bound¬ 

ary-layer flow) is roughly Cp = 0.003, as found in 

Chapter II. The wetted-surface area of a passenger 

car is in the order of 9 times the projected frontal 

area. Taking into account the increased dynamic 

pressure around the car body (by a factor of 1,5) the 

drag component due to friction is found to be in 

the order of Chc = 1.5 9 0.003 = 0.04. The aero- 

dynamic drag of conventional passenger cars is on 

the average 10 times as high as the skin-friction. 

Separation Drag. The largest drag coefficients are 

obtained with open convertibles (such as in figure 

3, a) and in blunt box-like shapes (as in figures 4, a 

and 13, a). A systematic series of smooth basic auto¬ 

mobile bodies is investigated in (4, e). Figure 4 pre¬ 

sents some of these and some other results: 

(a) By rounding the front end, the drag coefficient 

is reduced to the order of CL =0.3. 

(b) Rounding the rear end does not really reduce 

drag. Adding, however, a tapering tail, lowers the 

drag coefficient almost to CD<= 0.1. 

(c) Rounding the lateral edges (which are sharp in 

the shapes quoted from reference 4,e), produces 

streamline shapes (without long tails; figure 4-e,f) 

exhibiting drag coefficients as low as 0.13. 

(1) An extensive treatment of practical aerodynamics 
is found in “Aerodynamik des Kraftfahrzeugs” 
by Koenig-Fachsenfeld, Umschau Verlag Frankfurt. 

(2) Deceleration tests, automobiles on the road: 
a) Essers, Autom’tech Rundsch 1927, 359, 384. 
b) Agg, Proc. 6th Highway-Res. Board Wash. 1928, 
c) Hoerner, Testing Drag of Automobiles by 
Deceleration, Zeitschrift VDI 1935 p.1028. 
d) Weiss-Sawatzki, D. Kraftf.forschg VDI No. 66. 
e) Hoerner, Drag of a “Plymouth” Under Actual 
Road Conditions, Automotive Industries 1951, 15 
Sept, p.43. 

(3) Wind-tunnel techniques for automobile models: 
a) Klemin, J.A.S. 1934, 198; Automind. 1934, 140. 
b) Schirmer, Automobiltech Zts. 1935 p.176. 
c) Ono, Ground Representation, J.A.Sci.1935, 40. 
d) Stalker, Suction, J.Aero’l Sci.1934 p.151. 
e) Schmid, Automob’t Zts. 1936, No.17, D.Kraftf. 

forschg VDI No.l, 1938;and Zts.VDI 1938 p.188. 
f) Mueller, Forschg Ingenieurwesen 1939 p.220. 
g) Sawatzki-Weiss, Autom.tech Zts. 1941; (2,d). 
h) Gruson, Comptes Rend.Ac.Sci. Paris 1937,473. 

(4) Automobile models tested in wind tunnels: 
a) Klemperer, Zts. Flugt. M’luftsch. 1922 p.201. 
b) Tietjens, Tr.ASME 1932, 235; Tr.SAE 1932. 
c) Heald, BOS J.Res. 1933 p.284, 871; 1934 p.863. 
d) Mauboussin, Models, L’Aeronautique 1933. 
e) Lay, Model & Road, J.SAE 1933 p.144, 177, 261. 
f) Hoerner, Survey, Zeitschrift VDI 1934 p. 1261. 
g) Andreau, Sci. Aerienne 1934, 285; J.Soc.Ing. 
Auto 1934, 2577; 1935, 34; Autom.Engr 1935, 75, 
and pages 113, 147. 
h) Flugt.Inst. Stuttgt, Autom.Zts. 1935 p.331. 
i) Reid, J.SAE 1935,180; Autom.Engr 1936, 252. 
k) Kamm, Automobiltech Zeitschrift 1939 p.447. 
l) Giquaux, Automobile Engineer 1935 p.33- 
m) Moller, Volkswagen, Automobt.Zts. 1951 p.74. 

(5) Full-scale vehicles tested other than in (2): 
a) Conrad, Public Roads 1925 p.203. 
b) Nagler and Razak, “Automobile Moving People 
Through Air”, SAE Quarterly Trans 1950 p.530. 
c) Lockwood, American Highways 1929 No.2. 

(o) “BOX" SHAPE WITH SHARP EDGES ON WHEELS (4,e). 

(b) BASIC CAR BODY WITH SHARP LATERAL EDGES (4,e) 

(c) WITH SHARP-EDGED WINDSHIELD, "T“ TAPERING 

(d) DITTO. WITH LONG TAPERING TAIL (4,e) 

(t) EXTREME STREAMLINE SHAPE. TESTED BY AVA (I) 

Figure 4. Drag coefficients of several smooth wind 
tunnel models (tested over fixed ground plate). 

Aerodynamic Lift. The shape of automobiles is, of 

course, adjusted to the condition of moving in prox¬ 

imity of the road surface; the lower side of the body 

contour is nearly a straight line, and the upper side 

is curved somehow. The resulting pressure distrib¬ 

ution yields an aerodynamic lift similar to that of 

an airplane wing (of extremely small aspect ratio). 

The two tip vortices, necessary components of the 

corresponding flow pattern, can be observed when 

traveling behind an automobile over a dusty road 

or through smoke or snow flakes. Based on frontal 

area, passenger cars have aerodynamic lift coefficients 
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as listed in figure 5. For example, for a coefficient of 

Cl» = 0.4 (estimated to apply to today’s conven¬ 

tional body shapes) the lift is in the order of 60 lb 

when driving at 50 mph (and = 240 lb at 100 mph). 

The lift coefficient is evidently highest in bodies with 

well rounded tops (figure 5,b), down-sloping tails 

(figure 5,a) and with sharp lateral edges (figure 4, 

b to d). It appears that the lateral edges of the 

windshield (figure 4,c) have a decisive part in pro¬ 

ducing a lifting flow pattern (favoring flow over 

the top of the car). “True” streamline shapes (figure 

4,g or 5,e) do not have much of a lift coefficient. 

shape is that of the European Jaray (between 1930 

and 1940) particularly explained in (1). Figures 5.c; 

6,b and 10,c give examples of his designs in which 

the flat windshield is replaced by a well-rounded 

front. It seems that the “wrap-around” windshield 

(popular since 1955) can produce similar results. In 

this shape, not only the loss of momentum is reduced 

in getting around the corner posts, but lift and drag 

due to lift can also be reduced and * avoided. It seems 

to be important, however, in this respect that the wind¬ 

shield be properly faired into the lateral body sides 

(without obstruction by rain gutters and the like). 

(a) 1936 car with flat windshield and notchback; CD>~0.5; Cb-L^ 0.05 

(b) "Volkswagen", round top and sloping rear end; CDm= 0.37; CDl—0.08 

<c) Jaray type of car body with round windshield; CD# = 0.24; CDi,— 0 03 

(d) "K" car with blunt rear end and sloping windshield; CD4= 0.20; C^— 0 

(e) Streamline car, all rounded (with lateral flow); C^— 0.19; 0 

Figure 5. Lift coefficients (on frontal area) of several 
types of passenger cars, as tested in a wind tunnel (6,b) . 

Induced Drag. Lift presents induced drag (which 

can be appraised on the basis of wing theory as out¬ 

lined in Chapter VII. In a simple analysis we may 

assume that S4 = b h = l? , which means that the 

height h equals the “span” b of the car. Using 

equation 4 of the mentioned chapter, the coefficient 

of drag due to lift is then found to be 

Coi.= c0u,= D.L/(qs.) = CL2./ir (1) 

For a coefficient CL. = 0.4 (as quoted above), the 

corresponding drag coefficient is CD-t. = 0.05. 

Wrap-Around Windshield. Lift and drag due to lift 

can basically be reduced by giving the car body a 

shape which facilitates flow along the lateral sides, 

rather than over the top. Figure 6,a shows an early 

attempt in this regard, exhibiting a shape which is 

tapered in the horizontal plane, thus ending in a 

vertical trailing edge. A more realistic automobile 

(d) SCHL&R (1939); MODEL C„“ 0.13 

Figure 6. Examples for shape and drag coefficient of 
several experimental streamline cars. 

Blunt Rear End. Considering that most vehicles are 

operated and parked in city traffic, and are housed 

in garages; extended “tails” are impractical. Another 

obstacle to streamline shapes is the fact that in ordi¬ 

nary “family cars” height and width of their after¬ 

bodies must leave enough space to accomodate 

passengers in the rear seat. It is subsequently not 

very favorable to give the upper side of the body a 

steep downward slope (as for example in figure 5, a 

and b). The air flow is not likely to follow such a 

contour, and the resulting flow separation means 

pressure drag. It is preferable, therefore, in bodies 

with restricted length, to design them with a more 

or less blunt, suddenly cut-off end, the projected 

area of which is smaller, however, than that of the 

maximum cross-section area of the car body. Figure 

6,c shows an experimental car having a comparatively 

blunt end. The drag coefficient of CD#= 0.23, tested 

for this automobile (with faired and smooth under¬ 

side) on the road, is low indeed. The blunt end 

(also shown in figure 12) presents some “base” drag, 

of course, as treated in the “pressure-drag” chapter 

— estimated to be in the order of ACD#= 0.05 (based 

on S.) for the car in figure 6,c. A factor which helps 
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explain why this shape and other similar designs (7, 
a) nevertheless have small drag coefficients, is the re¬ 
duction of lift (see figure 5,d) and drag due to lift 
(ACd.= -.08 as per equation | ) in comparison to 
conventional shapes exhibiting attached flow over 
a rounded and down-sloping top. 

3. DRAG DUE TO OPERATIONAL PARTS 

Automobiles as we buy and use them, generally show 
higher drag coefficients (listed in figure 3) than quoted 
for similar model shapes in the preceding paragraphs. 
The explanation is found in the many necessary (and 
unnecessary) accessory parts used in the operation of 
motor vehicles. 

Protuberances. Figure 7 presents an analysis of the 
drag of a “sedan” typical of the years between 1930 
and 1940, with drag components compiled from 
various wind-tunnel and road investigations. The 
final, comparatively high drag coefficient is not sur¬ 
prising after listing and adding the drag of all parts 
and protuberances which were or still are attached 

COMPONENT PAST OB VABIATIOI 
‘T). 

HEP. 

») STREAMLINE BODY IK WEE ILOW 0.03 CHAP VI 

b) ADARTATION TO GROUND (IJTTEREEHENCE) 0.03 CHAP vm 

o) WIHD8HIELD *3" (INDUCED DRAG) 0.08 (4,b) 

4) SHORTENED BEAU BSD (SEPARATION) 0.12 (4,0 

a) WHEELS WITH OPENINGS IN BOTTOM 0.10 (D 

f) OPENINGS JOB PONT WHEELS "0" 0.03 <4,10 

g) BOUGH UNDERSIDE (AXLES bot.) »U» 0.15 <3.g) 

h) INTERNAL MOW LOSSES, RADIATOR "R* 0.05 (4,J0 

1) HEADLIGHTS ON TOP OP PENDERS "L* 0.05 (3,g) 

3) VARIOUS PROTRUDING PARTS "P" 0.08 - 

k) DUE TO OPEN FORWARD WINDOWS "W" 0.03 (2,o) 

TOTAL DRAG COEFFICIENT OP SUCH CAB 0.75 1 

f
 

Figure 7. Analysis of the aerodynamic drag of an average 
European 1930-to-1940 passenger car (sedan) derived 
from model- and full-scale tests as quoted. 

(6) Concerning aerodynamic lift of automobiles: 
a) Heald, J.Research Nat’l.Bur. Stand. 1934 p.871. 
b) Sawatzki, VDI D.Kraftf.forsch Heft 45, 1941. 

(7) Automobile bodies with blunt rear end: 
a) Everling, Verk’Woche 1939; Mo’kritik 1939. 
b) Kraft.Inst. Stuttgt, Autom’t.Zts. 1940 p.550. 

to the outside of this type of car. Among these are: 
license plates, bumpers, headlights, rear view mirror, 
spot light, fender flaps, door handles, hinges, locks, 
antennas, window frames, windshield wipers, orna¬ 
ments and on older models: spare tires, running 
boards, and horns. The drag of protruding parts and 
the interference drag caused by them on the main 
car body, can be appraised through application of 
the methods outlined in Chapter VIII. As an ex¬ 
ample, the drag of an outside rear-view mirror, 
placed at the side of the windshield, may be “cal¬ 
culated”. In free flow, the drag coefficient of such 
a disk-like part is CD>= 1.2. In the vicinity of the 
front comer post of the car compartment, the average 
local dynamic pressure (of the air flowing around 
this comer) is estimated to be 1.6 times as high as 
in the undisturbed flow; the drag coefficient of the 
“added” body is, therefore, concluded to be CDa< = 
1.6 1.2 = 1.9. Considering the interference caused 
by the obstacle at the rear of the car body, the 
additional drag is estimated to be in the order of 
60%. The total drag of and due to the mirror is 
thus given by the coefficient (based on frontal area 
of the mirror) of = 3. Based on frontal area of 
the car, the additional drag coefficient is in the order 
of ACfi#= 0.015, which represents between 2 and 3% 
of the total aerodynamic drag of a modern passenger 
car. This much may not be critical in any respect. 
However, several similar protuberances may, when 
added up, give a total effect well worth considering. 
By eliminating (building-in) a number of component 
parts (such as the headlights) and by other improve¬ 
ments in form (particularly after adopting a sloping 
windshield), the aerodynamic drag of passenger cars 
has been reduced between 1930 and 1950. As shown 
in figure 3, the most advanced U.S. passenger cars 
now have drag coefficients between 0.4 and 0.5. These 
values are still =*• twice as high, however, as those 
obtained in certain experimental cars (listed in 
figure 6). 

Figure 8. Drag of and due to fender-mounted head¬ 
lights. 

Headlights. Figure 8 presents two examples of drag 
due to fender-mounted headlights. In arrangement 
(b) the headlights are obviously in the narrow en¬ 
trance of an expanding passage between hood and 
fenders. Referred to the frontal area of the head¬ 
lights, the drag coefficient is between 2 and 4 — 
values which can be explained on the basis of inter¬ 
ference, as treated in the chapter on this subject. 
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Underside. The biggest single avoidable aerodynamic 

drag component in today’s passenger cars is in the 

rough underside. Withdrawn from the view of the 

motorist, there are axles, gear boxes, brake cables, 

springs, brackets, tanks, mufflers, holes and sharp 

edges in the frame — all of them exposed to the air 

stream. Figure 9 presents some experimental evi¬ 

dence showing differential coefficients ACj^ between 

o.l and o.3 caused by such roughness of the under¬ 

side. It is inevitable, of course, that some cut-outs 

be provided around the wheels, particularly in the 

front end where the wheels must also have space 

for turning (figure 9,b). Another model result is 

quoted in (1); by covering the underside of a bus, 

the drag coefficient is reduced from CD.= 0.40 to 

0.27. The stock-produced “Tatra” car (Czechoslo¬ 

vakia) is built with a fairly smooth (flat) underside. 

The road-tested drag coefficient of this car, CD = 0.31, 

is correspondingly low (1). Also the Volkswagen 

has a comparatively smooth underside. 

(c) Completely smooth model, CD “ 0 3 

(b) 1/2 faired (Tatra or Volkswagen), CD» 0 5 

(o) Open ond rough as customary, C0 * 0 6 

Figure !). Shape of the underside and drag coefficient 
of a passenger car model (3,g). 

Sun Visors at the upper edge of the windshield, used 

as protection against sun, heat, rain and snow, re¬ 

semble very much the slots or slats sometimes applied 

at the leading edge of airplane wings. They would 

be useful in reducing drag if the bend between wind¬ 

shield and car top still was as sharp as in most 

old-time automobiles (see figure 3,d). Applied to 

modern cars, sun visors were found (5,b) to give an 

additional drag coefficient in the order of 0.04 (on 

the car’s S.). It is suggested, however, that shape and 

setting (angle of attack) of these vane-like devices 

are critical, and that smaller drag increments could 

be obtained through proper development in a wind 

tunnel. 

Wheel Openings. A certain controversy in modern 

automobiles is the question of having the wheels en¬ 

closed in the main body or laterally covered somehow. 

In a number of cars this has been done as far as the 

rear wheels are concerned. Since the front wheels 

require additional space for turning, it seems that in 

only one stock-produced car (figure 3,f) fenders have 

been extended so as to cover most of the front wheels. 

Wind tunnel investigations (4,k) indicate an in¬ 

crement of the drag coefficient in the order of/lCD=r 

0.02 due to a pair of wheel openings (front or rear 

approximately alike). 

Open Windows. By opening the front windows of 

the car in figure 10,b; the drag coefficient was found 

to be increased by an increment between 0.03 and 

0.04. It should generally be noted, however, that 

the influence of a disturbance (such as open windows 

or wheel housings) is small in automobile bodies 

which have high drag coefficients to begin with. Clos¬ 

ing the top of a car similar to that in figure 3,a — the 

author found the drag coefficient reduced from 0.95 

to 0.75. A sliding top over the front seat (available in 

a few European cars) produces an increment ofACB< 

= 0.1 as reported in (1). 

Cooling Air. The flow of air through the engine 

radiator as conventional in today’s automobiles, is 

poor in aerodynamic respect. The drag differential 

listed in figure 7 gives a coefficient based on frontal 

area of the radiator core, in the order of CDa = 0.4. 

As explained in the chapter on “internal flow”, the 

momentum loss of the air flowing through the system, 

considerably depends upon shape and direction of 

the outlet. In automobiles, the air usually escapes 

at random, through the open bottom. The corre¬ 

sponding drag is then in order as quoted above. If, 

however, the cooling air would be discharged down¬ 

stream by means of a suitable exit nozzle, some neg¬ 

ative drag component (jet thrust) might be obtained 

on account of the energy transferred to the cooling 

air by the engine fan (and some heating.) 

Streamlining. By summing-up drag components as 

analyzed in the last paragraphs, it is possible to pre¬ 

dict the minimum drag of an automobile. A suitable 

streamline body, may have a basic drag coefficient of 

Q>. = 0.07 (including ground interference) and an 

increment due to 4 wheels plus cut-outs in the car 

bottom in the order ofAC^>= 0.10, thus giving a 

first minimum in the order of 0.17. Next, assuming 

token values for induced drag, internal flow and ex¬ 

ternal protuberances (including the windshield in¬ 

stallation) of 0.01 each, a more realistic minimum in 

the order of CD< = 0.2 is obtained. Many enthusiastic 

attempts have been made during the last 50 years to 

give the passenger car a “streamline” shape. Figure 

6 shows several examples. Full-scale drag coefficients 

have been obtained in experimental vehicles as low 

as the 0.2 estimated above — a value which is less 

than half of that as found in modern stock cars 

(figure 3). The various needs of traffic, the conven¬ 

ience of the people riding in these vehicles, and last 
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DKW Reichs and Meisterklasse: 

Weight 
Wheelbas 
Height 
Frontal ar 
Engine 
Tires 4.5 
Pressure 

—■ 2000 lb 
— 102 inch 
— 57 inch 
— 17 ft2 

20 BHP 
by 19 inch 

17 Ib/inf 

• ; Figure 10. Drag of a small 1935 “Auto-Union” motorcar, 
v~ determined by deceleration tests (2,c) — with 

' Vmph three different body designs; as open roadster, 
as standard sedan, and with “Jaray” stream¬ 
line body. 

but not least a shiny appearance are evidently given 

preference over fuel saving aerodynamic efficiency. 

As an example, the 1949 to 1954 “Hudson” may be 

mentioned. This automobile having a low-slung 

and efficient streamline body shape did have all 

chances of obtaining a drag coefficient as low as those 

in figure 6 — by making the underside smooth and 

by adding a properly wrapped-around windshield. 

Actually, the tested coefficient of this automobile 

was = 0.5, however (see figure 3,e). 

4. EFFICIENCY OF PASSENGER CARS. 

Rolling Resistance. Figure 10 presents the total drag 

of one and the same passenger car chassis, with 3 

different body shapes; namely as an open “roadster” 

as a standard two-door “sedan” and with an exper¬ 

imental Jaray-type of body — all tested by deceleration 

technique on the road (2,c). Disregarding a small 

(8) Schmitt, Power for Cooling of Automobile Engines, 
Deutsche Kraftf.forschg VDI, No.45 1940. 

(9) Rolling resistance of automobile tires: 
a) Schmid, Autom.techZeitschr. 1936 No. 17. 
b) Kluge & Haas, D.Kraftf.forschg VDI No. 26. 
c) Stonex (Gen. Motors), SAE J. 1949 Dec p.18. 

value of mechanical friction within the wheel bear¬ 

ings, a considerable amount of drag is caused by the 

external friction and the internal deformation of 

the rubber tires. This rolling resistance is approx¬ 

imately proportional to the load under which the 

wheels are moving. For a given type of tire, the 

rolling coefficient KR= resistance/load, in pounds per 

pound, primarily depends upon the inflation pressure 

“p”, and to a minor extent upon the speed of the 

vehicle. Considering treaded passenger-car tires in 

the range of their design loads, tests (9) on German 

low-pressure tires as of 1935 to 1940 indicate an 

average coefficient 

0.15 0.000035 (V h)2 

Kr = 0.005 H-1- 

“p(lb/.m) ' P(lb/irf:) 

Assuming an average inflation pressure “p” = 26 

lb/in?, the rolling resistance of these tires at 90 mph is 

twice as high as at V 0. A smaller fraction of the 

speed-dependent component of the equation is aero¬ 

dynamic drag caused by “viscous” friction and by 

a centrifugal pumping effect at the surfaces of wheels 

and tires. The rolling resistance of the tires is DR 

= W. The power corresponding to rolling re¬ 

sistance is 

PR,HP <4) 
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Power Required. To show the importance that the 
aerodynamic drag can have, the power shall be cal¬ 
culated required to drive an average passenger car 
over a level and smoothly-paved highway in calm 
atmosphere. The aerodynamic drag is 

Doir = cu.0 5 9 V2 S. (5) 

The corresponding power (in a consistent system 
of units) is 

V = Cj.0.5?VJS. (6) 

shape so that the drag coefficient is reduced from 0.5 
to 0.25, for example — between 25 and 50% of the 
usual fuel consumption can be saved, at speeds be¬ 
tween 40 and 80 mph. On the other hand, an open 
convertible with an assumed C0> = 0.75, results in a 
fuel consumption which is at least by the same per¬ 
centages higher than that of the conventional “sedan ”- 
type car. Another advantage of a low-drag car is in¬ 
creased acceleration. Integration of the curves in 
figure 11 between V = 0 and = 50 mph, shows an 
increase in acceleration by some 7% — due to reduc¬ 
ing the aerodynamic coefficient from 0.5 to 0.25. 

Introducing the standard sea-level density (^>Q = 
0.0024 slug/ft1 ), measuring the speed in mph and 
the frontal area in ft2, the power is 

po.>,w=VW<V>i<ui/104 <7> 
n 

Assuming a frontal area S. = 25 ft , the correspond¬ 
ing power is plotted in figure 11 for three different 
values of the aerodynamic drag coefficient. Consider¬ 
ing the mechanical efficiency of the transmission sys¬ 
tem of such an automobile to be q = 90%, the 
assumed power of the engine (100 BHP) is sufficient 
to bring the car up to maximum speeds between 88 
and 112 mph — provided that suitable gear ratios 
are installed. 

Fuel Economy. Assuming that CD. = 0.5 represents 
the aerodynamic quality of today’s passenger cars; 
the maximum possible speed of the automobile as¬ 
sumed (on smooth and level road) is somewhat over 
90 mph. The average driver may not consider speeds 
of this magnitude. However, by changing the body 
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Figure 11. Calculated engine power required to over¬ 
come rolling resistance and aerodynamic drag of an 
average U.S. passenger automobile. 

Optimum Speed. Considering once more the total 
drag plotted in figure 10, the most economical speed 
of an automobile, yielding the highest mileage, is 
theoretically at V -»- 0. Of course, this consider¬ 
ation does not include the characteristics of the engine 
and the transmission ratio between engine and rear 
axle, both of which have an important influence upon 
total efficiency. In fact, in one small car tested by 
the author for fuel consumption, a speed in the order 
of 20 mph was found to give the highest mileage; 
other modern cars are reported to be most economical 
in regard to fuel consumption at around 30 mph. 
Again, these optimum speeds may only be academic — 
since everybody wants to travel faster than at 20 or 
30 mph, and most people are ready to pay for speed. 

5. DRAG OF OTHER MOTOR VEHICLES 

Trucks. The “boxes” in figures 4 and 13 resemble 
the shape of van-type trucks (or trailer trucks). The 
resistance of a platform-type “semi-trailer” combina¬ 
tion as tested by deceleration technique (10, a) is 
plotted in figure 12. Assuming that equation 2 might 
apply to wheels and tires of this heavy vehicle (there 
is no better information known to the author), the 
aerodynamic drag has been separated. The drag co¬ 
efficient thus obtained, in the order of 1.4, appears 
to be reasonable for the bluff and rough shape con¬ 
sidered. 

Figure 12. Drag of a 1938/39 semi-trailer truck ("cab” 
plus hitched-up trailer; total of 3 axles), determined by 
deceleration technique on the road (10,a). 
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Omnibuses. Because of their size, buses have absolute 
aerodynamic drag values higher than those of ordinary 
passenger cars. Based upon their frontal area, they 
present drag coefficients, however, in the same order 
as comparable shapes in figure 8. From wind-tunnel 
tests, illustrated in figure 13, it is learned again that 
sloping down the rear end does not decrease the drag. 
Roughness of the underside causes an increment in 
the order of = 0.15. — Many modern omni¬ 
buses are similar in their basic shape to that of figure 
13,a. Note, that by rounding the edges (around the 
front side) the drag coefficient is reduced to = 
0.46 for this “box” shape, from 0.86 as in figure 4,a. 
Figure 13 also contains results on the German “Volks¬ 
wagen” truck (also produced as a “limousine”). By 
rounding the front end, the drag coefficient is reduced 
from 0.73 to 0.44. These values apply to smooth 
wind-tunnel models, however. The information as 
quoted for shape “c” suggests that full-scale buses 
will probably have coefficients higher than listed by 
a ACn in the order of 0.2. 

d* 

Racing Cars. Besides air drag, other characteristics 
have a decisive influence on the outcome of a race — 
such as acceleration (selection of optimum gear ratio) 
performance of the brakes (in suddenly slowing down 
upon entering one of the two 180“ curves of closed 
race tracks) and last but not least quality and endur¬ 
ance of engine and tires. Some attention has never¬ 
theless been given to the aerodynamic drag in racing 
cars. Figure 14 presents the drag coefficient of one 
particular car as tested on the full-scale vehicle in a 
larger wind tunnel. The open wheels of this car, 
desirable for continued inspection by the driver 
during the race, for brake cooling and for quick 
wheel changes, naturally add to the aerodynamic drag. 
Racing cars designed for speed records on straight 
courses (such as Daytona Beach or Bonneville Salt 
Flats) are usually fully streamlined, however, with 
the wheels enclosed in the car’s main body. In either 
type, momentum loss and drag due to internal cooling 
air flow appears to be more important than in ordin¬ 
ary passenger cars, because of the powerful engines. 

(a) "Box” (4,e) with rounding radius ^0.1 h 

0.73 

oM- 
\\W« / ft! / WV (V/WVV 

(b) "Volkswagen" delivery truck or "limousine" (H,b): 
(1) with blunt front end; C^^O.73 
(2) with rounded front end; = 0.44 

_ Ck= 0.2 S' 

CTEBLIH0 (7’*> 

-0.27 
* "HW XP'MVP'V 

(c) 1940 "Standard" omnibus (1 l,a): 
(1) with protuberances, rough underside; 0.45 
(2) without protub's, underside faired; 0.27 
(3) ditto, but blunt rear end; C&. — 0.25 

V wow 

(d) "Trombus" streamline design (1); not tested 

Figure 14. 1934 “Auto Union” racing car, tested (12) 
in the large DVL wind tunnel (Berlin). The 
projected frontal area is S. = 1.13 m2 . 
(a) “original” condition (with axles exposed 
and with radiator flow; Cq. = 0.65 
(b) wheel and axle fairings; CD. = 0.50. 

Motorcycles. In case of motorcycles, an area is not 
really obvious to which a drag coefficient could be 
referred. The drag must, therefore, be presented in 
the form of the “drag area” D/q = D/ (0.5 q V2) 
usually given (in the English-speaking countries) in 
ft2. For standard sea-level condition, the drag is then 

Figure 13. Drag coefficients of several types of omnibuses 
as tested on wind-tunnel models. 

(10) Concerning resistance of trucks: 
a) Trucks, Public Roads Vol.23 (May 1942). 
b) Moller, Volkswagen Truck, Aut.Zts. 1951 p.l. 

(11) Regarding drag of omnibuses: 
a) FKFS, Automobt.Zts. 1936, 143 and 1940, 550. 
b) Volkswagen see reference (10,b). 

(12) Racing car, unpublished German information. 
(13) Aerodynamic drag of motorcycles: 

a) Sawatzki, D. Kraftf.forschg VDI No.18, 1938. 
b) Scholz, NSU, Umschau 1951, 691; Z.VDI 1953. 

% — 0.0026 (D/q)^ (V^f (9) 

where the constant is equal to 0.5 times a factor to 
account for the conversion from ft/sec to mph. Figure 

15 shows the results of some wind-tunnel tests. De¬ 
celeration tests of the author (2,c) indicate a drag 
area of 6.0 ft2 for a 1935 NSU motorcycle with the 
driver and with a rider on the back seat, both sitting 
nearly upright. In comparison to a modern fighter 
airplane which has a drag area in the same order (see 
in the “aircraft” chapter) the drag of a motorcycle 
(including driver) must be considered to be large. 
The reason is evidently found in the aerodynamically 
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CONDITION OF THE MOTORCYCLE D/q 

"Original” CONDITION, WITHOUT THE DRIVER 

DITTO, BUT WITH THE DRIVER IN UPRIGHT POSITION 

WITH DRIVER, BUT IMPROVEMENTS AS H 0 T E D (+) 

ADDITIONAL DRAG OF AND DUE TO FENDERS F 

ADDITIONAL DRAG CAUSED BY REVOLVING WH E E L S 

2.2 

6.1 

5.5 

0.5 

0.1 

ft 
2 

Figure 15. Aerodynamic drag values of motorcycles, 
derived from wind-tunnel tests (13,a) of three such 
vehicles (BMW, NSU, and Viktoria), all within the same 
power group (500 cm1 cylinder volume) ; (+) im¬ 
provement = disk-like fairings at the sides of the wheels 
plus fairing around the upper part of the wheel fork. 

B. DRAG OF RAILROAD VEHICLES 

1. Locomotives And Power Cars. 

Rail Cars. Motor cars, that is self-powered railroad 

(or street) cars, running singly, have drag coefficients 

similar in character to those of automobiles. The 

available results of wind tunnel tests are listed in 

figure 17. The flow pattern past these more or less 

box-like vehicles is similar to that of prismatic bodies 

in the pressure-drag chapter. Accordingly, drag co¬ 

efficients between 0.2 with well-rounded nose, and 

0.8 with blunt front end can be expected. Tested 

values are in the order of 0.5. An attempt on radical 

streamlining (16,c) demonstrates that the drag co¬ 

efficient could be reduced to as low as 0.08; or at least 

to 0.19 if permitting window frames and similar sur¬ 

face imperfections. 

rough and bluff design of these vehicles, including 

steel tubing and usually neglecting any fairing. A 

considerable part of the drag is also due to the driver 

(see “human beings” in the “pressure drag” chapter). 

The driver can reduce the drag appreciably by bend¬ 

ing down, “lying” down onto the tank as in figure 16,a. 

Number “b” of that illustration finally shows that 

the drag area can be reduced to 1.5 ft2 by putting a 

streamline shell around vehicle and driver. With 

the shape as illustrated, a world speed record of 290 

km/h has been obtained in 1951 over a distance of 

1 km, using an engine of 500 cm3 cylinder volume, 

boosted to put out 100 BHP (!) 

The Steam Locomotive is a complex piece of machin¬ 

ery. In the old-time “standard” models, the outside 

shape is or was usually very rough, exhibiting all types 

of levers, rails, instruments, pumps, pipes and other 

devices. As illustrated in figures 18, 19 and 20, the 

l 

Figure 16. Drag area of an NSU motorcycle (13,b), 
determined by wind-tunnel investigation in original and 
in fully streamlined condition. 

Figure 17. Aerodynamic drag coefficients of various 
powered rail-car models (16) 
(a) Smooth model (a). 
(b) Model with more details (b). 
(c) Streetcar with details (c). 
(d) Extreme streamline shape (c); with win¬ 
dow frames and rough underside =0.19. 
(e) Electric Engine (c) in front of train. 
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(o) Image method (a) 

(b) Ditto, streamline 

(c) Over fixed plate (b) 

= 0.38 

Figure 18. Drag coefficients of “standard” and streamline 
locomotives tested on wind-tunnel models in front of 
trains or so-called tail cars (17). 

042 

Figure 19. Aerodynamic drag coefficients of three types 
of railroad engines, model-tested in (17,d and e). 
(a) “Standard” locomotive. Based on S, = 137 ft2: 

Cfj. = 0.74 with “tail car” (fairing) 
= 0.97 with 1 car + '-tail car 
= 1.17 with 2 cars + tail car 
= 1.27 with 3 cars + tail car 

(b) Streamline locomotive. Based on 137 ft2, the co¬ 
efficient is = 0.39 with tail car. 

(c) Electric power car. Based on S. = 89 ft2 : 
Cj^ = 0.42 with tail car 

= 0.52 with 1 car + tail car 
= 0.64 with 2 cars + tail car 

drag coefficient is correspondingly high, between 0.7 

and 0.9 (tested in front of a train or some type of a 

“tail car”). By fairing the smoke-box front with a 

hemispherical cover (17,b), the drag coefficient can 

be reduced by 0.17. By fairing, in addition to the 

front end, the wheels and the upper side of the tender, 

and after covering all pipes, hand rails, levers, gaps, 

and protuberances, the drag coefficient is reduced to 

less than 0.4. An ideal shape (entirely smooth and 

faired) even shows CD> =0.16 (again tested in the 

presence of a train or a tail car placed behind the 

locomotive model). 

(16) Aerodynamic drag of rail cars: 
a) Ergebnisse AVA Gottingen Vol.III, 1926 p. 161. 
b) See L’Aerotecnica 1934 p.482. 
c) Tietjens Ripley, Trains, Trans ASME 1932. 

(17) Air resistance of railroad vehicles: 
a) Nordmann, Aerod. Drag of Railroad Vehicles, 
Organ Fortschr.Eisenbahnw. 1935, 395; Zts. VDI 
1938, 515. 
b) Johansen, Air Resistance of Trains, Proc. Insti¬ 
tute Mech’l Engineers Vol 134 (1936) p.91. 
c) Griffin, Streamlining Effect on Air Drag of 
Steam Locomotives, Journal ASME 1948 p.515. 
d) Lipetz, Tr.ASME 1937, 617; RW Mech.Eng. 
1935, 496. 
e) Klemin, Aerodynamics of Railway Trains. 
R’way Mech.Eng. 1934 p. 315, 312, 282, 357; same 
as in (d). 
f) Nocon, in Glasers Annalen 1931 p.99. 

Power Cars — that is, cars driven by electric motors, 

have drag coefficients similar to those of rail cars. 

An example of a rather rough car of this type is inclu¬ 

ded in figure 17. By rounding the front end (as done 

in more modern Diesel engines) a coefficient in the 

order of Cj,. = 0.4 may be expected (in front of a 

train). Figure 19 indicates a = 0.42 for a power 

car plus “tail car”. After subtracting an estimated 

value for the tail car, a drag coefficient in the order 

of 0.3 is obtained for that smooth power car model 

running in front of a train. 

Figure 20. Drag coefficient (17,c) of a steam locomotive 
(without train); a) "standard” design, b) streamlined 
shape. The base drag coefficient of this locomotive (no 
train behind) may be in the order of ACD> = 0.2. 
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2. Drag Of Railroad Trains 

Railroad Cars. Assuming for an average passenger 
car a ratio of “wetted” surface area to frontal area 
in the order of 15, and a skin-friction drag coefficient 
of 0.003, the minimum drag coefficient of one such 
car, being pulled with others in a train, is estimated 
to be Cu. « 0.05. The "standard” cars, with rough 
undersides, and other protuberances, and with open 
gaps around the diaphragms, show approximately 
four times this minimum value as listed in table A. 

Car Condition REF. cD. 
“Standard” Car (-}-) 07. f) 0.18 
“Standard” Car model (17, d) 0.15 
“Standard” Car model (17, b) 0.17 
With Faired Gaps (17, b) 0.16 
With Faired Underside (17. b) 0.13 
Streamlined Design (17, d) 0.11 
“Ideal” Streamline Car (17. b) 0.05 

Table A. Aerodynamic drag coefficients of railroad- 
passenger cars, tested on wind-tunnel models, except 
for (-f) which is from draw-bar tests on actual 
vehicles on the tracks. 

Protuberances. It is mentioned above that old-type 
steam locomotives are rough in aerodynamic respect 
because of the many parts protruding from their sur¬ 
face. Some protuberances are also found on railroad 
passenger cars, such as generators and battery boxes, 
for example, at their underside. As a supplement to 
the various inlet devices as treated in the "internal 
flow” chapter, figure 21 presents drag coefficients of 
several ventilation intakes and outlets designed for 
application in railroad vehicles. The air scoops have 

Figure 21. Total drag coefficients (on duct area) of 
railroad ventilation devices (18): 
(a) is a rotating "exhaust fan”. 
(b) and (c) give suction (discharging). 
(d) and (e) can serve as outlet or inlet. 
(f) is a weather-vane type of scoop. 

high drag coefficients because of their unnecessarily 
blunt shapes. The outlets are primarily designed to 
provide the “desired rate of flow”, without considera¬ 
tion for the aerodynamic drag. Usually these devices 
are shaped symmetrically to give the same effect in 
both directions of travel as required in railroad oper¬ 
ation. In most of these shapes, the total drag coefficient 
is in the order of 2, based upon the duct area d2Tr/4; 
and roughly in the order of 1, based upon external 
frontal area. It is mentioned in the sources of these 
results (18) that such devices necessary in the oper¬ 
ation of passenger trains, may represent 20% of their 
total aerodynamic drag. Table A confirms this esti¬ 
mate, showing CQ, = 0.18 for a full-scale car while 
for a smooth model C0> =0.15 only. 

Model Scale. As in the case of automobiles (treated 
in the preceeding section), the aerodynamic drag of 
railroad vehicles can be and has been determined 
either by testing wind-tunnel models or by tests with 
the actual equipment on the tracks. The length of a 
passenger train (composed of an engine and 6 passen¬ 
ger cars) is in the order of 500 ft. A medium-size wind 
tunnel can, on the other hand, only accomodate a 
model length of some 10 ft. The model scale is thus 
in the order of 1 to 50, and the corresponding differ¬ 
ence in Reynolds number must be considered when 
predicting the aerodynamic characteristics of trains. 

Aerodynamic Drag Law. While in the power cars 
above (as in automobiles) the influence of Reynolds 
number can be small, aerodynamic conditions of long 
railroad trains are basically different. A considerable 
fraction of the drag is directly caused by friction along 
the wetted surface of such trains. The minimum of 
this drag is 

CDf. = CWWS-> <“> 
The ratio of the wetted area of a train to the frontal 
area is approximately 

Sw«t/S. = 2[(l/b)+ (1/h)] (12) 

where 1 = length of the train, b = breadth and 
h = height of the cars. For an average railroad car, 
this ratio is in the order of 15. The area ratio of a 
train with engine and 6 cars, as illustrated in figure 22, 
is thus in the order of Swe£ /S, = 100. Applying now 
equation 11 with the turbulent coefficient as pre¬ 
sented in the “skin-friction” chapter, a minimum 
coefficient = 0.4 is obtained for the usual 
Reynolds number range of model tests on such a 
train, between Rjj = 10^ and 107. Proceeding 
from wind-tunnel to full-scale conditions (which are 
at R’numbers between 10® and 1(F), the skin-friction 
component of the drag coefficient of this train reduces 
some 50%. The coefficient of the pressure drag, on 
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1- ^^^jgmisesssaBssssssaessssaessssssnissL 
STANDARD: 0,76 0.21 O.lS O.lfe O.tS 0.18 0.27 

STREAMLINE: 0.08 0.0S 0.05 0.0S 0.05 0.05 0.16 

Figure 22. Distribution of aerodynamic drag among the 
components of a railroad train, as found in wind-tunnel 
tests (17,b). The standard train has a total drag coeffi¬ 
cient CD = 1.9, the streamline model has Cp# = 0.5. 

the other hand, assumed to be equal to the difference 
between the tested drag and the calculated minimum 
drag of the train, may approximately be considered 
to be independent of the Reynolds number. Two 
extreme types of trains are analyzed in this manner, 
in figure 23, a “standard” one (illustrated in figure 
22), and a streamline train. The pressure-drag co¬ 
efficient is reduced by streamlining (that is by fairing 
the undersides, and the gaps between the cars) from 
1.4 to 0.1. The percentage decrease of the total 
aerodynamic drag coefficient due to Reynolds number, 
is of course highest in the streamline shape. Between 
wind-tunnel and full-scale conditions (at Rj = 5 10 , 
corresponding to V = 100 mph) the reauction is 
more than 40%. Such a difference must certainly be 

taken into account. 

Bose Drag. Behind the last car, the flow separates 
from its "base”. Considering a train with 6 or more 
cars and a total aerodynamic drag coefficient of the 
model train in the order of CQ> = 2, the boundary 
layer at the end of the train could be expected to 
occupy a space the cross-sectional area of which is 
in the order of 10 times the base area. Derived from 

figure 37 of the “pressure-drag” chapter, the cor¬ 
responding base-drag coefficient would be approx¬ 
imately 0.02, while for a streamline train with Cp4 
= 0.5, the base-drag coefficient would be 0.04. Train 
tests consistently show much higher values, however, 
as listed in table B. An explanation for this result is 
suggested in the next paragraph. 

Type of TRAIN REF. Cdb 

“Standard” (17. f) 0.09 
“Standard”—Type Train (17, b) 0.10 
With Tail Fairing (17, b) 0.09 
Streamline-Type Train (17, d) 0.11 
“Ideal” Streamline Train (17, b) 0.15 
Ditto With Tail Fairing (17, b) 0.11 

TableB. Base-drag coefficients of trains. 

Flow Pattern. As a function of local Reynolds num¬ 
ber (position among the other cars of a train) 
the drag coefficient of an individual car might be 
expected to decrease with distance from the front 
end. This does not come true, however, as shown in 
figure 22. Note: If the first car behind the engine has 
a higher drag coefficient than the following ones; 
this is evidently because of the gap behind the tender. 
By increasing the height of this tender (fairing the 
upper side), the drag coefficient of the train was re¬ 
duced by 0.14. — Generally, a fairly constant drag 
coefficient seems to exist for the cars in line of a train. 
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Figure 23. Drag variation of a railroad train (loco¬ 
motive + six passenger cars), as a function 
of Reynolds number, evaluated from (17,b). 
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This fact suggests a flow pattern past trains different 

from that of three-dimensional bodies of moderate 

length, in free flow. In a manner similar to that 

illustrated in figure 8 of the “interference” chapter, 

it may be true that the boundary-layer material is 

shifted to both sides, away from the train, in form 

of a vortex pair. Not all of the dead air thus arrives 

at the edge of the base of the last car. The average 

dynamic pressure, responsible for the friction drag 

along the train and for the base drag discussed in 

the preceding paragraph, is correspondingly higher 

than expected in a flow pattern similar to that of 

plate friction. Whether this analysis is correct or not, 

can only be decided by detailed observation of the 

flow along such a train. Should it be so, it would 

mean that the effective aerodynamic length of trains 

may be in the order of one or two cars. Corresponding 

to this length, the effective Reynolds number to be 

considered in figure 23 — would also be reduced; 

the skin-friction component of drag would be some¬ 

what increased, accordingly. 

3. Efficiency Of Railroad Trains. 

Traction Resistance. Disregarding the thrust re¬ 

quired to climb ascending sections, considerable 

mechanical resistance originates within the wheel 

bearings of railroad vehicles and due to deformation 

of, and friction between wheels and rails. The re¬ 

sistance caused by the friction in oil-lubricated, plain 

journal bearings increases theoretically with speed. 

However, in real operation, the oil temperature also 

increases with speed; the corresponding resist¬ 

ance may, therefore, be considered as being approxi¬ 

mately constant as against speed. The rolling re¬ 

sistance originating on account of elastic deformations 

of wheels and rails, is also independent of speed. 

These two components give the first two terms of the 

following formula, developed from (19,a), for the 

ratio of resistance to weight (in pounds per pound): 

Kr = 0.0007 + (2.8 n/Wlb) + 0.00001 (l4-) 

With an axle loading, that is with (train weight “W”) 

/ (number of axles “n”) in the order of 22,000 lb, 

the resulting constant part of the coefficient of me¬ 

chanical resistance is KRo = 0.2%. — The third 

term of the equation indicates the “dynamic” re¬ 

sistance caused by jolts over the rail junctions, and 

due to other (swaying) motions of the vehicles. This 

component seems to increase in proportion to the 

speed. At 100 mph, the mechanical resistance is thus 

approximately 1.5 times as high as at V 0. 

Wheel Ventilation. Due to skin friction and because 

of a pumping effect roughly similar to that of a cen¬ 

trifugal blower, the revolving wheels absorb a cer¬ 

tain power. The corresponding additional aerody¬ 

namic drag is not included in the usual model tests 

(the wheels are simply not made to turn). From 

experiments with automobile and motorcycle wheels 

(3,e) and (13,a) this type drag is estimated to be 

D/q = D/ (0.5 y V2) = (0.05 to 0.14) ft2 (15) 

per one wheel. Assuming a value of 0.1 ftf , the four 

wheels of an average automobile present an addi¬ 

tional aerodynamic drag in the order of but 

0.005, which is in the order of 1% of the aerodynamic 

drag of such a vehicle. In railroad trains, the number 

of wheels is much higher; the drag due to the wheels 

is, therefore, noticeable as illustrated in figure 25. 

Figure 24. Resistance of a 70 car mixed freight train, 
draw-bar tested behind locomotive (22). Average weight 
= 43 short tons per car; total weight* 3000 tons.Length 
of train ^ 3000 ft; frontal area S. « 100 ft^. 

Freight Train. Figure 24 presents the resistance of a 

freight train as specified, selected from the results in 

(22). After applying equation 14 for the mechanical 

resistance, a component is left over which is expected 

to be aerodynamic drag. The experimental points in 

the upper part of the graph do not correlate, however, 

with a quadratic function of air drag. While some 

other points in the lower part of figure 24 could be 

understood on the basis of tail wind (reducing the 

aerodynamic drag appreciably), wind does not help 

analytically to explain the trend of the upper points. 

It is, therefore, suggested that the mechanical re¬ 

sistance in these trains may be different from that as 

indicated by equation 14; and that the equation 

should contain a cubic term. The author does not 

have any better explanation as of this time. At any 

rate, assuming the quadratic air-drag function as 

shown in the graph, a drag coefficient of = 18 is 

obtained from the train of 70 cars behind the engine. 

Divided by the number of cars, the resulting co¬ 

efficient is CL = 0.26 per car. In comparison to those 

listed in table A, this value appears to be reasonable 

if considering that the freight cars do not have equal 

height. The steps and gaps in the contour of a 

“mixed” train cause appreciable aerodynamic drag. 
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Figure 25. Analysis of mechanical and aerodynamic drag 
of a train, consisting of an engine and 6 pas¬ 
senger cars as illustrated in figure 22. 

Total Train Drag (19,e). For illustration, calcu¬ 

lated mechanical resistance as well as the aerodynamic 

drag of a representative railroad passenger train, con¬ 

sisting of an engine and 6 cars, are plotted in figure 

25. The aerodynamic drag of the “standard” train 

equals the mechanical resistance, at a speed somewhat 

above 60 mph. By streamlining the train, so that CD, 

is reduced from 1.8 to 0.5 (as in the model tests; 

figure 23) the required engine power can be reduced 

by 34% at 60 mph, by 46% at 80 mph, and by more 

than 50% at 100 mph. A number of more or less 

streamlined trains are in operation in the United 

States; other (light weight) trains (the so-called 

“Talgo” type train, the General Motors train and 

Train “X” built by Pullman-Standard) are being in¬ 

troduced as of this time (21). The savings in fuel 

made possible by reasonable streamlining appear to 

be appreciable. The cars of these trains are also made 

lower, thus presenting smaller frontal and surface 

areas (reduced aerodynamic drag); and they are light¬ 

er in weight, thus having less mechanical resistance. 

Vehicle Size. An interesting aspect in land-borne 

vehicles is a comparison of aerodynamic drag referred 

to the vehicle volume. Using for a streamline train 

a frontal drag coefficient of CD. = 1 and for a pas¬ 

senger car Q,. = 0.5, the coefficient based on V*/3 

(see in the “streamline” chapter) is roughly = 

0.1 for the train and = 0.3 for the automobile. This 

result can be considered to be a consequence of the 

“square-cube” law or the Froude number, as explained 

in the chapter on “water-borne craft”. The volume 
(number of passengers) grows faster than the (frontal 
or wetted) area, as the size of a certain-type vehicle 

is increased. 

B. SUPPLEMENTARY NOTES 

Since there is space left at the end of this chapter, some 

supplementary information concerning the drag of 

land-borne vehicles is added as follows. 

Interference. For terminology and principles see in 

Chapter VIII. Figure 26 demonstrates the extent to 

which the drag of a streamline body is increased 

through addition or presence of a comparatively 

small obstacle. Even without touching the “main” 

body, the “added” disk still has an appreciable effect 

upon flow pattern (separation from the rear) and 

drag coefficient of that shape. — It must be said, 

however, that the effect would be less for a main 

body having, to begin with, some separation and a 

correspondingly higher drag coefficient. For example, 

in an average automobile with CD# = 0.42 (which 

is 10 times the drag coefficient of the streamline body 

in figure 26), the increment due to the added disk 

might only be half of the value indicated in figure 26. 

(19) Mechnical traction resistance of RR vehicles: 
a) Davis, General Electric Review 1926 p. 685. 
b) Vogelpohl, Zeitschrift VDI 1935 p. 851. 
c) Trans ASME 1937, Paper RR3, p.329. 
d) Andrews, T.Inst.Locomot.Engg 1954, 91. 
e) For lack of more-conclusive information, equa¬ 
tion 14 is assumed to apply in the analysis. 

(21) Lightweight Trains, “Fortune” July 1955 p. 110. 
(22) Tuthill, Freight Train Resistance, Univ. Illinois 

Engg Exp.Sta Bull. No.376 (1948). 
(24) Ower, Streamline Body Interference, ARC RM 

1480. Table 8 of the source applies to two disks. 

(25) Rolling resistance of airplane tires: 
(a) Wetmore, Wheels, NACA T.Rpt 583 (1937). 

(b) Frank & Kranz, German ZWB FB 1037 (1939). 
(28) Christy, in Rod and Custom, February 1956. 
(30) Engine ratings: “Where does power go?”; SAE 1956. 

o 12 3 4 5" 

Figure 26. Drag caused by the presence of a small disk 
(with Sa> 3%) placed near a streamline body 
(24) . The drag of the disk in free flow represents 86% 
of the streamline shape’s undisturbed drag. 
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Figure 27. Drag area of a sports or racing car (4,h), 
determined by wind-tunnel tests on a 1/6 scale smooth 
model. Drag coefficients Cjj, are as follows: 
(a) with exposed wheels (S, = 0.82 ma): 

0.27 without any fairings 
0.17 with rear wheel fairings 
0.15 without wheels, but with axles 

(b) with wheels enclosed (S. = 1.26 m2): 
0.23 wheel housings open at the sides 
0.19 with covered wheel housings 
0.22 ditto, and with 2 head lights 
0.23 and with spare wheel on rear 
0.25 “0.19” with 0.5 m* bottom opening 

Sports Car. Figure 27 shows shape and drag charac¬ 
teristics of one and the same chassis of a small sports or 
racing car, (a) with wheels and axles in the open, and 
(b) with the wheels housed within a wider car body 
The aerodynamic drag area D/q = (C0, S. ) of the 
wide type (having S* = 13.5 ft*) is seen to be larger 
(between 2.5 and 2.9 ft® ) than that of the model 
with exposed wheels (S, = 8.8 ft2, and D/q = 2.2 
ft8 ). Tunnel tests on the racing car in figure 14 have 
shown, however, that by putting suitable fairings 
around the axles, the drag coefficient of that car can 
be reduced byACD# = 0.04. If doing this to the car 
in figure 27,a the two body shapes will approximately 
have equal drag. 

Rolling Resistance. Some information on rolling re¬ 
sistance of airplane type tires is given in (25). 
Resistance ratios Dp0/W, tested at speeds between 
10 and 40 mph, are approximately between: 

0.6 and 1.0% on concrete surface 
1.5 and 2.5% on dry and “firm” turf 
6.4 and 7.7% on average “soft turf” 

Figure 28. “Streamline' shape of Malcolm Campbell’s “Blue Bird" 
(W« 10000 lb), with which he drove home several world speed records. 
Quoted from (28), the car made 174 mph with 450 BHP, 206 mph with 
900 BHP, 254 mph with 1500 BHP (1933, as shown in the illustration), 
and finally 300 mph with 2500 BHP. Assuming 20% mechanical losses, 
and allowing an average rolling drag of (0.05 * 10,000) == 500 lb on the 
Daytona Beach sand, an aerodynamic drag coefficient CD,is obtained between 
0.40 and 0.45 (on estimated 20 ft* frontal area). This coefficient is between 
those listed in figure 14 and the unrealistic model results quoted in figure 27. 
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CHAPTER XIII 

DRAG OF AIRCRAFT COMPONENTS AND ACCESSORIES 

Many experimental data are compiled in this chapter, 

indicating the drag of various components and ac¬ 

cessory parts of aircraft. The experimental material 

presented, serves as illustration for various mecha¬ 

nisms of aerodynamic drag, treated in other chapters 

in more basic form. Referring to these chapters, the 

results, selected from an ever-growing fund of pub¬ 

lished reports, are explained and analyzed as far as 

necessary or suitable. The examples presented may 

also simply be used for direct information on certain 

drag-producing component parts and accessories of 

aircraft. 

1. DRAG OF FUSELAGES 

Smooth fuselages might have a drag which is close 
to that of streamline bodies having the same fineness 
ratio. There are some reasons, however, because of 
which the drag may also be considerably larger than 
that as presented in the “streamline” chapter. 

Fineness Ratio. In case of oval or rectangular cross 
section, the equivalent fineness ratio of three-dimen¬ 
sional bodies may be taken as 

l/“d" = 2 l/(b+h) (1) 

CONFIGURATION (l,q) (l,b) (l,c) (l,d) 
bare fuselage body 0.15 0.10 0.16 0.08 
with opening & pilot 0.19 — 0.18 0.15 
with a windshield 0.23 0.15 0.20 0.20 
with cockpit & engine 0.59 0.46 0.32 0.37 

Reynolds number R^= 7 10S MO7 M07 2 10& 

Figure 1. Drag coefficients (on frontal area) of several fuselages 
of small open-cockpit airplanes. 

where b = width and h = height of the shape. Intro¬ 
ducing this fineness ratio into equations 28 or 31 of 
Chapter VI, a minimum drag coefficient of fuselages 
can be obtained. For example, on the basis of = 
0.003 as found in Chapter II for a Reynolds number 
(R^ *=■ 107) the drag coefficient of a fuselage having 
1/d = 6, is found to be = 0.0034 or CD> = 
0.061. Note at this point that 1/d = 6 is not an opti¬ 
mum fineness ratio in regard to drag; fuselages have 
to have some length to give the tail a sufficiently 
long moment arm (and to place the horizontal tail 
away from the bound-vortex downwash behind the 
wing’s trailing edge). The coefficients for bare shapes 
listed in figures 1, 5 and 7, are higher than the 
CD> calculated above; either on account of fineness 
ratios higher than assumed, or because of turbu¬ 
lence (and support interference) in the wind-tunnel. 

Open Cockpits. Figure 1 gives a general idea as to 
the extent to which the drag of a fuselage is increased 
on account of the accommodations required to house 
the pilot (and the engine). The drag coefficient of 
an open-cockpit fuselage with windshield is thus 
increased over the basic value, on the average by 
an increment ACJ).«= 0.05. Referred to the frontal 
area of the windshield, coefficients in the order of 
CDa< = 0.5 are obtained. Figure 2 shows attempts of 
reducing the drag of an open cockpit (a) by means 
of a fairing behind the pilot’s head and (b) by placing 
the pilot into the (properly shaped) opening of a 
hood. Of course, open cockpits are rarely found any 
longer in today’s airplanes. 

a) PLAIN FUSELAGE-C. =0.11 
■Rj = 5 I0r b) WITH OPENING AND PILOT ' = 0.20 
-—-*- c) WITH SHIELD AND FAIRING = 0.20 

d) WITH HOOD (OPEN FRONT) = 0.21 

Figure 2. Drag coefficient (on original frontal area) of an open- 
cockpit fuselage (l,b). 



13-2 FLUID-DYNAMIC DRAG 

Figure 3. Drag coefficient of a canopy (a) with rounded, and 
(b) with sharp-edged shape (2,f). 

Canopies. Figure 5 shows two basic methods of pro¬ 

viding the pilot of an airplane with the necessary 

vision out of an enclosed cabin. The drag of and 

due to a canopy has been extensively discussed in 

the “interference” chapter. The drag of canopies is 

also shown in figures 3 through 5. Based upon the 

frontal area of the added shape, drag coefficients are 

found below CD- = 0.1 for reasonably smooth shapes 

(including interference effects). Figure 6 presents 

results of a more systematic investigation at a Rey¬ 

nolds number (on canopy length) in the order of 

3TO6. It is seen that the optimum length ratio is 

not really included in these tests. Minimum drag (on 

frontal area) is found at fineness ratios (1/h and l/“d”, 

respectively) which are appreciably higher than in 

streamline bodies (see Chapter VI). The data in 

(2,e) also permit to make a guess at the optimum 

length ratios each of the forebody (to the maximum 

thickness or height of the canopy) and of the afterbody. 

For either portion of the canopy, (l/h)opt ~ 6, so 

that the total ratio (l/h)opt *=■ 12 as shown in figure 

6. This result is similar to that as found for blisters 

(bumps) on plane walls in the chapter on “surface 

imperfections”. The fact that in the optimum shape, 

the maximum thickness is roughly located at half 

the canopy length, is also different from conditions 
in free flow. Figure 6 indicates a theoretically possible 

minimum coefficient (on frontal canopy area) of 

less than CQ< = 0.04. Of course, such slender shapes 

do not appear to be very practical, neither as to 

their structural length nor in regard to the pilot’s 

field of vision. 

Figure 4. Drag coefficients (based on frontal area of canopy) 
of several shapes selected from (2,a and g). 

= .086 (2) 
= .090 (3) 

Figure 5. Drag of a fuselage (on basic area S.) with several means 
of providing vision for the pilot (2,b). 

Drag Of Windshields cut “into” the fuselage body 

is of a magnitude similar to that of canopies put on 

top of the fuselage. This is shown in figures 5 and 

7. One reason for the magnitude of their drag may 

be the fact that after adding the windshield, the 

boundary layer of the main body is made turbulent 

at least over some portion of its circumference. 

Figure 7 shows the influence of the particular shape 

of the windshield. It appears that rounding the 

lateral edges is equally important as rounding the 

upper edge of the shield. Coefficients on frontal 

“window” area are between 0.06 and 0.31. 

0 4- 8 12 16 2o 

Figure 6. Drag coefficient (on frontal area) of a canopy (2,e) 
as a function of its length ratio 1/h. 

Surface Roughness. Sharp edges around the front 

of canopies add, of course, to their drag (see figure 

3). Reference (2,e) also indicates that the increment 

of the canopy drag coefficient due to a step (at the 

location marked by the “h” in figure 6) amounts to 

ACd< ~ 0.02. Roughly ACD< = 0.01 is caused by 

a “strip” in place of the step. Taking these and 

other surface imperfections of actually constructed 

canopies (or windshields) in account, their drag is 

likely to be appreciably higher than the more favor¬ 

able values presented in the illustrations of this 

section. 

Figure 7. Drag caused by undercut windshields. Shapes (a) and 
(b) are taken from (2,e) ; form (c) from (2,c). 
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Figure 8. Drag (on added frontal area) of several appendages 
(3,a,b), designed to be used for armament or other devices. 

Armament. Figure 8 shows several methods of in¬ 

corporating a gun stand (or the smooth housing 

of any similar device) in the nose section of a fuse¬ 

lage. Depending upon the individual shape of these 

appendages, their drag coefficient (on projected 

frontal area) is between CL =0.10 and 0.17. Of 

course, the complete “remote-controlled” gun in- 

stallation in figure 9 has an appreciably higher drag, 

in the order of 40% of that of the fuselage. 

\Coa. =0.18 -*(3,0 

0-0 5 , 
I = 2.7 m; R£ = 7 10 ; CQo# =0.11 

Figure 9. Drag caused by installation of gun turret (3,b). 

(1) Drag of fuselages and open windshields: 
a) ARC RM 465 (1919); quoted in NACA T.Rpt 236. 
b) ARC RM 112; quoted in NACA T.Rpt 236. 
c) Weick, Full Scale Airplane, NACA T.Note 271. 
d) Washington Navy Yard, Aero Rpt 459 (1931). 

(2) Drag characteristics of canopies and windshields: 
a) Hartley-Cameron-Curtis, Wind-Tunnel Tests on the 

Design of Cabins, ARC RM 1811 (1937). 
b) Brennecke, Wind-Tunnel Investigation of 

Various Fuselages, AVA Rpt 1935/41. 
c) MIT, Fuselage Drag, J.Aeron.Sci. 1936 p.276. 
e) NACA, Drag of Canopies, T.Rpt 730 (1942). 
f) Heinkel, Two Canopies, Rpt SK.140 (1941). 
g) RAE, Fighter Models, ARC RM 2535 (1951). 

(3) Drag of various armament appendages: 
a) Dornier Tunnel Rpts 12 (1937) and 102 (1941). 
b) Fuchs, He-177 Fuselage Models, Heinkel Wind-Tunnel 

Rpts WK 61, 101, 114 & 133 (1939 to 1941). 
c) Heinkel, He-111 Fuselage, Document WK 27. 
d) Messerschmitt, Gun Openings, Rpt WKB 3/1943. 
e) Cut-Off Fuselage, Yearbk D.Lufo 1942 p.I,24l. 

Heinkel-177 (3,b) with pointed end "P" 0.120 == 0 

with half-round end 0.122 == .012 
with tail turret "T" — 0.122 — .015 

Arado Body (3,e) with pointed end "P" CD ^ 0.066 C_ — 0 

with round end "R" 33 0.073 33 .03 
with blunt end "S" — 0.076 — .04 

Figure 10. Drag due to tail turret (or a cut-off tail). 

Tail Turrets. Figure 10 presents data of two tail 

turrets. Their drag is essentially that caused by 

cutting off the rear end of the respective fuselages. As 

explained in Chapter III, the base drag originating 

behind these turrets, is a function of the “skin 

drag” of the fuselage bodies, including appendages 

and protuberances. Case (b) in figure 10, having a 

completely smooth body, is therefore not realistic. 

Assuming that the drag coefficient of the fuselage in 

part (a) of the illustration might grow to CD> =0.15 

after adding a windshield and all types of surface 

roughness (and the wing roots) as in a real airplane, 

a base drag coefficient in the order of CDB = 0.01 is 

obtained. Under due consideration of the area ratio 

SB/S. ~ 0.2 or less, the drag coefficient due to such 

tail turrets is found to be in the order of only ACDm- 

= 0.002 (based on frontal fuselage area). This drag in¬ 

crement is but between 1 and 2% of the assumed fuse¬ 

lage drag. 

2. 
Figure 11. Drag coefficients (on opening area d ir /4) caused 

by gun holes (3,d) in the nose of a fuselage. 
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Figure 12. Drag of a fuselage (4,a) ducted in various ways to 
accommodate a radiator. 

Drag Due To Guns. Figure 11 presents the drag 
caused by the installation of a gun in the nose of a 
fuselage. Regarding the hole through which the gun 
barrel protrudes, it is favorable to make the down¬ 
stream edge as round as practicable. The drag co¬ 
efficient is then reduced to half of that with sharp 
edge. This result agrees with the characteristics of 
surface gaps as presented in the chapter on “imper¬ 
fections”. The additional drag of the gun barrels 
(not shown in Figure 11) is indicated by a coefficient 

CD> = 0.2 to 0.4, based upon the frontal area of these 
barrels; depending, of course, upon the length at 
which they protrude from the opening. 

Radiator Installations. Figure 12 presents drag char¬ 
acteristics of a fuselage in combination with several 
ducted radiator installations. The drag coefficients 
as indicated are a function of the internal momentum 
drag of the radiators (see Chapter IX in this respect). 
It is seen that all configurations in which the radiator 
housing as such, or inlet and outlet protrude from 
the fuselage body, have the highest drag coefficients. 
To account for the relative size of radiator against 
fuselage, the values (included in figure 12) CDa = 
D/ (q Sg) based on cross-section area SD of the radiator 
core, should be used. The increment of the fuselage 
drag then corresponds to 

^CD. =CDn(SD/S.) (3) 

Engine Installations. Figure 1 gives some information 
on the drag caused by old-type installation of radial 
engines in the nose of fuselages. Figure 13 shows two 
attempts of fairing-in or cowling such an engine. 
A “spinner” is not a very effective means of reducing 
drag. A sizeable reduction of drag is accomplished 
through the NACA-type cowling (discussed later 
under "nacelles”). The drag coefficient of the fuselage 
configuration is nevertheless increased because of the 
engine installation, from 0.15 to 0.25, which means 
a CDo = 0.10 for the engine (including some “inter¬ 
nal” drag). 

(a) FUSELAGE WITH COCKPIT C^= 0.15 

(b) DITTO WITH UNCOWLED ENGINE = 0.49 

(d) WITH COWLED ENGINE CD# = 0.25 

Figure 13. Drag coefficient (on basic frontal area) of a fuselage 
with radial-engine installation (4,b). 
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Leakage. Even after including the drag of all the 

appendages discussed in this section, the drag of a 

real fuselage (or that of an engine nacelle) may not 

be complete. As shown in wind-tunnel investigations 

(5), a considerable increment of drag can be caused 

by all types of “leaks” (inlets and outlets through 

cracks and gaps and holes) in the skin of fuselage, 

engine cowling and canopy (or in the nacelles). This 

type of internal flow can be estimated through ap¬ 

plication of the methods presented in Chapter IX. 

In a simplified analysis, essentially flush openings 

shall be assumed; and the outlet momentum shall 

be considered to be lost (discharge does not take 

place in downstream direction). Because of the 

“sudden” intake through small openings into larger 

internal spaces, the inlet momentum is also lost, 

which means that q(-n * 0 and §;n * 00 . As a con¬ 

sequence, the rate of flow is only a function of the 

local static pressures at the openings; hence: 

= Q/Vsa = |/(pin- pouf)/q (4) 

where Q = ft3/sec, Sa= area of the openings (inlet 

or outlet, whichever is smaller). The maximum pos¬ 

sible drag due to this internal flow is then 

CDa = 2 wQ/V = 2Ca = 2|/(Pin Pou-t) / A (4 5) 

based on the same SQ and with wQ = velocity through 

SD. However, in cases where boundary-layer material 

is taken in through the inlet openings, the factor “2 

is too large. A constant smaller than “1” seems to 

be more appropriate for random intake through 

openings in the skin of an aircraft. The difficulty in 

applying this equation lies, of course, both in measur¬ 

ing the inlet and outlet openings existing in a given 

structure, and in the proper estimation of the average 

pressure differential between the openings. Assuming 

(quite arbitrarily) a pressure coefficient (in the right 

side of equation 5) of 0.5 and an average inlet or 

outlet area equal to 1% of the frontal area of a 

fuselage, the equation (used with a constant = 1) 

yields an increment of the drag coefficient ACqJ^-O.OI 

* 0.5 = 0.005. This much is in the order of 5% of 

the basic drag of a fuselage. The leak drag can be 

appreciably higher, however, in engine and radiator 

installations where full total pressure may prevail 

inside (purposely “taken in”). As a consequence, the 

pressure coefficient is at least “1” and the factor in 

equation 5 is “2”. The corresponding increment for 

(4) Radiators and engines in fuselages: 
a) CAHI (Moscow), Fuselage Ducts, Rpt 517 (1940), 
b) Weick, Cowlings, NACA T.Rpt 314 (1929). 

(5) Drag caused by structural leaks: 
a) Patterson, Leak Drag, ARC RM 1883 (1938). 
b) ARC, Tests on "Hurricane”, RM 2562 (1953). 

a 1% leak-area ratio (as above) is AC^ = 0.02, a 

value which is in the order of 20% (or more) of 

the basic fuselage (or nacelle) drag. Wind-tunnel 

tests on a full-scale fighter airplane (5,b) have re¬ 

vealed that ~ 10% of the total parasite drag of the 

craft was caused by leaks. 

2. DRAG OF ENGINE NACELLES 

The drag of and due to engine nacelles has two 

additional components, the interference effects as 

described in Chapter VIII, and the drag caused by 

the air flow through the engine, principles of which 

are outlined in the “internal chapter”. Some more 

information and practical applications connected 

with both of these aspects are presented as follows: 

(a) Drag Of Smooth Nacelle Bodies 

Slim Shapes. A number of less common nacelle shapes 

are shown in figure 14. The fact that the thin shaft 

(“a”) has a drag coefficient (on frontal area) roughly 

twice as large as that of common nacelle bodies, may 

be attributable to the magnitude of its wetted area 

in comparison to S, (fineness ratio). The result that 

the “flat” type presents a drag which is considerably 

higher in the vertical (number “e”) than in the 

horizontal arrangement (number “d”), can be ex¬ 

plained on the basis of separation in the four corners 

between wing and nacelle, formed in the upright 

position. 

THIN SHAFT HOUS1NC C0- = 0.059 

Figure 14. Drag coefficients of several "slim” engine nacelles 

(7,c) at zero lift. 
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(a) Horizontal TE (b) Straight Walls (c) Vertical TE (d) Bulging Stern 

Figure 15. Drag of a high-wing nacelle (7,a) showing various modifications of length and shape in the afterbody. 

Induced Drag. Figure 15 shows results of an investi¬ 

gation (in a high-wing configuration) undertaken 

with the intention of reducing the parasitic drag of 

a nacelle by modifying the shape of the rear end. It 

is seen, however, that extending the length of the 

nacelle beyond the trailing edge of the wing and 

other modifications do not help at all. More important 

is evidently the induced drag caused by the local 

variation of lift due to the nacelle. This type of drag 

(explained in the “interference” chapter) can ef¬ 

fectively be controlled by adjusting the wing’s trail¬ 

ing edge (within the part of the span ‘“covered” by 

the nacelle), in such a way (9) that the lift differential 

is reduced to zero. Figure 16 presents some results in 

this respect, selected from the vast material in (8,b). 

It is seen there, that the mid-wing configuration has 

the smallest drag; that in a high-wing arrangement, 

a wide and horizontal trailing edge of the nacelle 

increases the drag further; that a vertical trailing 

edge does not help to reduce the drag (because of 

additional wetted area ); and finally that a piece of 

‘“flap” at the trailing edge (with an area roughly 

equal to the frontal area of the nacelle) reduces 

lift differential and drag appreciably. 

(a) MID-WING. POINTED CQ = 0.039. iCLb = +0.03 

(b) HIGH-WING, POINTED = 0.048, ACLt> = -0.35 

(c) DITTO. HORIZONTAL TE — 0.065, = -0.52 

(d) HIGH. VERTICAL TE C0 = 0.053, Ac^ = -0.37 

(e) DITTO WITH TE FLAP" = 0.0*3, = -0.01 

Figure 16. Drag coefficients of smooth engine nacelles, selected 
from the material in (8,b). 

Length Ratio. Figure 17 presents the total drag of 

and due to smooth nacelles, tested in several more or 

less systematic series in which the length ratio £/“d” 

or f/c is varied while “ d”/c is more or less kept 

constant. Analyzing their drag, the frictional com¬ 

ponent is found to be responsible for the increase in 

the right-hand part of the illustration. Interference 

drag (separation) produces, on the other hand, the 

sharp increase of the total drag in the left-hand part. 

Between the two extremes, there is an optimum 

ratio, which in the mid-wing family (8,b), is in the 

order of ^/‘“d” = S, thus coming close to that as 

found in streamline bodies (see in Chapter VI). The 

minimum drag coefficient (in the order of = 

0.033) is also close to that in free flow. 

The High Wing configurations (8,a) in figure 17 

have a minimum drag coefficient and an optimum 

fineness ratio, both of which are roughly twice as 

high as those of the mid-wing family (8,b). The 

reason for this result is most likely found in parasitic 

interference effects along the junctions between 

wing and nacelle. It is suggested that any high-wing 

configuration, with all volume of the nacelle body 

A OTHER SOURCES —I 

• ARC, MID-WING (8,b) 

Figure 17. Drag of several series of smooth engine nacelles (8) 
as a function of their length ratio j)/"d". 
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on one side of the wing section, may have inter¬ 

ference effects (adverse pressure gradient and sub¬ 

sequent boundary-layer losses) corresponding to 

the total displacement of the nacelle - while mid¬ 

wing arrangements (with one half of their volume 

above, and the other half below the wing) may have 

characteristics corresponding to only half their thick¬ 

ness ratio (“d”/1). We therefore have now two reasons 

in favor of mid-wing configurations; namely reduced 

parasite drag as well as less induced interference. It 

is also shown in Chapter IX that such nacelles can 

be built with an external drag that corresponds only 

to their skin friction. 

Figure 18. Drag coefficients (on maximum frontal area SQ as 
indicated) of radial-engine nacelles in various phases of cowling. 
References (4,b) and (10,a). 

(7) Drag of smooth nacelle bodies: 
a) Junkers, Tunnel Investigation in Praha (1941). 
b) Vertical and longitudinal position and angle of setting 

is found in NACA T.Note 1593 (1948). 
c) MIT Results, quoted in J.A.Sci. 1941 p.219- 
d) Boeing Results in "Perkins and Hage” p.97. 
e) NACA, Thickened Wing Roots, W.Rpt L-390 (1943). 

(8) Drag of nacelles as a function of length ratio: 
a) Arado Wind-Tunnel Tests in Braunschweig 1943, 

Supplement to Yearbk D.Lufo 1942 p.I,24l. 
b) Smelt-Davidson, Nacelles, ARC RM 2406 (1950). 
c) Note: Many other "optimum” values are reported in 

(b), between 0.023 and 0.037, evidently depending on 
other parameters such as relative size and turbulence 
stimulation on the surface of wing and nacelle. 

(9) Hoerner, Longitudinal Stability Investigation of Ju-288, 
Rpt Junkers Kobii-Ew 947 (1941). 

(10) Drag of radial-type engine nacelles: 
a) NACA, Radial-Engine Nacelles, T.Rpts 313 (1929, 

fuselage); 314, 505 (tandem), 506 (on biplane), 507 
(pusher type) and 745 (1942, high speed). 

b) Wood, Tests of Nacelle Combinations in Various 
Positions, NACA T.Rpts 415, 436, 462 (1932/33). 

c) NACA, Streamline Engine Nacelles, W.Rpt L-299. 
d) For vertical position of nacelles see "interference” 

chapter and NACA T.Rpt 750 (smooth body). 
e) The Townend Ring, J.Royal Aeron.Soc. 1930; also 

"Historical Survey” in Aircr.Engg. 1934 p.100. 
f) Theodorsen, NACA Tech Rpts 592, 595 (nose-slot 

cowling) and 596, including internal theory. 
g) Jacobs, Nacelles in VDT, NACA T.Note 320 (1929). 
h) ARC, Wing-Nacelle Interference, RM 1414 (1930). 

(b) DRAG OF DUCTED NACELLES 

Cowlings. Figure 18 shows design and drag of radial- 

engine installations. It is seen that the coefficient of 

the bare engine (supported in the wind tunnel on 

a sting) is not very much reduced by adding the 

nacelle body “e”; although configuration “a” shows 

a more favorable result. Around 1930, efforts were, 

therefore, made to reduce the drag by means of fair¬ 

ings or cowlings placed around the protruding cyl¬ 

inders. The so-called Townend Ring (“b” in figure 

18; see also in references 10,e,f), similar in shape and 

effect to the ring surfaces presented near the end of 

Chapter III, reduces the total drag of a nacelle 

between 30 and 50%. A still greater reduction of drag 

(and an improvement of cooling characteristics) is 

obtained by the NACA cowling (“c” and “f”). Almost 

entirely hiding the engine, this type cowling elimi¬ 

nates between 80 and 90% of the external drag 

caused by the protruding cylinders as in “a” and 

“e” of the illustration. Note that in all the results 

presented on radial engines, their internal drag is 

included. The magnitude of that drag component is 

shown in Chapter IX, as a function of “K” and 

(Ap/q). Very roughly, a component of ACD, = 0.1 

may be assumed to represent the average internal 

drag of cowled radial engines. 

Wing Interference. Two of the nacelles shown in 

figure 18 are mounted on a wing, thus including 

a certain increment due to interference. Figure 19 

presents the drag characteristics of other types of 

mountings, above and below the wing. Because of 

the plump nacelle shape and strong interference 

effects, the drag is very much increased in all positions 

at the suction side of the wing, particularly for the 

Figure 19. Drag of several radial-engine installations, demon¬ 
strating interference with wing (10,b). 
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rough type of strut mounting. It should also be noted 

that the ACL values are negative in all examples quo¬ 

ted, including positions on the suction side of the 

wing, where theory (Chapter VIII) rather expects a 

positive increment of lift. This type of nacelle pro¬ 

duces evidently so much separation that the lift is 

reduced regardless. The induced drag corresponding 

to AC[_ is not of any importance, however, in com¬ 

parison to the high external (and internal) drag com¬ 

ponents of this type engine installation. The opti¬ 

mum arrangement in figure 19 is below the wing 

(where the average dynamic pressure is somewhat 

reduced, at CL = 0.4 as tested). 

h - IS ; b ‘I b) 0UTLET through LATERAL OPENINGS; 
Co„ = 0 053. Q,ln = 0 016 of w„/V = 0 07 

c) PUSHER TYPE WITH OUTLET AROUND HUB; 
Cn„ - 0.045. Colo =0.014 at wa/V = 0.09 

Figure 20. Drag coefficients of several nacelles, varying in type 
and location of the outlet (10,c). 

Inlet —- Outlet. Because of the short distance between 

engine and propeller, the original NACA cowling 

has a comparatively bluff shape (which is no longer 

suitable for today’s faster flying speeds). Another rea¬ 

son for external drag coefficients appreciably higher 

than those of solid nacelle bodies, is evidently the 

presence of the outlet at a location likely to be sen¬ 

sitive with regard to interference drag (causing pres¬ 

sure drag at the rear of the nacelle). Figure 20 shows 

results on slender nacelles with several outlet modi¬ 

fications. Form “a” has the discharge concentrated 

in two pairs of outlets; form “b” has only lateral 

outlets. Configuration “c” has outlets around the 

hub of the pusher propeller. This last nacelle has 

an external drag coefficient comparable to those of 

smooth and solid streamline nacelle shapes (as pre¬ 
sented for example, in figure 17). 

Jet Engines require a flow more or less straight 

through the nacelle. For them, mid-wing instal¬ 

lations are therefore more problematic than for re¬ 

ciprocating engines, with respect to the wing’s spar 

which cannot very well be cut out to permit the en¬ 

gine duct or the whole jet engine to be installed. Two 

solutions of this problem have been developed. One 

is the installation of a pair of engines, one in each 

wing root (with the structural members “wrapped” 

around). Reference (7,e) proves that arrangement 

of engines, partly within the fuselage and mostly in 

a thickened and lengthened wing root can be accom¬ 

plished with some appreciable reduction of the drag 

due to the engines, as compared to the installation in 

a pair of nacelles. The other method, of adding 2 or 

4 jet engines, is to support each of them by a “neck” 

or “pylon” below and more or less ahead of the wing. 

The information given in the later section on “ex¬ 

ternal stores” suspended from the lower side of the 

wing may be applied to engines installed in this 

manner. 

Lift. All drag coefficients of fuselages and nacelles, 

presented so far in this chapter, are approximately 

minimum values for each configuration, as far as the 

lift of the wing is concerned on which they are 

mounted. The drag coefficients listed are usually 

applicable for lift coefficients CL between 0.2 and 

0.3. Figure 21 shows how the drag of and due to 

nacelles varies as a function of lift. Mid-wing con¬ 

figurations have an optimum lift coefficient (where 

CDa is minimum) in the order of CL = 0.2. Low-wing 

nacelles show drag coefficients increasing with lift 

coefficient, while the coefficient of underslung types 

may somewhat reduce as C|_ is increased. — The varia¬ 
tion due to lift has evidently two components, a 

parasite part (caused by boundary-layer growth and 

separation) and an induced component (which may 

or may not be constant, depending upon configu¬ 

ration and the variation of the flow pattern due to 

separation, if any). 

6 . t> Rpt 436, A =. 3, t/c - 20%, c = 3 
o v Rpt 462, A =* 5, Clark —- Y, c ^ 2 

Figure 21. Drag coefficient CDoof engine nacelles as a function 
of the lift coefficient of the wing on which they are installed (10,b). 
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3. DRAG OF FLOATS AND BOAT HULLS 

In regard to their aerodynamic drag, flying-boat hulls, 

and floats are similar to fuselages. However, since 

their lower side is specifically designed for the pur¬ 

pose of taking off from, and landing on water — the 

drag of these bodies is somewhat higher than that of 

comparable streamline or fuselage bodies. 

Figure 22. Drag of a float (12,a) developed from a basic stream¬ 
line body by adding step and chines. 

Chines. Figure 22 shows how the aerodynamic drag 

of a float growth upon developing its final shape from 

that of a basic streamline body of revolution. It is 

seen that the addition of the sharp chines (needed 

to make the bottom effectively planing on the water) 

increases the drag appreciably. Because of the sharp 

deck line in their forebody, the drag coefficient of 

floats can be several times as high as that of the basic 

body. A well-rounded deck (in the third shape of 

figure 22) may keep the drag within acceptable limits, 

however. Figure 23 proves that the drag increment 

due to chines is comparatively less in flying-boat hulls. 

(12) Aerodynamic drag of seaplane floats: 
a) Diehl, Navy Yard, "Engineering Aerodynamics”. 
b) Cowley, Model Tests for "Schneider Trophy” Contest, 

ARC RM 1296 through 1299 (1928). 
c) Floats and Boats, Luftwissen 1939 p.101. 
d) NACA, Full Scale, W.Rpt L-238, presents Coefficients 

between C0> — 0.15 and 0.21; CDa = 0.04 and 0.06. 
(13) Aerodynamic drag of flying boat hulls: 

a) Smith and Allen, Review on Flying Boats, including 
data from NACA T.Notes 1305 to 1307 and 1686, 
T.Rpts 766 and 1144; ARC RM 2896 (1954). 

b) Aerodynamics and Hydrodynamics, NACA T.Rpt 766. 
c) Riebe and Naeseth, Refined Flying Boat Hull, NACA 

Tech Note 2489 or Tech Rpt 1144. 
(14) Drag of steps on seaplane hulls: 

a) Hartman, NACA Technical Note 525 (1935). 
b) Diehl, NACA T.Rpt 236; also quoted in his 

"Engineering Aerodynamics” p.290. 
c) See results on floats in reference (12,b). 
d) Hamilton Flying Boats, ARC RM 2899 (1956). 
e) ARC Rpts: RM 2708 (1945) 2834, 2896 (1955). 
f) NACA, Tech. Notes 1307 (1947) and 2762 (1952). 

Figure 23. Drag of flying-boat hull (l4,a), developed from 
streamline body having same length and same displacement. 

Fineness Ratio. Figure 24 presents the drag coefficient 

(on frontal area) of a series of smooth seaplane hull 

models as a function of their fineness ratio (defined 

in equation 1). The optimum ratio with respect to 

drag on frontal area, seems to be in the vicinity of 5. 

Based on (volume)2/3, a minimum drag coefficient 

is obtained at l/“d” ~ 9, corresponding to 1/b ~ 13 

in the hull family tested. Modern development of 

flying boats tends toward comparatively high length/ 

beam ratios, up to 20 or even higher (not to be con¬ 

fused with the l/“d” ratio). A considerable increase 

of the height ratio (h/b) to the order of 3 and higher 

goes hand in hand with that development; and this 

increase makes wetted area and frictional drag larger 

than those in a comparable streamline body of revo¬ 

lution. 

Figure 24. Drag coefficient of a series of flying-boat hulls as a 
function of their fineness ratio l/"d”. 

Steps. Steps cut into the lower side of floats and fly¬ 

ing boats are necessary to break the suction of the 

water, and to keep the airplane balanced at angles 

of attack desirable for short take-off. The drag of 

these steps, plotted in figure 25, can be calculated in 
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Figure 25. Drag coefficient of and due to steps (14) in the 
bottom of floats and flying boats; (a) as a function of height 
ratio (x = distance from nose) and (b) against frontal area ratio. 

a way similar to that of sheet-metal joints. Selecting 

from the material presented in Chapter V, an “in¬ 

dependent” coefficient cB> = 0.2, the drag coefficient 

of steps (based on frontal step area) is suggested to be 

CD< = s][(hM) 0.2 = 0.6 y^) (8) 

where h — height of step and x = distance between 

body nose and step. Drag coefficients in figure 25, re¬ 

calculated from experimental results on floats and 

hulls, are some 50% higher than the theoretical value. 

The increment is evidently caused by interference 

originating behind the step along the rear of the boat 

body. Part “b” of figure 25 presents the same drag 

coefficients as a function of the frontal area ratio. 

4. DRAG OF LIFTING SURFACES 

Principles of drag due to lift are presented in the 

“lift” chapter; and the parasitic drag of airfoil sec¬ 

tions is treated in the “streamline” chapter. All that 

is left to be considered here is, therefore, a number 

of supplementary items (such as the drag of tail sur¬ 

faces) and the drag caused by devices such as brake 

flaps. 

o.o4 

e.o 3 

o.o 2 

Do I 

^0»!n V 

S./sw»o.o5 Rc = 5 - 10s 

®wV>UT FILLET 

v 
WITH 'v 

WING ALONE. 

30 60 90 120 

Figure 27. Drag of a wing-fuselage configuration as a function 
of the angle along the wing roots (15). 

Step Fairing. During flight, the step is not needed. 

By deflecting a flap or by any other mechanism, the 

step may therefore be faired, after taking off. Figure 

26 (shape “c”) shows that most of the step drag can 

be eliminated in this way. The attempt shown as 

number “b”, “streamlining” the step in the plan form, 

is not very successful. Another method of eliminating 

the step drag is proposed in (13,c). Both body and 

bottom of the hull terminate together in a vertical 

edge, while the afterbody is replaced by a “boom”, 

high in the air. The low drag coefficient of this type 

hull (in the order of <1^= 0.045) is also brought 

about by elimination of wetted area. 

Figure 26. Variation of step drag coefficient due to shape and 
fairing (l4,d). 

Interference Drag. The parasitic interference along 

the wing roots is among others a function of the angle 

in the corner between wing and fuselage wall. Figure 

27 shows that the drag increases considerably as the 

angle 5 is decreased below some 90° . — The extensive 

and systematic investigations in (16) have often been 

quoted and evaluated, showing the influence of shape, 

relative position and that of fairings (fillets) upon 

the drag of wing-fuselage combinations. Interference 

is, of course, particularly strong at higher lift coeffi¬ 

cients. Figure 28 shows the variation of the parasitic 

drag (obtained after subtracting CQ. — /irA) at a 

lift coefficient — 1, as a function of the vertical 

location of wing against fuselage. The lowest drag is 

obtained in mid-wing arrangement (or slightly above) 

where 15% of the wing area is covered by the fuselage 

body. The parasitic interference drag is largest in 

low-wing condition, where an expanding passage is 

formed between fuselage and the rear of the wing’s 

suction side. A lesser peak of interference drag is 

found in the high-wing configuration. Both the high- 

wing and particularly the low-wing drag can appre¬ 

ciably be reduced by means of suitable fillets, design 

instructions for, and aerodynamic characteristics of 

which are given in (16). 
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Figure 28. Parasite drag coefficient of a wing-fuselage configu¬ 
ration at C[^= 1.0, evaluated from (16). 

Dive Brakes are desirable in the tactical operation of 

military airplanes (as glide-path control or when ap¬ 

proaching a target in “stuka” fashion), reducing their 

speed to values which can be considered to be safe 

with regard to their operation and/or structural 

strength. An effective means of providing high drag 

coefficients is the flat plate, with CQ> roughly between 

1.2 and 2.0. Attaching such a plate or flap to the wing 

of an airplane, presents certain problems, however. 

One of these is the balance of the airplane (avoiding 

a change in longitudinal trim). Most wing-brake 

configurations have, therefore, a pair of “flaps”, one 

above and one below the wing section (see figure 30). 

Results reported in (18,i) suggest, however, that 

“brake” flaps on the lower wing side (at a location 

comparatively far forward) can also perform to satis¬ 

faction, when used for glide-path control and when 

an increase of the lift coefficient is desirable. 

Brake Location. Figure 29 shows that maximum 

effect is obtained near maximum thickness of the wing 

section, where local dynamic pressure and interference 

effects are largest. The thickness of the wing section 

also contributes directly to the effect. If one refers 

the drag to the “total” projected area corresponding 

to a height equal to (2 h + t) where t = section 

thickness, one obtains a roughly constant maximum 

coefficient in the order of CL = 1.3 for solid brake 

flaps, a value which is slightly higher than that of 

t/tree-dimensional plates in free flow. The whole 

space between the outer edges of the plates is evi¬ 

dently “wake” in this case; the drag of a pair of brake 

flaps increases accordingly with the wing’s thickness 

ratio. Perforated flaps or flaps having a gap between 

them and the wing surface, do not follow this rule, 

however. Among the configurations shown in figure 

30, “a” and “c” (with the brake flaps located near 

the wing’s trailing edge) have comparatively small 

drag coefficients. The low drag of a TE flap (test¬ 

ed in two-dimensional flow) is explained in figure 

35 of the “pressure-drag” chapter. It shall be men¬ 

tioned here that two-dimensional investigations (be- 

(15) Muttray, Low-Wing Configurations, Erg AVA IV p.89; 
Lufo 1928 p.33; Ringbuch Luftf.technik IA4. 

(16) NACA, Investigation of Wing-Fuselage Combinations: 
a) Tech/Rpts 540 and 575, from 1935. 
b) Tech/Notes 641 and 642, to 1938. 

(18) Characteristics of brake flaps: 
a) ZWB, Wing with Brake Flaps, Rpt. FB 1689. 
b) Voepel, Yearbk D.Lufo 1941 p. 82. 
c) Me-109 Investigation at the AVA, 1939. 
d) Lattanzi, Transl NACA T.Memo 1161 (1949). 
e) Toll and Ivey, NACA W.Rpt L-56 (1945) 
f) Purser and Liddell, NACA W.Rpt L-549 (1942). 
g) ARC, RM 1864 (1939), 2211 and 2689 (1948). 
h) NACA, Spoiler Ailerons, T.Rpt 1034 (1950). 
i) Davies-Kirk, Air Brakes, ARC RM 2614 (1951). 
k) ARC, Plates and Brakes, C.Paper 251 (1956). 

Figure 30. Drag coefficient (on sum of “flap” areas) of various 
types of wing brakes (18), all part span. 



13 - 12 
FLUID-DYNAMIC DRAG 

tween tunnel walls) are of lesser practical importance, 

since flow conditions in full-scale brake designs are 

always more or less three-dimensional. A compar¬ 

atively effective arrangement is the number “b”; its 

drag coefficient is almost twice as high as that of the 

number “a”. The difference is suggested to be in the 

flow pattern as indicated in the illustration. 

xn 1.9 

tmt (i) C 

CDn 

ri ; jp_y 4 imnimffinn 
™..)i I ~i JrjiHuuuiiniuoiiiTTt 

1 i t 
SOLICIT y 

Figure 30a. Drag of and due to dive brakes (18); solid flaps 
(left side) ; latticed and rake-type flaps (right side); all part- 
span; t/c between 12 and 14%; x/c between 30 and 40%. 

Pervious Flaps. A vortex street originates behind 

plates in two-dimensional (or similar) flow (as point¬ 

ed out in Chapter III). Extending solid flaps from the 

upper and lower surface of a wing can, therefore, cause 

heavy vibrations, on the flaps themselves and on the 

affected wing parts (ailerons and landing flaps). In 

addition, the wake originating behind the flaps pos¬ 

sibly interacts with the horizontal tail surface of the 

aircraft (buffeting). All these troubles disappear, how¬ 

ever, after employing flaps that are perforated or 

which are otherwise divided into a number of strips 

or smaller parts. The size of the vortices behind such 

pervious flaps corresponds to that of the elements. 

The general pattern of the wake is, therefore, more 

that of an irregular turbulent flow. — The drag of 

pervious sheets is basically treated in Chapter III. 

Figure 30,a gives some information on the drag of 

lattice- and rake-type dive-brakes in comparison to 

that of solid flaps. The drag coefficient (on flap 

area Sa) of and due to a pervious flap is somewhat 

smaller than that of the solid type (in three-dimen¬ 

sional flow). The shape of the elements forming 

latticed or rake-type “flaps” has an influence upon 

h = 6* C <y * 45'*; Ab/o.5b * o.26 

Ab/ftSb - 0.32 

i 20“ AILERON 

--28c-- 

o ZOBEL, SOLID (e) 
• HOERNER "RAKE" (b) 
+ MTT/AVA, SOLID (g) 
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Figure 31. Variation of lift produced by spoiler "flaps” (19). 
Drawing shows experimental installation of a rake-type spoiler 
system (19,b) in the Ju-88 bomber. 

their drag. The most efficient cross section of a “strip” 

(giving maximum coefficient CD.; on blocked area) 

is that of a fold , with the open side against the 
stream (19,b). 

Spoiler Control. The rake-type brake devices in figure 

30 can also be used in the spoiler-type roll control of 

airplane wings, replacing the standard type ailerons 

(19). Figure 31 shows the arrangement of one such 

design using a “rake” form of spoiler. For small 

values of the drag coefficient CDs, caused by skin- 

friction and boundary-layer growth (in two-dimen¬ 

sional flow) theory (19,a) expects a variation of the 
lift coefficient in the order of 

ACU = _ 7,5 CD5 (9) 

Spoiler tests have been evaluated (by taking into 

account the induced drag which reduces appreciably 

after the lift coefficient has dropped). The graph in 

figure 31 shows a variation of lift coefficient associated 

with the variation of section-drag coefficient produced 

by extending a spoiler from the wing’s suction side, 

similar to that as indicated by equation 9. The con¬ 

stant is “5”, however, instead of “7”. Increased par¬ 

asite drag in connection with decreased lift in one side 

of a wing means yawing moments in the direction of 

a turn which an airplane may perform by utilizing 

spoiler control. Tunnel experiments and a full-scale 

experimental application, described in (19,b), indi¬ 

cate that a control system superior to that of ordinary 

ailerons (avoiding any time delay as found in other 

spoiler applications), is found in the combination of 

a rake-type spoiler with a pair of comparatively short 

ailerons of the conventional type. 

Tail Surfaces. Chapter V gives information on the 

drag caused in tail surfaces by the gap necessary to 

permit deflection (and balance) of the elevator and 

rudder, respectively. Also, the detrimental influence 

of the fuselage upon the induced effectiveness of the 

horizontal tail is described in the “interference” chap¬ 

ter. Examination of various experimental results 

indicates an average basic drag coefficient of tail sur¬ 

faces in the order of CDi = 0.01 within the range of 

C[_~ - 0-2, and for deflection angles within ±5°. — 

Horizontal as well as lateral tail surfaces are not really 

producing” lift. It may rather be said that elevator 

or rudder is deflected in most operations, in order to 

reduce the lift of the respective surface. Only then 

can the airplane assume the extreme positions of 

tail-first” landing and sideslipping, respectively — 

while stabilizer or fin, respectively, is at an angle of 

attack opposing the direction of motion. To say it in 

other words, the horizontal tail has usually a positive 

(upward) lift force during a three-point landing op¬ 

eration; stabilizer and elevator are thus “fighting” 
each other, so to speak. 
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horizontal tail may be considered, with the elevator, 

30° up, while the stabilizer is at a positive angle of 

attack between 10 and 15°. For an assumed resultant 

lift coefficient equal to zero, figure 32 then indicates 

a coefficient in the order of CDS = 0.09, a value which 

is some 9 times the basic section-drag coefficient as 

mentioned above. 

Asymmetric Engine Power. When flying a twin-en¬ 

gine airplane with one propeller stopped (because of 

engine failure), the moment due to the remaining 

one-sided thrust must be compensated by a suitable 

deflection of the rudder. The lateral tail force re¬ 

quired is obviously 

Figure 32. Variation of section drag coefficient of a horizontal 
tail surface (21) at constant 

Elevator Deflection. Figure 32 presents the parasitic 

or sectional drag coefficient of a horizontal surface 

(obtained after subtracting from the tested total drag 

the calculated induced drag), plotted against the ele¬ 

vator angle for two constant lift coefficients (CL= 0 

and = -+- 0.2). Note that while deflecting the elevator, 

the angle of attack of the stabilizer is changed so that 

C(_ = constant. Four phases can be observed in the 

illustration. Between plus and minus 12 or possibly 

15° elevator (or rudder) deflection, the flow is fully 

attached. Between minus 12 and 18°, flow separates 

from the suction (lower) side of elevator (or rudder). 

Beyond some —19°, drag continues to increase when 

further deflecting the elevator (or rudder). Then, 

at some —30° elevator (or rudder) angle, for a 

lift coefficient (\== + 0.2, flow separation also takes 

place from the suction (upper) side of the surface; 

drag increases correspondingly. As an example, a 

|Flotj = |thrust| (y/x) = jdragj (y/x) (10) 

where “x/y” is the ratio of the tail’s moment arm 

(“x”) to that of the propeller (“y”). Applying the 

induced-drag equation (Chapter VII) to both the 

vertical tail and the wing of the airplane, the induced 

drag ratio is found to be 

Dilot 

D: iwmg 
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L hi 

2 r 
y D b 

x L h 
(11) 

where h = effective height of the vertical tail surface. 

To give an example, x/y = 3; D/L = 0.1; and b/h 

= 3 may be assumed. The induced drag ratio is then 

in the order of 10%. As explained in (22), the air¬ 

plane is necessarily sideslipping in the maneuver con¬ 

sidered. Therefore, some additional drag originating 

in fuselage, engine nacelles and in the tail surfaces 

must also be expected. 

(19) Characteristics of wing-flow spoilers: 
a) Theory of lift as a function of b’layer: ZFM 1932 

p.277, 1933, p.439; Lufo 1934 p.26; Schlichting in 
"Boundary-Layer Theory” 1954. 

b) Hoerner, Development of Spoiler-Control System, 
Dr.-Ing. Thesis Tech Hochschule Berlin 1941. 

c) British ARC, RM's 1251, 2319, 2491, 2586. 
d) NACA Tech Rpts 439, 443, 494, 517, 602, 605, 664, 

706; Tech Notes 1015, 1079, 1123, 1245, 1294, 1404 
and 1409; J.Aeron.Sci. 1950. 

e) Kramer-Zobel (DVL) German Docts ZWB FB 583 
(1936), FB 964 (NACA T.Memo 1307) and FB 1304. 

f) V.Doepp, Junkers Rpt S.387 (1941). 
g) Messerchmitt, Spoiler, ZWB Rpt UM 7860 (1944). 

(21) Goethert, Experimental Results of Horizontal Tail Surfaces, 
Ringbuch Lufo Section IA|3 (1940), on the basis of 
ZWB Rpts FB 552, 553 and 953. 

(22) Flight on asymmetric engine power: 
a) Wright, Aircraft Engineering 1950 p.350 & 374. 
b) Jones, Sideslip Performance, ARC RM 1455 (1932). 
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5. DRAG OF LANDING GEARS 

Landing gears are made retractable in all modern 
high-speed airplanes. The drag of fixed “under-car¬ 
riages” used in old-type, and still used in small and 
slow airplanes, is avoided in this manner. However, in 
taking off and in landing, airplanes have to have their 
landing gear out, so that aerodynamic consideration 
of the devices needed for moving along the ground is 
still important. 

Reference Area. The drag coefficient of airplane 
wheels and landing gears may conveniently be based 
upon the area Sn, equal to tire width times outer 
diameter. Referring the drag of fairings, wheel forks 
and struts, and that of whole landing gears to that 
area (or to the sum of the wheel areas, respectively), 
the size of these parts and their drag is properly con¬ 
sidered to be proportional to wheel- and tire size. 

Q>a=.l2 0.25 0.15 0.35 0.31 

Figure 33. Drag coefficients (based on area b-d) of several air¬ 
plane wheels (25), tested at R^ 2 10 . 

Wheels. Figure 33 presents drag coefficients of several 
types of bare wheels. Their drag can appreciably be 
reduced by covering the sides or by giving the “hub” 
such a shape that the sides are no longer hollow. 
Attempts are made in (25,a) of reducing the drag of 
wheels by placing a streamline housing around them. 
Although the shape is improved in this way, the fron¬ 
tal area is increased, of course; CDa= 0.14 was tested 
for a typical shape. Figure 35 presents an example 
where a wheel housing is comparatively beneficial 
(reducing the interference drag between wheel and 
struts). Figure 34 demonstrates how the drag of 
wheels (defined as total drag minus drag of the 
struts “alone”) is increased because of interference 
through the adjoining landing-gear struts. 

Figure 34. Drag of and due to wheels (25,e). The bracketed 
value is for faired junction; coefficients in the lower line are for 
wheels alone. 

Fixed Gears. Among the non-retractable landing 
gears shown in figures 35 and 36, the single-strut 
gears have the least drag. Combining the wheel hous¬ 
ing with that of the strut, the “trouser” type designs 
give adequate space for the shock-absorbing mech¬ 
anism of the strut, with aerodynamic drag coefficients 
still smaller than those of the multiple-strut designs. 
The latter’s drag is high because of interference be¬ 
tween wheels and struts (see figure 34) and also be¬ 
tween struts, fuselage and/or wing. Landing gears 
extending from the lower side of engine nacelles 
have shorter struts or “trousers” respectively. Figure 
36 indicates, however, that their drag is approximately 
the same as without nacelle; interference is obviously 
stronger in the nacelle configurations. 

Figure 35. Drag coefficients of several landing gears designed 
for a 3000 lb airplane (25,a). Wing chord c = 7.2 ft; Rc = 
5 10 . All struts streamline with t/c = 1/3; (*) with round 
tubing has CDD = 1.30. "Standard” 8.5 * 10 inch tires with 
25.3 inch outer diameter, except for (©) which is "streamline”. 

Figure 36. Drag coefficients (on wheel area Sn) of a landing 
gear designed for a 16,000 lb. airplane (25,a); (*) this co¬ 
efficient is believed to be subcritical with respect to the R'number 
of the circular strut. 
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Figure 37. Drag of partly retracted landing gear (25,a), rep¬ 
resented by coefficients on wheel area "SD”; (*) this coefficient 
most likely applies to subcritical flow conditions; the value 0.85 
is estimated for supercritical R’numbers. 

Retractable Landing Gears (it seems) are often de¬ 

signed without much care for the aerodynamic shape 

in the extended position . The drag coefficient (based 

on wheel area) is in the order of CDo=0.6 or 0.8, as 

indicated in figures 37 and 38, for configurations 

built with cylindrical struts. These values do not 

even include the openings in the wing, the fuselage, 

or the nacelle, respectively, necessary to receive the 

gear in the retracted position. Considering an ex¬ 

ample with an assumed coefficient CDQ = 0.8 and a 

ratio of the area of a pair of wheels to that of the 

wing of the airplane in the order of 1%, the addi¬ 

tional drag of such landing gear in extended position, 

is found to be between 25 and 50% of an average 

airplane’s parasite drag. Such a component of drag 

should not be overlooked in the calculation of take¬ 

off, gliding-, and landing performance of airplanes. 

The drag of this type landing gear in lowered po¬ 

sition can be (and sometimes is) reduced by giving 

the struts some streamline shape and/or by closing 

again the cover flaps of the openings in the skin of 

the craft, after letting the gear down. It is clear, how¬ 

ever, that such a device cannot help shortly after 

(25) Drag of various landing gears: 
a) Herrnstein-Biermann, Airplane Wheels Fairings Landing 

Gears; NACA T.Rpts 485, 518, 522 (1934/1935). 
b) Fuchs, Tail Wheel, Heinkel Rpt WK 20 (1937). 
c) ARC, Wheels Undercarriages, RM 579, 1479, 1691. 
d) Evaluations of (a) in Luftwissen 1936 p.188 and in 

Ringbuch Luftfahrttechnik IA8 (1937). 
e) Bradfield, Wheels and Mudguards, ARC RM 1479. 

(26) Kohler, Airplane Skis, Luftwissen 1937 p.6. 

Figure 38. Drag coefficient (on wheel area Sa) of a retractable 
wheel in the nose of a fuselage (25,a). 

taking off, when the gear is being retracted. — Figure 

37 indicates that partly retracting the landing gear, 

reduces the drag considerably, down to the order of 

but 10% of that in fully extended position. Figure 

38 shows a critical wheel position (at e/d = 1) where 

the drag reaches a maximum. Generally, part-re- 

traction is not really applied. It is evidently felt, 

that while employing a mechanism for pulling up the 

wheels, they should as well be retracted entirely into 

wing, fuselage or engine nacelle (provided that there 

is sufficient space available to do so). 

Tail Wheels. Simple skids (25,a) used in smaller 

airplanes, have approximately the same drag as 

faired tail wheels—if designed to support the same 

weight. Because of the fork necessary to support tail 

wheels, their drag is comparatively high (CDa» 

0.6). Figure 39 shows that a streamline housing en¬ 

closing the wheel as far as practicable, cuts down the 

drag to half the original value. Sometimes, the tail 

wheel has also been made retractable. In most of the 

modern high-speed airplanes, the tail wheel has been 

replaced, however, by a nose wheel (as in figure 38). 

Figure 39. Drag of tail wheel (25,b). Coefficient CD_= 0.58 
(without fairing), = 0.49 (with rear fairing), = 0.4l (with 
forward fairing), = 0.27 (with complete fairing). 
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DRAG COEFFICIENTS ON 
PLAN-FORM-AREA: 
MINIMUM: CD = 0.03 
DUE TO (a) ACd = -f .07 
DUE TO (b) ACd == —.02 

Figure 40. Aerodynamic lift and drag characteristics of an air¬ 
plane ski (26). 

Skis. Airplane skis present aerodynamic characteris¬ 

tics similar to those of “wings” of extremely small 

aspect ratio (see in Chapter VII). The a’ratio of 

the ski in figure 40 is, for example, A = b/S — 0.19 

only. The drag due to lift corresponding to this 

ratio, determined through the use of the equations 

presented in the chapter mentioned, is considerable 

in comparison to the minimum parasitic drag of 

such a ski. 

6. DRAG OF EXTERNAL LOADS 

Loads which cannot readily be stowed within fuselage 

or wing of airplanes, or which are to be dropped 

during the flight (bombs) are attached to the outside 

of aircraft. Their drag is twofold; they have a drag 

of their own and they cause some interference drag. 

Streamline Tanks, employed to carry additional fuel, 

have usually the shape of streamline bodies. Original¬ 

ly, such tanks were sometimes attached to existing 

bomb racks, primarily under the wings. Number "j” 

in figure 41 shows that their drag is comparatively 

high in this condition (CD< = 0.26), evidently 

because of interference effects within the narrow 

spaces between wing, supporting parts and tank. The 

purpose of such tanks, to increase the range of the 

airplane, is thus curtailed to a considerable extent 

by the added drag. Fairing the bomb rack by means 

of a sheet-metal collar, somewhat reduces the drag 

coefficient (see number “i ” with CD> = 0.13). The 

“neck” is obviously too thick in this case, however. 

The most favorable method of carrying a tank under¬ 

neath the wing, is that on a streamline pylon (number 

“n” in figure 41). Figure 42 shows the drag added by 

the presence of the pylon (increasing with its length); 

and it indicates one component of interference drag 

between tank and wing which decreases to zero as the 

clearance distance is increased to and beyond y/d = 

o.5. Including the pylon drag, the minimum is found 

in the vicinity of y/d — 0.2 or 0.3 for two of the con¬ 

figurations investigated and in the order of 0.5 for 

the others. Experimental results in (30,n) indicate 

that in this type of suspension, tank locations under 

or ahead of the wing’s leading edge (such as they are 

applied in modern jet engine nacelles) are very 

favorable (giving drag coefficients in the order of 

CDi =0.05, including pylon and interference). 

Figure 41. Shape and drag coefficient of various external stores 
(tanks) mounted under the wing (30). 

4 BOMB (a) o B0M& (i.) n NACELLE (k) 4 TANK (ft 
0.5 1 C~ X TANK (hi + DITTO (h) 

I D*T4TAl_ 

o 0-2 e.4 tU t.i 1.0 1.2 14 1.6 

Figure 42. Drag coefficients of several tanks (and bombs'! sus¬ 
pended by means of a neck or pylon underneath a wing (30), as 
a function of the clearance ratio y/d. 
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Figure 43. Examples of external tanks under the fuselage of 
low-wing airplanes (30). 

“Belly” Tanks. A “belly” type tank, mounted under 

the fuselage of the Me-109 is analyzed in Chapter VIII, 

having a coefficient C£,.= 0.16. In addition to this 

tank, figure 43 presents three arrangements under 

the fuselage of fighter airplanes, two of them in 

“belly” form. It is seen that suspension by means of 

a “pylon”’ yields a smaller drag coefficient. General¬ 

ly, the place under the fuselage of low-wing airplanes, 

does not appear to be very favorable, however, to 

attach an external tank. Figure 41 “e” shows a “belly” 

shape mounted under a wing with a drag coefficient 

of 0.09. Increasing the height to breadth ratio of such 

tanks, a “nacelle” type is obtained as in “b” of the 

illustration. Further modifications of this type are 

reported in (30,a). Minimum drag is found in a shape 

having a height ratio in the vicinity of h/b = 5, 

approximately as in “a” in figure 41. However, 

because of its foil-like form, developing lateral forces, 

such a tank may not be very desirable. 

(30) Drag of external stores (tanks) under aircraft: 
a) Russian Catalog, Bombs and Stores, Moscow 1940. 
b) Dornier, Do-217 External Tanks, Rpt 74, 1940. 
c) Dornier, Do-217 Flight Test with Tank, 1940. 
d) Me-264 Wind Tunnel Tests Rpt AVA 42/W/34. 
e) Owen-Becker-Nogg, Tanks, RAE Rpt 8146. 
f) Pepper, Auxiliary Tanks. NACA W.Rpt L-371. 
g) RAE, Drop Tanks on Swept Wing, ARC RM 2951. 
h) Junkers, Wind-Tunnel Tests on External Tanks 

Ju-288, Rpts D.6372 and 6633 (1939/40). 
i) Messerschmitt, 109 Flight Tests, Rpt 16/L/1943. 
k) Wiesener, Force- and Pressure-Distribution on Combi¬ 

nation of Wing with Tank, ZWB Rpt UM 1090 (1943). 
l) Hoerner, The Drag of Bombs Hung from the Outside 

of Airplanes, ZWB Rpt UM 7814 (1943). 
m) Arado, Pair of Jet-Engine Nacelles, LFA 1943. 
n) Silvers and Spreemann, NACA RM L7K20 (1947). 
o) Pylon tanks also in NACA RM L50L12 and L51D26. 

(31) External stores at upper side and at tips of wing: 
a) Hutter, External Store "Doppelreiter” on Upper Side 

of Wing, Document ZWB UM 4592, 1944. 
b) NACA, Wine-Tip Tanks. RM A5F02 and L9J04. 
c) Messerschmitt, Tip Tank, Darmstadt 1943. 

Streamline Arrangements at the upper side of the 

wing are presented in figure 44. The second form, a 

low-wing nacelle-type tank, has of course an induced 

drag component similar to that of “b” or “e” in 

figure 41. Shifting, however, such a tank to the rear, 

and giving it a flat and wide “beaver tail” pointing 

upward (thus eliminating the induced drag com¬ 

ponent), the lowest drag coefficient (CD> = 0.03) is 

obtained among all arrangements quoted. 

i 

Figure 44. Drag coefficients of tanks (31) attached to the upper 
side or at the tips, respectively, of wings. 

Wing-Tip Tanks. Many modern fighter planes and 

some other airplanes are equipped with wing-tip 

tanks. Their influence on effective aspect ratio and 

induced drag is discussed in the “lift” chapter. Regard¬ 

ing their parasitic drag (at small to moderately large 

lift coefficients), shape “c” in figure 44 indicates a 

drag coefficient in the order of 0.05. 

Range. For illustration, a small fighter airplane may 

be considered with a “drag area” at cruising speed, 

f = D/q == (CQ- S) = 8 fts and a regular fuel load 

“F” — 200 gallons. Through addition of a pair of 

external tanks with a total of A‘F’ = 200 gallons of 

fuel, the range of this airplane may theoretically be 

increased by 100%. Actually, the tanks increase the 

drag area by Af = CD> S.. Consequently, with “R” 

denoting the range of the airplane under specified 

conditions, 

R + AR 1 + (AF/F) 
- ~ - (15) 

R 1 + (Af/f) 

Assuming in the considered example a frontal area 

of each tank S.= 2 ft2,the range is increased to only 
~ 1.77 times the original value, for an unfavorable 

tank drag coefficient of CD^= 0.26 (as in figure 41,j). 

With the most favorable coefficient listed in figure 

44 (CD<= 0.03), the range ratio is 1.97, which is 

essentially equal to the value simply corresponding 

to the number of gallons aboard. 
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2500 leg (a) CD_ = 0.20 

WITHOUT "BING* ' - O.H 

500 leg (o) Oj,_ 

WITHOUT STRUTS 0.08 

100 kg BOMB (f) WITH CD_ 0.13 

50 kg BOMB (a) WITH CB_ =■ 0.11 

Figure 45. Drag coefficients of bombs and of one torpedo (32) 
in free flow (at subcritical speeds). 

Bombs as such are treated in the “transonic” chapter. 

In this section here, bombs are primarily considered 

being carried on the outside of airplanes. Inasmuch 

as this application is restricted to subsonic speeds, 

the drag of bombs is presented without accounting 

for any effects of compressibility. The drag coeffic¬ 

ients of bombs in free flow, listed in figure 45, are 

several times as high as those of comparable stream¬ 

line bodies. The additional drag is caused by the 

comparatively bluff shape as well as by fins and other 

protuberances, such as attachments needed to sup¬ 

port bombs under the wing or the fuselage of an 

airplane. The drag coefficient is at least CD> = 0.09. 

Bombs with the fins stiffened by means of round 

struts show values up to Co_~0.3. The additional 

drag due to a nose ring (favorable to get such a 

bomb into water at the side of ships) is ACD> = 0.05. 

The drag coefficient of aircraft torpedos corresponds 

to their length. Figure 45 shows a tested value of 

C —- 0.35. 

Ac : 0.60 = 0.10 

(32,a) 

i 

Figure 46. Drag of several bomb racks (and similar devices). The 
coefficients, of the racks as well (ACjj.) and those of the complete 
configuration (with bombs attached, indicated by CD>), are based 
in each case upon the respective bomb’s frontal area. 

Bomb Racks. In order to support a bomb and to keep 

it safely in place, a rack is needed. After dropping the 

bomb, the rack usually remains exposed to the air 

stream. The drag of such racks is comparatively high. 

Based on frontal area of the bomb which the rack 

is designed to carry, figure 46 shows drag values which 

are in the same order as those of the bombs them¬ 

selves. The drag of the protruding parts can be esti¬ 

mated on the basis of their frontal area and the fol¬ 

lowing drag coefficients: 

for streamline fairings around rack CD> —0.1 

for arms (rods and other blunt parts) CD> =1.0 

— 0.44 

— 0.21 

= 0.14 

Figure 47. The drag coefficient of a 50 kg bomb (32,a) in 
combination with various racks or necks, respectively. 

Neck Suspension. Figure 47 shows several methods 

of suspending a bomb under a wing or fuselage. The 

additional drag of a bomb rack and due to the inter¬ 

ference between this rack, the bomb and the wing, is 

in the order of ACD> = 0.3. The most favorable type 

of suspension is by means of a neck or pylon; the 

minimum drag increment caused by such an arrange¬ 

ment corresponds to only AC^_ = 0.03. 

Interference Drag. Basically, bombs (with higher 

drag coefficients) cause an interference drag which 

is larger than that due to tanks (having lower drag 

coefficients). In regard to the angular position of 

bombs (or tanks) against the lower side of the wing 

(or the fuselage respectively), the smallest total drag 

is found in the vicinity of A<x = — 3° (measured 

against wing chord); that is, with the tail of the bomb 

somewhat closer to the adjoining wing side than with 

the nose. If placing two or more bombs (or nacelles or 

external stores) closely beside each other, their drag 

may be increased because of mutual interference. 
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Figure 48. Drag coefficients of pairs of bombs and tanks (or 
nacelles), respectively, as a function of their lateral distance. 

However, beyond a lateral distance of approximately 

e = d, figure 48 does not show interference any longer. 

Placing, on the other hand, two bombs behind each 

other, their total or average drag coefficient is re¬ 

duced; as can be seen in figure 49. Within the wake 

of the forward bombs, the drag of the rear bombs 

is evidently smaller than in unobstructed flow. 

ARRANGEMENT CD- 

I bomb alone, in free flow 0.27 

1 bomb suspended under fuselage 0.57 

2 bombs, suspended side by side 0.63 

2 bombs in fore and aft arrangement 0 41 
1 bomb, adjacent to fuselage 0.35 

I bomb, half inside fuselage 0.13 

Figure 49. Drag of bombs in several arrangements, suspended 
under the fuselage of an airplane (32,e). 

(32) Drag of bombs, attached to aircraft: 
a) Heinrich, Wind-Tunnel Investigation of Wing with 

Bombs, ZWB UM 4574 (FGZ 1944) ; TransI by 
Cornell Aeron.Lab 1949. 

b) Arado, Wind-Tunnel Investigation of a Pair of Jet 
Engines at the LFA Brunswick 1943. 

c) Gothert, Investigation of Bombs SC-50, -250, -5000, 
Document ZWB FB 1663. 

e) Kosin, Fuselages, Yearbk D.Lufo 1942 p.I,24l. 
f) Russian Bomb and Tank Catalog (30,a). 
g) Hoerner, Bombs, Messerschmitt Rpt TB 85/1943. 
h) Stoney-Royall, Smooth Shapes, NACA RM L56D16. 
i) NACA, Full-Scale Bombs. W.Rpt L-131 (1944). 

(35) Means of reducing drag of circular cylinders: 
a) Kramer, Unpublished DVL Tests, 1934. 
b) Junkers, Sleeve-type Fairings in Junkers High-Speed 

Tunnel, Rpts S.1943/85 and S.1944/13. 
c) Guide Vanes for Periscopes, TMB Rpt 504 (1945). 

7. DRAG OF MISCELLANEOUS PARTS 

(a) Drag Of Cylindrical Parts 

Drag characteristics of circular (and other) cylinders 

are treated in Chapter III, as a function of Reynolds 

number, surface roughness and angle of inclination. 

Certain applications in aircraft are discussed as 

follows. 

Fairings. Gun barrels sticking out of bombers, in 

directions crosswise to the air flow, present consider¬ 

able drag due to their cylindrical shape, particularly 

in the range of Reynolds numbers below transition. 

These drag forces may also curtail handling and 

aiming of the guns, because of the moment about 

the center of their rotation. Figure 50 shows some 

attempts of reducing the drag of cylindrical bodies 

by adding fairings to their rear side. The results are 

small, however; the gap in the surface between cylin¬ 

der and fairing, and the bluff shape of the half-cyl¬ 

indrical nose, evidently prevent the flow from getting 

sufficiently far attached to the rear of the fairings. Sim¬ 

ilar results are obtained using sleeve-type fairings, pre¬ 

sented in figure 51. Sleeves can be attached in such a 

manner that they adjust themselves automatically to 

the direction of the air flow when applied to gun 

barrels or other aircraft equipment. By increasing 

the chord of the fairing and/or by thickening the 

trailing edge (as described in Chapter III) it is 

furthermore possible to increase the critical Mach 

number (see Chapter XV) from ^ 0.55 to ~0.70 

in the shapes presented in figure 51. 

S.SUB CD.SUPER 

1.20 15 to 4.0 o.4o 

o.88 2.5 to 4.0 0.32 

0.80 2.0 To 3.5 0.29 

0.82 2.0 TO a ? 0.24 

0.73 I.So To 3.0 O.lfc 

/Sop 

STREAMLINE- 0.35 0.5 TO 1.0 0.05 

Figure 50. Influence of various fairings on drag of circular 
cylinder (35,a), at R’numbers above transition. 
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Figure 51. Drag of sleeve-type fairings (35,b), to be used 
around gun barrels, at R’numbers above transition. 

Towing another airplane, as illustrated in figure 52,b, 

the lift of that airplane must also be taken into 

account. At point “1”, the total values of weight, 

lift and drag of cable plus towed body must be put 

into equation (18) to obtain <X,. An angle must first 

be assumed, in this case. The proper lift and drag 

forces of the cable are then found through the use 

of the cross-flow equations on page 3-11. Iterating 

the calculation, the correct solution for otj is finally 

found. At point “2” the angle is also found through 

application of equation (18), using for W, L and D 

the values of the towed airplane. For L = W, for 

example, <X^ = 0. In many practical cases, the shape 

of the tow cable may already be sufficiently well 

defined by the angles ot, and a2. The drag of the 

cable can then be calculated by integration along 
the length of the cable. 

Cables may be used to tow one airplane behind 

another one, or as antennas. Aerodynamic char¬ 

acteristics of cylinders inclined against the direction 

of flow, correspond to the “cross-flow” component 

of velocity (normal to the cylinder axis; as explained 

on page 3-11). The shape of an antenna cable towed 

without a weight at its end is that of a straight line 

(if disregarding oscillations). The angle of inclination 

is 

tan* = (W - L)/D (18) 

where W = weight, L = lift and D — drag. The 

pressure drag then corresponds to 

Cd„= Cd.™* <19> 

where Ct< = basic drag coefficient of the cylinder (at 

Ot — 90°); for example, CD>*=1.1 for circular shape 

at subcritical Reynolds numbers. With a weight at 

the end of the cable, conditions are as illustrated in 

figure 52,a. The angle Ctg corresponds to drag and 

weight (if no lift) of the body attached to the end of 

the cable. The angle Ot( is found by putting into 

equation (18) the values for W, L and D of cable plus 

weight body. 

Refuelling Hose. During certain in-flight refuelling 

operations, the “second” airplane (as in figure 52,b) 

may move in below the tail of the “first” plane, so 

that it carries part of the hose’s drag. For a known or 

assumed shape, the drag can then be integrated along 

the length of the hose. However, owing to the dia¬ 

meter “d” being appreciably larger than that of 

cables, the Reynolds number Rj == V d/\r is likely to 

be supercritical. Reference (37) indicates that for 

this condition, the cross-flow principle does not apply 

any longer. Rather, the drag coefficient (on diameter 

times length) of smooth cylinders is roughly in¬ 

dependent of the angle between flow and axis; in 

the order of CDo= 0.2. It may be doubtful, however, 

that the surface of an armored type of refuelling 

hose would actually be smooth. 

Figure 52. Shape and forces in towing cables 

(b) one airplane towing another airplane 
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(b) Drag Of Stopped Propellers 

The drag of stopped propellers is important for range 

and endurance of a multi-engine airplane, one or 

more engines of which may be out of order. 

Blade Angle. With an average blade angle (measured 

at 0.7 radius) close to zero (measured between blade 

and plane of rotation), the flow past a stopped pro¬ 

peller is detached from the rear of the blades. Their 

drag is consequently similar to that of plates in a 

flow normal to their surface. Figure 53 shows drag 

coefficients between 1.0 and 1.2 for this condition 

(based on developed blade area). Variation of the 

drag coefficient with blade angle "fi” might be ex¬ 

pected either to be similar to that of flat plates at 

angles of attack near 90 (meaning CDa cos|2>, as 

suggested in the “pressure drag” chapter), or to cor¬ 

respond to the cross-flow principle (page 3-11, mean¬ 

ing that CDa—cos3(i). The experimental points in 

figure 53 are well interpolated by 

CDBl = 01 + cos^ (20) 

where “0.1” = “residual” coefficient at (3 = 90°. 

Figure 53. Drag of stopped (blocked) propellers as a function 
of the blade angle (at 0.7 radius). 

(36) Pabst, Towed Cables, Ybk D.Lufo 1941 p.I,574. 
(37) Bursnall, Yawed Cylinders. NACA T.Note 2463 (1951). 

(38) Drag of locked propellers: 
a) Braked Locked Freewheeling, J.A.Sc. 1936 p.237. 
b) Ehrhardt, Stopped, Yearb.D.Lufo 1942 p.I. 

(39) Propeller characteristics at angle of attack: 
a) Ribner, Formulas, NACA Tech Rpt 819; and 

“Propellers in Yaw”, T.Rpt 820, 1945. 
b) For upwash ahead of wing, see NACA Technical 

Notes 2957 (1953), 3675 and 3738 (1956). 
(40) Negative thrust in propellers: 

a) Pfartman, Negative Thrust of Adjustable Pitch 
Propeller, NACA Tech Rpt 464 (1933). 

b) Naumann, Tested,Yearbk D.Lufo 1940 p.1,745. 

(42 ) Characteristics of ejection seats: 
a) Frost, Review, Aero Engg Rev. Sept 1955. 
b) For pictures of ejection seats, see "Popular Mechanics” 

1953 and "Popular Science” 1954. 
c) Viggiano, Full-Scale Ejection Seat in Wind Tunnel, 

Air Force Tech Rpt 5578 (Wright Field, 1949). 

Induced Drag. Because of the twisted shape of the 

propeller blades and/or owing to blade angle, some 

portion of the drag presented in figure 53 is induced 

by nature. This component is particularly evident 

in the vicinity of |3 = 90° where the drag coefficient 

of the blades is in the order of CDa = 0.07 to 0.12. 

Not more than 0.01 or 0.02 may be attributable to 

the profile drag of the blades (including that of the 

roots). The rest can be explained by applying equa¬ 

tion 13 of Chapter VII (indicating the induced drag 

of a wing caused by twist), if assuming for the blades 

an effective twist angle between 40 and 50°. 

Tilted Propellers. With the airplane at a certain 

angle of attack and at a corresponding lift coefficient, 

the average angle of attack of a feathered blade (at 

(3 = 90°) or a stopped propeller in horizontal posi¬ 

tion, is different from zero. This angle of attack is 

responsible for an additional component of induced 

drag. As explained in (39,a), the blades of a tilted 

propeller approximately present the same lift as a 

wing with an area corresponding to the projection 

of the blade areas in vertical direction. This means 

that the lift is zero at ct — 0 and (3=0, and that it 

increases in proportion to sinoc as well as to sin(3. 

Assuming for an average propeller blade an effective 

aspect ratio (equal to “propeller radius” over “aver¬ 

age blade width”) in the order of 7, the resulting 

lift curve slope of a feathered three-bladed propeller 

is estimated to be in the order of dCLn/do<® = 0.0**- 

(based on developed blade area). The coefficient of 

induced drag corresponding to propeller lift is then 

found to be in the order of (22) 

CD-= D; /qSQL= (dCL/dafcX2/rtA = 0.0002 • (ot°f 

Ahead of the wing of an airplane, the angle of attack 

at the location of the propeller and its blades is 

larger, however, than the geometrical angle — 

020 

0.15 

o.lo 

- Me-109 (38,b) 

\ / 

It INDUCED 

0.05 

CL= 0 

/two ot EQU.22 

0NE«\.. . t' 

-4 “2 10° CX 

Figure 54. Drag of a feathered (stopped) tractor propeller as 
a function of the airplane’s angle of attack (38,b). 
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because of the “upwash” corresponding to the circu¬ 

lation of that wing. This angle is approximately 

d<X°/dCL = 57.3/ (4it x/c) = 4.5° / (x/c) (23) 

where x = distance measured from the quarter 

point of the wing section. Figure 54 demonstrates that 

the increase of the drag coefficient of feathered pro¬ 

pellers with the angle of attack as tested, is at least 

partly explained by this analysis. 

Windmilling Propeller. A propeller, if not adjusted 

to feathering position, may keep rotating in case of 

engine failure. Similar conditions also prevail in 

power-off dives. The rotational speed of the propeller 

then depends upon the negative torque (due to 

mechanical friction) of the engine; and the drag 

must be determined through the use of proper pro¬ 

peller coefficients (40). This problem seems to exceed 

the scope of this book. For a rough estimate, the 

following procedure may be employed, however. In 

the case considered, the propeller operates as a 

windmill driving the engine. The power required to 

do this, is in the order of 10% of the rated power of 

the engine, at the respective speed of rotation. The 

efficiency of the “windmill” in transforming the “drag 

power” into rotational power, is estimated to be less 

than 50%. The drag of a propeller in this condition 

is consequently at least 

D = (0.1/0.5)(nwiqd/nrQied)(Pmte<1/V) 

(c) Ejection Seats 

Ejection seats, designed to catapult the pilot safely 

out of a high-speed airplane, have been developed in 

recent years (42). 

Drag. The problem as illustrated in figure 55, is to 

shoot the seat up at a velocity large enough to carry 

it over the airplane’s fin—while the aerodynamic drag 

accelerates the ejected mass downstream. The drag 

area (D/q) of a seat suitable for the escape of a pilot 

(including rests for feet, arms and head, and in¬ 

cluding an auxiliary parachute pack, see illustrations 

in reference 42) varies between 4 and 9 ft2, depending 

on its angular position (42,c). 

Trajectory. In a rough analysis it may be assumed 

that the seat be ejected in a direction normal to the 

airplane’s axis, that its ejection speed “w” be constant 

and that the dynamic pressure to which the seat 

is exposed after leaving the cockpit, would be con¬ 

stant and equal toq = 0.5 q V2. Under these simpli¬ 

fied conditions, the path of the seat in relation to 

the aircraft is defined by y = w t, where t = time, 
and by 

x = g 0.5 ^ V2t2 (D/q)/W (26) 

where D, P and V are used in a consistent set of sPee^s and the weight of seat plus pilot 

dimensions as, for example, in the lb-ft-sec system. } ^ as indicated in figure 55, the parabolic tra¬ 
jectory is then given by x «■ 0.16 y . In a more com¬ 

plete analysis, several other effects have to be con¬ 

sidered too, such as the angular position of the seat, 

and the positive or negative lift forces which develop 

as a function of that angle. Reference (42,c) indicates 

lift areas (L/q) varying between + 2.5 ft2 (for the seat 

tilted forward to some 60°, and — 2.0 ft2 (near the 

Figure 55. Example of mechanism and trajectory of an ejection 
seat (42). 
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8. CHARACTERISTICS OF PARACHUTES 

Aerodynamic and other properties of parachutes are a 

fascinating subject. After years of trial-and-error 

development, they are now in a phase of more 

systematic study (50). Basic characteristics of porous 

and pervious shapes are indicated in figures 44 and 

45 of Chapter III. Specific information on parachutes 

is presented as follows. 

Basic Shape. Figure 31 in the “pressure drag” chapter 

suggests that a canopy shape near to hemispherical 

may give a maximum drag coefficient (in the order of 

CDD = 1.4). Indeed, most types of parachutes have 

a similar shape. If designed and sewed together as 

flat circles, such parachute canopies have approxi¬ 

mately an inflated diameter of 2/3 of the laid-out 

cloth diameter. The ratio of their inflated frontal 

area (SD) to that of the developed area of the fabric 

(Sq) is consequently in the order of 0.45. The drag 

coefficient referred to canopy area is then CDQ= 0.45 

CDa. Using a suitable drag coefficient and the weight 

of load plus parachute “W”, sinking speed or “rate 

of descent" can tentatively be calculated as 

U =1/2 W/(9 CyOiU^ 29 fw /(CDS) 

where q/2 ~ 0.0012 (lb sec/'ft4') in sea-level conditions. 

The problem is much more complicated, however, 

as explained in the following paragraphs. 

Permeability. The material (textile fabric) of which 

parachutes are usually made, is more or less porous 

by nature. Its permeability is the average speed of 

the flow of air passing through the material, at a 

short distance ahead or aft of the textile sheet. In the 

United States, this speed is determined for a pressure 

differential Ap{.esj. corresponding to 0.5 inch of water 

(ASTM standard) and quoted in ft/min. An aver- 

(50) Fundamentals of parachutes: 
a) Hoerner, Drag Characteristics of Parachutes, Air Force 

Tech Rpt 6201 (Wright Field 1950). 
b) Heinrich, Survey, Aero Engg Rev. 1956 p.73. 
c) Brown, "Parachutes", Pitman (London) 1951. 

(51) Experimental results on sheet-metal shells: 
a) Ergebnisse AVA Gottingen Vol IV (1932). 
b) Breevort-Joiner, Anemometer, NACA T.Note 489. 
c) Doetsch, Parachute Models, Lufo 1938 p.577. 
d) Jones, Compilation of Data, ARC RM 862 (1923). 
e) ARC, Perforated Plates and Caps, RM’s 2520 and 

2523; also Porous Sheets in RM’s 2236 and 2237. 

age parachute cloth may have a permeability of 

“150 ft/min”, for example. However, the real perme¬ 

ability speed corresponds to the pressure differential 

Ap = q CDa (31) 

where q = 0.5 9 V2. Within the range of Reynolds 

numbers of average cloth (across the pores, as de¬ 

fined in reference 50,a), the variation of permeability 

with pressure can be approximated by 

W/Wtext = (AP/APie5t)°'6 (32) 

where “test” indicates standard testing differential 

(equal to 2.6 lb/ft2 in the U.S. and equal to 52 

lb/ft2 in Great Britain). — The effective perme¬ 

ability of a canopy is that through its opening circle. 

This velocity is larger than that through the material 

in proportion to the area ratio S©/Sa. Combining 

this function with equations 31 and 32, the effective 

permeability of parachute canopies is found to be 

wgff = (S0/Sn) (0.5 q V ^Da/AP-test) 

The speed ratio as used in figure 57 can be determined 

from this equation as 

o'* 0.6 

w/V = w^ (Se>/SD) ^ 9 ^Do^Piest) 

Fortunately, “V” appears only under the fifth root in 

this equation, so that in gliding parachutes, this speed 

may be replaced by “U” as defined later in the text. 

Flow Pattern. Fundamentals of porous sheets are ex¬ 

plained on pages 3-23 and 24. The drag coefficient 

decreases as a function of permeability, expressed in 

figure 45 of Chapter III by the velocity ratio (w/V). 

The equations on page 3-24 permit to calculate the 

drag coefficient of very porous parachutes (with 

W/V>- 0.5; see figure 57) on the basis of the prop¬ 

erties of the canopy material, applying equations 

33 and/or 34 for the effective permeability. Char¬ 

acteristics below w/V = 0.5 (comprising the majority 

of designs and applications) are different, however. 

Figure 56 shows how a stream of air attaches itself 

to one side of the canopy thus causing a lateral “lift” 

force owing to the suction on that side. Wind-tunnel 

tests on sheet-metal “caps” (51,c) and on certain 

models made of cloth (52), show the lateral force and 

the corresponding moment about the center of the 

load (between 1 and 2 diameters below the canopy 

opening). The lateral “lift” pulls the canopy side¬ 

ways. Under favorable conditions, the parachute 

therefore glides at a certain angle y° = (90 — o(0). 

In other cases, the system of canopy and load assumes 

a more or less regular state of oscillating or “coning” 

motion, with flow separation and suction force of the 

canopy changing in two or more directions. 
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Figure 56. Aerodynamic characteristics of hemispherical shells, 
rigidly suspended in wind tunnels (51). 

Gliding Parachutes. Figure 56 shows the aerodynamic 

characteristics of parachute- or canopy models made 

of sheet metal. The stable equilibrium of these models 

(around a point approximately 1.3 times the dia¬ 

meter beneath the canopy) is between a = 40 and 50° 

Such parachutes may, therefore, assume this stable 

position and keep steadily gliding at an angle jf= 

(90 — ot°) in the vicinity of 45° against the vertical 

(in relation to the air space, as found in 51,c). The 

weight of parachute and load is supported in this 

case by the resultant aerodynamic force R = (/ (Da 

-f- L?). This resultant is essentially identical to the 
force normal to the opening circle of the canopy 

(within the region of ot — 90° ± (45 or 50)°. For ex¬ 

ample, in the vicinity of o(= 45° = ;(, the resultant 

force coefficient is CR ^ 1.65, in figure 56, based on 

resultant velocity “V” (in the direction indicated 

byc<or jf, respectively). For the descent of the para¬ 

chute, the vertical component of V, that is the sink¬ 

ing speed “U”, is of more practical importance; and 

during full-scale tests in open air, only this com¬ 

ponent U = V sino( = V cos £ is usually timed. Re¬ 

ferring the resultant- or normal-force coefficient to 

this speed, an effective, “vertical”, or “weight co¬ 

efficient” may be defined: 

CWq= W/ (0.5 (i U2Sq) = CR/sin2cC CN/sin2<x 

Characteristics in figure 56, with CR = 1.65 at(X= 45° 

= thus yield a coefficient CWn = 3.3, as plotted in 

figure 57 at w/V = 0. This value is twice the “result¬ 

ant” coefficient. It should be noted, however, that the 

angle of stable gliding is also a function of the rigging¬ 

line length. That length could be such (longer than 

considered above) that stability is obtained in the 

point of the function in figure 56 farthest away from 

the origin. This point corresponds to CRa~1.8 and 

C\Vd~ 3-6- The rate of descent of a gliding parachute 

can then be determined through the use of equation 

30, introducing “C^’ in place of “CD”. 

Drag (Permeability). Drag and/or weight coefficients 

of parachutes are plotted in figure 57 against their 

effective permeability ratio determined through the use 

of equation 34. Assuming CDq = 1.4 as “basic” drag 

coefficient, the coefficient of parachute canopies re¬ 

strained from gliding (reference 52,b and c), is re¬ 

duced by permeability, tentatively as 

CDn = 14 - W/V) (36) 

35 
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25 
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The drag coefficient of an average personnel par¬ 

achute, having a flow ratio in the order of w/V = 10%, 

may consequently be reduced to CDa = 1.26. If per¬ 

mitted to glide, or if made gliding, the weight co¬ 

efficient Ccan be as high as 3.3 (as derived above). 

Figure 57. Drag coefficient of parachutes as a function of their 
effective porosity (indicated by the flow ratio w/V). 

•7 .& -9 l-o 

GLIDING AND OSCILLATING: 

* GOODYEAR (54,c) 

O WRIGHT FIELD (54,a) 

FULL SCALE, FREE FALL: 

a NACA, N.1315 (56,b) 
V WRIGHT FIELD (56,c,d) 

OSCILLATING IN W'TUNNELS: 

4- R A E (ARC) (52,g) 

A BROWN (HIS FIG.53; 50,c) 
A NACA, N.1869 (52,b) 

H NACA, HIGH SPEED (52,h) 

♦ NACA, N.2098 (52,b) 

RESTRAINED (METAL) MODELS: 

■ CUPS AND CAPS (51,b,c) 

* STANDARD DISK VALUE (-) 

•O CANOPY CAP (52,a) 
A PERFORATED CAPS (51,e) 

• POINTS AS IN FIG. 111-45 

0 .2 
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However, this coefficient quickly drops from that level 

as a function of the speed ratio (w/V). For example, 

the parachute mentioned above (with w/V = 0.1) is 

expected to have a coefficient in the order of CWa= 2.4 

(if really gliding). At w/V == 0.2, the coefficient is 

almost reduced to half the maximum value. Pressure 

distributions around the canopy reported in (51,e) 

clearly show that the lateral suction force (illustrated 

in figure 56) is eliminated by a sufficient rate of flow 

through the material, particularly through the “skirt” 

or through a strip of material adjacent to the rim of 

the canopy. Assuming that the drag coefficient is ap¬ 

proximately constant within the range of oi. = (90 i 

20)°, as seen for instance in figure 56, the “resultant” 

coefficient is 

CRa~ CDa ~ 1-4/sin o( (38) 

Combining this one with equation 31, the “weight” 

coefficient is found to be 

CWq = 1.4/sin3(X (39) 

Reversing this equation, it is thus possible approx¬ 

imately to recalculate glide angles from the weight 

coefficients plotted in the upper part of figure 57. At 

w/V = 10%, for instance, CWa = 2.4; sin3CX = 

1.4/2.4; o( = 56°; and the glide angle (against the 

vertical) £ = 90 — C\° — 34°. 

Oscillating Parachutes. Full-scale drop tests (56) yield 

drag or weight coefficients usually smaller than the 

value of 2.4 calculated in the last section, in the order 

of less than CWa = 1.8 (or CDo = 0.8 based on devel¬ 

oped area of the canopy material). Steady gliding only 

occurs under certain favorable conditions. Parachutes 

(52) Experimental results on parachute models: 
a) Heinrich, Stability, ZWB Rpt FB 1780 (1943). 
b) Investigation of Parachutes in Wind Tunnels and in 

Free Air, NACA T.Notes 1315, 1869, and 2098. 
c) Taylor and Davies, Characteristics of Porous Sheets, 

ARC RM 2236 and RM 2237 (1934). 
d) Scher, Cluster of Parachutes, NACA RM L53G07. 
e) Jones, Restrained Models, ARC RM 2520 (1953). 
f) Stimmler, Tunnel Tests and Analyses, Guggenheim 

Airship Institute Rpts 1948 and 1949. 
g) Johns-Auterson, Parachutes, ARC RM 2335 (1944). 
h) Schueller-Evens-Johnson, NACA Memo Rpt 1944. 

(53) Knacke, Design and Use of Ribbon-Type Parachutes, 
AMC Memo Rpt MCREXE-672-19LL (1948). 

(54) Drop tests of parachute models: 
a) Knacke, Model Parachutes Comparison Tests, AMC 
Memo Rpt MCREXE-672-12B (1949, Wright Field). 
b) Floating in Spinning Tunnel, NACA RM L51J18. 
c) Stimmler and Ross (Goodyear) USAF Tech Rpt 

5867 (8 volumes, Wright Field, 1952/1954). 
(56) Full-Scale drop tests on parachutes: 

a) Penrod-Maison-McDonald, J.Aeron Sci 1947 p.303. 
b) Webster, Falls and Descents, NACA T.Note 1315. 
c) Some Wright Field results are quoted in (50,a). 
d) Knacke, Size, Memo WCEEH 1951 (Wright Field.) 

may as well assume a more or less obvious oscillating 

state, produced and maintained through dynamic 

interaction between canopy forces and the suspended 

load. Model tests (54,a) show that gliding prevails at 

smaller speeds while oscillations (with amplitudes to 

± 20°) are predominant at intermediate rates of de¬ 

scent. Some 200 full-scale drop tests have been eval¬ 

uated at Wright Field (quoted in reference 50,a). 

Parachutes with cloth diameter between 22 and 24 ft, 

made of textile material with a permeability corres¬ 

ponding to «= 130 ft/min ASTM, carrying between 

150 and 200 lb load, show two preferred conditions; 

oscillating (with CWo~ 1.6) and gliding (with CWq~ 

2.4). The chances of gliding against oscillating are 

roughly one to three. It thus seems that most par¬ 

achute descents in practical operation are of an irreg¬ 

ular oscillating type, likely combined with some gli¬ 

ding. Coefficients C^Q, evaluated from full-scale drop 

tests, are usually between 1.4 and 1.8, thus falling into 

the space between the two limiting conditions plotted 

in figure 57. Considering a man-carrying parachute 

with a total weight of 200 lb, a diameter of the laid-out 

cloth in the order of 26 ft, and a corresponding frontal 

area of the inflated canopy of approximately 250 ft2 

— the rate of descent at sea level density will approx¬ 

imately be 

U = 23 ft/sec for CDn = 1.26, restrained 

U = 20 ft/sec for CDa= 1.60, oscillating 

U = 16 ft./sec for CDo = 2 40, if gliding 

Model Testing. In wind tunnel investigations, par¬ 

achutes or models of them may be connected to the 

balance system at the junction point of their suspen¬ 

sion lines. This arrangement does not reproduce 

dynamic conditions of a parachute descending through 

the air. However, such tunnel tests usually show severe 

oscillations; and they may thus accidentally give drag 

coefficients of the same magnitude as found from drop 

tests. To overcome the limitations of tunnel testing, 

parachute models made of various types of textiles, 

have been investigated by dropping them —among 

others, from the 175 ft high ceiling of the airship dock 

at Akron, Ohio (54,c). Figure 58 presents some such 

results together with available full-scale data. Gliding 

is reported for the larger coefficients in the left-hand 

part of the graph, oscillations for the results at inter¬ 

mediate and higher speeds. As a function of speed 

(varied by changing the load), the “weight” coeffi¬ 

cient reduces appreciably. Certain groupings can be 

found in the graph as to canopy size as well as on the 

basis of permeability (indicated in the U.S. standard 

manner in ft/min as explained above). One explan¬ 

ation (50,b) for the change of flow pattern and weight 

coefficient is simply a consideration of dynamics; which 

then should give correlation on the basis of Froude 

number (see in Chapter XI). Two or three other 

reasons are suggested as follows: 
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o GOODYEAR, 11.9 FT 0, DROP, 100 ASTM <54,c) 
+ WRIGHT FIELD, 3.8 FT 0 MODEL FLAT (54,0) 

V A R C , 1 m 0 CLOTH MODELS RM 862 (51,d) 

* 24 TO 30 FT 0 FLAT FULL SCALE (140) (56,c) 
J 48 FT 0 SKIRTEO FLAT, 100/150 ASTM <56,d) 

O 24 FT p "SPHERICAL", 200 FT/MIN ASTM (56,d) 

O 15 FT p "RING-SLOT", 17% POROSITY (56,d) 

• BROWN, 4 FT p FLAT (w/V = 0.38) (50,c) 
A GOODYEAR, 11.9 FT 0, 20/26% POROSITY (54,c) 

T GOODYEAR, "GUIDE-SURFACE" TYPE (54,c) 

proportion to the diameter of the canopy (at V = 

constant). The drag coefficient decreases, therefore, 

as size and permeability are increased. Inasmuch as 

figure 57 indicates a strong decrease of as a function 

of permeability-ratio, small variations of the para¬ 

meters indicated in (a), (b) and (c) are likely to pro¬ 

duce the effects as shown in figure 58. 

Figure 58. Variation of the drag coefficient of parachute models 
(made of fabric) as a function of vertical speed. 

(a) Reynolds Number is not involved with regard to 

canopy shape. Within reasonable limits as to viscous 

friction and compressibility, respectively, the drag co¬ 

efficient of bluff bodies is not susceptible to variations 

of size and speed. However, the flow through the can¬ 

opy material is a function of R’number (based on 

conditions within the pores, as presented in (59,a). 

Rigging Lines. Inflated diameter and shape of the 

canopy are affected by the length of the rigging lines. 

Figure 59 shows how the drag coefficient (believed to 

be on projected frontal area, in restrained condition) 

increases, as the length of the lines is increased. One 

set of tested points indicating the projected area ratio, 

suggests that the shape is as much involved in the re¬ 

sult as the magnitude of the inflated area. 

O BROWN, 4 FT 0 FLAT AT 60 FT/SEC (50,c) 

Q DITTO, "SHAPED" ("45" Brit.PERM.) (52,g) 

A GOODYEAR, 11.9 FT 0, EXTEND.SKIRT (54,e) 

+ - GOODYEAR, FLAT, 100 FT/MIN ASTM (54,c) 
X - WRIGHT FIELD TUNNEL MODEL-(54,0) 

Figure 59. Variation of parachute drag coefficient as a function 
of rigging-line length. 

(b) Aero elasticity. Permeability of textile fabrics is, 

among others, a function of tension and elastic defor¬ 

mation in the material. For example, maximum 

elongations in parachute cloths are reported in (59,b) 

between 15 and 30%. We may therefore conclude 

that the geometrical porosity “1 — <3“(see page 3-23) 

can be increased by Aid between 0.3 and 0.6, in the 

extreme case just before breaking. Assuming that 

the tension may only be 10% of that at breaking, Ad> 

can still be in the order of 0.03 or 0.06, a differential 

that might mean an increase of geometrical porosity 

by 30 or 60%. Figure 43 in Chapter III shows how 

permeability increases as a function of porosity. Inas¬ 

much as tension in a given canopy is proportional to 

the dynamic pressure, the drag coefficient decreases 

as the speed is increased (see figure 58). 

(c) Parachute Size. The drag coefficient also decreases 

somewhat as the size of a certain type of parachute is 

increased (keeping the design speed = constant). In 

this respect, see the coefficients in figure 58 of full-scale 

chutes for 24, 48 and 100 ft developed diameter. This 

effect too can be explained on the basis of tension. 

Assuming that forces in the canopy be proportional 

to the load, tension (in Ib/ft) is obtained increasing in 

Ribbon-Type. Figure 57 indicates that above w/V 

= 0.3, the drag coefficient of porous parachutes equals 

that of flat sheets having the same flow ratio w/V. 

Parachutes with such flow ratios have been developed, 

to eliminate oscillations which are highly undesirable 

in certain applications. Ribbon-type parachutes (50,b 

and 53) have porosity ratios (1 — <£) between 20 and 

40%. The loss coefficient (defined in the “pressure 

drag” chapter) corresponding to the latter value, is 

$ = 7.7. The resultant flow ratio is w/V = 0.65, and 

the drag coefficient CDn = 0.82. Figure 57 shows that 

the drag coefficient of this parachute fully corresponds 

to the theoretical value. 

“Shaped” Canopies. Besides the “flat” type parachute 

(also called a “parasheet” in reference 50,c, “gathered” 

by suitable rigging lines), other designs have been 

developed (50,b). So-called “shaped” canopies (sewn 

together, for example in the form of a hemispherical 

shell) have essentially the same aerodynamic char¬ 

acteristics as the flat type. It is possible, however, to 

save some material, so that the drag coefficient based 

on developed canopy area (indicating an aerodynamic 

“efficiency”) attains somewhat higher values. 
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Figure 60. Shape and drag of guide surface parachute (57). 

Guide Surface. An entirely different type is the so- 

called “guide-surface” parachute, a “conical” shape 

particularly designed and used for stabilization of 

bombs, mines and torpedos, for missile recovery and 

for rescue from high-speed aircraft. Figure 60 shows 

form and drag coefficient of this type of parachute. 

Coefficients are based, in this case, on the area cor¬ 

responding to constructed diameter. The inflated 

diameter is estimated to be some 5% smaller. The 

value of the drag coefficient corresponds to the canopy 

shape which is not too favorable for producing drag. 

Inasmuch as guide-surface parachutes never glide, 

since they hardly oscillate (only by ir T) and because 

they are made of very tight (and heavy) material—their 

drag coefficient is practically constant (see in figure 

58). Guide-surface chutes have been developed for 

and tested (57) at speeds approaching that of sound. 

For a diameter of 6.5 ft, steady-state drag forces are 

thus obtained in the order of 30 or 40,000 lb. 

(57) Stable guide-surface parachutes: 
a) Heinrich, ZWB FB 1780 (1943); Transl ATI-42978; 

See also (50,b) and USAF Tech Rpt 5853. 
b) Reported by Cook Laboratories in (59,b). 

(59) Properties of parachute fabrics: 
a Hoerner, Aerodynamic Properties of Screens and Fabrics, 

Textile Research J. 1952 p.274. 
b) Wright Air Development Center, Symposium on 

Parachute Textiles, Tech Rpt 1954-49. 
c) Swallow,RAE Tech Note Chem 1248 (1955). 
d) Brown, Tension and Porosity, ARC RM 2325 (1944). 

Most fabrics open up; but some do not. 
e) Shape of and tension in canopies are analyzed in 

ARC RM 2118 (1942); theory. 
(60 Characteristics of tow targets: 

a) Windsocks and Flags, Focke-Wulf Rpt 27 (1933)- 
b) Fleischhacker, Flight Tests on Tow Targets, Rpt 

Erprobungsstelle Tarnewitz, 19 July 1940. 
c) Migotsky, Anti-Aircraft Target, NACA W.Rpt L-760. 
d) Brown, "Drogues”, in refernece (50,c). 

(65) Drag of dive brakes attached to fuselages: 
a) Wright, Speed Brake, NACA RM L8B06; see A7K28. 
b) Fail-Owen-Eyre, Plates and Brakes, ARC C. Paper 251. 

Conclusions. The parachute problems listed in this 

section have not yet been solved analytically. Concept 

and consequences of aeroelastic tension as outlined 

above do not seem to be generally accepted. It should 

be agreed, however, that model testing is problematic 

in the field of parachutes. To get away from the con¬ 

fusion thus existing, some drag coefficients are tabu¬ 

lated as follows, believed to apply to average full- 

scale conditions: 

flat-type (“parasheet”) oscillating CDa = 1.7 

average ribbon type (20% porosity) C0o = 10 

guide-surface type (see figure 60) C0a =1.0 

One more influence on permeability and drag of para¬ 

chute canopies to be mentioned, is rain. Reference 

(59,c) reports that permeability of fabrics can be 

reduced to zero by wetting. 

9. DRAG OF TOW TARGETS 

Towed “windsocks” and similar devices are used as 

practicing targets for anti-aircraft artillery. 

“Windsocks”. Figure 61 presents several shapes de¬ 

signed to be towed behind aircraft. Most of them 

are built in the form of windsocks, inflated and kept 

in shape through an opening in front. Provided that 

this opening is wide in comparison to the diameter 

of the socks, drag coefficients of cylindrical shapes are 

comparable to those of pervious sheets as indicated by 

the equations on page 3-24. — By making the material 

wet (that is, by reducing its porosity), the drag is 

noticeably reduced in one case (shape “c”). The flow 

is evidently reattached to the outer side of that cone. 

Upon reducing porosity, the pressure losses across walls 

and bottom of the cone are reduced too; and the total 

drag comes out smaller than in dry condition. 

b) WITH STREAM RING <<j 

*> WINDSOCK TYPE (a) 

Figure 61. Drag coefficient (on frontal area) of various tow 
targets, built in the form of windsocks (60). 
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Figure 62. Drag coefficient of "flag” type towing targets (60), 
referred to total wetted area. 

Flag Type. One of the “socks” in figure 61 (“d” with 

the larger diameter ahead) has an open bottom. Drag 

is somewhat reduced in this shape. The cylindrical 

shape in figure 62 (stiffened at the leading edge by 

a metal ring) has the comparatively low coefficient 

C^n = 0.42 (for “tight” fabric). Based on wetted 

area, the coefficient is = 0.018. The flag type 

(“a”) built up of three sheets of textile fabric has a 

drag similar in magnitude (in pounds) to that of 

“c” or “e ’ in figure 61. Based on wetted area, its co¬ 

efficient is in the order of 0.03 which is almost 7 

times the turbulent skin friction drag of Cp » 

0.0045 at Rj= 106. The additional drag is caused by 

supporting rods (at the leading edge) and by flutter, 

the consequences of which are shown in figure 46 of 

Chapter III. As a target, such a device is not inferior 

to windsocks. Referring the drag to the visible lateral 

area (equal to length times height), a coefficient is 

found which is in the order of those of the streamline 

windsocks described in the next paragraph. 

Streamlining the shape, including a reduction of the 

inlet opening, the drag coefficients of windsock targets 

are cut down to CDq = 0.56, 0.51 and 0.35, respective¬ 

ly. However, with regard to stability (steadiness in 

the air), the flag type targets may be more desirable. 

Rc- 10' 
M * 0.5 

45" n - n d 

d = V.5 in. 7 '-.v 

C = 1*8 
Da 

Figure 63. Drag of and due to dive-brake flaps deflected from the sides of fuselages: 

(a) Pair of solid square plates on the fuselage model of an experimental 
airplane (65,a). 

(b) Pair of "flaps” composed each of a set of guide vanes, deflecting the air 
stream (65,b). 

The plates have a drag coefficient similar to that in free flow (without fuselage). The 
cascades of guide vanes are more effective, producing ~ 1.5 times the drag of the 
plates. Similar to that in figure 30(b), their flow is locally deflected outward, thus 
"losing” more momentum than in any plate device. This fact is also evident in the lift 
(or lateral force) of a configuration using only one of the two guide-vane flaps, corres¬ 
ponding to CLa= 1.26. In other words, flow pattern and characteristics of the cascade 
type of brake are those of a low aspect ratio wing rather than those of a bluff obstruction. 
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CHAPTER XIV - DRAG OF COMPLETE AIRCRAFT 

The drag of many aircraft components, large and 

small, has been presented and expounded in other 

chapters, including aspects such as Reynolds number, 

surface roughness and interference. An analysis is 

now undertaken in this chapter of total drag corres¬ 

ponding to the performance of aircraft in full-scale 

operation. Such analysis also demonstrates a synthetic 

method of predicting full-scale performance by re¬ 

alistically computing the drag of the component 

parts, by taking into account surface roughness and 

interference effects and by including internal losses - 

through application of the many theoretical functions 

and/or statistical rules developed and/or quoted in 

this book. 

1. DRAG OF AIRSHIPS 

Big airships are no longer with us. They were devel¬ 

oped in one phase of aviation at considerable cost; 

and they have been replaced by the “heavier-than-air” 

type of aircraft. All that is left today in the field 

of airships are “blimps” (colloquial for small airships). 

Hull. The drag of bare and smooth airship hulls is 

extensively presented in the “streamline” chapter. 

Applying equation 28 of that chapter, the theoretical 

drag of a bare and smooth hull can easily be predicted 

Figure 1. Drag coefficient of airships (on wetted area of their 
hulls) ; comparison of model- and full scale results. 

on the basis of thickness ratio (d/1) and turbulent skin- 

friction drag coefficient Cp (as a function of R’num- 

ber; Chapter II). — The type of drag coefficient pre¬ 

ferred in airship aerodynamics is C^, based on 

(volume)2/^* as explained in Chapter VI. Inasmuch 

as the coefficient CCswe)L (based on wetted area) direct¬ 

ly displays the predominant source of airship drag, 

this definition is used, however, in figure 1. — Fine¬ 

ness ratios (1/d) applied in most airships are far 

above the values found to be optimum in Chapter 

VI (1). Hull-fin interference, stability and control 

characteristics and possibly the dimensions of hangars 

seem to be responsible for higher ratios (up to 1/d = 

10, in older designs). 

Fins. Reference (4,b) gives experimental information 

on the drag of a “Goodyear-Zeppelin” airship model 

having 1/d — 7.2. At a Reynolds number R^ = 

2 107, drag coefficients of the bare hull are CDV — 

0.023, or CD#= 0.072, or CDwa± = 0.0032, (1). Ad¬ 

dition of a set of 4 smooth fins having a “foil” area 

Sp,n ~ S„ increases the drag by 12%, while the 

added wetted area is « 8% of that of the hull body. 

Similarly, reference (4,c) indicates an increment of 

9% for a set of 6 fins with Sp.n~ 0.6 S. and a wetted 

area ratio of approximately 9%. Other model tests, 

on a “Zeppelin” airship (with 1/d = 6) at Rj( = 

5 106 are reported in (4,e). Addition of 4 fins having 

a total “foil” area equal to S, or a wetted area equal 

to 11 % of that of the bare hull, causes an increase of 
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the drag coefficient on wetted area by 24%. In con¬ 

clusion, the drag of and due to fins is larger than 

corresponding to their wetted area. The increment 

is evidently caused by interference along the hull’s 

tapering stern. 

Car. The second major appendage of each airship is 

the “car”. Many more or less bluff shapes of cars and 

engine nacelles have individually been tested (6); 

drag coefficients are cti.~ 01 for smooth cars, and 

up to ~ 0.6 including openings and radiators. 

Their drag in presence of the airship hull and the 

interference drag caused by them on the hull, could 

be predicted by applying the principles outlined in 

Chapter VIII. Practically all of the appendages in¬ 

vestigated in that reference are obsolete, however. 

The most advanced airships ever built, had cars in¬ 

tegrated into the bottom of the hull, similar in shape 

(if not in size) to canopies or windshields as presented 

in Chapter XIII. Evaluated from (4,b and c), a drag 

coefficient on frontal area of such cars is found in the 

order of 0.1. Inasmuch as the frontal area is only 

1 % of that of the hull, the car drag is not of great 

importance. 

Engine Nacelles, installed in several pairs at the sides 

of airship hulls, have never been developed to a 

degree of streamline efficiency comparable to that of 

the shapes used in modern airplanes as presented in 

Chapters IX and XIII. The drag of nacelles can 

readily be predicted by applying the principles set 

forth in the “interference” chapter. As an example, 

a number of nacelles may be assumed with a total 

frontal area in the order of Sa./Sm„= 0.01, each 

having a drag coefficient of C^. = 0.5 (a value in¬ 

dicating a comparatively rough shape, and including 

the drag of the structure by which each nacelle is 

supported from the hull). Based on hull frontal area, 

the drag of and due to the nacelles will then be in 

the order of ACDm.= 0.01 0.5 1.2 = 0.006, where 

“1.2” indicates a factor accounting for interference. 

The drag of and due to the nacelles is then in the 

order of 10% of the hull drag. Such a component of 

drag is indicated in figure 1. 

Full-Scale deceleration tests (similar in method to 

those on automobiles, discussed in Chapter XII) have 

been made on a number of airships. Reference (5,a) 

yields drag coefficients CD> between 0.08 and 0.10 at 

Rj^ ~ 108 for a series of “Zeppelin” airships having 

displacement volumes between 2 and 3 million ft3, 

a diameter of 78 ft and fineness ratios between 8 and 9. 

These drag values as well as those of other “smaller” 

and “older” airships (plotted in figure 1) are con¬ 

siderably larger than the total drag that can be ob¬ 

tained by adding to the basic hull drag the compo¬ 

nents due to car, fins and nacelles as estimated above. 

It is suspected that at the time when these ships were 

in operation (at and before 1918), the appendages 

were very bluff in shape, suspended and kept in place 

by means of struts and cables; and that the engine 

radiators were of the open type, thus increasing the 

drag of the nacelles very much. — Reference (5,d) 

yields CD7= 0.038 or 0.0045 (on hull plus 

fin area), for a full-scale configuration with 5 engine 

nacelles (275 HP each) at R^« 2 108, (where the 

basic = 0.0018). We will assume that general 

surface roughness, all sorts of small protuberances 

(vents, handling attachments, rudder gaps) and the 

suspension of the engine nacelles (interference) may 

be responsible for the still existing gap between these 

values and those which can be determined on the basis 

of skin friction. 

Reynolds Number. The drag coefficients of roughness 

elements and of bluff parts can be assumed to be es¬ 

sentially constant if plotted against Reynolds num¬ 

ber. The total drag coefficient of airships may, there¬ 

fore, be assumed to be composed of a constant com¬ 

ponent and of another component which varies in 

proportion to the turbulent skin-friction drag coeffi¬ 

cient. If, for instance, half of the total drag (as tested 

at one particular R’number) is considered to be con¬ 

stant, then the coefficient is found to vary against the 

Reynolds number in proportion to 1/R^12, and not in 

proportion to 1/R1^6 as in plain friction flow. Corres¬ 

ponding lines are shown in figure 1, roughly indi¬ 

cating the variation of the drag coefficient of fully 

equipped full-scale airships as a function of Reynolds 

number. Correlation is found in this manner be¬ 

tween model- and full-scale results, at least for the 

more streamlined “Los Angeles”. A more detailed 

method of correlation and/or extrapolation against 

R’number is presented for ships, in Chapter XI. 

(1) Drag coefficients and optimum shapes on pages 6-18 and 19. 
(4 ) Drag characteristics of airships: 

a) Many results on bare hulls are presented and quoted 
in the "streamline" chapter. 
b) Abbott, Airships in VDT, NACA T.Rpt 394 (1931). 
c) Abbott, Hulls and Appendages, N/ CAT.Rpt 394(1932). 
d) CAHI (Moscow) Report 151 (1932). 
e) Quoted in "Ringbuch Luftf. Technik” Section IA15. 

(5) Drag of airships determined by deceleration: 
a) Zeppelin results, quoted in NACA T.Rpt 117 (1921). 
b) Thompson and Kirschbaum, NACA T.Rpt 397 (1931). 
c) Pannell-Frazer, Rigid Airships, ARC RM 668 (1919). 
d) ARC, Airship R.32 Tests, RMs 811, 812, 813 (1921). 

(6) Diehl, Fuselages Cars Nacelles, NACA T.Rpt 236. 
(10) Drag characteristics of the Me-109: 

a) 109 Parts, Aero Lab. TH Munich Rpt ZWB UM 7821. 
b) Messerschmitt, Glide Tests Me-109, 1940. 
c) Sahliger, Drag- and Lift Measurements of the ME-109 
in the Full-Scale Tunnel at Chalais-Meudon, ZWB Rpt UM 
7801 (Messerschmitt 1943). 
d) Flight Tests 109 Radiator, Messerschmitt Rpts 
"18 Aug 1939”, 109/10/L1941, 109/15/L1942. 
e) Messerschmitt, Tunnel Model, ZWB UM 7857 (1944). 

(12) Hoerner, Me-109 Analysis, unpublish Rpt 1946. 
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2. DRAG ANALYSIS OF A FIGHTER AIRPLANE 

Because of the author’s personal experience with 

that particular airplane, and on the basis of wind-tun¬ 

nel investigations and flight tests carried out on and 

for this airplane, the maximum-speed drag of the 

Messerschmitt “Me-109” is presented and analyzed 

as follows — thus showing the application of some of 

the methods outlined in this book. 

(a) Full-Scale Performance 

The prevailing type of the Me-109 produced in 1944 

was the series “G”, illustrated in figure 2. The prin¬ 

cipal dimensions and data are 

total wing area 

wing span 

aspect ratio 

overall length 

gross weight 

wing loading 

maximum speed 

reciprocating engine 

maximum power 

in altitude of 

S = 172 fr 
b = 32 ft 
A = 6.1 - 
Jt = 29 ft 

W = 6700 lb 
= 39 lb/ft2 

V = 610 km/h 

= DB 601A 
P = 1200 hp 

z = 22000 ft 

Besides exhaust stacks and a pair of wing radiators, 

the airplane had the following parts exposed to the 

air flow: Tail wheel (14 inch diameter), antenna 

wire with mast on upper side of fuselage, two ma¬ 

chine guns with portholes on top of engine cowling, 

partly open housings for the retractable landing gear 

and a comparatively blunt canopy. Figure 2 shows 

size and location of these parts. The maximum speed 

as listed in “km/h” is 380 mph, or 330 knots. 

Thrust. The efficiency of the variable-pitch propeller 

is estimated to be r| = 0.85 at a high-speed disk load¬ 

ing of CT = T/qS0= 0.07. The effective thrust is tfien: 

T = q P/V = 0.85 1200 550/560 = 1000 lb 

with “V” in ft/sec, “P” as above and “550” indicating 

the conversion factor for HP. To this value, the thrust 

produced by the exhaust of the engine is to be added. 

In the case of reciprocating engines, this component 

is in the order of 

AT|b = (0.11 to 0T3) PHp (2) 

provided that the exhaust pipes are adjusted in down¬ 

stream direction. In case of the Me-109, the jet thrust 

is in the order of 140 lb. The total thrust at maxi¬ 

mum speed is then (1000 -f- 140) = 1140 lb. Con¬ 

sidering steady horizontal flight, the value of the 

total drag of the airplane is equal to that of the 

thrust. At a dynamic pressure q = 184 lb/ft , the 

“drag area” is consequently 

D/q = CDS = 1140/184 = 6.2 ft* (3) 

The resultant drag coefficient (on total wing area 

of 172 ft2) 

CD = 0.036; or 0.0105 

on total wetted area of 590 ft2, indicates an airplane 

with comparatively poor aerodynamic efficiency (the 

Me-109 was first designed in 1935; size and output of 

the engine were doubled between then and 1944). 

Antenna rod 
Blisters 
Direction finder 
Exhaust stacks 
Gun portholes 
Intake air scoop 
Oil cooler 
Radiators 
automatic slats 

Figure 2. Three-view plan of the Me-109-G (1944.) 
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Induced Drag. For the given flight condition, the 

lift coefficient is CL = (W/S)/q = 0.21. Because of 

flow around the wing tips (see in the "drag-due-to- 

lift” chapter), the effective aspect ratio is estimated 

to be reduced from 6.1 to 5.8. Considering planform, 

the induced drag is increased by some 2%. Con¬ 

sequently: 

CDl = 1.02 0.212/(tt5.8)= 0.0025 

DL/q = 172 0.0025 = 0.42 ft2 (5) 

There is no twist built into the wing of the Me-109.- 

Subtracting the induced drag area from the total 

area, the tested parasite drag area is found to be 

f - D^/q = 5.8 ft2. 

(b) Drag Of The Wing 

Skin Friction. The average wing chord of the air¬ 

plane is S/b = 5 ft. The Reynolds number corres¬ 

ponding to maximum speed is thus Rt= V c/\T = 

1.1 107. The skin-friction drag coefficient of a smooth 

and plane surface at this R’number is approximately 

C^= 0.0028. Because of the sheet-metal gaps behind 

the slats and owing to the propeller slipstream, the 

flow of the boundary layer past the wing surfaces of 

the Me-109 is “fully” turbulent, however. Further¬ 

more, the skin of the Me-109 is coated with camouflage 

paint, the average grain size of which is in the order 

of h ~ k = 1 mil. This value exceeds the permissible 

size. The drag coefficient corresponding to a grain 

size of k/1 a? h/c = 1.7 10~Sis in the order of Cp= 

0.0035, as found in the chapter on “imperfections”, 

the drag area of the wing panels (outside the fuselage) 

is accordingly D/q = 1.28 2 0.0035 150 = 1.35 ft2, 

where “1.28” indicates the influence of section thick¬ 

ness (Chapter VI). The thickness ratio is t/c = 

14.2% at the roots and 11.3% near the wing tips. 

Surface Imperfections. The wing surfaces of the Me- 

109 are covered with numerous small protuberances 

such as sheet-metal joints and rivet heads, and with 

other irregularities such as gaps and holes. Number 

and size of these imperfections were determined on 

the airplane and added up in groups, separately for 

the two wing sides. The lower side has the following: 

Type of Imperfection 
2 

Area ft Cd/” c0+ D/q. ft2 

29 ft lateral sheet-metal edges S.— .16 0.10 0.013 

36 ft loteral surface gaps S.= -75 0.05 0.038 

50 ft longitudinal edges S4= -17 .004 0.001 

500 bolt heads S, — .40 0.01 0.004 

3500 flush rivet heads st— 1.5 .0014 0.002 

several sheet-metal blisters S4= .07 0.10 0.007 

The gaps are chiefly those around the covers of the 

retracted landing gear. Included in the sheet-metal 

edges are those of the many other covers of the Me- 

109 wing, bolted to the lower side by means of the 

500 bolts as listed. The drag coefficients used in the 

table are selected from the various graphs in Chapter 

V. The total drag area of this wing side is D/q = 

0.065 ft2. At the upper or suction side of the wing, 

the drag area due to imperfections is much smaller; 

D/q = 0.011 ft2. Imperfections on that side are care¬ 

fully covered with filler, or they are avoided by 

suitable design in the first place. Referring the drag 

of the imperfections to the exposed wing area (172 — 

22 = 150 ft2), additional skin-drag coefficients are 

obtained in the order of AC^.= 0.065/150 = 0.0005 

for the lower, and AC^= 0.011/150 = 0.0001 for the 

upper wing side. After adding these increments to 

the basic coefficient of 0.0035, the skin-drag coefficients 

are found to be 0.0040 for the lower, and 0.0036 

for the upper side. Taking into account the influence 

of thickness as well as that of lift (as explained in 

the “streamline” chapter), the average dynamic pres¬ 

sure ratio is 1.16 at the pressure side and 1.42 at the 

suction side, respectively. The section drag coefficient 

of this “actual-construction” wing is then 

CQs= 1.16 0 0040 + 1.42 0.0036 ~ 0.010 (8) 

The corresponding drag area is D. q = CQS = 1.47 ft'. 

Additional Components. The following sources of 

drag, common to both sides, are found on the Me-109 

wing: 

Drag Source 

Aileron gaps on both wing sides 

Aileron hinges on lower side 

Balance weights on the ailerons 

Gaps at the sides of the slots 

Gaps beside ailerons and flaps 

Air-speed Pitot-static tube 

2 Position lights on wing tips 

2 Blisters on upper wing side 

2 Holes around landing gear 

Area f,2 Cc.or Cxj+ D/q.ft4 

.70 0.025 0.018 

s.= .06 0.5 0.030 
s. — .09 0.3 0.027 

s.= .07 1.3 0.090 

s — .06 0.5 0.030 

0.010 

S. = .02 0.1 0.002 

s. — .20 0.1 0.020 

s — 
+ 

3.5 0.04 0.140 

Most of the drag coefficients are again taken from 

the graphs in Chapter V. Others are known from 

specific wind-tunnel tests (10,a) cn the respective 

parts. Including some interference drag near the 

trailing edge caused by the parts, the total of the 

additional items is in the order of D/q = 0.40 ft2. 
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(c) Drag Of The Fuselage 

Skin Friction. Because of the propeller slipstream, 

the flow of the boundary layer along the fuselage may 

be assumed to be turbulent from the beginning. For 

an average grain size of the camouflage paint coat 

of k = 1 mil, that is for k/1 = 2.8/106, the skin-drag 

coefficient is taken from Chapter V to be in the order 

of Cj.= 0.0025. The drag of all sheet-metal joints, 

gaps and rivet heads is again computed according 

to their number and size, and through the use of the 

drag coefficients listed in Chapter V. The resultant 

drag area is D/q = 0.069 ft2-. Referring this drag to 

the wetted surface of the fuselage, which is Swaj. = 250 

ft2, the additional drag corresponds to AC^ = 0.0003, 

and the total coefficient is (0.0025 -f- 0.0003) = 

0.0028. Accounting for the increased dynamic pres¬ 

sure along the sides of the fuselage by a factor of 

1.07 (see in the “streamline” chapter), the drag co¬ 

efficient (on wetted area) is increased to C^Vj(J^ = 

1.07 0.0028 — 0.0030. For a wetted area of 250 

f t^, the corresponding drag area is D/q = 0.75 ft . 

The Appendages listed in the following table present 

drag components, computed on the basis of frontal 

area and by means of drag coefficients selected from 

figure 3,b (for the canopy) and figure 39 (for the 

tail wheel) in Chapter XIII, and from reference 

10,a (for the antenna mast). The interference drag 

caused by these “added” bodies is estimated on the 

basis of the principles and equations derived in 

Chapter VIII. The canopy has so many edges around 

the window panes, and some gaps to permit the 

cockpit to be opened, that its final drag value is 

almost twice that of the smooth shape. The total of 

the fuselage’s appendages yields D/q = 0-63 ft 

Appendage Area, ft^ Cd 
Interference D/q. ft2 

Pilots Canopy 1.00 

Irregularities . 
Tail Wheel SQ= 0.50 

Antenna Mast S. = 0.14 

Antenna Parts .. 

Antenna Stick S# 0.03 

Gun Installation. 

0.10 19% 0.12 

50% 0.08 

0.58 0 0.29 

0.17 19% 0.03 

0.03 

1.50 10% 0.05 

- 0.03 

Wing Interference. Interference drag caused by add¬ 

ing the fuselage to the wing is twofold; induced and 

parasitic. The lift variation due to low-wing con¬ 

figuration may correspond to a ^C^ = L/qb^c 

less than+ 0.1 (see Chapter VIII). The corresponding 

constant component of induced drag is negligibly 

small. For the parasitic interference drag, an amount 

is estimated equal to that of the fraction of the wing 

covered by the fuselage. For a ratio b^.^b = 0.1, 

and for a chord of 7 ft at the wing roots, the inter¬ 

ference drag is found to be D/q = CQS = (0.01 7 

0.1 32) = 0.22 ft2. Including this value and that of 

the appendages above, the drag area of the fuselage 

is found to be D/q = 1.60 ft2. Referred to the frontal 

area S = 9 ft2, the drag coefficient is C£).= 1.60/9 

0.18 which is more than twice the value of the 

bare fuselage body. 

Slip Stream. The fuselage, all of its appendages and 

the wing roots are located within the propeller’s slip 

stream. This means that they are subjected to an 

average dynamic pressure which (at maximum air¬ 

plane speed) is estimated to be 10% higher than 

that corresponding to flight speed. Including the 

slip-stream effect, the fuselage’s total drag area is 

finally found to be D/q = 1.1 1.60 = 1.75 ft2. 

(d) Drag Of Appendages 

Engine Installation. The exposed parts of the engine 

installation consist of a number of necessary items 

near the nose of the fuselage, such as the air scoop 

and the oil cooler for instance, and of the two radi¬ 

ators underneath the wings (see figure 2). The follow¬ 

ing tabulation gives their drag characteristics. 

Component Part Area ft^ CD Interference D/q, ft2 

Air Scoop SD= 0.2 0.3 12% 0.067 

Intake Momemtum S0=: 0 2 0.4 0 0.080 

Exhaust Stacks S.— 0.1 0.5 12% 0.056 

Oil Cooler S„= 0.75 0.2 12% 0.168 

Ventilation Openings s0= 0.1 0.9 12% 0.100 

Wing Radiators 
Sn— 37 

0.18 — 0.660 

Total of the Engine Installation — — — - -- --- - _ 1.131 

The coefficient of the air scoop is estimated on the 

basis of figure 18 in Chapter IX. The momentum of 

the air volume taken in through the air scoop pre¬ 

sents a drag force as indicated by equation 20 in 

the “internal” chapter, corresponding to an esti¬ 

mated flow ratio of w/V = 0.2. The drag of the 

ventilation openings is determined through the use 

of a drag coefficient found in figure 23,b of the same 

chapter. The interference drag originating along 

the fuselage (because of engine parts), is found to 

be 12% of their basic drag (as per equation 9 in 

Chapter VIII). The drag of a radiator similar to one 

of the Me-109’s twin wing radiators is presented 

in figure 4 of Chapter IX; CDn~ 0.1, at an assumed 

w/V = 0.15. Only 0.04 of this is expected to be 

momentum drag. However, flight tests carried out 

with and without the radiators installed (10,d) indi¬ 

cate drag coefficients CDa between 0.15 and 0.21. 

These comparatively high coefficients correspond to 

poor aerodynamic design and considerable internal 

leakage.—The total drag area of and due to the 

engine components is multiplied by the slip-stream 

factor “1.1” as above; thus D/q =1.1 1.13 = 1.24 ft2. 
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Tail Surfaces. Not counting the portion covered by 

the fuselage, the horizontal tail surface presents an 

area of 25 ft2. The vertical-surface area is 11 ft2. For 

a grain size of the surface in the order of k = 1 mil, 

the skin-drag coefficient is C^= 0.004, as found in 

Chapter V. Due to a thickness ratio of t/c = 10%, 

the section-drag coefficient is Cqs = 2 1.2 0.004 = 

0.0096. Surface imperfections are accounted for in a 

manner similar to that as outlined above for the 

wing. The corresponding drag area is D/q = 0.007 

ft2 for the horizontal, and 0.009 ft2 for the vertical 

tail surface. The profile-drag coefficient is increased 

accordingly to 0.010, including the drag of the control 

gaps. Considering the boundary layer originating 

along the fuselage, the interference drag of the 

junctions between tail surfaces and fuselage walls 

is assumed to be zero. The parasite-drag area of the 

tail assembly is then D/q = 0.010(25 + 11) = 

0.36 ft2. — On account of the (negative) lift of the 

horizontal tail surface, a small induced drag com¬ 

ponent may exist in the high-speed condition con¬ 

sidered, in the order of D/q = 0.01 ft2. 

Compressibility. The sum of all parasitic drag com¬ 

ponents considered, is D/q = 5.14 ft2. At maximum 

horizontal speed in 22,000 ft altitude, the Mach 

number of the Me-109 is M = 0.55. As explained in 

Chapter XV, only a certain fraction of the total 

parasite drag established in the last paragraphs, in¬ 

creases as a function of Mach number. Assuming in 

this respect a fraction of 10%, that is 0.52 ft2, the 

additional drag on account of compressibility, in¬ 

dicated by equation 55 of the chapter quoted, is 

AD/q = ((‘P’)3- 1) 0.52 = 0.38 ft2 (11) 

where the Prandtl factor “P” = 1.2. Including this 

component, the “synthetic” parasite drag area is 

D/q = 5.6 ft2, a value that can be accepted as being 

sufficiently close to the 5.8 ft2 recalculated above 

from the high-speed performance (thrust) of the 

airplane. It is possible, of course, to find values which 

are plus/minus 5 or more % off the correct drag 

area, just by assuming drag coefficients for the various 

component parts, somewhat higher or lower than 

they should be, within the range of accuracy of the 

information available. 

(e) Results Of Me-109 Analysis 

Parasite Drag Coefficient. The various drag com¬ 

ponents calculated in the foregoing paragraphs are 

plotted in figure 3. Not including induced drag, or 

momentum drag of the engine’s air intake, and not 

counting the drag of the tail wheel, the resultant 

drag coefficient (on wing area of 172 ft2) is Cqs= 

0.028. A coefficient of CDs = 0.030 was tested (10,c) 

in this condition in “la soufflerie la plus grande” at 

Chalais-Meudon near Paris in 1941 by placing a 

full-scale Me-109 in that tunnel. The difference in 

the coefficient is easily explained on the basis of 

Reynolds number. On wing chord, the number is 

Rc= 4 106in the tunnel, while in flying condition 

Rc - 2 107. 

0 0.2 0.4 0.6 0.8 1.0 

Surface Imperfections. The wetted surface of the 

Me-109 shows transverse sheet-metal edges and gaps 

with a total reference area of approximately 0.4% 

of that surface. The average number of (flush) rivet 

heads (as far as they are not filled with paint) is in 

the order of 30 on a square foot. These figures cor¬ 

respond, of course, to design and construction of 

the Me-109 which is likely to be obsolete in com¬ 

parison to modern airplanes of same or similar type. 

Another consequence of surface roughness (not dem¬ 

onstrated as such in the Me-109 analysis) is the fact 

that, caused by imperfections (and the propeller 

slip stream), the flow within the boundary layer is 

rendered turbulent, over practically all of the wetted 

surface of this aircraft. More modern airplanes most 

likely have less roughness in their wetted surface, 

and they may not have propellers any longer, so that 

their “skin drag” coefficient will be less than that 

of the Me-109. 
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Figure 3. Drag analysis of the Me-109 airplane (figure 2) at 
Y _ 610 km/h, C, = 0.21 and M = 0.55. 
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Main Components. The drag analysis of the Me-109 

shows that the drag of an actual-construction air¬ 

plane can realistically be predicted “from scratch”, 

by applying the methods developed in this book, 

particularly in reference to surface imperfections 

and interference effects. Considering distribution of 

the total drag, percentages are found as follows: 

wing, including surface roughness . 37.5% 

fuselage, with roughness and canopy . 13.7% 

tail surfaces, including roughness . 6-9% 

engine and radiator installation . 23.3% 

appendages (as armament and tail wheel) .... 11.4% 

induced drag (at maximum speed) . 7.2% 

(13) Drag characteristics of Heinkel He-70 airplane: 
a) Full scale (Zts.Flugt.Motorluft Dec. 1933): 
W = 3330 kg; S = 36.5 m*; Vmax = 235 mph, with 
maximum power of 660 HP at sea level. 
b) Jones and Smyth, Models, ARC RM 1709 (1936). 
c) Results quoted in J.Aeron.Sci. 1940 p.425. 

(14) Full-scale performance of airplanes: 
a) Richards, "Cleanness”, J.Roy.Aeron Soc. 1950 p.137. 
b) Hoerner, Skin Friction Analysis, Lufo 1935 p.188. 
c) Collection of Airplane Data in Aviation Week, 14 
March 1955. 
d) Jane's “All the World’s Aircraft", Volumes since 1909. 
e) RAE, "Spitfire” and "Mustang", ARC RM 2535(1951). 
f) Sinclair, Vickers Viscount J.SLAE May 1956 p.3. 
g) Military Aircraft, Flight 1956 p.699. 
h) Clarkson, Efficiency, The Aeroplane 1938 p.474. 
i) NACA, Qualities of Douglas DC-3, Tech Note 3088. 
k) DeHav."Comet”, The Aeroplane, 6 Jan, 6 July 1956. 
l) Fahey, U.S. Army Aaircraft 1908 to 1946 and USAF 
Aircraft 1947 to 1956, by "Ships and Aircraft", Falls 
Church (Va.). 
m) Hall, Ryan "Spirit of St. Louis”, NACA T.Note 257 
n) Fischer-Poturzyn, Junkers and World Aviation, Munich 
1935. ' 
o) Littlewood, Trends in Transport, J.A.Sci.1953 p.225. 
p) From publications in aeronautical magazines. 

The engine installation presents more drag (in this 

case) than the fuselage without appendages. The 

share of the radiator on total parasite drag, which is 

almost 16%, must be considered to be very high. 

Aerodynamic Efficiency. Considering drag on the 

basis of origin, the following breakdown is found 

for the Me-109: 

skin-friction drag (smooth surface, turbulent) 33% 

surface roughness and surface imperfections 15% 

exposed parts, especially those of the engine 33% 

interference drag (including that due to parts) 6% 

influence of compressibility (on 10% of drag) 6% 

induced drag under maximum-speed conditions 7% 

Several definitions are possible for an aerodynamic 

“efficiency” ratio 

Vro = Do*fol/D±0t«l (12) 

depending upon what is understood as “useful” or 

"necessary” or “unavoidable”. Considering, for in¬ 

stance, in the last tabulation, the skin-friction drag 

and the induced drag as minimum limit of the use¬ 

ful drag, the efficiency of the Me-109 is but 40%. 

This figure indicates that more than half of the 

total drag of this airplane could theoretically be 

avoided by extremely clean design and faultless 

construction of skin and details. If rebuilding the 

Me-109 in a manner that rja would reach 100%, the 

maximum speed would be increased from 610 to 

some 800 km/h, if using the same power plant. 

o.o3 

C-Dswet 

BIPLANES 

O.o2 -|- *■- 36- 

Figure 4. Historical survey of parasite drag coefficient (on wetted 
surface area) of airplanes. Note that the contribution of induced 
drag (not shown in the graph) has also considerably decreased 
over the years, from some 30% of the parasite drag (as in the Wright 
Brother’s craft) to some 20% around 1920, and to «*5% in today’s 
fastest airplanes. 
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3. PERFORMANCE OF OTHER AIRPLANES 

Performance of airplanes is a function not only of 

aerodynamic drag, but also of lift and weight. Essen¬ 

tially two aerodynamic aspects are considered as fol- 

ows; drag at maximum speed (where the lift coeffi¬ 

cient is comparatively small) and drag as a function 

of lift. 

(a) Maximum Speed Performance 

A large proportion of model testing in the field of 

shipbuilding (XI) and of land-borne vehicles (XII) 

is simply done to find the magnitude of “resistance” 

which is then used to predict full-scale power require¬ 

ments. This is not really done in the development of 

airplanes; that is, not by testing truly similar models 

in wind tunnels. Rather, full-scale drag is estimated 

on statistical basis, or it is calculated by means of 

methods similar to those presented in this book. 

Aerodynamic Cleanness. Maximum speed is of course 

a function of drag; and drag (per unit of wetted area) 

is a matter of design, constructional expenditure and 

application of the airplane. For example, the wire- 

braced airplanes of the era between 1903 and 1920 

(beginning with the Wright Brothers’ famous craft) 

had a very low aerodynamic efficiency. Figure 4 in¬ 

dicates for them a drag coefficient (on wetted area) in 

the order of some 6 times the theoretically possible 

minimum corresponding to turbulent skin friction. 

The graph then shows the influence of the so-called 

World Wars I and II upon development. Between 

1930 and 1940 the drag coefficients were still com¬ 

paratively high in the airplane types in general ser¬ 

vice at that time — while a few experimental and/or 

progressive designs had values comparable to the more 

advanced airplanes of today. Since the Wright Broth¬ 

ers’ days, airplanes have very much been “cleaned up”, 

so that the drag of those particularly designed for high 

speed, is now approximately equal to their skin fric¬ 

tion drag (assumed to be turbulent). One more ex¬ 

perience can be mentioned, namely that military air¬ 

planes usually start out comparatively clean, and that 

the various requirements of armament and operation 

may finally make them into “Christmas Trees” (see 

Chapter XIII in regard to appendages). 

As a Function of R’number — figure 5 presents a cor¬ 

relation of model-tested drag coefficients of a certain 

airplane design, with a value recalculated from full- 

scale performance. The wind-tunnel results have 

been obtained on smooth models and at R’numbers 

below completed transition. The fact that some 

of the model data are on the same level as the full- 

scale point, is only accidental. Using truly similar 

models (including roughness and internal flow) and 

forcing transition (by turbulence stimulation of the 

boundary layer), we would obtain considerably higher 

coefficients, as indicated by the line meeting the full- 

scale point. This mechanism is fully realized in ship- 

model testing (Chapter XI) where skin friction is 

purposely made turbulent, and is then reduced ana¬ 

lytically in proportion to the basic functions presented 

in Chapter II (equation 25). With respect to air¬ 

planes, it is the very purpose of this book to establish 

and to present a method of predicting full-scale drag 

Figure 5. Correlation (13) of 
model-tested minimum drag 
coefficients (on wing area) 
with full scale condition. 
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“from scrap”, including items which cannot very 

well be imitated in a model, such as leakage for ex¬ 

ample, and surface imperfections (which would be 

likely not to be similar in a boundary layer thick¬ 

ened by turbulence stimulation). 

Drag Breakdown. Drag of two or more (compar¬ 

atively modern) airplanes has been analyzed in the 

manner outlined in section 2 of this chapter. Prin¬ 

cipal results are as follows: 

Junkers Ju-88 Bomber. This airplane, put into ser¬ 

vice in 1940, has the following data: 

gross weight 

wing area 

maximum speed 

aspect ratio 

maximum power 

at altitude 

W = 22000 lb 

S = 560 ft2 

V = 280 mph 

A = 6.3 - 

P = 1900 HP 

z — 18000 ft 

Assuming a propeller efficiency of 78%, and taking 

into account 250 lb of exhaust thrust, the drag area 

is found to be D/q — 20 ft2; = 0.036. Analysis 

gives the following distribution: 

induced drag of the wing 

parasite drag of wing 

drag of the fuselage 

drag of tail surfaces . 

drag of the nacelles 

4.1 ft2- . 21% 

7.0 ft2 . 35% 

3.1 ft2 . 16% 

2.0 ft2 . 10% 

3.6 ft2 . 18% 

The induced drag has a much higher percentage in 

this case (at CL = 0.35) than in the case of the 

Me-109 or other fighter airplanes. The profile-drag 

coefficient of the wing, including imperfections and 

aileron gaps is Cq& = 0.0125, which is approximately 

twice the drag of an ideal (smooth and undisturbed) 

wing with t/c = 13.5%. The drag coefficient of the 

fuselage, based on frontal area of 21 ft?, is C^— 

0.15. The profile-drag coefficient of the tail surfaces is 

in the order of 0.11 for 13% thickness ratio. The 

drag coefficient on total wetted area, in the order of 

CDwet= 0 010> is comparatively high. It can there¬ 
fore be concluded that this airplane (with a pair of 

rather “bluff” engine nacelles and with all sorts of 

military equipment) was not very efficient in aero¬ 

dynamic respect. 

YEAR airplane type b(ft) 

1903 V/right-Brothers RP biplane 40 

1927 "Spirit of St.Louis" RP personal 46 

1938 Flfe’sejLer "Stork" RP S T 0 L 47 

1935 Messerschmitt-I08 RP personal 34 

1945 Piper "Cub" RP personal 35 

1948 Beech "Bonanza" RP personal 33 

1950 Cessna "170" RP personal 36 

1942 MeBserschmitt-109 HP fighter 32 

1943 N.A. P-51 "Mustang" RP fighter 37 

1943 Mes8erschmitt-262 TJ fighter 34 

1944 Me3serschmitt-163 RO interceptor 31 

1946 Lockheed P-80 TJ fighter 39 

1932 JunkerB "Ju-52" RP passenger 98 

1934 Douglas "DC-2" RP passenger 85 

1934 Heinkel "He-70" RP passenger 49 

1946 Lock "Constellation" RP passenger 123 

1951 Douglas "DC-6B" RP airliner 117 

1953 DeHavilland "Comet" T airliner 115 

1954 Vickers "Viscount" TP airliner 94 

1940 Heinkel "He-III.H" RP bomber 74 

1940 Junkers "Ju-88,A" RP bomber 66 

1942 Boeing "B-17»G" RP bomber 104 

1943 Measerschmitt-210 RP bomber 54 

1943 Boeing "B-29,B" RP bomber 142 

s(ft2) W(lb) "POWER" z(ft) V,kts. 

510 750 12 HP 0 26 

319 (3000) 223 HP 0 112 

280 2700 240 HP 0 95 

173 2800 230 HP 0 160 

179 1500 135 HP 0 110 

178 2700 220 HP 0 169 

175 2200 140 HP 0 122 

172 6700 1200 HP 22000 330 

235 10000 1380 HP 20000) 380 

233 10800 2500 lb 10000 450 

186 80C0 1500 lb 13000 500 

238 11 COO 4000 lb J-33 480 

1190 22000 2000 HP 5000 170 

940 18000 1400 HP 7000 185 

390 7300 660 HP 0 203 

1650 80000 8000 HP 14000 300 

1463 100000 7600 HP 16000 325 

2120 150000 42C0C lb 37C00 440 

960 65000 7600 HP 35C00 300 

942 25000 2600 HP 13000 200 

590 25000 20C0 HP 18000 245 

960 52000 4000 HP 14000 270 

390 21000 2300 HP 190C0 310 

1730 133000 80C0 HP 14C00 305 

CD CDs °D.et 
NOTES 

0.074 0.046 0.020 17 December 1903 

0.033 0.029 0.010 Lindberg - Atlantic 

0.066 0.061 0.014 fixed wing slots 

0.018) 0.016) 0.005 modern - personal 

0.032) 0.029) 0.009) struts ♦ Landg.gear 

0.018) 0.016) 0.005) retracted landg’gear 

0.032 0.029 0.009 struts + landg.gear 

0.036 0.033 0.0095 with bluff radiators 

0.020 0.017 0.0040 w'laminar profile 

0.022 0.021 0.0059 "first" jet plane 

0.013 C.012 0.0035 rocket-powered 

0.021 C .020 0.0050 holds speed record 

0.032 0.028 0.0080 corrugated skin 

0.021 0.018 C.0045 "first" modern 

0.013 0.012 0.0038 very clean design 

0.019) 0.017) 0.005) modern airliner 

C.019) 0.017) 0.005) large airliner 

0.016) 0.014) 0.0037) large turbo-prop 

0.017) C.015) 0.004) British turbo-prop 

0.026 0.023 0.0070 now an "old" bomber 

C .036 0.028 0.0079 in World War II 

0.028 0.024 0.0070 in World War II 

C .028 0.024 0.0070 in World War II 

0.033 0.030 0.0077 atomic bomb carrier 

TABLE A, showing dimensions and performance of a very few among the hundreds or 
thousands of airplane types developed since 1903. Note that power (or thrust, respec¬ 
tively) and maximum speed are both a function of altitude, and that information on both 
of them is usually less accurate than on the dimensions of an airplane. The drag coetti- 
cients are evaluated from maximum speed performance; values in parentheses are only 
estimated. The years quoted are usually not those of the first appearance of the partic¬ 
ular airplane types; rather they are the years in which those airplanes became predominant 
or in which they had power and performance as listed. Successful airplane designs usually 
undergo considerable and repeated changes in this respect. Also one and the same type 
may have different performance values, as a function of load and/or equipment carried. 
Ratios such as W/S, P/S, P/W or A = ba/S and Swet/S == Cp/Cuwet can be de¬ 
rived from the data as listed. The letters under the heading type indicate the type of 
propulsion; RP = reciprocating engine plus propeller, TJ = Turbo-jet propulsion, TP 
L turbo-propeller combination, RO = rocket power. The "power of jet-type engines is 

usually given in pounds of static thrust. 
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Messerschmitt Me-262. The production version of 

this first type of jet airplane ever used in actual ser¬ 

vice, has the following data: 

gross weight 

wing area 

maximum speed 

aspect ratio 

thrust power 

at altitude 

W = 10600 lb 

S = 233 ft2 

V = 520 mph 

A = 7.2 - 

P = 2900 HP 

z = 7000 ft 

The drag area corresponding to these conditions is 

D/q = 5.0 ft2; CDwep — 0.006. Analysis shows the 

following distribution: 

induced drag of the wing .. 0.1 ft2 .. ... 2% 

parasite drag of the wing .. 1.6 ft2 . 32% 

drag of the fuselage . 1.6 ft2 32% 

drag of the tail surfaces .. 0.7 ft2 ... H% 

drag of the two nacelles . .. 1.0 ft2 .. 20% 

An increment of 15% due to compressibility (see 

Chapter XV) at a Mach number of 0.67 is included in 

the total value. The surface imperfections are small 

in case of the Me-262. The profile-drag coefficient of 

the wing is only 0.0073; the coefficient of the fuselage 

is only 0.08, based upon a frontal area of some 19 ft2. 

The drag of the jet engine nacelles is appreciable; 

particularly caused by interference with the wing. 

Wetted-Area Drag Coefficient. Assuming that most of 

the drag of an airplane is skin friction, and that the 

rest is somehow an added percentage, drag areas “f” 

= (D/q) can statistically be considered as a function 

of total wetted area (of wing plus nacelles plus fuse¬ 

lage plus tail). Table A presents some such results, 

evaluated from performance data of various airplanes 

published in (14). Certain groups can be identified as 

per period of time and application. Commercial air¬ 

planes (and military cargo airplanes) have usually 

somewhat lower drag coefficients than comparable 

military combat planes. As an example for low aero¬ 

dynamic efficiency, the Fieseler “Stork” is listed in the 

table. This airplane was not designed for fast or con¬ 

tinued flying; rather its puropse was to fly as slowly 

as practicable, replacing the helicopter type of aircraft 

which was not yet available at that time (1937). The 

“Stork” was consequently constructed as light as pos¬ 

sible, equipped with a non-retractable landing gear, 

and fitted with a fixed wing slot all over the span 

(C[_max= 3.4, including the additional lift due to pro¬ 

peller). — It is also seen in the table as well as in figure 

4, that at one and the same time, the drag coefficient 

CiJWpi may vary as much as between 0.01 A (for the 

“Stork”) and 0.004 (for “P-51, Mustang”, a very pro¬ 

gressive fighter airplane for its time). It is also seen 

that the drag coefficient of a certain type of airplane 

decreases with time; so for example from 0.008 (for 

Junkers-52 in 1933) to 0.005 (for “Constellation” in 

1947) and to 0.004 or less (for “Viscount” in 1955). 

Sweep. Figures 6 and 7 show examples of modern 

highly efficient airplanes. The two airplanes do not 

really reach any critical (near-sonic) speeds. It is 

therefore suggested that the swept shape of their 

wings is primarily a matter of arrangement. 

Figure 6. Plan-form view of a modern turbo airliner, De Havilland 
''Comet 4” (1956), developed from "Comet 1” (1949). 

W ~ 150000 lb T ~ 42000 lb 
b = 115 ft V* « 450 kts 
S = 2120 ft2 Z ~ 37000 ft 

Figure 7. Plan-form view of Me-163 interceptor fighter, first suc¬ 
cessful rocket-powered airplane (1944). W = 9000 lb, b -- 31 
ft, S = 186 ft2, VWOT ^1000 km/h (1941, in smooth and clean 
condition). Climb speed 11600 ft/min% 
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Aerodynamic Efficiency can have various definitions. 
Assuming as an average skin-friction drag coefficient 
(including the influence of wing- and fuselage thick¬ 
ness) the value of 0.003, aerodynamic efficiency is ap¬ 
proximately indicated by 

n« - <15) 
where CDvva^represents the parasitic drag at high or 
cruising speed. Efficiency increases from some 15% 
(Wright Brothers in 1903) to some 100% in more or 

less experimental or not completely outfitted, clean 
airplanes as of today. 

Maximum Speed is not only a function of drag, but 
also of power installed. Power is evidently 

P = 0.5 y V3CdS (16) 

It follows from this function (in a fixed altitude; with 
= constant) that %naK''-' Pma/S . Figure 8 pre¬ 

sents some statistical information in this form. The 
available data correspond to drag coefficients (on wing 
area) between 0.015 and 0.035. It must be mentioned 
at this point, however, that compressibility (Mach 
number) sets a limit to the maximum speed obtainable 
with subsonic types of aircraft; see Chapter XV. 

Seaplanes and flying boats, data of which are not in¬ 
cluded in our statistical survey, are basically handi¬ 
capped by the type of configuration, ruggedness and 
structural accomodations necessary for operation in, 
out and onto water. Some information on their drag 
is presented in Chapter XIII. 

Figure 8. Statistical survey on maximum speed of airplanes (14) 
as a function of their power ratio P/S. Note that performance de¬ 
pends not only on power, but also upon altitude, type of airplane 
(loading and equipment) and aerodynamic refinement, such as a 
retractable landing gear, in particular. 

o .2. .4 .6 .8 l.o 1.2 14 l.fc 1.8 2.0 

Figure 9. Drag coefficients of the Me-109 (10), plotted versus 
the square of the lift coefficient. 

(15) Airplane models in wind tunnels: 
a) NPL, He-70 Airplane, ARC RM 1709 (1936); 
see "Boundary Layer and Wake”, J.Aeron.Sci. 1940 p.425. 
b) RAE, Tunnel Tests on Fighters, ARC RM 2535(14,e). 

(16) Dimensions and performance characteristics of the Wright 
Brothers airplane, as given in the Smithsonian Institution 
in Washington (DC). 2 

(18) Principles and application of CD(C. ) method: 
a) Oswald, General Formulas and Charts for the 
Calculation of Airplane Performance, NACA Tech.Rpt 408 
(1932) ; also Tech.Rpt 654 (1939). 
b) Driggs, Aircraft Analysis, Paper RAS London 1949. 

(19) Characteristics of sailplanes: 
a) Lippisch, Sailplane Perfomance, Lufo 1934 p.127. 
b) Muttray, Wing and Fuselage, Lufo 1934 p. 131. 

(20) Airplane drag as a function of lift: 
a) ARC, Junkers Full Scale and Model, RM 945 (1924). 
b) ARC, Glides of Bristol Fighter, RM 1133 and 1146; 
also with propeller in RM 937, 1083, 1085. 
c) Raspet, Cessna-120, Aeron.Soc.India J. 1952 p.115. 

A VERY CLEAN FIGHTERS 
a U S. FIGHTER AIRPLANES 
• MODERN AIRLINERS 
o U.S. BOMBER AIRPLANES 
+ GERMAN BOMBERS 
x JUNKERS FAMILY 
▼ PERSONAL AIRPLANES 
V SMALL PERSONAL 
I 1919 FIGHTER BIPLANES 
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(b) Drag Due To Lift 

Drag due to lift is primarily induced drag (Chapter 

VII). However, other components of drag also in¬ 

crease as a function of lift coefficient, as shown for the 

foil section drag (Chapter VI), the interference drag 

(Chapter VIII), and the drag of other aircraft parts 

(Chapter XIII). 

Z 
Cd(Cl) Method. The type of plot presented in fig¬ 

ures 9 and 10 is based upon the assumption or approx¬ 

imation that all increments of the drag coefficient 

might, at least on the average, be proportional to the 

square of the lift coefficient. Such an approximation 

is encouraged by similar plots, in figures 24 and 38 of 

the “interference” chapter and by a number of graphs 

in the “due to lift” chapter. The concept of CQ1_ ~ 

C® has, therefore, led to a method of performance 

calculation sometimes called the “e” method (18). In 

form of an equation thus: 

CD = CDo+ <dVdC^»CJ <18> 

where CDo = parasite drag coefficient, obtained by 

extrapolation to C^ = 0. The drag due to lift is then 

indicated in terms of the induced drag: 

CDL= c?/(^e*A) (19) 

where “e” (usually smaller than unity) indicates an 

equivalent or effective aspect ratio A*L — eA. In other 

words, the aspect ratio of the wing or airplane, the 

performance of which is to be calculated, is considered 

to be decreased by the factor e = A;/A. The effec¬ 

tive aspect ratio, similar in definition to that employed 

in Chapter VII, thus leads to a polar diagram which 

approximately describes the characteristics of the ac¬ 

tual airplane. Interpolating the tested points in a plot 

such as in figure 9 by a straight line, the “e” factor is 

determined by the slope (dCD/dC®) in relation to 

that of the minimum possible induced drag (C®/Air )• 

Analysis Of Me-109. Figure 9 presents drag charac¬ 

teristics of the Me-109, as a function of lift, tested on 

a wind tunnel model (10,e) as well as in full scale 

(gliding). The 1939 version of the Me-109 (desig¬ 

nated “E”) differs from the model G (as considered 

in the first section of this chapter) chiefly by shorter 

wing tips; the wing area is but 162 ft® and the aspect 

ratio is only 5.2. The full-scale drag due to lift 

slope (dC^/dC®) is consequently greater than that of 

the model. — A drag analysis of the Me-109, similar to 

that presented for maximum-speed condition (in Sec¬ 

tion 2), has also been made (12) for CL= 1, a condition 

that approximately corresponds to minimum sinking 

speed of that airplane. Induced drag is, of course, 

based on aspect ratio. Section drag as a function of 

lift is estimated, using equation 18 in Chapter VI. 

At C|_= 1, the drag of the radiator corresponds to a 

flow ratio of w/V = 0.27. Finally, the horizontal 

tail presents increments of appreciable magnitude, 

both of induced drag as explained in Chapter VII and 

of parasite drag (as shown in figure 32 of Chapter XIII). 

The total drag in power-off flight as plotted in figure 

9 is approximately composed of a basic parasite com¬ 

ponent of (“CDhl;n” = 0.029) and a component due to 

lift, which is approximately proportional to C® (as 

explained above). The latter component may roughly 

be broken down as follows: 

type of drag_dCB/dC®_% 

Parasite wing drag (including parts) 0.010 11 
induced drag of the wing (A = 5.2) 0.061 69 
drag of and due to fuselage 0.009 10 
parasite drag of the tail surfaces 0.004 4 
induced drag of the horizontal tail 0.005 6 
total drag due to lift 0.088 100 

Full-scale characteristics in figure 9 also differ from 

the model results in the value of minimum drag co¬ 

efficient (the model is too smooth). 

Effective Aspect Ratio. Inasmuch as parasitic drag is 

not related to induced drag and aspect ratio, the con¬ 

cept of “e” does not have a theoretical basis. The differ¬ 

ential (1 — e) should be expected to increase in pro¬ 

portion to the aspect ratio “A”. Representation of 

the effective aspect ratio by 

AA = (e - 1)A (20) 

is therefore preferred in this book. The differential 

A A is obtained by comparing a tested CD(C®) func¬ 

tion against the theoretical minimum; thus 

A A/A = ((dcjydCD)/it A) - 1 (21) 

The drag-due to lift coefficient of the Me-109-E at 

C[_ = 1, corresponding to dC^/dC® = 0.089, is by 

0.027 larger than that of the induced drag (as indi¬ 

cated by lifting line theory), in the power-off condi¬ 

tion represented in figure 9. The increment (about 

equally caused by tail, sectional wing drag and fuse¬ 

lage interference) is appreciable. In terms of an effec¬ 

tive decrease of the aspect ratio, the value “0.027” cor¬ 

responds to AA = — 1.6. The “gliding ratio” is L/D 

= 1/0.117 = 8.6, at Cl = 1- The maximum of this 

ratio is ~ 9.6 at Cl between 0.6 and 0.7. — The Me- 

109-G model (in figure 9) has a lesser drag-due-to-lift 

slope (dCD/dC® = 0.061), not only because of its 

larger aspect ratio, but also on account of its greater 

smoothness. In terms of the effective aspect ratio, the 

result is AA = — 0.9 for the model of the 109-G. 
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Figure. 10. Drag-due-to-lift characteristics of a sail-plane model 
(19,b), tested at Rc = 5 10s. 

Sailplane. Figure 10 presents the drag and lift charac¬ 

teristics of a sailplane tested on a model in the con¬ 

figurations as indicated. The low-wing type is more 

favorable than the high-wing arrangement, particu¬ 

larly after adding a minimum size windshield. Based 

on its frontal area (equal to 1/300 of the wing area), 

the drag of the canopy corresponds to CD. ~ 0.8 at 

CL~ 0.5, roughly alike for the two configurations 

tested. However, at Cl = 1.4, the coefficient is CQ> 

= 1.9 for low-wing and =3.1 for high-wing arrange¬ 

ment. These values remind of the results found for 

plates (disks) presented at the end of the “interfer¬ 

ence” chapter. Figure 10 also demonstrates the limita¬ 

tions of the Cq(Cl) concept. The lines obtained are 

not really straight. They can only be approximated by 

straight lines within a certain range of the lift coeffi¬ 

cient, which in the highly cambered section applied in 

the sailplane considered, may be between Cl = 0.4 

and 1.0. 

Optimum Lift. An important point in the drag and 

lift characteristics of an airplane is the lift coefficient 

where Cd/Cl is at a minimum. This point is found 

by the tangent line through the origin as drawn, for 

illustration, in th|e lower part of figure 11. In wings 

or in airplane configurations in which the drag com¬ 

ponent due to lift (Cdl) is sufficiently well propor¬ 

tional to the square of the lift (C^), the total drag 

(21) Lanchester: "An aerodrome (airplane) will travel the 
greatest distance on a given supply of energy when its 
aerodynamic (due to lift) and direct (parasitic) resistances 
are equal to one another.’’ 

coefficient at the point of (D/L)mtr] or (L/D)mQX 

is two times the parasitic or minimum coefficient: 

CD=2CWni or CbL = CWn (22) 

Assuming that Cdl = C^i, the statement (21) can 

also be made that at the optimum point considered: 

CDS= CDi ; or C^ = 2 cJ/(* A) (23) 

Sinking Speed. The significance of the point where 

(D/L) is minimum, is demonstrated in the upper 

part of figure 11. Every wing or airplane has basically 

its maximum range or most favorable gliding per¬ 

formance at the speed corresponding to the lift co¬ 

efficient (C[_ = 0.9, in the example) at which the 

(Cq/Cl) ratio is minimum. The connection between 

upper and lower part of the illustration is approx¬ 

imately given by 

V = V/(2W/9S)//C^ (24) 

w = (/(2W/9S)'(Cd/C ft (25) 

The latter equation also shows that minimum sink¬ 

ing speeds (maximum ceiling and smallest turning 

circle) are obtained at a speed “V” corresponding 

to the Cl value at which (Cq/Cl ) or (C^ /C^ ) is 

minimum. That lift coefficient is always above the 

value at which (C^/Cl) = minimum. The minimum 

“drag ratio” of the sailplane in figurell is 3.2%; the 

corresponding “gliding ratio” (L/D) is 31, obtained 

in an aspect ratio A = 19. Other high-performance 

sailplanes have been built with still higher aspect 

ratios, up to the order of 30. 

o 10 20 30 -to 

Figure 11. So-called speed polar diagram (upper part) and drag- 
lift function (lower part) of the high performance 
sailplane "Sao Paulo" (19,a). 
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(c) Influence Of Thrust 

Analysis of flight performance is not directly a subject 

of this book. Inasmuch as drag is a principal basis of 

performance calculation, it is believed, however, that 

the influence of thrust (propeller or jet) on drag due 

to lift must be explained. 

Lift Due to Thrust. In a combination of wing plus 

propeller (and slipstream), the lift is usually in¬ 

creased over that of the plain wing. Theoretical 

analysis (22,a) indicates for airplane configurations 

of conventional design (with propeller diameter “d” 

Figure 12. Increment of lift due to tractor-propeller thrust in 
various airplane configurations (22). Theory as per equation 30. 

(22) Influence of slipstream on lift and drag: 
a) Smelt-Davies, Increase of Lift, ARC RM 1788 (1937). 
b) Pleines, "Bussard", Lufo 1935 p.142. 
c) Stiiper, Wing-Propeller Interaction, Ringbuch Luftftech. 
Part IA12 (1939) ; also Lufo 1935 p.267, 1938 p.181. 
d) Muttray, Running Propeller, Lufo 1938 p.181. 
e) NACA, Systematic Nacelle-Propeller Combinations, 
T.Rpts. 415, 436, 462, 505, 506, 569 (1932 to 1936). 
f) ARC Reports RM 1512, 1624, 1797 (1932 to 1937). 
g) Hoerner, Fieseler "Stork”, Yearbk D.Lufo 1939 p.I,238. 
h) Aiken, Air Load Distribution, NACA T.Note 1729. 
i) Kuhn-Draper, wing-propeller combinations for 
vertical take-off, NACA T.Notes 3304, 3360, 3364. 
k) NACA, Distribution of Air Load, T.Note 1729 
also RM L9B10 (wing, fuselage, tail). 
l) Rethorst, In VTOL Aircraft, Aero Engg. Review 
Oct 1956 p.42; see also his Dr. Thesis to be published 
m) NACA, 4-Engine Airplane, Tech Note 3789 (1956). 
n) Thompson, Pusher Tractor Propellers, ARC RM 2516. 

(24) Squire-Young, Calculation of Induced Drag Due 
to Propeller Slipstream, ARC RM 2368 (1950). 

(26) Schrenk, Interaction Between Airframe and Engine 
Installation, ZFM 1927 p.399 and 1931 p.695 & 721. 

(28) The wetted area of airplanes is on the average roughly: 
Swe-j- = (2 S) + (0.3 S, for tail surfaces) + (1.3 S, for 
fuselage) + (0.3 S, for twin nacelles, if any) ; where S = 
projected wing area. 
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in the order of the wing chord) an approximate in¬ 

crement 

ACl « 0.5 CTCLon (d/b) (30) 

where CT = T/qS0; SQ = d"ir/4; n = number 

of propellers installed; and (d/b) = propeller di¬ 

ameter in relation to wing span. Figure 12 proves 

that the equation correctly describes certain mid-wing 

arrangements. Flapped wings (22,i) and configur¬ 

ations with some basic flow separation above the fuse¬ 

lage (22,g) show higher increments, however, in the 

order of twice that as predicted by the equation. Low- 

wing airplanes too (22,h) have increments in somewhat 

increased order of magnitude. Reference (22,e) gives 

similar results for low-wing combinations. Other ex¬ 

perimental results in this source show that in high- 

wing nacelle configurations, the increment is less, 

possibly only half of that as indicated by equation 

30. It evidently matters whether the slipstream is 

blowing in the direction of, or against the wing’s cir¬ 

culation. 

Climbing. The thrust of an airplane does not only 

vary with speed; in full-power climb, thrust is also 

different from that in steady and straight horizontal 

flight at one and the same speed. Inasmuch as drag 

due to lift is of primary importance in prediction 

and/or analysis of climb performance, we will consider 

an airplane at constant effective power (tentatively 

made possible by means of a variable-pitch propeller). 

The thrust available is. then 

T ~ 1/V; andCT~CL/2 (31) 

Figure 13 presents an example confirming this trend; 

and there are other sources (22) showing similar re¬ 

sults. 

Figure 13. Coefficient of total lift (corresponding to weight) of 
North American "Mustang” (22,k) in full-power flight, plotted 
against that of the lift produced in wing panels and the hori¬ 
zontal tail (measured by strain gages). The differential is essen¬ 
tially due to propeller slipstream. 
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Drag Due to Slipstream is twofold. First, the para¬ 

sitic drag of the airplane’s components located within 

the slipstream is increased, approximately in propor¬ 

tion to the increased dynamic pressure within the 

stream. This type of drag is mentioned in the M-109 

example in Section 2. Second, the lift increment as 

per ecpiation 30 results in additional (or in a different 

component of) induced drag. It is clear then that in 

an airplane with operating propeller, the simple con¬ 

cept of one certain effective aspect ratio can no longer 

be adequate. In other words, the effective aspect ratio 

is a function of power or thrust applied. This mech¬ 

anism becomes very much evident in the extreme case 

of “STOL” (short take-off and landing) or “VTOL” 

(vertical take-off and landing) aircraft (22,1). They 

develop lift « thrust at V~^~0; and their effective 

aspect ratio consequently approaches infinity in that 

condition. — The component of drag corresponding 

to the increment of lift due to thrust as explained 

above, is tentatively 

ACdL = ACLCvj = ACl Cl>A (33) 

where 0(^ is the induced angle of the wing without 

propeller, at the lift coefficient “C^0”. 

Climb Performance. As a simplified case, a midwing 

airplane may be considered, with a lift increment as 

per equation 30 and a drag increment as indicated by 

equation 33. Inasmuch as CD-Lcorresponds to an 

“c<;L” determined on the basis of Clo (rather than 

Cl = CLo + ACl), the total drag due to lift (dCD 

/dC^) of the airplane with running propeller should 

then be expected to be somewhat smaller than 

in gliding condition. To confirm this effect, full- 

scale climb performance of the Me-109-E has been 

analyzed. Corresponding to a value of Cl /CD 

= 110 obtained at CL =1, the drag coefficient in full 

and maximum power condition is found to be CD 

■= 0.095. Figure 9 shows that this value is smaller 

than that derived from glides (without power). The 

differential corresponds to a ACl value produced by 

propeller and slipstream, roughly in the magnitude 

as indicated by equation 30. 

(32) Otto Lilienthal, "Der Vogelflug als Grundlange der Fliege- 
kunst”, published in Berlin 1889. 

(33) Orville Wright (1871-1948) and Wilbour Wright (1867- 
1912) made 4 flights on the 17th of December 1903 at 
Kitty Hawk (N.C.). The longest of these flights was 852 ft, 
59 seconds against a 20 mph wind, a few feet above the 
ground. The Wright Brothers' airplane and its data are on 

exhibition in the Smithsonian Institution in Washington (D.C.). 
See also McFarland, "Papers of W. and O. Wright," McGraw-Hill. 

In Jet Airplanes the mechanism of lift caused by 

thrust may partly be identical to that as outlined 

above for tractor propellers. Note that the volume of 

air taken in by a jet engine is deflected within the 

duct through the airplane’s angle of attack (as men¬ 

tioned in Chapter IX in connection with wing- and 

fuselage-side inlets). Here as in pusher-type propellers 

(22,e) a different type of lift differential is also 

produced by the thrust as such; namely 

AL = T sin^ (35) 

AD = AT = (1 — cos^)T0 (36) 

where = flight-path angle against the horizontal. 

— It is difficult, of course to draw a line between net 

thrust and effective drag of an airplane. In a cor¬ 

rect analysis of performance, this has to be done, 

however. — In jet engines we may roughly assume 

constant thrust (rather than constant power) over 

the airplanes most favorable climb-speed range. In 

this case, 0 

Ct~1/V2~Cl (38) 

which means a straight increase of the apparent lift- 

curve slope. For that part of the lift increment di¬ 

rectly being a component of thrust, equations 35 and 

36 lead to 

ACd = ACl (1 - cos^/sin JC « 0.5 (ACL) sin £ (39) 

Since % is larger than o<[, this type of drag due to lift 

is higher than that as indicated by equation 33. The 

analysis leads to the conclusion that pusher-type pro¬ 

pellers as well as jet engines, are basically somewhat 

less effective in regard to climb performance than 

tractor-type propellers. 

Pusher Propeller. Reference (22,n) shows that in a 

model configuration at Rc = 6 lof efficiency of a 

tractor propeller is «=■ 4% lower that that in pusher 

arrangement, because of forced boundary layer trans¬ 

ition on the nacelle body. If eliminating laminar 

boundary layer, the pusher type may have an efficiency 

slightly superior over that of the tractor propeller. In 

regard to lift increment, the pusher type is less effi¬ 

cient, however, as predicted above. 

Performance Calculation. Only two or three single 

points in the polar diagram of an airplane (and their 

vicinity) are predominantly utilized in routine per¬ 

formance calculations; namely that for Vniax, that for 

optimum climb and the value of Cl™* (for take-off and 

landing). The suggestion (26) to determine perfor¬ 

mance without the aid of a complete Cq (Cl) function, 

therefore, appears to be reasonable; and it is pro¬ 

posed to establish statistical material for the climb 

condition, on the basis of “A A” as defined in equation 

21, taking into account power or thrust (possibly in 

the form of T/W or T/S). 
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(d) The First Powered Airplane 

First Aircraft. The first balloons (by Montgolfier as 

as well as by Charles) ascended in 1783. Experimen¬ 

tal airships (“dirigibles”) were developed between 

1852 and 1900, leading to Santos Dumont’s flights in 

1898 and 1901 and to the first of the Zeppelin air¬ 

ships in 1900. Otto Lilienthal (1848-1896), see ref¬ 

erence (32), may be claimed to be the most successful 

man, repeatedly to have made gliding flights, cover¬ 

ing distances to 250 m = 800 ft between 1892 and 

1896. Roughly ten years la^er, the Wright Brothers 

perfected and demonstrated what is recognized to be 

the first succesful, powered and man-carrying airplane 

(33). Figure 15 presents a view and some evaluation 

of their craft. Flight was achieved in the vicinity of 

the optimum lift coefficient (CL~ 0.6). The parasite 

drag coefficient is high, of course, because of many 

struts and wires, and on account of engine installation 

and pilot, both placed in open air. 

Figure 15. View of the 1903 Wright Brothers’ canard-type pusher-propeller airplane 
( 33 ), having b = 40.3 ft, c = 6.5 ft, S = 510 ft^, W = 605 lb plus pilot 
755 lb. For a reported speed ("indicated”, against wind) of 31 mph, the lift coefficient 
is CL = (755/2.5 510) = 0.59. Applying biplane theory (Chapter VII) the induced 
drag coefficient is estimated to be Coi = 0.028. The Wright Brothers’ gasoline engine is 
reported to have developed 12 HP. Assuming a mechanical efficiency of 0.92 and a pro¬ 
peller efficiency of 0.71, the total drag is found to be D = q P/V = 0.65 12 550/45.5 
= 94 lb. The corresponding drag coefficient is Qj = 94/(2.5 510) = 0.074. This 
value is roughly two times the coefficient "due to lift” (which is the induced drag coeffi¬ 
cient as above,plus an appreciable component of parasitic drag due to lift). It can there¬ 
fore be concluded that the world’s first powered airplane flight was performed at or near 
the lift coefficient for optimum gliding. The gliding ratio is L/D = Cl/Cd = 
0.59/0.074 = 8. Other flights of the Wright Brothers in the years following their his¬ 
toric deed, in airplanes of much the same dimensions, were made with the aid of 
"stronger" engines (such as 27 HP, for example, in 1908). 
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CHAPTER XV - SUBSONIC INFLUENCE OF 

COMPRESSIBILITY ON DRAG 

At moderately high speeds (as they are applied in 

most of our “utility” airplanes, both in the commer¬ 

cial and in the military field) aerodynamic theory and 

experimental investigations consider the air as es¬ 

sentially being incompressible. In fact, the pressure 

differences occurring on the surface of bodies ex¬ 

posed to the velocities used in most of the older wind 

tunnels, or those around airplanes at lower speeds, 

are small in comparison to the ambient pressure of 

the atmosphere. At a Mach number of M — 0.3, for 

example, corresponding to a velocity of V ^ 100 

m/sec « 330 ft/sec 230 rnph or ~ 200 knots 

(at sea level), the “impact” at the stagnation point 

is only 2% higher than the dynamic pressure 0.5 q V^. 

During the first 30-year period of their development, 

the practical aerodynamic problems of powered air¬ 

planes (except those at the tips of propellers) have, 

therefore, been treated almost exclusively without 

taking compressibility into account. However, during 

the last decade, many airplanes have been flown to 

level-flight speeds in the order of 400 knots (to Mach 

numbers in the order of M = 0.9)-let alone a number 

of experimental airplanes which already have ex¬ 

ceeded the speed of sound considerably. The com¬ 

pressibility of the air thus cannot be neglected any 

longer. In this first chapter dealing with the subject, 

essentially subsonic characteristics shall be presented, 

up to and including the so-called critical Mach num¬ 

ber. 

(1) Modern Textbooks on the subject of compressibility are, for 
example: (a) Liepmann-Puckett'S-’’"Aetodynamics of Com¬ 
pressible Fluids” (Wiley 1947) and Liepmann-Roshko’s "Ele¬ 
ments of Gasdynamics” (Wiley 1957) ; (b) excellent physical 
interpretations of compressive phenomena are presented by 
Prandtl in "Essentials of Fluid Dynamics”, London 1952 ;(c) 
by vonKarman in J.Aeron.Sci. 1941 p.337 and in Proc. First 
US Congr.Appld.Mechs. 1951 (Edwards, Ann Arbor) or in 
Vol.V of "Jet Propulsion — High Speed Aerodynamics”; and 
(d) by Goethert in USAF Wright Field Inst.Technology Lec¬ 
ture Notes as of 1948. (e) The first version of this chapter 
was the author’s report ZWB Doct UM 7810(1944) ; CADO 
Tech Rpt F-TR-1188-IA (Wright Field, 1948). 

1. ELEMENTS OF COMPRESSIBILITY 

The Velocity of Sound is the natural speed at which 

vanishingly small local variations of static pressure 

are propagated through the air space, away from their 

source. This speed is basically 

“a” = y/ kg R T (1) 

where k = ratio of the specific heats (cp/cy) of the 

fluid considered, g = acceleration due to gravity, R — 

gas constant and T = absolute temperature, with 

all these values in a consistent system of units. In 

atmospheric air (up to an altitude of some 300,000 ft) 

k = 1.405 1.4 = 7/5; and the speed of sound 

accordingly: 

“a” = 66 {T (ft/sec) (2) 

where T is measured in centigrades or "Kelvin. 

Under "normal” sea-level conditions, with T = 273 

+ 15 = 288 °K (or = 518 Tabs), the sonic velocity of 

the air is “a” 1116 ft/sec ^ 761 mph 661 kts 

340 m/sec or ^ 1210 km/h (3). Between sea 

level and some 35,000 ft of altitude, the speed of 

sound reduces to 0.87 of that at sea level; and it 

remains essentially constant within the stratosphere, 

where the average temperature is considered to be in 

in the order of 218 °K (or 392 Tabs) up to some 

100,000 ft of altitude. In water, on the other hand, 

the speed of sound is so extremely high (•»- 4800 

ft/sec at room temperature), that under none of the 

ordinary practical conditions, compressibility effects 

have to be taken into account. 

Mach Number. Regarding the pressure distribution 

around a body exposed to compressive fluid flow, the 

velocity of this flow in comparison to that of the 

propagation of sound (which is a pressure variation) 

— is a measure (4,a) for the degree to which com- 
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possibility is involved. This ratio is the 

Mach number = M = V/“a” (3) 

As pointed out in J.Aeron.Sci. 1948 p.352, the square 

of the M’number has a direct physical significance. 

The “numerator represents a measure of the directed 

kinetic energy of the flow”, while “the denominator 

represents the random kinetic energy of the mole¬ 

cules”. — Considering now, for example, a number 

M = 1, the speed at which a body moves against 

the air particles, is equal to the velocity at which a 

“warning” can be given of the approach. No warn¬ 

ing is given, accordingly, at speeds above that of 

sound. This sudden type of approach has basic con¬ 

sequences listed as follows. 

Stagnation Pressure. Because of thermodynamic com¬ 

pression, the pressure at the stagnation point is in¬ 

creased over the ambient static pressure by an amount 

which is higher than the dynamic pressure q = 

0.5 q V2 (as in any incompressive fluid). The increased 

pressure, called “stagnation” pressure, is presented 

in figure 1 of Chapter XVI. As far as subsonic speeds, 

up to M = 1, are concerned, the function can be 

developed into 

“q”/(0.5<> V2) = 1 + (M2/4) + (M^/40) +••• 

For example, at M = 1, the pressure increment 

amounts to almost 28%. The aerodynamic pressure 

and friction forces, originating on all other parts 

of bodies in uncompressed fluid flow (outside the 

vicinity of the stagnation point), are not related to 

the stagnation pressure, however, The aerodynamic 

coefficients are, therefore, based now as in incom¬ 

pressible fluid flow, upon the dynamic pressure 

(0.5 q V2) which is then somewhat more a mathe¬ 

matical than a physical value (that is, it cannot any 

longer directly be measured by means of a Pitot- 

static instrument). 

Prandtl-Glauert Rule. Along the sides of slender 

(streamline) bodies, velocity increments as well as 

local static pressure differentials are both increased 

by approximately the same percentages as against the 

ambient values. As far as two-dimensional bodies 

(foil sections) are concerned, the lower limit of the 

increment is given by the “Prandtl-Glauert rule” (2). 

This rule indicates that a section, exposed to a flow 

of compressible fluid, shows the same velocity incre¬ 

ments and the same pressure differentials as a certain 

reference section having a thickness and an angle 

of attack (that is, all dimensions perpendicular to the 

direction of flow) increased in proportion to the 

Prandtl factor 

“P” = l/\j 1 - M2 = l/“{2>” (5) 

as plotted in figure 1. A number of attempts have 

been made (2,c) of improving the rule by introducing 

second-order terms. One effect thus taken into ac¬ 

count simply concerns the difference between (CpC01Yl 

/Cp;nc) and (AV/V)com/(AV/V);nc. It is be¬ 

lieved, however, that the second-order term in the 

pressure coefficient as a function of the thickness ratio 

(t/c) is usually cancelled by progressive boundary 

layer losses. Another correctly suggested modifica¬ 

tion, is to replace in equation 5 the ambient Mach 

number by the somewhat increased local Mach num¬ 

ber at the surface of the solid considered. All modifi¬ 

cations proposed tend to make the compressibility 

factor larger when approaching the critical Mach 

number, particularly in higher thickness ratios. Inas¬ 

much as the increment is but small (for typical air¬ 

foil sections) and since certain increases in pressure 

and lift coefficients can also be explained on different 

levels (4), the author proposes that it usually does not 

pay, in engineering applications, to complicate the 

original rule by introducing higher order terms. 

Stagnation Temperature. In non-compressive flow — 

the Bernoulli principle states that the sum of static 

and dynamic pressure is constant, as long as there is 

no momentum added or taken away in a given mech¬ 

anism of flow. Approaching a stagnation point (in¬ 

dicated by V = 0) the momentum of the air particles 

is transformed into static pressure. In a compressive 

flow, part of the fluid energy is changed into heat, 

however. The increase of temperature at some place 

in the vicinity of the stagnation point is generally 

indicated by 

AT/Tam = 0.5 (k —1) (V2- wVa5 (6) 

where T — absolute temperature and where w indi¬ 

cates the local velocity at the point considered, within 
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the flow or on the surface of a body. With the aid of 

this equation it is possible, for instance, to determine 

the increase of temperature due to compressibility 

within the core of a radiator (Chapter IX). In air 

(with k = 1.4) the ratio is 

AT/Tomb = °’2 MV - <W/V)2) (?) 

and under normal sea-level conditons (with Tanl [3 
= 288 °K) the temperature at the stagnation point 

(where w = 0) corresponds to 

AT = V2/21600 (8) 

2. DRAG CHARACTERISTICS OF BLUFF 

BODIES 

There are many bluff shapes, the drag coefficients of 

which do not distinctly vary as a function of skin 

friction (see Chapter III). Their drag as affected by 

compressibility, corresponds to principles described 

as follows. 

measured in degrees K and with V in ft/sec. For ex¬ 

ample, at M = 1, the increase of temperature is ap¬ 

proximately 0.2 of the ambient absolute temperature, 

or very roughly 100 °F under normal sea-level con¬ 

ditions, thus approaching (on a very hot summer day) 

a total temperature equal to that of boiling water. 

(2) Prandtl-Glauert compressibility rule-. 
a) Prandtl (1922), in Fiihrer dutch die Strdmungslehre" 
(1942) or in "Essentials of Fluid Dynamics’'(London 1952). 
b) Glauert, ARC RM 1135 (1927) or Procedings Royal So¬ 
ciety London A Volume 118 (1927/28) p.113. / / 
c) Improvements of the rule are presented by vonKarman- 
Tsien (J.Aeron.Sci. 1941 p.337), by Hantzsche-Wendt (see 
NACA T.Memo 1030), by Kaplan (NACA T.Rpts 794 and 
834), by Laitone (J.Aeron.Sci. 1949 p-639), by VanDyke 
(NACA T.Note 3390, and in J.Aeron.Sci. 1954 p. 647), and 
by Weinig (J.Aeron.Sci. 1956 p.279). 
d) Further Discussion in J.Aeron.Sci. 1955 p.270 and 284. 
e) As explained by Kaplan in NACA Tech Rpt 894, the 
critical Mach number is part of a transonic similarity system. 
The lowest-order approximation yields Met-L-L =1 — 0.9 
(t/2 x)/3. However, this function fits the results as plotted 
in figure 19, only to t/(2 x) 0.1. 

(3) Could we not agree, educated as we are, on only two measures 
for speed, one per second and one per hour, and abandon Mr. 
Fahrenheit (1686 to 1736) at the same time ? 

(4) Footnotes on compressibility: 
a) The Reynoldsnumber corresponding to a given Mach num¬ 
ber is Rj = M 1/A, where 1 = body dimension (in ft) 
and A = V/'a' = 1.4/107 ft at standard sea level, and 
= 3.5/107 ft in 30,000 ft of altitude, for example. 
b) Certain humps in pressure and lift coefficients found at 
and somewhat above the critical Mach number, may be caused 
by the recompression and re-attachment phenomenon discussed 
later. Compressive wind tunnel blockage may also contribute 
to make pressure and lift coefficients appear higher (and/or 
the Mach number lower) than predicted by the Prandtl- 
Glauert rule. Evidence for an opposite tunnel influence is 
found in NACA Technical Note 3607 where in an open- 
throat tunnel, critical Mach numbers have been recorded that 
are by ** 0.04 higher than those in figure 19. 

(5) Drag of double-wedge foil sections at subsonic speeds: 
a) Humphreys, Pressure 10% D'Wedge NACA TN 3306. 
b) Lindsey-Daley-Humphreys, Flow and Force Characteris¬ 
tics of several Supersonic-Type Airfoil Sections Tested at Sub¬ 
sonic Speeds, NACA T.Note 1211 (1947). 
c) Solomon, 4 and 6% D’Wedges, NACA Doct. RM A6G24. 
d) Daley-Lord, 6% Sections, NACA T.Note 3424 (1949). 
e) Hilton, D’Wedges, ARC RM 2057 and 2196(1943/44). 

Plates. In a rough analysis, the drag of blunt body 

shapes, showing a flow pattern entirely separated 

from their rear side, may be considered as consisting 

of two components. The first of these is the resultant 

of the mostly positive pressure distribution on their 

forward side. The corresponding positive “nose pres¬ 

sures” may be assumed to vary in proportion to the 

stagnation pressure as indicated by equation 4. Re¬ 

garding the negative pressure within the separated 

space at the rear side or “base” of such bodies, we will 

tentatively assume that this second component of 

pressure drag may (within reason) not be affected by 

subsonic compressibility. Considering, for instance, 

the two-dimensional flat plate whose drag coefficient 

is plotted in figure 2, the coefficient at low Mach 

numbers C|y, 1.98, is known (see page 3-16) to be 

composed of *=■ 0.85 due to “nose” pressure and of 

1.13 due to “base” pressure. Assuming the nose pres¬ 

sure to vary in proportion to equation 4, the drag 

coefficient of this plate is suggested to be 

CQ#= 1.13 + 0.85 (1 + 0.25 M2) (9) 

The coefficient of a square section, also plotted in 

figure 2, follows the same function — up to a certain 

Figure 2. Drag coefficients of sharp-edged or blunt bodies with 
separated flow patterns, as a function of Mach number. 
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Mach number to be discussed later (6,g). The blunt 

body of revolution also plotted in that illustration, 

essentially representing a disk, can be interpolated by 

C = 0.45 + 0.7 (1 + 0.25 M2) (9) 

Blunt Cylinder. The drag coefficient of circular cyl¬ 

inders in longitudinal flow is in the order of CD^= 

0.8, as shown in figure 21 of Chapter III. Most of 

the drag of such cylinders corresponds to the stagna¬ 

tion type of pressure on their forward face. The 

components of surface friction at the sides ( ACD, 

css 0.05) and of base pressure (in the order of 

ACq# — 0.03 as found in figure37 of Chapter III) 

are comparatively small. Considering them as un¬ 

affected by compressibility, the drag coefficient of the 

blunt cylinder as in figure 2 may then be expected 

to be 

CD# = 0.08 + 0.74 (1 + 0.25 M2) (10) 

The graph shows that the drag of the bluff bodies 

considered, is reasonably well interpolated by the 

functions derived. Similar equations can also be 

written for other sharp-edged bodies for which the 

components of nose- and base drag are known. 

Wedges. Figure 3 presents (among others) the drag 

coefficient of a 12% thick wedge section, tested in 

two-dimensional flow (between tunnel walls). If as¬ 

suming that in such a slender wedge, pressure drag 

essentially originates behind the blunt base, we may 

speculate that the negative base pressure is somehow 

related to the negative pressure developing along the 

forebody, reaching a minimum at the trailing edges 

of the wedge section considered. We may further¬ 

more assume that the value of the corresponding 

pressure coefficient Cpmin increases as a function of 

Mach number in proportion to the Prandtl factor 

“P”. Tentatively, therefore: 

CD. = 2 (CA) + CDPfore+ “P” CDBo (U) 

The experimental results of the 12% thick wedge in 

figure 3 can be interpolated very well with the help 

of this equation when assuming for the forebody drag 

a value of =0.1. The base drag coefficient at 

M—*- 0 may then be ; and the total co¬ 

efficient grows as a function of Mach number, as 

plotted in the graph. If assuming that the pressure 

coefficient Cpm'lrt at the trailing edges of the wedge 

is equal to that of the base pressure, the critical Mach 

number of this flow pattern (as determined through 

the use of figure 19) must be expected roughly to be 

Merit = 0.65. The experimental points in figure 3 

do not show any discontinuity, however, at or above 

this number. — The much thicker wedge included 

in the same illustration, does not conform with the 

simple analysis as per equation 11. The drag of this 

wedge is suggested to be some combination of stag¬ 

nation with rear-side-pressure function, the values of 

both of which are expected to grow as the Mach num¬ 
ber is increased. 
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Figure 3. Drag coefficients (on frontal area) of three 12% thick 
sections, including a wedge and a reversed 0012 section (6,d) as a 
function of Mach number. -, 

The Reversed 0012 section, also shown in figure 3, has 

a much lower drag coefficient than the 12% wedge; 

and the coefficient does not increase before reaching 

M 0.7. The flow pattern past the base of this sec¬ 

tion is obviously quite different from that of the 

wedge, and more similar to that of airfoils. 

Strut Sections. The flow pattern past rounded shapes 

is more complicated than that around sharp-edged 

bodies, the reason being that the B’layer still has 

some influence upon separation and drag coefficient. 

Figure 4 presents experimental results on two fat 

strut shapes. Within the range of smaller Mach num¬ 

bers, the 25 and 40% thick sections show drag co¬ 

efficients that are up to 3 times the values to be 

expected for comparable streamline sections as pre¬ 

sented later (in part 4). Comparison of the coeffi¬ 

cients with those in figures 2 and 10 of Chapter VI, 

indicates that these sections are in the transitional 

range of Reynolds number (the coefficients are “half 

way” between the subcritical and supercritical levels, 

respectively). Separation is evidently assisted by 1am- 

inarization (corresponding to thickness location at 

50% of the chord); and it is aggravated by the com¬ 
paratively short and. bluff shape of the afterbody. 
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volving separation in compressive flow (12,a). 

(6) Compressive drag of sharp and bluff solids: 
a) Lindsey, Drag of Simple Shapes, NACA T.Rpt 619. 
b) Robinson-Delano, Windshields, NACA T.Rpt 730. 
c) Naumann, Drag of Blunt Cylinder in Axial Flow, German 

ZWB Tech.Berichte 1943 p.278. 
d) Eggers, 12%Wedge and Reversed 0012 Section, NACA 
Doct. RM A7C10. See also figure 28 in Chapter VI. 
e) The blunt solid of revolution shown in figure 2, is the 
afterbody of the shapes as in figure 34 (39,a). 
f) Flow Pattern Past 40° VC edge, see ARC RM 2321. 
g) Note that in small-tunnel results such as in (a) the 
Reynolds number is comparatively low. Experimental points 
below M = 0.3 (where R on "h" = 1/4 inch, is in the 
order of 4 1(A) have therefore been omitted in plotting 
the graph (figure 2.). 

(7) Drag of spheres in compressive fluid flow: 
a) Charters-Thomas, Spheres, J.Aeron.Sci. 1945 p.468. 
b) Goethert, in ZWB Lilienthal Rpt 127 p.83. 
c) Ferri, R'and M’Number, Atti Guidonia 67/69 1942 p.49; 
also reported by Eula in Aerotecnica 1940 No. 1. 
d) Tada, Japanese Navy Tests, J.Japan Soc.Aeron.Engg. 1956 
p.(135). These high-speed results on spheres and cylinders 
are severely affected by tunnel blockage. The points included 
in figures 6 and 10 have,' therefore," arbitrarily been plotted 
against 16% increased M'numbers. 
e) Results in (17,a) indicate that at Mach numbers of 0.8 
and 0.9, respectively, the drag coefficient of the sphere does 
not vary as the Reynolds number is changed between (2 and 
8) 10s . One aspect of such tests that should not be over¬ 
looked, is surface roughness, however. It is believed to be diffi¬ 
cult to produce aerodynamically smooth models or full-scale 
craft for, or to keep them clean at speeds in the order of 
1000 ft/sec, where the permissible grain size of roughness or 
dust may be in the order of 0.1 mil (see Chapter V). 
f) Millikan, Tunnel Calibration, J.Aeron.Sci. 1948 p.69. 

(8) Drag of cylinders in compressive fluid flow: 
a) Lindsey, Drag of Cylinders, NACA T.Rpt 619. 
b) Matt, Drag of Circular Cylinders, ZWB Doct FB 1825 
and ZWB Tech.Berichte 1944 p.47. 
c) Frenzl, Cylinders, ZWB Tech. Berichte 1942 p.61. 
d) Heaslet, Theory, NACA T.Rpt 780 (1944). 
e) Delany-Sorensen, NACA Tech Note 3038 (1953). 
f) Gowen-Perkins, Cylinders f(RM), NACA T.Note 2960. 
g) Knowler, Cylinders at High Speed, ARC RM 1933. 
h) Ferri as in reference (7,c). 
i) The dip in the drag coefficient of the circular cylinder is 
investigated in particular in (8,g). As indicated in figure 20 
of Chapter XVI, the dip obviously correlates with a variation 
of the base-pressure coefficient. 

The Drag Divergence Mach numbers of the sections 

in figure 4, agree with those in figure 19 (possibly 

just by accident). Their flow pattern is very well 

described in (I2,a) on the basis of “schlieren” pictures 

in combination with pressure distribution results. 

The illustration shows two typical conditions: 

(a) at lower Mach numbers^ up to M « 0.60; the 

flow pattern includes some separation from the after¬ 

body of the sections (as explained above). 

(b) at higher M’numbers (as at M = 0.71) separa¬ 

tion is more extended, starting out from under the 

root of the oblique shock front as shown in the sketch. 

Further discussion of the supercritical flow pattern 

of foil sections in general is presented in Chapter 

XVI. One conclusion to be drawn from the strut 

experiments at this point, is that laminarization pro¬ 

duced by shape (12,b) and then increased by means 

of compressibility, can lead to serious separation and 

to correspondingly high drag coefficients. High-speed 

application of laminar-type shapes to struts and fair¬ 

ings may thus be problematic, even at higher R’num- 

bers. An alternative solution may be found in the 

“half-streamline” struts as presented in figure 7. 
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Circular Cylinder. As stated in Chapter III, the net 

resultant of the pressure forces originating on the 

forward side of round bodies, can very well be some¬ 

what negative. For the purpose of this analysis, we will 

simply assume that the forebody drag of such shapes 

may approximately be zero. In other words, most of 

the drag of round bodies is"base drag. In a manner 

similar to that as assumed above (for wedges), the 

base pressure is likely to be related to the minimum 
pressure shortly ahead of the separation boundary; 

and the absolute value of the coefficient of this pres¬ 

sure may increase as a function of Mach number as 

indicated for two-dimensional conditions by the 

Prandtl-Glauert rule (equation 5). This analysis 

(rough as it may be) seems to be reasonably well 

confirmed by the experimental evidence plotted in 

figure 5 for the cylinder at Reynolds numbers below 

the range of BL transition, up to the critical Mach 

number, where the speed of sound is locally first 

reached (at the minimum pressure points on the cir¬ 

cumference of the cylinder). 

The Sphere, represented in figure 6, shows the same 

type of variation of the drag coefficient against Mach 

number as the cylinder. It can be speculated, how¬ 

ever, that below the critical M’number (and at 

R’numbers below that of BL transition) the growth 

of the drag coefficient corresponds to a three-dimen¬ 

sional compressibility rule (possibly in the form as in 

equation 44) rather than to equation 5. 

A DVL (8,b) 

Figure 5. Drag coefficients of circular cylinders, tested (8) be¬ 
tween walls in various wind tunnels (a) at subcritical R’numbers, 
and (b) at R’numbers above transition. 

At Supercritical R’Numbers. Drag coefficients of 

round bodies at Reynolds numbers above transition 

(where flow separation is considerably reduced) are 

also plotted in figures 5 and 6. It is suggested that the 

experimental functions may somehow be related to 

those of airfoil or strut sections and streamline bodies, 

respectively, as explained in parts 4 and 7 of this 

chapter. The relative increase of their coefficients is 

appreciable, evidently corresponding to the “ex¬ 

treme” thickness ratio involved. In the vicinity of 

M = 0.75 and 0.55, respectively, the difference be¬ 

tween the conditions of subcritical and supercritical 

Reynolds numbers — disappears. Evidently, the flow 

pattern then separates to the same degree, at larger 

as at smaller Reynolds numbers (7,e). 

Above the Critical Mach Number, drag is a transonic 

phenomenon (as treated in Chapter XVI). Charac¬ 

teristics shortly above that number are of importance, 

however, in the determination of the speed at which 

in a number of body shapes, drag and other force co¬ 

efficients first diverge appreciably from their subcrit¬ 

ical level. For example, the drag coefficient of the 

circular cylinder as in figure 5, steadily continues 

growing after passing the critical Mach number (de¬ 

termined from pressure distribution) for an interval 

of appreciable magnitude (in the order of AM = 

0.2). An explanation for this phase is readily found 

in the supersonic expansion phenomenon as ex¬ 

plained later in connection with the flow around 

“sharp” leading edges of foil sections. 

x ABERDEEN (7,o) 
□ GUIDONIA (7,c) 
• DVL TUNNEL (7,b) 
- JAPANESE (7,d) 
A OTHERS Fig. XVI 

Figure 6. Drag coefficients of the sphere (7) as a function of 
Mach number; (a) at subcritical R’numbers, (b) above 
the critical R’number. 
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Up-Down-Up. A pronounced “dip” in the coefficient 

of the cylinder takes place in the vicinity of M = 0.8. 

The explanation of this dip must be found in a fa¬ 

vorable interaction between the local supersonic field 

of flow existing at and behind the location of the 

cylinder’s maximum thickness, and the flow pattern 

within its wake. Tentatively, this interaction is as 

follows. After passing the points on the circumfer¬ 

ence of the cylinder where the streamlines are closest 

to each other, at sonic speed, the velocity continuous 

increasing, and the static pressure decreasing accord¬ 

ingly, as in a Laval nozzle. The stream tubes in¬ 

volved, necessarily expand when doing this, in a 

manner that seems basically to be the same as in the 

Prandtl-Meyer type of expansion (described in Chap¬ 

ter XVII). It is then suggested that by means of in¬ 

creasing volumetric displacement, the stream tubes 

involved tend to reduce separation. On the basis of 

the negative pressure gradient associated with expan¬ 

sion, it can also be claimed that boundary layer 

separation, originally caused by a strong positive 

pressure gradient, may effectively be reduced by the 

gradient’s reversal. Inasmuch as in a circular cylin¬ 

der the rear-side pressure is of appreciable magnitude 

(CpB « — 1.1 at small Mach numbers, and possibly 

= -1.4 at M ~ 0.7) a modest reduction of separa¬ 

tion by means of the mechanism suggested, may very 

well lead to the dip of the drag coefficient as indi¬ 

cated in figure 5. 

Half-Streamline Shapes. The circular cylinder is not 

at all the only shape in which the described “re-at¬ 

tachment” takes place. Besides the sphere (in figure 

6) the square section in figure 2 also shows the “up- 

down-up” tendency (between M = 0.6 and 0.8). A 

very pronounced “dip” is found in (9,d) on a 53% 

thick section having a blunt trailing edge. The drag 

(9) Half-streamline sections at high Mach numbers: 
a) Half-streamline Fairings, Investigated in Junkers High- 
Speed Tunnel, Junkers Doct S.1944/13-8. Inasmuch at this 
tunnel is a two-dimensional but open-jet type (struts tested 
between walls), results are considered to be reliable. 
b) Hoerner, Series of Antenna Rods, investigated in large 
open-throat high-speed tunnel at Brunswick LFA in 1944. 
Inasmuch as the facility used in testing the rods was a large- 
size and open-jet type tunnel, the "creeping” character of the 
results in figure 9 cannot be caused by any tunnel deficiency. 
c) Matt, Streamline Rods, DVL Doct J.900/27 (1942). 
d) Barlow, Short Pieces of "Shanks”, NACA T.Rpt 852. 

(12) Experimental results on strut-type sections: 
a) Daley, Fat Foil Sections, NACA T.Note 1657 (1948). 
b) NACA T.Note 480 confirms that rearward position of 
thickness increases the critical Reynolds number. 

coefficient (of a comparatively short piece of “strut” 

or propeller shank) is reduced from CD>= 0.47 at 

M = 0.3, to 0.23 at the dip Mach number of 0.66. 

Another example is shown in figure 7. The four 

“half-streamline” shapes presented in the graph, per¬ 

mit some more speculation as follows: 

(a) The dip in the drag coefficient is only found in 

sections having comparatively full leading edges 

(and/or in shapes with a sufficiently tapered after¬ 

body). Disregarding the “base”, section III, with a 

“streamline” (that is, more elliptical) forebody, does 

evidently not have separated spaces where such sep¬ 

aration could be reduced by some favorable super¬ 
sonic interaction. 

(b) The dip does evidently not take place in longer 

shapes such as number “V-a” in figure 7, where the 

supersonic flow field is located far ahead of the base 

and/or the boat-tailed rear end of the section. 

A further piece of information is found in figure 2, 

where the “plate” does not exhibit any dip. It is 

suggested that separation from the rear side of this 

shape cannot be reduced by the influence of the 

supersonic field of flow as described above. 

Canopies. Further insight into the mechanics of 

bluff-body drag in compressive fluid flow, can also be 

obtained from the results on canopies (or wind¬ 

shields) as reported in (6,b). Corresponding to their 

characteristics, the canopies as tested, fall into three 

categories, examples of which are shown in figure 8: 

(a) There is first of all the streamline type, charac¬ 

teristics of which correspond to the principles as 

pointed out later in the section on “streamline bodies”. 

Drag is low in this group; the drag-divergence Mach 
number is comparatively high. 

Figure 7. Drag coefficients of several half-streamline "strut" or 
fairing sections; mostly from (9,a). 
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’ SHARP 6-1-3 

Figure 8. Drag coefficients (on their frontal area) of a family of 
canopies. Note: inasmuch as the results as reported in the source 
(6,b) are significantly affected by wind-tunnel blockage, a rough cor¬ 
rection has been applied by multiplying the Mach number with 1.4. 

(b) The sharp-edged form of canopy “6-1-3” has ba¬ 

sically a high drag coefficient (CD_ = 0.2) thus sug¬ 

gesting a separated flow pattern. The drag coefficient 

then increases as a function of Mach number, roughly 

in proportion to the stagnation pressure (as explained 

in connection with the blunt bodies presented in 

figure 2.) Canopy “9-1-6” although having a some¬ 

what rounded head shape, is evidently so short that 

a re-attachment of the flow separating from the edge 

of the windshield cannot take place, neither at low 

Mach numbers, nor with the help of supersonic ex¬ 

pansion as explained above. As a consequence, the 

drag coefficient of this canopy shows the same varia¬ 

tion against “M” as the really blunt type “6-1-3”. 

(c) The afterbody of shape “9-1-2” (having the same 

forebody shape as canopy “9-1-6”) is comparatively 

long. Re-attachment evidently takes place in this 

form, facilitated by what we may call a longer mixing 

length (distance between the origin of separation and 

the rear end of the canopy). As a consequence, the 

drag coefficient of this type shape reduces above 

M ~ 0.6 (in the example shown in the illustration) 

thus showing a “dip” similar to that in the “round” 

bodies discussed above. 

From these canopy tests, it can generally be conclu¬ 

ded again, that dips result from the interaction of a 

localized supersonic flow field, with boundary layer 

and separation. The compression shock eventually 

following the supersonic field, at still higher M’num¬ 

bers, has an unfavorable effect, however, upon sep¬ 

aration. The drag coefficients of all canopy shapes 

investigated (and those of all streamline bodies and 

foil sections as well) finally grow into values of very 

appreciable magnitude. 

Antenna Rods. Figure 9 presents results of a series of 

more or less streamline “rods” (9,b), made from sheet 

metal and designed to be used as radar antennas. The 

drag of these rods, tested by clamping them to a dy¬ 

namometer at the heavier of their ends, is higher than 

and different from that of comparable foil or strut 

sections obtained from typical wind-tunnel investi¬ 

gations. Reasons are as follows: 

(a) Being hand-made experimental specimens, the 

surface of the rods was comparatively rough and some¬ 

what irregular, in places. Welding seams also result 

in the thick trailing edges, at least in two of the 

shapes as shown. 

(b) The 1 m long rods (having a geometrical aspect 

ratio of 17 or 18) are tapered from 100 mm at the 

clamped end, down to a chord length of 20 mm at 

the tips. Corresponding to a sheet-metal thickness of 

1.5 mm, the tips have therefore no longer much of a 

shape similar to those shown in the illustration. 

(c) The Reynolds number (on chord length) is com¬ 

paratively low. It reduces from Rc = 5 TO5 at M 

= 0.7 for the larger end, to T 10s at the tips. 

As a consequence of the properties listed, all of the 

rods tested show a “creeping” increase of the drag co¬ 

efficient, beginning at Mach numbers well below the 

critical (9,b). These results are proposed to be an 

example of possible differences between realistic full- 

scale performance and the usual wind-tunnel testing 

under more or less idealistic conditions. 

Figure 9- Results of a series of half-streamline sheet-metal antenna 
rods, investigated in a high-speed wind tunnel (9,b), and of one 
double-wedge foil section (5,a). 
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3. SKIN FRICTION IN COMPRESSIVE FLOW. 

On Plane Wall. Within the boundary layer origi¬ 

nating along the plane wall, as for instance on a thin 

plate in longitudinal flow, the air particles are re¬ 

tarded; directly at the wall, the speed is zero. 

Decreasing velocity, means increasing temperature, 

as indicated by equations 6 or 7. At higher Mach 

numbers, an appreciable proportion of the dynamic 

energy taken away from the fluid flow by surface 

friction, is thus transformed into heat. Because of 

increased temperature, the density of the air within 

the boundary layer is reduced; at the rate of 9 1/T. 

Skin-friction coefficients in compressive fluid flow are, 

therefore, smaller than those as presented in Chapter 

II. In case of laminar boundary-layer flow, the effect 

of reduced density is to a large degree cancelled, 

however, by a simultaneous increase of viscosity, the 

magnitude of which is roughly p • T. The reduc¬ 

tion of the laminar skin-friction drag coefficient as a 

function of Mach number is therefore so little (see 

in figure 2 of Chapter XVII ) that within the range 

of subsonic speeds, this coefficient may as well be 

considered as being constant. 

Turbulent Boundary Layer. As far as subsonic speeds 

are concerned, the turbulent skin-friction drag co¬ 

efficient as plotted in figure 3 of Chapter XVII, may 

be interpolated by 

Cfcom= Cfo - ° 09 “2> <14> 

At M = 1, for example, this type of skin-friction 

drag is thus reduced on account of compressibility by 

7%. We may, therefore, say that an “insulating” 

sheet of warm air is placed between body surface and 

outside flow, or that the surface is “lubricated”, so to 

speak, by means of thinner air. 

(14) Skin-friction in compressible fluids: 
a) Reference is made to ( 10 ) in Chapter XVII. 
b) Fedjajewsky, Turbulent Friction, CAHI Rpt 516 (Mos¬ 
cow 1940). 
c) Hoerner, Influence of Compressibility Upon Drag, ZWB 
Doct UM 7810 (1944); USAF Tech Rpt F-TR-1188-IA, 
(Wright Field, 1948). 
d) Solution for laminar flow in fig. 2 of Chap.XVII. 

(16) Boundary layer transition in compressible flow: 
a) Lees, Analysis of BL Stability, NACA Tech Notes 1115 
(1946) and 1360 (1947), and T.Rpt 876 (1947). 
b) Gazley, Review of Data, J.Aeron.Sci. 1953 p.19. 
c) See also reference (Ik) in Chapter XVII. 

(17) Influence of Mach number on critical Reynolds number: 
a) Ferri, Sphere, Atti Guidonia 67-69 (1942) p.49; 
also reported by Eula in Aerotecnica 1940 No. 1. 
b) Hoerner, Compressibility and Transition Point of BL, 
USAF Tech Rpt F-TR-2184-ND (Wright Field, 1948). 
c) Naumann, Drag of Spheres, ZWB Rpt FB 1778 (1943). 

BL Stability. Theoretical studies (16) have been un¬ 

dertaken to determine the stability of the laminar 

boundary-layer flow (along a straight constant-pres¬ 

sure surface) in a compressible (and heat conducting) 

fluid, as distinct from that under incompressible con¬ 

ditions (as discussed on page 2-8). It appears that 

heat transfer is a most important parameter. Pre¬ 

dictions are as follows: 

(a) Stability is reduced in case of an insulated sur¬ 

face (no heat transfer). At M = 1, for example, the 

minimum possible critical Reynolds number of an in¬ 

sulated surface is thus reduced to roughly 1/2 the 

value as known for incompressible fluid flow. Stabil¬ 

ity is further reduced when heating the surface from 

the inside. 

(b) Stability can be increased by withdrawing heat 

through the surface. At M = 1, for example, cooling 

of the skin of an aircraft down to Twail ~ 0.8 TQmg 

or by the differential AT ^ — (0.4 I’omb)or AT 

— (0.3 Tjj-^g) is theoretically expected to stabilize 

the BL flow almost indefinitely. Thermodynamic BL 

characteristics are discussed further in Chapter XVII. 

Figure 10. Critical R'number of the sphere (17) defined by pass¬ 
ing through = 0.3, as a function of Mach number. 

BL Transition. Stability of the laminar boundary- 

layer flow is also closely connected with the pressure 

gradient, as explained in Chapter II. Since pressure 

coefficients vary as a function of Mach number, sta¬ 

bility and laminar character of the boundary layer 

are in this manner affected by compressibility. The 

negative gradient between the stagnation point of a 

sphere, for instance, and its equator is increased cor¬ 

responding to the Prandtl-Glauert rule, or rather as 

indicated by the equivalent rule for three-dimensional 

flow conditions (to be explained later). As shown in 

figure 10, the critical Reynolds number of the sphere 

(where the drag coefficient passes through Cp#— 0.3) 

is, therefore, found growing appreciably as a function 

of M’number; ARcr'{- is roughly proportional to M^. 
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Figure 11. Correlation between drag coefficient, transition point, 
Mach- and R’number of a "fuselage” body (39,b). 

Laminarization. The transition point of the bound¬ 

ary layer of the body illustrated in figure 11 is seen 

moving downstream as the Mach number is increased 

from M = 0.65 to 0.82. In the same interval, the 

drag coefficient decreases accordingly. Applying this 

experience to laminar-type foil sections (as treated 

in Chapter II) it can be predicted that the stability 

of their boundary layer and the corresponding low 

profile-drag coefficients can be favorably affected by 

compressibility (provided that their surface is smooth 

enough for the high speeds involved; see footnote 

7,e). Evidence of the stabilizing influence of com¬ 

pressibility (by way of negative pressure gradient) is 

also found in figure 35 (at subsonic speeds) and in 

certain results presented in Chapter XVI (at tran¬ 

sonic speeds), such as on smooth missile shapes where 

continuous negative pressure gradients may develop 

between stagnation point and body tail. 

Surface Roughness. Equation 14 (valid for smooth- 

turbulent friction) may be academic, insofar as at 

higher speeds, skin friction of aircraft is likely to 

correspond to surface roughness (as explained in 

Chapter V). In fully developed roughness flow, the 

drag coefficient is no longer a function of Reynolds 

number. It may therefore be expected (as explained 

in reference 14,c) that the coefficient of rough sur¬ 

faces (when tested at speeds where roughness-type 

flow has developed in the BL) fully corresponds to 

reduced BL density; and that the reduction due to 

compressibility would thus be larger than for smooth 

surfaces as indicated by equation 14. Hence tenta¬ 
tively: 

C.f„m= CW - 0 12 «2> (15) 

Drag characteristics of two slender streamline bodies 

having surfaces made “completely” rough by coating 

them with carborundum grains, are presented later 

(in figure 36). Provided that laminarization does not 

take place under such conditions, the conclusion can 

be drawn that the skin-drag coefficients of these shapes 

decrease as a function of Mach number, approxi¬ 

mately as indicated by equation 15. 

4. DRAG OF FOIL AND STRUT SECTIONS 

Skin Friction drag of foil sections in compressive 

fluid flow can be calculated similarly as shown in 

Chapter VI. The friction coefficient “Cn” to which 

the section drag coefficient “CDS” is related (as in 

equation 6 of the “streamline” chapter), must be re¬ 

placed, however, by a value reduced as per equation 

14 (for smooth and turbulent condition) or equation 

15 (for rough-surface flow). An increase of superve¬ 

locity must then be taken into account as indicated 

by the Prandtl-Glauert rule (equation 5). Simulta¬ 

neously, however, the density of the air within the 

boundary layer is decreased because of the mean-aver¬ 

age negative pressure prevailing at the section sides. 

Semi-theoretical analysis in (14,c) suggests that the 

two effects roughly cancel each other. Therefore, the 

frictional component of section drag may approxi¬ 

mately correspond to 

CDfnc- 2 tW1 +l</0 (16) 

where k = 2 for thickness location at 0.3 chord and 

k = 1.5 for high-speed type sections with locations 

between 0.35 and 0.45 of the chord. Because of C^com 

(as in equations 14 or 15, respectively), the frictional 

component of the section drag coefficient can thus be 

expected slowly to decrease as the Mach number is 
increased. 

Pressure Drag. In incompressible flow, pressure drag 

of streamline airfoil and strut sections grows in pro¬ 

portion to (t/c)4 as indicated in Chapter VI (equation 

6). The component (t/c)1 of this term, indiacting 

the frontal area of the section, remains constant upon 

changing from incompressible to compressive flow. 

However, applying the Prandtl-Glauert rule, the com¬ 

ponent (t/c)3, representing the influence of the posi¬ 

tive pressure gradient along the rear of the section 

sides, is to be increased by the Prandtl factor (equa¬ 

tion 5). Tentatively (14,c), therefore, the pressure 

drag component of slender streamline sections varies 
as 

CdpA2 CfcJ = 60 CPfft/0* (17) 

Combining this function with equation 16, the pro¬ 

file-drag coefficient of sections having the maximum 
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(19) General remarks on experimental results: 
a) Some of the results quoted in (20) and in other foot¬ 
notes, and many others (not referenced) are severely affected 
by compressive blockage in smaller closed-type wind tunnels. 
See in this respect Mair-Gamble, Blockage Corrections, ARC 
RM 2033 and 2527; or Herriot, NACA T.Rpt 995 (1950). 
b) In all such functions, plotted against Mach number, an 
influence of Reynolds number (usually increasing as a 
function of tunnel Mach number) is naturally included. 
c) While results as a function of R’number, are usually 
presented in larger and logarithmic-scale graphs, those as a 
function of M’number always seem to be reported in com¬ 
paratively small scales, thus obscuring the finer variations of 
the drag coefficient. Figure 18 proves, however, that results 
from high-speed wind tunnels can very well be consistent 
and that they can show the same variations as a function of 
R’number as those from larger low-speed facilities. 
d) Almost all modern results on airfoil section drag are ob¬ 
tained by wake-survey technique. 
e) "Creeping” transition into the critical M’number phase 
as shown, for example in (20,a and m) can be explained on 
the basis of increasing B’layer separation. 

Figure 12. Drag coefficient ratio (at CL = 0) of symmetrical 
airfoil and /or strut sections having the maximum thickness located 
at 30% of the chord, as a function of thickness ratio and Mach 
number — calculated through application of equation 18. 

thickness at 30% of the chord, is found to be 

CDs/(2 Cff J = 1+2 (t/c) + 60 (‘P’f(t/c)A 

with Cpcom corresponding to Reynolds number, sur¬ 

face condition and boundary layer flow. Figure 12 

demonstrates that section drag as obtained through 

application of this equation increases as a function of 

thickness ratio at a rate which is somewhat higher 

than for incompressible flow (at M—*-0). Consider¬ 

ing, however, the fact that “Cneot^‘ decreases as the 

Mach number is increased, the increase of pressure 

drag may very roughly be cancelled in sections having 

thickness ratios between 9 and 15%. Figure 13 pre¬ 

sents theoretical and experimental profile-drag co¬ 

efficients, as a function of Mach number. To simplify 

conditions, a constant basic friction-drag coefficient 

Cpcom= 0.00285 was assumed when calculating the 

theoretical lines in the graph. Agreement thus ob¬ 

tained is encouraging. It must be said, however, that 

a number of experimental results from other sources 

(19,a) show increases of the drag coefficient which are 

appreciably higher than those in figure 13. In fact, 

a decrease of the coefficient as it can be expected to 

occur in smafler thickness ratios (on the basis of equa¬ 

tion 14) is rarely confirmed in experimental investi- 

0012 
c =.5 m 

t/c-l2%| at */c=30% DVLC20 a) 

R = 6 !06 of M =0.7 

♦ 2218 (20,e) ot 2 lo! 
a 0015 (22,d) at 2 10? 
» 0015(20,m)at3 106 

Figure 13. Drag coefficients (at Cl = 0) 
of a family of symmetrical foil sections 
(with maximum thickness at 30% of the 
chord) ;(a) tested in a large-size wind-tun¬ 
nel (20,a);and (b) calculated as per equa¬ 
tion 18 for Cp = 0.00285 = constant. 

0015 at transonic speeds, 

see (36,e) in Chapter XVII. 
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Figure 14. Drag coefficient of a foil section, in smooth condition 
as well as completely coated with carborundum having 
grain sizes "k” as indicated (20,a). 

(e) The decreasing trend of fully-rough skin-friction 

drag coefficients predicted by equation 15, is not con¬ 

firmed by these experimental results. In fact, two 

among the three functions presented in the graph, 

show that the coefficient increases as the Mach num¬ 

ber is increased. Here, as in all results on smooth 

airfoil sections (such as in figures 13 and 17, for ex¬ 

ample) the influence of Mach and Reynolds numbers 

upon laminarization and boundary layer transition, 

is evidently superimposed to the simple functions as 

presented in the text above (19,b). In other words, 

the value of Cpo or CfcoM being the basis of “viscous” 

or section drag, is not constant; and the value is evi¬ 

dently not even constant in the “fully” rough shapes 

as in figure 14 where some chord fraction near the 

leading edge can be assumed to be laminarized by 

means of a negative pressure gradient (in spite of 

roughness). 

(f) At Reynolds numbers corresponding to full-scale 

application in aircraft (above 107), the influence of 

roughness upon laminar-type foil sections can be ex¬ 

pected to be more severe than in the model experi¬ 

ments considered. 

gations (19,b). At smaller R’numbers (such as at 

Rc ~ 5* 10 s, for example) transition from subcritical 

Mach numbers into the critical phase appears to be 

“creeping” (19,e) possibly to such a degree that drag 

divergence cannot very well be defined. 

Surface Roughness. Figure 14 presents experimental 

information on the drag of a rough-surface foil section 

in compressive fluid flow. By comparison of the co¬ 

efficients (at M ~ 0.5) with those of rough surfaces 

in figure 4 of Chapter V and with those of laminar- 

type sections in figure 18 of Chapter II, conculsions 

can be drawn as follows; 

(a) The grain-size ratio of 3/105 does not affect the 

drag at all. This ratio is below the no-Ionger-permissi- 

ble as defined in figure 2 of Chapter V. 

(b) The ratio of 7/10^ does not produce fully devel¬ 

oped roughness flow. The drag coefficient may repre¬ 

sent turbulent friction, however. Note that the level 

above M == 0.5, roughly corresponds to that with 

k/c = 9/10S, at M = 0.3. 

(c) Grain sizes corresponding to k/c = 7/10E and 

= 9/10 cause a transition of the drag coefficients 

from a lower to a higher level (between M = 0.35 

and 0.50). It is suggested that in 7/10^, this transition 

is from laminar to turbulent, while in 9/10^, transi¬ 

tion from smooth-turbulent to roughness-type bound¬ 

ary-layer flow seems to take place. 

(d) The level of the drag coefficient corresponding 

to k/c = 15/105, indicates “fully” developed rough¬ 

ness-type B’layer flow (See Chapter V). 

Strut Sections. By multiplying equation 18 with c/t, 

the drag coefficient (based on frontal area) is obtained 

of strut sections and fairings (with maximum thick¬ 

ness at 0.3 chord): 

CD./Cfcom = 4 + 2<c/t> + ^OCP’ftt/cj* (19) 

The experimental results on the “fat” sections in fig¬ 

ure 4 are not suitable for comparison with this equa¬ 

tion (because of laminar-type flow separation). Other 

reliable results on sections having thickness ratios 

larger than those of “airfoils”, thus representing 

“struts”, do not seem to be available. Disregarding 

the “half-streamline” shapes as in figures 7 and 9, the 

fattest foil section presented in this chapter is the 18% 

thick shape in figure 13. 

Figure 15. Optimum thickness ratio of fairing- or strut sections 
(giving minimum drag in relation to their frontal 
area) as a function of Mach number. 
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Figure 16. Drag coefficients at zero lift of symmetrical sections, 
varying in the location of maximum thickness (20,a). 

(20) Experimental results on airfoil sections as a function of 
Mach number are now so numerous that only the more sys¬ 
tematic or more illuminating publications can be quoted: 
a) Goethert, DVL Airfoil Characteristics at High Speeds, 
reported in ZWB Docts FB-1910, 1490 and 1506 (1942), 
in Tech Berichte ZWB 1944 p.235; in NACA T.Memos 
1203 and 1240; and in reference (l,d). 
b) NACA, Tech Notes 1129, 1813, 2670 and 3871. 
c) Stack-VonDoenholf, NACA Tech Rpt 492 (1934). 
d) NACA, Documents RM A9G18 and L7E08(free fall). 
e) ARC Reports RM2058 (Blocking), and 2555 (Flight). 
f) Feldmann, Symmetrical Foils, ETH Ziirich Heft 14. 
g) Berggren-Graham, Symmetrical Foils, NACA TN 3172. 
h) NACA 0010-40 Free Fall (RM A9G18), combined with 
foil section 64A010 tested in wind tunnel (T.Note 3871). 
i) Stack, Airfoils at High Speeds, NACA T.Rpt 763 (1943 ). 
k) Stivers, "64A” Foil Series, NACA T.Note 3162. 
l) Rogers, Tests on 10% Airfoil, ARC RM 2863 (1956). 
m) Mair, 0015 Model Size, ARC RM 2527 (1951). 
n) Hemenover, Cambered Foil, NACA T.Note 2998. 

Optimum Thickness Ratio. As demonstrated in Chap¬ 

ter VI, strut sections have an optimum thickness ratio 

(giving minimum drag in relation to frontal area). 

This ratio, found by differentiating equation 19, and 

plotted in figure 15, decreases slowly with the Mach 

number. Upon reaching the critical M’number, the 

function plotted in figure 19 has to be considered, 

however, in order to avoid the strong increase of drag 

likely to take place when exceeding that number. The 

optimum ratio then decreases very rapidly as against 

Mach number. 

<i t. c = 10% at x/c = 42% (20,1) 
♦ ditto with forced turbulence 
o t 'c - 10% at x/c = 40% (20,h) 

Figure 17. Drag coefficients at zero lift of several laminar type 
NACA airfoil sections (20,g) having x/c «38%; and 
of other similar airfoil sections. 

Laminar Flow Sections. The equations developed so 

far, are primarily valid for sections with the maxi¬ 

mum thickness located at or near 30% of the chord, 

such as they were “conventional” in airplane design 

for many years. Applying now the same methods to 

laminar-type sections as represented by equation 7 

in Chapter VI, the variation of their sectional drag 

with Mach number, could also be estimated. The 

mechanism of laminarization due to shifting maxi¬ 

mum thickness aft, is confirmed in figure 16. As men¬ 

tioned while discussing characteristics of this type of 

sections in incompressible flow (page 6-6) their drag 

coefficient may be erratic, however, as a function of 

Reynolds number; and therefore as a function of 

Mach number as well. In a way, such behavior is 

evident in the up and down variations as in figure 16, 

while figure 17 shows slowly increasing trends in all 



15 - 14 FLUID-DYNAMIC DRAG 

• DVL 0012 c = 0.5 m (20,o) 
+ NACA 16-019 = 5 in, (20,i) 

A FOR COMPARISON FROM FIG. 18, CHAP.II 
a SECTIONS 0012, 66-116 and "RUSSIAN" Figure 18. Drag coefficients of two airfoil sections (20,i) as a 

function of Reynolds (and Mach) number. Results on three other 
sections shown for comparison from figure 18 in Chapter II. 

sections tested (19,b). Figure 18 (drawn to a larger 

Cq scale; see footnote 19,c) demonstrates systematic 

variations, as a function both of Reynolds and Mach 

number. By comparison with results on other foil 

sections (taken from figure 18 in Chapter II) it is 

seen that the critical M ’number terminates the low- 

drag phase of the laminar-type foil section at a Rey¬ 

nolds number far below the range in which “creep¬ 

ing” transition takes place in non-compressive fluid 

flow (or at Mach numbers considerably below the crit¬ 

ical). Although accurate prediction of full-scale drag 

of “laminar” sections remains problematic (see text 

on pages 2-13 and 6-6), three statements may never¬ 

theless be made: 

(a) Compressibility is expected to help preserve the 

laminar character of boundary layer flow by means of 

increased favorable pressure gradients (see page 15-10). 

By comparsion with the theoretical skin friction func¬ 

tions (included in figure 18) it is found that in the 

laminar-type section, the expected laminarization 

really takes place, at least up to Rc ~ 1.5 106. A 

similar result seems also to be evident in the 0012 

section in the vicinity of Rc = (4 and 5) 106. — Note 

that the difference between the two sections with re¬ 

gard to Reynolds number corresponding to Mc(.j^, 

reflects different model sizes applied in the tunnel 

tests. Termination of the subcritical drag functions 

is not completely sudden, however. There is obvi¬ 

ously some interval ahead of Mct.Lt where compressi¬ 

bility and/or conditions near the critical speed (such 

as tunnel vibrations ?) have some influence upon tran¬ 

sition so that the drag coefficient starts rising steadily. 

(b) Reynolds numbers in full-scale applications of 

laminar foil sections are above 10^, while those in 

the available high-speed wind-tunnel results are only 

somewhat above 10 . After consulting figure 18, it 

appears doubtful, therefore, whether or not the low 

drag coefficients as in figures 16 and 17 are applicable 

to full-scale conditions of airplanes (even if proper 

consideration is given to the item as follows). 

(c) The permissible surface roughness grain size is 

already very small at the higher speeds of ordinary 

airplanes (see page 5-2). Considering now speeds in¬ 

creased to the subsonic limit as given by the critical 

Mach number of the wing section, surface roughness 

under realistic conditions of hardware construction 

and aircraft operation, may really be expected to be 

problematic. There can, on the other hand, a re¬ 

lieving influence of compressibility be suspected, in¬ 

sofar as the permissible grain size (or the permissible 

R’number for a certain grain size) may be increased 

on the basis of a heated and lower-density boundary 

layer. 

(22) Pressure distribution on airfoil sections: 
a) See NACA Tech Rpt 832 and Tech Note 3162. 
b) Goethert, 0015 Section, Yearbk D.Lufo 1941 p.1,101, 
and 148; 12% sections in ZWB Tech Ber. 1944 p.235. 
c) Incompressible Distribution, ZWB Doct FB 1621. 
d) Graham-Nitzberg-Oison, Distributions, NACA T.R.832. 
e) Busemann, High Speeds, including local supersonic field 
with shock-free recompression, J.A,Sci.l949 p.327. 
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5. CRITICAL MACH NUMBER OF WINGS 

Definition. Most of the compressibility effects, con¬ 

sidered in the preceding section, have only a moderate 

effect upon flow pattern and drag. Shapes of stream¬ 

lines and boundary layer characteristics are of the 

same type as in incompressible flow. Whatever changes 

there are as a consequence of subsonic and subcritical 

compressibility, they are usually small; and aerody¬ 

namic characteristics can be obtained by adding cer¬ 

tain corrections to those in incompressible flow. Such 

conditions begin to change, however, when and if at 

certain points on the surface of solid bodies, the veloc¬ 

ity of sound is locally first attained and/or slightly 

exceeded. The corresponding Mach number in the 

undisturbed flow (at some distance away from the 

solid investigated) is called the critical Mach number. 

The number at which the critical condition first be¬ 

comes evident in a more or less distinct change of the 

aerodynamic forces, is the “divergence” Mach num¬ 

ber. In many cases, the value of this number is ac¬ 

ceptably close to that of the critical number (which 

can accurately be determined from pressure distrib¬ 

ution tests) and it may then be so designated in text 

and/or illustrations. Under certain conditions, the 

drag-divergence Mach number may be considerably 

higher than the critical number, however. 

• DVL 00-SERIES (20,o) 
A NACA 64/65 SERIES <20,b) 
o NACA x/c-50% <20,c) 
X ZORICH TUNNEL (20,f) 

Figure 19. Critical Mach number of symmetrical airfoil and strut 
sections (at zero lift) as indicated by theory (see text) and as eval¬ 
uated from drag divergence in various experimental reports (20), 
as a function of their forebody thickness ratio (t/2 x) which is 
approximately equal to the supervelocity ratio (&V/V). 

Prandtl Factor. The critical Mach number (but not 

the divergence number) is open to calculation. We 

will assume that the maximum local supervelocity 

ratio (AV/V) on the sides of a two-dimensional stream¬ 

line shape (airfoil section) is known under incom¬ 

pressible conditions. In a compressive flow of gas, 

this ratio is then expected to increase corresponding 

to the Prandtl-Glauert rule (equation 5). The critical 

Mach number is obtained when 

m (i + (t; av/v| = i (20) 

where ‘1^ = Prandtl factor (as in equation 5) de¬ 

termined for the imaginary local Mach number 

M^ = (1 + AV/V) Mcr;^. The critical Mach num¬ 

ber can then be evaluated from: 

(1/Mmt)= 1 + (‘p; AV/V) (21) 

Example. For a supervelocity ratio AV/V — 0.1, we 

obtain the “imaginary” Mach number M^ = (1 + 

AV/V) Mfci-t = 1.1 McWe thus have to estimate 

the value of Mcn'f first; and we can do that for the 

purpose of this example by looking into figure 19 

where we may tentatively pick a value of 0.80. We 

then obtain M* = 0.88and‘I^ = \/\j 1 — M| = 2.1. 

Using these values, equation 20 yields 0.80 (1 -f- 

0.21) — 0.94 1. This procedure has to be re¬ 

peated (iterated) until that equation is satisfied. The 

correct critical number in the example selected is 

Mcs.,^ between 0.81 and 0.82. 

Airfoil Sections. There are many experimental re¬ 

sults of airfoil and strut sections, and of some ellipti¬ 

cal cylinders, indicating that the drag-divergence 

Mach number of these bodies is near the predicted 

critical Mach number. Figure 19 presents evidence in 

this respect, with the critical number plotted against 

the supervelocity ratio (AV/V). In case of elliptical 

section shape, the theoretical ratio is exactly AV/V = 

t/c, where t/c = thickness ratio. Considering now 

average streamline sections with maximum thickness 

located at known location “x” on the chord, and with 

roughly elliptical forebody shapes (to the position x), 

we may tentatively assign to them the effective thick¬ 

ness ratio 

(t/c)e = t/(2x) (22) 

This thickness ratio is suggested to be an acceptable 

measure for the supervelocity ratio (23,a). The graph 

presents critical Mach numbers, applicable to prac¬ 

tically all symmetrical streamline sections and to those 

of slender elliptical sections, at and near zero lift; and 

it is seen that the approximation is suitable for en¬ 

gineering purposes. 
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x NACA 6% biconvex (5.d) 
o NACA for t/c = 9% (20,c) 
m DVL for t/c = 10% (22,c) 
A DVL for t/c = 12% (20,o) 
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Figure 20. Influence of thickness location along foil chord upon 
critical or drag-divergence Mach number. 

Thickness Location. Figure 20 displays the influence 

of thickness location in respect to section chord. Min¬ 

imum supervelocities and highest critical Mach num¬ 

bers are obtained for a location at x/c •»= 0.5 or 

possibly aft of this station. Besides laminarization 

through negative pressure gradient, reduced super¬ 

velocities are thus the reason for the development of 

modern airfoil sections, having their maximum thick¬ 

ness between « 0.35 and ~ 0.50 of the chord. The 

continuation of the line in figure 20 beyond x/c — 

0.5 is computed on the basis of the equivalent fore¬ 

body thickness ratio (as defined in figure 19). Con¬ 

sidering instead the thickness ratio corresponding to 

the afterbody shape, smaller critical numbers are ob¬ 

tained, of course, corresponding to the lower branch 

line in the graph, originating from x/c = 0.5. Inas¬ 

much as a growing boundary layer can be expected 

somewhat to “fill up” the tapering after end of a foil 

section, actual results may be inbetween the two 

branches. 

Blunt Trailing Edge. By moving the maximum thick¬ 

ness to the trailing edge, the forebody thickness ratio 

is effectively reduced; and the critical Mach number 

is possibly increased as indicated in figure 20 by the 

upper line. Sections with a corresponding blunt 

and/or boat-tailed trailing edge have been proposed 

and tested, primarily at transonic and supersonic 

speeds (see Chapters XVI and XVII). Analysis of 

such sections on the basis of figure 39 in Chapter III, 

shows conditional advantages in the vicinity of their 

critical Mach number. Drag of such sections at speeds 

below the critical number is bound to be so high, 

however, that their usefulness can justly be questioned. 

Finite Wings having aspect ratios as applied in air¬ 

planes are usually considered to have locally a two- 

dimensional type of flow pattern along the chordwise 

sections. In compressive fluid flow (at higher speeds, 

approaching the critical Mach number) the presence 

of the three-dimensional wing tips provides consider¬ 

able relief, however, for supervelocities and pressure 

differentials as they have been explained above to 

arise corresponding to the Prandtl rule. Theory (25,c) 

indicates that the three-dimensional relaxation can be 

accounted for by applying to free-stream conditions 

an effective reduction of ambient speed or M'number. 

Figure 21 presents the corresponding increase of the 

critical Mach number. It is seen that in the range of 

aspect ratios above 8 or 10, the flow pattern is so much 

two-dimensional, that the critical M’number can very 

well be predicted through application of the Prandtl 

rule (or as shown in figure 19). Below that range, 

the critical number increases above that of the em¬ 

ployed (two-dimensional) airfoil section as indicated. 

A substantial increase is found below A = 2, ap¬ 

proaching from there the ultimate limit at M = 1. 

One set of experimental points in figure 21 proves 

that the aspect-ratio effect also applies to swept wings. 

i.o 

o.9 

0.8 

o.7 THEORY [25,bl 

• 65-110 A =30‘(c) 
« 63-008 NACA (d) 
♦ 65-208 NACA (o) 
* 65-110 NACA !d) 
+ 65-212 NACA (o) 
• 0012 NACA (b) 

0.6 

0.5 

DD 

6 8 

ASPECT RATIO 

10 

A^/S 

Figure 21. Critical Mach number of various wings as a function 
of their aspect ratio (26). Theory as in (25,b). 

Merit (Lift). Of course, supervelocities at the sur¬ 

face of a wing are also a function of its lift coefficient, 

or more precisely of the maximum local lift coefficient 

(28). It has been pointed out in connection with cav¬ 

itation in hydrofoils (on page 10-10) that the velocity 

fields due to displacement (section thickness) and 

corresponding to lift, can approximately be superim¬ 

posed to each other. Picking up the two components 

from the “hydrodynamic” chapter, the combined 

maximum supervelocity ratio for sections having a 

thickness location between 0.35 and 0.40, is predicted 
to be 

(AV/V) (4/3) (t/c) + 0.7 CL (24) 

The due-to-lift term is valid only for the, and in the 

vicinity of the “optimum” lift coefficient (23,b) how- 
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• NACA 64AX06 SERIES (20, k) 
o NACA 16-X09 SERIES (20, k) 
O NACA 64 AX 10 SERIES (d+k) 
A NACA 66-215, XX 15 (21 ,d) 
X DVL t/c = 12% CAMBER (20,a) 

o o.2 0.4- 0.6 o,8 

Figure 22. Critical M’number of cambered airfoil sections as a 
function of their "optimum” lift coefficient (23,b). 

ever. Figure 22 presents the function, evaluated for 

t/c = 0, and = 15%, respectively. Experimental 

data from various sources agree reasonably well with 

the theoretical prediction, if disregarding some “ex¬ 

ceptions from the rule” to be described later under 

the subheading of “drag dip”. It may be said that the 

“optimum” critical Mach number for any thickness 

ratio reduces as a function of lift coefficient, very 

roughly in proportion to that at t/c — 0; and that at 

= 0, it is of course, equal to that as plotted in 

figure 19. — Regarding the critical Mach number of 

symmetrical sections and/or of cambered sections 

at lift coefficients sufficiently different from their re¬ 

spective “optimum” values, a presentation of facts and 

some explanation of these facts is given in the follow¬ 

ing paragraphs. 

Recompression. In one-dimensional gas dynamics, 

“recompression” of a supersonic stream of fluid is 

expected to take place by means of a shock (equal to 

a sudden pressure jump); and a shock always means 

a loss of momentum which in turn appears in the 

form of an increment of pressure drag in the obstacle 

which is the cause of all these phenomena. It has been 

pointed out, however (22,e) that within a localized 

field of flow (extending laterally only a short distance 

away from the body producing that field) the static 

pressure can very well return to the ambient level 

without the help of a shock. In other words, within a 

certain limited range of the Mach number, recom¬ 

pression can take place without a corresponding in¬ 

crement of drag. Confirmation of such flow pattern 

is obviously found in figure 23 where, at a lift coeffi¬ 

cient of C|_ = 0.4, the drag coefficient of the straight 

foil section, at Mach numbers above 0.65, is lower 

than that of the “properly” cambered section (24). 

Indeed, the coefficient of the symmetrical section does 

not increase at all after passing the critical Mach num¬ 

ber (determined from pressure distribution, at M = 

0.575 as marked). Such a “delay” of drag divergence 

does not occur in ordinary streamline sections at 

their correct design angle of attack (such as (X = zero 

in symmetrical sections). Rather, “DD” Mach num¬ 

bers appreciably exceeding the respective critical 

Mach numbers, are only found, at angles of attack or 

lift coefficients at which a sharp flow around the lead¬ 

ing edge (23,c) takes place thus producing a sharply 

peaked pressure distribution. It is stated in (l,d) that 

in such cases, conditions for shock-free recompression 

are particularly favorable; and we can conclude that 

a certain delay in the growth of the drag coefficient 

is thus effected. Even if assuming that after exceed- 

(23) Supervelocities in hydrofoil sections: 
a) This ratio has also been used on page 10-6 as a measure 
for the susceptibility of hydrofoil sections to cavitation. It 
is to be understood, however, that replacing streamline foil 
shapes by equivalent elliptical sections can only be done 
within reasaonable limits as to thickness location (x/c) and 
particular section shape. 
b) The "optimum” is that lift coefficient at which in a given 
cambered foil section, the entrance of the leading edge into 
the streamlines is smooth or "symmetrical". The magni¬ 
tude of C[_opt is indicated by equation 13 in Chapter X. 
c) Curiously enough, similar conclusions are obtained in 
Chapter X, with respect to critical cavitation numbers in 
peaked pressure distributions. 

(24) By some reason, the 2% camber section shown in figure 23 
has a drag coefficient (at subcritical M'numbers) consider¬ 
ably lower than that of both the 4% and the 0% camber 
section. 

(25) Compressibility in finite aspect ratios-. 
a) Goethert, Modified "Rule", D.Lufo 1941 p.1,156. 
b) Hess-Gardner, "Ellipsoids",NACAT.Note 1792(1949). 
c) Anderson, Aspect Ratio, J.Aeron.Sci.1956 p.874. 

(26) Wings of fiinite aspect ratio in wind tunnels: 
a) Hamilton-Nelson, 6 Wings, NACA T.Rpt 877(1947). 
b) Stack-Lindsey, Low A'Ratios, NACA Tech Rpt 922. 
c) Adler, Straight and Swept Wings, NACA RM L7C24. 
d) NACA Documents RM A51A12 and A53C19. 

Figure 23. Section drag coefficients of three shapes differing in 
camber (20,a) at Cj_ = 0.4 = constant; (a) cam¬ 
bered corresponding to lift; (b) with intermediate 
camber (24) ; (c) straight airfoil section. 
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ing the critical Mach number by some interval, a com¬ 

pression shock does occur, it can then be argued that 

the loss of momentum involved may at first be com¬ 

paratively small. The shock may take place in oblique 

direction and it may not extend very far into the outer 

flow. 

Drag Dip. In the vicinity of M = 0.7, the symmetri¬ 

cal airfoil in figure 23 (tested at = 0.4 = con¬ 

stant) exhibits a pronounced dip of its drag coefficient. 

This dip appears to be similar in shape to those as 

observed on bluff bodies (in the earlier section on 

this subject); and it is suggested that the mechanics 

of the dip are the same as explained in connection 

with those bluff bodies. In other words - the bound¬ 

ary layer re-attachment taking place at the suction 

side, aft of the leading edge of comparatively sharp¬ 

nosed airfoil sections, at lift coefficients different from 

C [_0p|. — this re-attachment is evidently improved by 

an expanding supersonic flow taking place around the 

airfoil’s nose (see in Chapter XVII under the sub¬ 

heading of “Prandtl-Meyer”). As a consequence of 

this mechanism, in combination with the recom¬ 

pression phenomenon as explained above, the drag 

coefficient may perform an “up-down-up” variation 

as, for example, in figure 25, in the more-sharp-nosed 

section. This variation evidently corresponds to that 

of sphere and cylinder in figures 5 and 6, where the 

flow pattern partly re-attaches at Mach numbers in 

the vicinity of 0.8. Supersonic expansion, elimination 

of separation through such expansion and shock-free 

recompression, all these phenomena and their influ¬ 

ence upon lift and drag forces are confirmed by 

“schlieren” pictures and pressure distributions pre¬ 

sented in (22). It is shown in particular that shock- 

free recompression can occur from velocities as high 

as 1.4 times that of sound, and that full separation (at 

Mcl.^) from a sharp leading edge (at an angle of 

Figure 24. Drag-divergence Mach number of a foil section (29,a) 
cambered corresponding to C, , ~ 0.2, as a function 
of lift coefficient. 0(3 

attack corresponding to an original CL ~ 0.5) is fully 

eliminated by means of supersonic expansion so that 

the lift coefficient increases to ~ 0.7 (thus forming a 

hump as mentioned in footnote 4,b). The report 

quoted also presents dips in the drag coefficients of 

two of the setcions tested, as a consequence of “super¬ 

sonic” re-attachment; it also proves that dips can only 

occur when and if the flow pattern is somehow sep¬ 

arated, to begin with. Reference (22) shows, finally, 

that whenever recompression takes place by means of 

a “real” shock, the drag coefficient is comparatively 

high because of the negative expansion pressure pre¬ 

ceding the shock and on account of flow separation 

starting anew in combination with the shock. 

As a Function of Lift Coefficient, the parasitic or sec¬ 

tion drag coefficient increases in a manner as explained 

in Chapter VI. Keeping now CL|q^ = constant (as 

for example in figure 23, rather than the angle of 

attack) there is no strong reason why the increment of 

the drag coefficient due to lift should increase as a 

function of Mach number over the value as indicated 

in equation 15 of the chapter mentioned. This state¬ 

ment is, of course, restricted to speeds and lift coeffi¬ 

cients below the critical Mach number. Both figures 

23 and 25 confirm the conclusion. 

Peaked Distributions. Details of the interaction be¬ 

tween expansion zones, shock fronts and the bound¬ 

ary layer (or vice versa) are reported in (27). The 

interaction is found to depend upon the status of the 

B’layer. For a turbulent (and thick) layer, recom¬ 

pression is likely to take place in form of a shock. 

Conditions in combination with a laminar (and ac¬ 

cordingly thinner) boundary layer are more condu¬ 

cive to the Prandtl-Meyer type of expansion, and to 

shock-free recompression as described above. These 

prerequisites are evidently fulfilled in the case of flow 

around comparatively sharp leading edges. We can 

therefore make the statement that “peaked” pressure 

distributions over the surface of an airfoil section do 

not lead to Mach numbers that would be indicative 

of drag (and other forces’) divergence. Peaked dis- 

tirbutions may rather be expected to have drag-diver¬ 

gence Mach numbers that are considerably higher 

(23,c) than the critical number (corresponding to 

locally reaching sonic velocity). Drag divergence num¬ 

bers of symmetrical airfoils (having not too round 

noses) therefore reduce only little as the lift coefficient 

is increased from zero. Within reason (not exceeding 

coefficients in the order of CL = 0.3 or 0.4) their 

Mdd values are then higher, of course, than those as 

plotted in figure 22. Figure 24 presents as an example 

the drag-divergence Mach number of a foil section as 

a function of the lift coefficient. The differential 

(Mdd— Merit) reaches values between 0.3 and 0.4, 
at certain lift coefficients. 
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Nose Shape. Figure 25 shows the section drag coef¬ 

ficient at C[_ = 0.4 of two symmetrical foil sections 

varying in thickness location and in the shape (radius) 

of the nose. Drag divergence in the 0012 section ap¬ 

proximately coincides with the critical Mach number 

of this section (determined from pressure distribu¬ 

tion). The sharp-nosed section shows a pronounced 

up-down-up variation however; and the total “delay” 

in drag divergence amounts to AM ~ 0.3 as against 

Mct-a and to AM » 0.17 in comparison to that 

of the 0012 section. The reason for this result is to 

be found in the boundary layer development. The 

BL flowing into the space of supersonic expansion is 

evidently thin (and possibly laminar) in the sharp¬ 

nosed section; and it is thicker (and possibly turbu¬ 

lent) in the more round-nosed section. If finally re¬ 

lating the sharp-nosed section to a section properly 

cambered for C|_ = 0.4, the increment of M^ re¬ 

duces to less than 0.1. Such value (corresponding 

to AV ~ 50 knots) is still worthwhile, however, 

to be considered in the design of subsonic airplanes. 

(27) Boundary layer shock interaction: 
a) Liepmann, BL and Shocks, J.A.Sci. 1946 p.623. 
b) Ackeret, Mitt. ETH Zurich No. 10; NACA T.Memo 1113. 
c) Interferometric Flow Pattern, NACA T.Note 2801. 

(28) Theoretical guidance in respect to the critical Mach number 
of airfoil sections as a function of camber and lift coefficient 
is given in NACA T.Rpt 824 (1945), "Summary of Airfoil 
Data" by Abbott-Doenhoff-Stivers (also available as a book). 
As explained in the text, pressure distributions do not have 
much significance, however, in regard to drag divergence, 
when they are "peaked”. 

(29) Foil sections cambered for supercritical M'numbers: 
a) Graham, Experiments, NACA T.Notes 1396 and 1771. 
b) Woersching, Negative Camber, J.A.Sci. 1951 p.36l. 
c) ARC, Negative Camber, RM 2460 (1947). 
d) Summers, Camber in 64AX10, NACA T.Note 2096. 
g) Goethert, ZWB Doct FB 1910 (1940) ; see Ref.(20,a). 
h) BL Re-attachment also in NACA T.Notes 1211 & 3804. 

(30) Theoretical principles of swept wings: 
a) Ringleb, Oblique Flow, NACA T.Memo 1158. 
b) Ludwieg, Critical Mach Number, ARC RM 2713 (1947 ). 
c) Jones, Principles of Cross Flow and Swept Wings, 
NACA T.Rpts 835, 851, 863, 884 and 902 (1946 to 1948). 
d) Neumark, Critical Mach Number, ARC RM 2821 
(1949). This publication claims that all previous efforts in¬ 
cluding (b) and (c) of predicting the critical Mach num¬ 
ber of swept wings have been erroneous. 
e) Neumark (d) calls such wings ''yawed" or "swept”, 
while wings with "c” kept constant in the direction of the 
undisturbed fluid flow are "sheared”. Most of the NACA 
testing (32) is done on wing families with chord defined in 
the direction of flow (such as in figure 30). 
f) Kiichemann, Flow Mechanism, ARC RM 2908 (1956). 

(31) Characteristics of wings in oblique flow: 
a) Pressure Distribution by Lippisch, ZWB Doct FB 1669 
(1942), and by Koch, ZWB Doct UM 3006; NACA 
T.Memo 1115. 
b) Jacobs, Sheared Flow, Ing.Arch. 1952 p.418. 
c) Beavan, Yawed Airfoils, ARC RM 2458. 

Figure 25. Parasitic drag coefficient of two airfoil sections (20,a), 
differing in the shape of the nose, at C^ = 0.4. 

Flap Camber. The flow mechanism explained above 

and/or the underlying experimental facts have also 

led to proposal, design and investigation (29) of 

foil sections whose camber line is reflexed in such a 

way that they may produce the desirable delay of 

drag (lift and moment) divergence. Camber is neg¬ 

ative in such sections near the leading edge; and it 

is positive for most of the rest of the chord. Figure 

23 proves, however, that at Mach numbers below 

drag divergence, the losses of momentum in the flow 

around the leading edge and the readiness for sepa¬ 

ration in the symmetrical section, are evidently higher 

than in the properly cambered section. In other 

words, the straight shape is not the most favorable 

one at lower speeds. It is suggested, therefore, that 

in a high-speed airplane, camber and drag divergence 

Mach number of the wing could possibly be con¬ 

trolled to advantage, by means of trailing and/or 

leading edge flaps. 
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6. CHARACTERISTICS OF SWEPT WINGS 

The principle of “cross flow” is explained in Chapter 

III in connection with inclined circular cylinders. 

The same principle if applied to the plan-form shape 

of wings, makes it possible to increase the maximum 

speed of subsonic type airplanes appreciably. 

Figure 26. Experiment explaining the principle of "cross flow”, or 
"sideslipping" in the panels of swept wings. 

Cosine Component. Considering a straight (cylindri¬ 

cal) piece of wing moving against the air at an angle 

of yaw (“side-slipping”), we can split the resultant 

velocity “V” into two components, one blowing in 

the direction of the wing’s axis or spar, and the other 

in the direction of the wing panel’s chord, normal to 

its axis. If neglecting skin-friction, the former com¬ 

ponent (V sinA ) can then be disregarded. The wings 

displacement effects (pressure and lift forces) must, 

on the other hand, be expected to correspond to the 

dynamic pressure of the other flow component (V 

cos A). To make the flow pattern thoroughly under¬ 

stood, the imaginary experiment illustrated in figure 

26 may be studied. An infinitely-long airfoil (in the 

form of a large ring, for instance) is assumed to be 

moving in lateral direction, across the open jet of a 

wind tunnel, at the velocity “u”. Diregarding skin 

friction, it is then obvious that the “potential” flow 

pattern of, and the pressure forces (31) originating 

in the piece of foil bounded by the edges of the tun¬ 

nel’s jet, are a function only of the component “w”. 

However, the resultant velocity at a certain point 

of the airfoil, in relation to the air particles, dis¬ 

charged from the tunnel’s nozzle, 

V = sj w2+ u2 (26) 

is evidently larger than “w”. Assuming now that the 

resultant velocity “V” be sonic (at M = 1), the speed 

“w” can very well be subsonic, below the critical 

Mach number, and even very small, all depending 

upon the value of “u” with which the foil is driven 

across the tunnel’s jet. A practical application of this 

principle is the swept wing (swept either way, back 

or forward) in which each panel is in the steady-state 

condition of sideslipping at the reduced “effective” 

speed 

w = V cos A (27) 

while the airplane as a whole moves straight ahead, 

at the resultant “full” speed “V”. The wing’s angle 

of sweep “A ” evidently corresponds to the velocity 

component “u” as in the wind-tunnel experiment 

described; thus: 

sin A = u/V (28) 

Swept-Wing Definition. In dealing with swept wings, 

a definition of their geometry is necessary. In sub¬ 

sonic aerodynamics we will consider as the angle of 

sweep that of the 1/4 chord line. As “chord” of the 

foil sections to be used in the theoretical analysis of 

this chapter, we shall define the dimensions measured 

in each panel, in the direction normal to the quarter- 

chord axis (30,e). Section shape and thickness ratio 

are determined accordingly. This definition may then 

lead to the assumption that upon sweeping the panels 

of a wing, the “effective” thickness ratio, measured in 

the direction of the wing’s motion, would be reduced 

in proportion to cos A.This is not the correct approach 

to the problem, however; and the mechanism as in fig¬ 

ure 26 should always be remembered. As to the aspect 

ratio of swept wings, the basic definition of A = b2/S 

still applies, where b = span measured as the straight 

distance between the wing tips. As a consequence, the 

aspect ratio reduces upon sweeping the panels of a 

wing, in proportion to cos A. Aspect ratios of swept 

wings are easily overestimated when looking at them. 

One evidently considers the dimensions of the panels, 

rather than the ratio b2/S. For example, the wing as 

depicted in figure 29, has an aspect ratio of only 4, 

while that of the panels, so to speak, i.e. when sweep¬ 

ing them into straight-wing position, is almost « 8. 

Pressure Drag. The cross-flow principle described 

(which may also be called “cosine principle”, be¬ 

cause of equation 27) is independent of compressi¬ 

bility (33). It obtains higher significance, however, 

under compressive conditions of fluid flow. Using 

equation 6 on page 6-6, the frictional coefficient to 

be applied then corresponds to equation 14 or 15, 



XV - SUBSONIC COMPRESSIBILITY 15 - 21 

respectively. The second term of the function quo¬ 

ted, reduces in proportion to cos A. With respect to 

the third term, representing pressure drag, experi¬ 

ments on two 20% thick airfoils in oblique flow 

(tested in yawed or sheared position between tunnel 

walls, reference 31,c; by pressure distribution) con¬ 

firm the prediction that the pressure coefficients re¬ 

duce in proportion to cos A - The pressure-drag com¬ 

ponent reduces accordingly. To obtain this term 

properly, the drag which it represents, is first calcu¬ 

lated in the form of a coefficient based on the dynamic 

pressure 0.5 q w2; and then referred to 0.5 <p V2. 

When introducing the Prandtl factor (as in equation 

5) this factor must be determined as a function of the 

Mach number corresponding to “w” rather than to 

“V”. As a result we obtain tentatively 

CD$= 2 Cp [l + k (t/c) cosA + 60 (‘P3) (t/c)4cos2/i] 

where k between 1.5 and 2.0, depending upon the 

thickness location of the foil section applied, and 

where __ 

■K = l/\J 1 - M2cos27) (31) 

0 I-.-----.-,-.-.---.-.— 

0 0.2 o.4 o.6 0.8 l.o 

Figure 27. Drag coefficient (on original frontal area SG) of a 20% 
thick strut (antenna rod No. 6 as in figure 9 and reference 9,b) 
in oblique flow, i.e. in a position inclined against the oncoming 
flow by the angle A. 

represents the Prandtl factor defined in the direction 

of “w”, i.e. normal to the foil axis. As far as wings 

are concerned, with thickness ratios in the order of 

10%, the pressure drag component is comparatively 

small. A direct reduction of section drag (at sub- 

critical speeds) is, therefore, not expected to be spec¬ 

tacular if applying angles of sweep, say in the order 

of 30°. Experimental results in figures 30 and 31 (and 

other evidence found in reference 32) do not show 

conclusively much of this type of reduction of section 

drag effected by sweeping the wing panels. 

Inclined Struts. By multiplying equation 30 with 

(c/t), the drag coefficient (based on frontal area) of 

struts and two-dimensional fairings is obtained. Fig¬ 

ure 27 shows experimental results obtained by sweep¬ 

ing two of the antenna rods previously quoted. A 

considerable decrease of the drag coefficient is evi¬ 

dent (33). Because of the particular test conditions 

Figure 28. Evaluation of a function derived in the text, demon¬ 
strating possible drag reductions of struts and/or fairings obtain¬ 
able by inclining them against the direction of flow. 

listed in connection with figure 9, a quantitative eval¬ 

uation is not very well possible, however. Other re¬ 

sults specifically confirming the analysis, have not 

come to the attention of the author. To be conserva¬ 

tive in making predictions, the square of the cosine 

in the last term of equation 30, was then arbitrarily 

reduced to a plain “cosA”; so that the drag of in¬ 

clined struts may now correspond to 

CDn= C-fcom<2 (CA>+ 4 cos^ + 120(^f(t/cfcosA) 

The function is plotted in this form in figure 28, 

for some selected values of Mach number and chord/ 

thickness ratio. To arrange struts (wherever they may 

be used) in an inclined position, thus appears to be 

promising. An example for the application of such 

“struts”, is as protection devices placed across the in¬ 

take openings of jet (or of other air-fed) engines, 

without reducing the ram pressure, and/or choking 

the inflow too much. It must be noted, however, that 

the coefficient as in the equation and as in figure 28, 

is based upon the “frontal” area normal to the strut 

axis. When inclining the strut, it will then be of im¬ 

portance whether or not the length (or span) is kept 
constant. 
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Critical Mach Numbers. Considering a swept wing 

as being composed of two sideslipping panels, it may 

at first sight seem to be possible to fly with such a 

wing beyond the speed of sound, without having at 

any point of its surface a shock or any other disturb¬ 

ance of the potential flow caused by exceeding a criti¬ 

cal speed. To explain this apparently paradoxical 

statement, the experiment as in figure 26 can help 

again; and the gas-dynamic equations of fluid flow 

can be satisfied by considering as the “reservoir” or 

“stagnation” pressure the total pressure correspond¬ 

ing to “w” rather than to “V”. On the basis of equa¬ 

tion 27, the “critical” Mach number would then be 

Mcn't = Mcn'to /cos-A (36) 

where Mcn'£o — critical number of the straight wing. 
This M’number is indeed an upper limit, and it is 

plotted as such in figure 29 for Mct.,q0= 0.8. For 

reasons of symmetry, the centerline of every swept 

wing is exposed to straight flow, however, essentially 

having the velocity “V”. The theoretical limit of the 

critical Mach number of larger aspect ratio wings is 

unity, therefore, (at the limiting sweep angle of 90°). 

Between that limit and the critical Mach number of 

the unswept (straight) wing, the “lower” critical 

number varies as indicated by analysis (30,d). 

X NACA t/c = 6% M = 0.84 (g) 
* LUDWIEG 0012 WINGS (o) 
- NACA t/c = 10% M = 077 (h) 

Figure 29. Critical Mach number of larger-aspect ratio wings (32) 
as a function of their angle of sweep. Theories are eval¬ 
uated for M*0 = 0.8 corresponding to a thickness ratio 
of t/(2 x) = 11%, at zero lift. 

Figure 30 presents as an example the drag coefficient 

(at C, = 0) of a 12% thick wing both in straight 

form and for an angle of sweepback of 45°. The criti¬ 

cal or drag-divergence Mach number is increased from 

0.70 to almost 0.90, thus confirming our presentation. 
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Example. By plotting the critical Mach number of 

swept wings in the manner as in figure 29, the ex¬ 

perimental results obtained by testing pairs or groups 

of wings, each having a common thickness ratio, col¬ 

lapse approximately upon a common function. To 

explain the graph, we will consider an example. For 

t/c = 12% and t/ (2 x) = 20%, the critical M’number 

of a straight wing may be M^0 = 0.72 (as in figure 

19). After sweeping the wing panels to A = 45°, we 

find the value of « —0.5 in the graph (figure 29). 

The critical M’number is then M^ = 1 — 0.5 

(1 — 0.72) = 0.86. The increment is 0.14 in this 

case; and the corresponding increase of the maximum 

speed of an airplane using this wing is possibly be¬ 

tween 80 and 90 knots. 

Center Part. The fact that the experimental points 

as plotted in figure 29 do not very well agree with 

the theoretical function as indicated, is not alarming 

at all. Only small portions of the center part (and 

possibly spots at the wing tips) exhibit sonic speeds 

at the lower boundary, while the rest of the wing 

panels can go on without any disturbance (as ex¬ 

plained above) to speeds and Mach numbers cor¬ 

responding to the cosine function. With respect to 

drag, only some “creeping” divergence is expected, 

accordingly, to start at the lower Mach-number 

boundary, originating from the wing’s center part. 

This divergence may not be important, and it may 

not well be noticeable when picking MDD values 

from plots of CQ as a function of M (such as in figure 

(32) Experimental investigation of swept wings: 
a) Ludwieg, Swept Wings at High Speeds, ZWB Lilien- 
thal Rpt 127 p.44; AVA Rpt 1940/8/14; Transl. ATI 6963. 
b) Goethert, High-Speed Tests of Swept Wings, ZWB Rpt 
FB 1813; Lilienthal Rpts 127 and 156 (1942). 
c) Frenzl, Swept Wings Tested in the Junkers High-Speed 
Wind Tunnel, Junkers Rpt S.1943/58. 
d) Kolb, Free-Fall Tests by DVL,Wright Field RPT 1949. 
e) Mathews-Thompson, Falling Body, NACA T.Note 1969. 
g) NACA, T.Note 3867 and Documents RM L9B25, 
L9G27, L51D13 and L52K04. 
h) NACA Documents RM L6J01a and L50K27. 
i) NACA Bump Tests 12% Wings, L51C26, L51H30. 
k) NACA Bump Technique on 6% Thick Wings, Docu¬ 
ments RM L9A21, L9H22, L9108, L9Kl0a, A51A12. 
l) Polhamus, Summary of NACA Bump Tests, RM L51H30. 
m) Whitcomb, Pressure and Pattern on 35° and 45° Swept 
Back and Forward Wings, NACA Docts RM L50K27/28. 
n) NACA, High-Speed Tunnel Results, Documents L51D13 
(to 60° Sweep) and A52D01 (to Rc = 107). 
o) "W” and "M” wings have been tested by Morrison, 
NACA Documents RM L50H25a and L52El4a. 
p) Holmes, 6 Wings with 40° Sweep, ARC RM 2930. 
q) Weaver, P-80 Wings on Bump, J.A.Sci.1948 p.28. 

(33) Figure 25 in Chapter VIII proves that inclination reduces the 
drag of a strut (at low Mach numbers) appreciably. Inter¬ 
ference with the wall (also reducing with the angle of 
sweep) overshadows other effects in that example, however. 

(34) This result corresponds correctly to the reversal theorem as 
explained in Chapter XVI. 

31, for example). Reference (30,d) also explains the 

influence of section shape. In a swept-back wing, the 

most favorable thickness location on the wing’s center 

line, is ahead of 0.5 chord, where the three-dimension¬ 

al relaxation in the “arrow head” of a swept wing is 

strongest. However, in swept-forward wings (as in 

figure 53, for example, a type considered by simple 

theory to be “equal” to a swept-back wing) the opti¬ 

mum location of thickness on the center line is some¬ 

what aft of 0.5 chord (34). At lift coefficients different 

from zero, swept-forward wings also become more 

loaded in the center; and this direction of sweep will 

then really be not as favorable as the swept-back type 

(in which the tips rather than the center are more 

loaded at lift coefficients different from zero). 

Figure 31. A family of 6% thick swept wings tested by transonic 
bump technique (32,k). 

Swept-Wing Characteristics. As far as subsonic speeds 

are concerned, the primary incentive for the develop¬ 

ment of swept wings comes from the beneficial influ¬ 

ence of sweep upon their critical Mach number. By 

postponing transonic effects such as shocks, it is ex¬ 

pected that undesirable consequences in regard to 

trim, stability, vibrations and drag can be avoided 

altogether. This effect is particularly evident in 

thicker foil sections (such as in figure 30). Figure 31 

demonstrates, however, that a combination of sweep 

with thin foil sections increases the drag-divergence 

Mach number to between 0.9 and 1.0 Sweep has also 

considerable influence upon the rise of the drag co¬ 

efficient above the critical Mach number. This effect 

is also evident in figure 31. Another parameter affect¬ 

ing the transonic drag rise as well as the critical Mach 

number, is the wing’s aspect ratio. Its influence upon 

Mct-li is as shown in figure 21. 
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Sheared Wings. The critical Mach numbers of 

“sheared” wings (30,e) with foil sections defined and 

kept constant in the general direction of motion, are 

somewhat lower than those of the class of swept 

wings as defined in the beginning of this section. A 

few experimental points obtained on wing models 

of the sheared type, are included in figure 30. For 

example at A — 30°, the difference in the critical 

or drag-divergence Mach number between the two 

definitions of sweep may be in the order of AM = 

0.02 or 0.03. 

“W” Wings. A variation of the swept wing, designed 

to avoid wing-tip stalling (a property representing 

the primary disadvantage of sweep-back) is the “W” 

shape an example of which is included in figure 30. 

The addition of 2 more “kinks” where the “cross” 

flow cannot develop, somewhat reduces the drag- 

divergence M’number, and it increases the transonic 

drag to a certain extent-as in comparison to plain 

swept wings. The reversed shape, in form of an “M” 

has also been investigated (63) essentially showing 

the same drag function as the “W” wing (32,a and o). 

Delta Wings. There is a particular type of “swept” 

wings, triangular in shape, flying point-first, and 

having a straight trailing edge. This class of wings 

could be treated by applying the functions derived 

in the previous paragraphs, on the basis of the sweep 

angle corresponding to their maximum-thickness line. 

The aspect ratio of typical “delta” wings is compar¬ 

atively small, however; for example A = 2, for a 

vertex angle of 30/60°. In such small A’ratios, the flow 

pattern is much more three-dimensional than two- 

dimensional. An alleviating effect of a nature similar 

to that as shown in figure 21 is, therefore, found in 

delta wings. More information on this type of wing 

is given in the “transonic” chapter, where swept wings 

are also discussed further. 

Figure 32. Low-speed experimental minimum pressure coefficients 
(36) on the surface of spheroids and streamline bodies, plotted 
against their effective diameter/length ratio d/(2 x). 

7. CHARACTERISTICS OF STREAM!? BODIES 

The flow past three-dimensional bodies cannot be 

described by linear equations. Treatment of super¬ 

velocities, pressure gradients, form-bound drag and 

their variation as a function of Mach number, and 

the prediction of the critical Mach number are there¬ 

fore not as straight-forward and comparatively simple 

as in two-dimensional conditions. Some approximate 

analysis is as follows. 

Skin Friction. The drag coefficient of “conventional” 

bodies of revolution (with maximum diameter 

located between 0.3 and 0.4 of the length) is approx¬ 

imately indicated by equation 28 of Chapter VI. As 

in two-dimensional sections (explained before) the 

skin friction component is expected to correspond to 

the basic coefficient as in equations 14 or 15, respect¬ 

ively. Without further modification, thus: 

<W= <> + m 

Supervelocities in three-dimensional flow conditions 

are appreciably smaller (for one and the same thick¬ 

ness or diameter/length ratio, respectively) than in 

two-dimensional flow. Figure 32 presents a collection 

of experimental points indicating the minimum 

pressure coefficients found at the sides of rotationally- 

symmetric streamline bodies. As in figure 19, an 

equivalent or effective thickness or diameter/length 

ratio d/ (2 x) has been used in plotting the graph; 

and this ratio is that of the forebody (to the maxi¬ 

mum thickness at x) completed to a full double- 

symmetric shape having the length (2 x). For such 

spheroidal shapes, theory (35,c) predicts that the ratio 

of supervelocity grows as (d/1 ) v2. The graph indi¬ 

cates approximately 

1.1 (d/2x)'’* (41) 

Actual supervelocity ratios may then correspond to 

AV/V = 0.5 (d/1 )V* (42) 

These functions apply particularly well to diameter/ 

length ratios between 5 and 30%, thus covering 

practically all streamline shapes. Tests on half-body 

heads (combined with a cylindrical afterbody) show 

only slightly lesser ratios. 
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Compressibility Rule. The original Prandtl-Glauert 

rule refers only to slender two-dimensional bodies, 

that is to airfoil sections. For three-dimensional 

bodies, the rule has a more complicated form. As 

formulated in (37,a), the supervelocities and negative 

pressure differentials developing in compressible flow 

along the sides of rotationally symmetric bodies are 

(‘P’)2 times as high as on a similar body of reference 

the dimensions of which, measured in flow- or flight 

direction, are ‘P’ times as long as those of the actual 

body. Utilizing equation 41, the pressure differentials 

(in the form of Cp ) on the assumed more slender 

reference body have a relative magnitude of only 
(l/-p')l.4_ According to the rule, the differentials 

on the actual body are then predicted to be (‘P’)2 

times as high as on the reference body. The ratio (‘P’)2 

/ (‘P’)1-^ finally indicates the pressure ratio. Thus 

in explicit form: 

Cpcom/Cpinc = (‘P’)0'6 (44) 

This ratio is plotted in figure 1. Pressure distribution 

tests reported in (36,c) essentially confirm this func¬ 

tion. 

(35) Incompressible theoretical velocities on spheroids: 
a) Maruhn, Theory, Yearbk D.Lufo 1941 p.I,l35. 
b) Hoerner, in "Aerodynamic Drag", 1951 p.203. 
c) Evaluation of (a) J.Aeron.Sci. 1951 p.770. 

(36) Supervelocities tested on bodies of revolution: 
a) DVL, Streamline Bodies, Reference (39,a). 
b) Lange (DVL), Distribution, ZWB Doct FB 1516. 
c) NACA, Streamline Bodies, RM L53L28a and A5G17. 
d) NACA, On Spheroids, RM L52D30 and T. Rpt 1155. 
e) ARC, In Wind Tunnel, RM 1061, 1622 and 1480. 
f) Iowa University, reference (11,a) in Chapter X. 
g) VanDriest, Spheroidal Heads, Zurich ETH No. 16. 

(37) Compressibility function for 3-dimensional bodies: 
a) Goethert, Extension of Prandtl Rule, ZWB FB 1275 
and Yearbk D.Lufo 1941 p.I,156(NACA T.Memo 1105). 
b) Advances in aerodynamic theory have confirmed the 
formulation as under (a). References, functions and ex¬ 
perimental verification are presented by Matthews, "Pressure 
Distributions About Bodies of Revolution”, in NACA Tech 
Rpt 1155 (1953). 
c) Pressure distributions at higher and at transonic speeds 
are reported in NACA Documents RM A50E09, L53H04 
and L53L28a; and in Tech Rpt 1155. 

(39) Drag of streamline bodies f(M): 
a) Goethert, Family of Pat Bodies, DVL Doct Jf.707/2 
(1944), or ZWB Lilienthal Rpt 127 or ZWB Tech Berichte 
1944 p.94 and 377 (corrected results). 
b) Drag Characteristics of 8 Slender Bodies, DVL Doct 
Jf.729/3 (1944); reported by Melkus in AVA Rpt 
1946/Z/ll; quoted by Riegels in Yearbk WGL 1952. 
c) Zobel, Low-Drag Bodies, ZWB FB 1801 and UM 2036. 
d) NACA, Large-Size Body, see reference (50,b). 
e) Thommen, Martin Fund Student Paper IAS 1956 p.115. 
f) NACA Documents RM L5E03, L7K12 and L9C11. 
g) Lopatoff, Spheroid, NACA RM L51E09. 
h) Mason, External Stores, NACA Doct. RM L53J22. 
k) Fin-Stabilized Gun-Fired Bodies, NACA RM L56D16. 

(40) Critical Mach number of streamline bodies: 
a) NACA, Various Free-Flight Results, reported in Docu¬ 
ments RM L7K12, L8A05, L9F02 and L50I08a. 
b) NACA, Parabolic Body in Flight, RM L9I30. 
c) NACA, in Tunnels, RM L9C11, L52F06, L53L28a. 
d) DVL Bodies as in reference (39,a). 

Figure 33. Drag ratios of a family of streamline bodies of revo¬ 
lution calculated through the use of equations 40 plus 45, plotted 
as a function of Mach number. 

The Pressure Drag of a body of revolution as given in 

equation 28 of Chapter VI, corresponds to the front¬ 

al area represented in that equation by (d/1)1 , while 

the influence of the pressure gradient along the after¬ 

body (producing growth and possibly separation of 

the boundary layer) corresponds to (d/1)2. Applying 

now the three-dimensional compressibility rule to¬ 

gether with the trend as given in equation 44, the 

pressure drag in three-dimensional fluid flow can be 
approximated by 

cop^ = HW <«> 

This component of drag can thus be smaller than in 

incompressive fluid flow (because of Cfcom reducing 

against M as in equations 14 or 15, respectively); or 

it can be larger (because of the modified Prandtl 

factor). The function is plotted in figure 33, together 

with the skin-friction component (as per equation 

40) in the form of a drag ratio. It can readily be seen 

that this ratio is approximately constant (is independ¬ 

ent of Mach number) as far as slender streamline 

shapes are concerned (up to d/1 « 0.2 or 0.3), over 

most of the subsonic range below the critical M’- 

number. On the basis of equation 14 (for smooth- 

turbulent boundary layer flow) the drag coefficient 

(rather than the ratio as plotted) is then expected to 

decrease slightly as the Mach number is increased. 

Confirmation is not easily found, because of experi¬ 

mental difficulties in supporting low-drag bodies at 

high speeds without interfering with pressure distri¬ 

bution, boundary layer flow and separation (if any). 

Figure 34 presents available results on a family of 

comparatively fat streamline bodies, some of which 

seem to verify the theoretical prediction. Other bodies 

(such as that in figure 11, for example) exhibit con¬ 

siderable variations of the drag coefficient, caused by 

shifting of the boundary layer’s transition point under 

the combined influence of the wind tunnel as such 

(stream turbulence?) and that of Reynolds and Mach 
number, respectively. 
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WIND-TUNNEL STRUT 

Figure 34. Drag coefficients of a family of fat streamline bodies 
of revolution (39,a) as a function of M’number. 

Streamline Bodies. There are only a few "reliable ex¬ 

perimental results available (39) on high-speed drag 

of streamline bodies. The results plotted in figure 35 

confirm that the critical or drag divergence Mach 

number of slender bodies is comparatively high (up 

to and above M = 0.9). They also show that (in the 

absence of interference effects from other aircraft 

parts and/or disturbing support devices in wind 

tunnels) drag of such bodies below Merit simply cor¬ 

responds to skin friction. At Mach numbers above the 

critical, their coefficient increases steeply, however. 

Rounding Radius. Figure 34 also permits to obtain 

an idea on the influence and the importance of a 

rounding radius (in this type of body shape) upon 

the drag-divergence Mach number. While at sub- 

critical M’numbers, a certain critical radius can be 

determined, below which separation suddenly takes 

place (see on page 3-13), such a critical radius is not evi¬ 

dent with regard to drag divergence. Rather, the 

value of Mcfit increases more and more, as the fore¬ 

body (nose) of the shape investigated, is made longer 

and finer. 
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Figure 35. Drag coefficients (39) of several streamline and of two 
ogival bodies of revolution as a function of M’number. Note that 
in the results of (f) and (g) a value of 0.003 has been added for 
skin friction (which was not included in the coefficients derived 
from pressure distribution). 

(42) Drag of straight-wing-fuselage configurations: 
a) Whitcomb, Experiments, NACA RM L50L07. 
b) Knappe, Fuselage + Canopies, Heinkel Doct. SK.140. 
c) See references (59,a and b.). 

(44) Interference drag in compressive fluid flow: 
a) See Engine Nacelles in reference (47). 
b) Knappe, Interference Drag of Crossed Pair of Airfoils, 
Heinkel Wind-Tunnel Doct WK 210 (1944). 
c) Hoerner, Compressibility Interference Drag, Evaluation 
of (b) ; USAF Wright Field Rpt F-TS-1518-RE (1947). 
d) Wilson-Horten, 64-Series Airfoils Balance-Tested Be¬ 
tween Walls of Tunnel, NACA Document RM L53C20. 
e) NACA, Airfoils Between Tunnel Walls, see (20,i). 

(45) This method needs to be developed further. Application in 
this form, as suggested, and a statistical evaluation of experi¬ 
mental results is found at the end of this chapter. 

(46) The fact that the interference component increases as M is 
reduced below 0.6 or 0.5 (contrary to the (’P’)3 method) 
must be explained by Reynolds-number, boundary-layer 
and turbulence effects. 

(47) Interference drag of smooth engine nacelles: 
a) See "Meteor” Nacelles in reference (59,b). 
b) Boltz-Beam, Body of Revolution and Wing Nacelle Com¬ 
bination, NACA Doct. RM A50E09; see also RM A9K01 
and A50A13 on other configurations of the same models. 
c) Jordan, Propeller Slipstream, NACA T.Note 2776. 

(48) Drag of aircraft canopies and windshields: 
a) Knappe, Windshields, Heinkel Doct SK.140 (1941). 
b) Beaven (NPL), Windscreens, ARC RM 2235 (1940). 
c) See "Spiteful” Cabins in reference (59,a). 
d) See the family of windshields in (6,b). 
e) DVL, Me-262 Fuselage, Doct J.900/60 (1944). 
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Figure 36. Drag coefficients of two "fully” rough bodies of revo¬ 
lution (39,b) as a function of Mach number. 

Rough Bodies. In bodies “fully” covered with car¬ 

borundum grains, the influence of R’number may 

be expected to be eliminated. The reduction of the 

drag coefficient of the two streamline bodies pre¬ 

sented in figure 36, can therefore be claimed to be 

a confirmation of the theoretical predictions (equa¬ 

tion 15 in combination with the constancy of the 

ratio as in figure 33). The “creeping” increase of the 

coefficient, starting at M ~ 0.65 is most certainly 

caused by interference with the essentially two-di¬ 

mensional strut (similar to that in figure 34) used to 

support the models firmly in the wind tunnel. With¬ 

out such interference, the drag coefficients must be 

expected to continue along the theoretical lines up 

to the critical Mach numbers as marked in the graph. 

Figure 37. Critical and/or drag divergence Mach number of 3- 
dimensional streamline bodies (40) as a function of 
their effective diameter/length ratio. 
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Critical Mach Number. Inasmuch as (on the basis 

of equal thickness or diameter/length ratio, respec¬ 

tively) the supervelocities on the surface of three-di¬ 

mensional bodies are appreciably smaller than those 

of airfoil sections, their critical Mach number is 

higher, of course. Considering, however, the critical 

number on the basis of equal incompressible super¬ 

velocity ratio, the statement can be made that bodies 

of revolution experience critical Mach numbers only 

slightly higher than those of airfoil sections. Figure 

19 (in which a scale of AV/V is included) may thus 

be consulted to obtain first and conservative informa¬ 

tion on the critical Mach number of three-dimen¬ 

sional bodies. Figure 32 can be utilized in this con¬ 

nection to estimate the supervelocity ratio. The 

critical Mach number of streamline bodies can be 

determined more correctly, however, by applying the 

modified compressibility rule as described above, in 

combination with the statistical information on spher¬ 

oids in equation 42. The critical number is then 

found by replacing in equation 21 the ‘1^ by (‘F^) . 

The resultant function plotted in figure 37 is reason¬ 

ably well confirmed by experimental drag-divergence 

results from various sources, evaluated on the basis of 

the equivalent diameter/length ratio d/(2 x). To 

give an example, a fuselage with an effective fineness 

ratio of 5, that is with d/ (2 x) = 20%, has a critical 

Mach number in the order of 0.9, while a wing with 

t/c = 10% may have an Mcl-i^ = 0.84, and at a lift 

coefficient of 0.2, even a value of Mcr;^ = 0.79, only. 

0 o.2 0.6 o.8 
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8. DRAG OF AIRCRAFT COMPONENTS 

Upon combining wing, fuselage and nacelles (if any) 

into an aircraft configuration, and when adding nec¬ 

essary or desirable parts such as canopies or external 

stores, the resultant total resistance is usually larger 

than the sum of the drag components tested singly (see 

Chapter VIII). The resultant interference drag is 

usually increased on account of compressibility. A 

number of configurations exhibiting interference 

effects is considered as follows. 

Wing Plus Fuselage. It has been shown in the para¬ 

graphs dealing with slender “airfoil sections’’ that 

their parasitic drag coefficient is roughly independent 

of the Mach number (up to its critical value). The 

drag coefficients of slender three-dimensional bodies 

(such as the fuselage and possibly the nacelles of an 

airplane) may even be expected to decrease with Mach 

number, on account of skin friction (equation 14). 

Yet, wind-tunnel investigations of more or less com¬ 

plete airplane models at Mach numbers exceeding 

0.4 or 0.5, usually indicate an appreciable increase of 

the drag coefficient of such configurations. Figure 38 

shows the drag coefficient of a fuselage when added to 

a wing. It appears that the drag of and due to the 

fuselage increases steadily as a function of Mach num¬ 

ber. Considering one of the underslung designs of 

external stores in figure 45 as being similar to a fu¬ 

selage, that graph also confirms the increasing trend 

of the drag coefficient of such combinations as a func- 

Figure 38. Drag coefficient of a fuselage (42,b), including inter¬ 
ference effects with the wing to which it is added. 

tion of Mach number. This growth is caused by in¬ 

terference in the various corners of aircraft configur¬ 

ations. Evidence of and examples for the interference 

component are presented as follows, while a statistical 

evaluation is undertaken in the next section of this 
chapter. 
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Figure 39. Balance-tested drag coefficient of two airfoils spanning 
the test section of a high-speed wind tunnel, wall to wall (44,d). 

Wing-Wall Interference. Figure 39 presents examples 

of interference drag apparently originating from the 

wall junctions of airfoil models spanning the test sec¬ 

tion of a high-speed closed-type wind tunnel. The 

“viscous” drag coefficient of the foil sections as such 

corresponds to the principles of streamline shapes as 

presented in Chapter VI; and the coefficient of a par¬ 

ticular section, can be expected essentially to remain 

constant as a function of Mach number (as in figure 

13, for example). So then, the increment as found 

for the 12% airfoil in figure 39, is claimed to be 

chiefly interference drag originating from the wall 

junctions. Upon consulting figure 23 in Chapter 

VIII, coefficients “C^(-” can be estimated for this type 

of drag. For 2 wall junctures, and for a “wetted” as¬ 

pect ratio “A” (between the walls, which is = 3, in 

the test considered) the increment of the drag coeffi¬ 

cient caused by wall interference (at M —>- 0) is then 

Acds = 2 A^V'A” (48) 

Since interference drag is a consequence of adverse 

pressure gradients, the component may now 

be expected to increase as a function of Mach number 

in proportion to some higher power of the Prandtl 

factor (figure 1). There is unfortunately some tunnel 

blockage involved in the results plotted (also growing 

as a function of Mach number). Further evaluation 

is, therefore omitted. — Another airfoil (with t/c = 

8% only) also represented in figure 39, shows, by com¬ 

parison, hardly any interference effect. Figure 23 of 

Chapter VIII gives the explanation; the interference 

coefficient is evidently close to zero at t/c = 8%. 
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Crossed Wings. Figure 40 presents the parasitic drag 

coefficient of a crossed pair of wings, tested between 

tunnel walls as indicated. There are then 8 corners 

in this configuration in which interference drag can 

develop; and this fact is the reason for presenting this 

particular configuration at this point. As in the case 

of figure 39, it is speculated that the component of 

the drag coefficient attributable to interference, may 

grow in proportion to a higher power of the Prandtl 

factor. After trying various powers, it was found that 

the coefficient of the configuration as tested approxi¬ 

mately lines up straight when plotting against (‘P’)^, 

as shown in the lower part of the illustration. The 

interference drag of this configuration thus follows a 

function similar to that of the pressure component in 

equation 17. Another example in figure 40 (at CL 

== 0.4) also demonstrates that the interference drag 

and its growth as a function of Mach number, in¬ 

crease as the lift coefficient (of the horizontal foil) 

is increased. 

Figure 40. Drag characteristics of a crossed pair of airfoils, tested 
(44,b) between tunnel walls, plotted against Mach number (upper 
part) and against the cube of the Prandtl factor (in the lower part). 

o 
Plotting Against (‘P’). We know that the pressure 

drag of airfoil sections as well as the parasitic inter¬ 

ference drag approximately grows in proportion to a 

higher power of “P”. We may also believe that the 

induced increments, due to wing twist and caused by 

fuselage and nacelle interference (see Chapter VIII) 

may grow as some power of “P”. Assuming then that 

the drag of an airplane directly stemming from skin 

friction may not materially be affected by subsonic 

compressibility, we can conclude that the rest of the 

parasitic drag may correspond to a component coeffi¬ 

cient increasing as a function of Mach number in 

proportion to an average power of the Prandtl factor 

between 2 and 3. Tentatively, we will select “3”. 

Plotting then the total drag coefficient against (‘P’)^, 

the fraction affected by compressibility can approxi¬ 

mately be isolated, as demonstrated in the example in 

figure 40. At (‘P’)^ = 2, corresponding to M = 0.61, 

the increasing part of the coefficient is expected to be 

twice as large as at M = 0. The difference of the co¬ 

efficient between M = 0.61 and M—*-0; thus indicates 

the part of the total coefficient which increases with 

the Mach number according to the assumed function. 
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Nacelles. The lower part of figure 41 presents the 

drag coefficient (on wing area) of a swept wing for 

the bare wing as well as in combination with the 

nacelle as shown. The drag-divergence Mach number 

is appreciably reduced. The nacelle body was also tes- 

Figure 41. Drag characteristics (47,b) of a smooth engine nacelle 
(including wing interference), (a) drag coefficient of the wing 
without and with the nacelle, (b) coefficient of and due to the 
nacelle, based on its frontal area. 
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Mach Number M = V/a 

' * *7 1 p Figure 42. Drag coefficient of and due to different shapes of en- 
0 0 ' ° gine nacelles, tested on behalf of the "Meteor” (59,b). 

ted “alone”. The upper part of the illustration shows 

its comparatively low coeffiicent; and it demonstrates 

that the critical Mach number of this body (in the 

order of 0.94) is appreciably higher than that of the 

wing(MDD=« 0.86). The nacelle drag coefficient has 

also been evaluated from the results of wing plus na¬ 

celle as against “wing alone”; and the corresponding 

drag coefficient (on frontal area of the nacelle) is 

plotted too, in the upper part of figure 41. This co¬ 

efficient is significantly higher than that of the body 

alone, the difference representing interference drag. 

At higher Mach numbers, the interference component 

grows into very considerable values, approaching some 

8 times (!) the drag of the nacelle alone (46). The 

plot also demonstrates the “creeping” character of in¬ 

terference drag. Other experimental results (on be¬ 

half of the “Meteor”) are plotted in figure 42. It is 

seen that the long nacelle has the lowest drag coeffi¬ 

cient and the highest drag-divergence Mach number. 

An underslung nacelle has increased drag; most of 

the increment being induced drag as treated later in 

this chapter. 
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Canopies. The drag of several more or less bluff can¬ 

opy shapes is discussed as a more general phenomenon 

in section 2 of this chapter. Reference (6,b) also gives, 

at least qualitative information as to the radii required 

at the junctures of fore and afterbody, respectively, 

with a cylindrical middle body, in order to minimize 

flow separation and compressibility effects upon sep¬ 

aration, in cases where a true streamline shape cannot 

be applied. Characteristics of three more shapes are 

presented in figures 43 and 44. Among these, the 

latter illustration shows an appreciable reduction in 

the value of the drag-divergence Mach number. It is 

suggested that a type of transonic area rule (described 

in Chapter XVI) may be responsible for this result, 

as opposed to that in figure 43 where canopy and 

wing are not at the same longitudinal station of the 

fuselage as they approximately are in figure 44. The 

bluff shape, in figure 43, shows the familiar dip (upon 

approaching M = 0.8) the mechanics of which are de¬ 

scribed in section 2 of this chapter. 

Figure 44. Drag coefficient of Me-262 canopy referred to its fron- Figure 43. Drag characteristics of a fuselage (including wing in- 
tal area and including interference with the fuselage (48,e). terference) with and without canopies added (48,a). 
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Figure 45. Drag characteristics of several external stores (50) and 
of a bomb (51) attached to airplane models. 

Propeller Slipstream. The influence of a jet of air, 

simulating the slipstream of a propeller upon a na¬ 

celle-body and wing configuration, is described in 

(47,c). For a speed within the jet equal to 1.1 times 

the general speed, total drag is increased between 5 

and 10%. On account of the slipstream, the drag di¬ 

vergence number of the wing drops from 0.78 to 

0.76 (at C|_ = 0); and with the nacelle in place (in 

symmetrical mid-wing arrangement) MDD is reduced 

from 0.77 to 0.76 (as on the wing alone). We may, 

therefore, conclude that the three-dimensional char¬ 

acter of configuration and flow pattern relieves the 

supervelocities which are to be expected along the 

wing roots. This statement even seems to apply to 

lift coefficients between 0.4 and 0.5 as included in 

the investigation quoted. 

External Stores (and/or smooth nacelle bodies) are 

represented in figure 45, where their drag coefficients 

are plotted (based upon frontal area, and including 

interference effects in regard to wing or fuselage, re¬ 

spectively). Since wind-tunnel tests at transonic speeds 

are not always reliable, some available free-flight 

results have been added to the graph. These data show 

usually somewhat smaller coefficients (and/or higher 

Mach numbers for a certain level of the coefficient) 

than closed tunnel results on configurations of com¬ 

parable type. The wing-tip type of tank presents the 

least added drag. Reference (50) also shows that the 

drag divergence Mach number of a wing is not re¬ 

duced by adding a pair of tip tanks. Nacelle-type tanks 

(somehow integrated with the wing) have drag co¬ 

efficients appreciably higher than those of the wing- 

tip tanks, while pylon-, neck-, or strut-suspended 

under-wing stores exhibit the highest drag coefficients 

(likely because of the two-dimensional character of 

the “pylon”). Most of these external stores produce 

a “creeping” increase of the drag coefficient as against 

Mach number, a result which is evidently indicative 

of the fact that the disturbance of the wing by the 

added bodies, is a local effect of interference involving 

progressively increasing flow separation, as a critical 

speed is exceeded. Reference (50,a) shows in this re¬ 

spect that critical (sonic) pressures are obtained at 

the juncture of a wing-tip tank at M = 0.65, for ex¬ 

ample, while drag divergence only becomes really 

obvious at M = 0.82. 

(50) Drag of external aircraft stores: 
a) RAE, Drop Tank Models, ARC RM 2951 (1956). 
b) Spreemann, External Stores, NACA RM L9J06. 
c) NACA, Wing Tip Tanks, RM L52J22. 
d) NACA, Free-Flight Tests, RM L50Gl7a and L51D26. 
e) NACA, wing-tip tanks at transonic speeds, NACA Doc¬ 
uments RM L54F29a, L51K02, A52J21 and L51L27. 

(51) Bombs and stores under fuselage: 
a) Griitter-Knappe, Bomb, Heinkel Doct. SK 183 (1946). 
b) Mason, External Store, NACA RM L53J22. 

Bombs, carried on the outside, are not desirable, of 

course, in high-performance airplanes. Their drag co¬ 

efficients at lower speeds correspond to those as pre¬ 

sented in Chapter XIII. Figure 45 shows that the 

drag-divergence number (as far as its value can be 

estimated) is comparatively low (in the vicinity of 

M = 0.7). The increase of the drag coefficient is 

“creeping”. Comparison with free-flight results on a 

similiar but smooth “store” shape (without fins, re¬ 

sults of which are also included in the illustration) 

suggests that some tunnel blockage is involved. 
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Figure 46. Critical Mach number of several engine cowling shapes 
(52), determined on the basis of pressure distribution 
("P”) and/or drag divergence ("D") respectively. 

Engine Cowlings are treated at length in Chapters 

IX and XIII. With respect to compressibility, the 

shape of their inlet opening is sensitive, of course. 

Figure 46 demonstrates how the critical or drag-diver¬ 

gence Mach number grows from 0.25 as found for the 

worst of the now “old-time”, comparatively short and 

bluff cowling shapes, to numbers above 0.80, in the 

more modern, more slender and more streamline 

types. Here as in all aircraft components, avoiding 

or postponing the critical or drag-divergence Mach 

number, is of primary importance in regard to drag. 

Pressure distributions on cowlings are therefore in¬ 

vestigated in (52,c) for various inlet shapes and as a 

function of the inlet velocity ratio. Three shapes re¬ 

produced in figure 46, are typical “optimum” designs, 

selected from that source. One word of caution may 

be added, however, to the effect, that pressure peaks 

in the distribution around cowlings, do not necessarily 

lead to drag divergence upon reaching the “critical” 

Mach number (53). This effect is well demonstrated 

in figure 47, where we find a “delay” in the order of 

AM — 0.1. Here as in figure 46, the length of the 

inlet cowling is the most important parameter in re¬ 

gard to the value of Mct.jt or MDD, respectively. 

Below drag divergence, coefficients of cowled nacelles, 

tested alone, are roughly equal to those as presented 

in Chapters IX and XIII. 

0.25 

o.2o 

0.15 

/ essz 

o.o5 

Radiators or inlet openings, respectively, investigated 

in (59,a) for example, show drag characteristics similar 

to those of engine cowlings. For constant setting of 

their control flaps, their coefficient is essentially con¬ 

stant (independent of Mach number) up to a critical 

speed where shock induced separation obviously starts 

from the outside shape. 

MACH NUMBER V/'o' 

—-.-,---1 0 
o.6 o.7 o.S o.9 l.o 

Figure 47. Two examples of engine inlet openings (52,d) suitable 
either for air-cooled reciprocating, for turbo-jet or for 
turbo-prop engine installations. 

Dive Brakes. Bluff bodies such as those in figure 2, 

exhibit drag coefficients that increase only slowly as 

a function of Mach number. In a similar manner, dive 

brakes (sharp-edged plates or flaps) consistently show 

comparatively constant or slightly increasing coeffi¬ 

cients. For example, a pair of flaps deflected from the 

fuselage sides (54,a) has a drag coefficient CD. vary¬ 

ing between 0.9 and 1.0. A wing flap (similar in shape 

to one of those in figure 30 of Chapter XIII) investi¬ 

gated on the “Vampire” model (59,b) has a coeffi¬ 

cient CD>=s 1.0 essentially constant to M = 0.8. 
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9. DRAG OF AIRPLANE CONFIGURATIONS 

The drag of wings, fuselage bodies, engine nacelles 

and other component parts is presented in previous 

sections of this diopter. The drag of airplane configura¬ 

tions as a whole, is considered as follows. 

(a) INDUCED DRAG OF WINGS 

Lifting Line. Induced drag as defined by lifting-line 

theory (in Chapter VII) is basically related to lift, 

and not directly to geometrical parameters such as 

the angle of attack. In simple wings at subsonic speeds, 

this type of drag is, therefore, independent of com¬ 

pressibility, if considered in the form of CDl = 

015/(11 A). There are certain exceptions, however, 

where drag is a function of the geometrical angle of 

attack rather than of lift and induced angle, such as 

particularly in flat and sharp-edged plates (see in 

Chapter VII). Provided that the lift-curve slope of 

such “wings” increases as a function of Mach number 

(as indicated by the Prandtl rule) their drag due to 

lift can, therefore, be expected to reduce as the Mach 

number is increased. 

Twisted Wings. It is explained in Chapter VII how 

the induced drag is increased by twisting the wing 

tips in relation to the center part. Although the 

Prandtl rule as quoted in section 1, is only valid 

for two-dimensional flow conditions, it may tenta¬ 

tively be applied (56) as an approximation to the 

three-dimensional case of a twisted wing. As indicated 

by equation 13 in Chapter VII, the additional drag 

of such a wing is proportional to the square of the 

angle of twist. We conclude, therefore, that 

AcQl = (‘P’)2(Aa°)4/io5 (50) 

Considering as an example, a fast subsonic fighter 

airplane, with an original maximum speed of 500 

knots (M = 0.76), the loss of speed due to twist is 

tentatively found to be increased from 10 knots (as 

found for 5° twist in incompressible flow on page 

7-7) to some 20 knots. Figure 48 includes an example 

(the “Me-163”) where an appreciable increment due 

to wing twist is evident. 

Induced Interference Drag. The lift differential 

caused by adding a fuselage or a pair of nacelles to a 

wing, as explained on page 8-18, may also be assumed 

to be increased in proportion to the Prandtl factor 

(56). The increment of induced drag due to a fusel¬ 

age or a nacelle, indicated by equation 22 (in chap¬ 

ter VIII) may consequently be increased to 

ACdL = 0.035 (Ab/b) (‘P’)2ACLbo (51) 

The corresponding loss of maximum speed (quoted 

on page 8-18 as being in the order of 1.5%) is then ex¬ 

pected to be doubled, on account of compressi¬ 

bility (for an original speed corresponding to M = 

0.76). Figure 45 includes an example where induced 

interference is evident in the high-wing arrangement 

of a nacelle. The induced increment is always com¬ 

bined with a parasitic increment, however; and these 

two components are evaluated together in section (c). 

(52) Drag of engine cowlings at high speeds: 
a) Robinson-Becker, Radial Engines, NACA T. Rpt 745. 
b) Baals-Smith-Wright, Nose Inlets, NACA T.Rpt 920. 
c) Nichols and Keither, Systematic Group of Cowlings with 
and without Spinners, NACA T.Rpt 950 (1949). 
d) Continuation of (c) in NACA T.Notes 2685 and 3436. 
e) Nichols, Transonic Inlet, NACA T.Note 2685. 

(53) Critical and drag divergence Mach numbers are defined on 
page 15-15; the flow pattern past "peaked” pressure distrib¬ 
utions is expounded on page 15-18. 

(54) Drag of dive-brake flaps, attached to airplanes: 
a) Fuselage Brake, NACA Doct RM L8B06. 
b) See "Meteor” and "Vampire” in reference (59,b). 

(56) We may also think of using a lesser power of "P”. 
(57) Hamilton, 4-Engine Model, NACA W.Rpt A-69. 
(58) DVL high-speed wind-tunnel tests (mostly Lindemann): 

a) Me-262 Model, DVL Doct J 900/4 (1942). 
b) Knappe, He-177 Model, Heinkel Doct SK 148 (1942). 
c) Me-163B Model, ZWB Doct UM 1085 (1943). 
d) Ju-287 Model, ZWB Doct UM 1345 (1944). 
e) Comparison of Various Types, ZWB UM 1306 (1944). 
f) Lienarz, Comparison, ZWB Doct UM 7823 (1944). 

(59) British RAE results on drag at high speeds: 
a) RAE Staff, Tunnel Tests on "Spitfire”, "Spiteful”, 
"Attacker” and "Mustang” Fighters, ARC RM 2535(1951). 
b) RAE, "Meteor” and "Vampire” Models, ARC RM 2504. 

(60) Full-scale results on drag at high speeds: 
a) Kaiser, Me-109 Dives, Messerschmitt 109/12/L/1943. 
b) Me-262 Flight Test Rpts 262/01 and 02/L/1943. 
c) NACA, P-51 Dive Tests, W.Rpts A-62 and L-78 (1945). 
d) Highton-Plascott-Clarke, Flight Tests and Dives of "Me¬ 
teor IV” Fighter, ARC RM 2748 (1949). 
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O Me-109-G FLIGHT TEST (M.o) 
A NA P-51 FLIGHT TEST (60,c) 
■ ‘SPITEFUL IN WIND TUNNEL (S-),a) 
a SPITFIRE' IN WIND TUNNEL (J9,a) 
o He-219 WITHOUT NACELLES (58,e) 
• 'METEOR' WITHOUT NACELLES (CT.b) 
A Me-262 STRAIGHT WING (58,a) 
x Me-163 ATCl=0 (58,c) 
+ DITTO WITH 6" W'TWIST (S8,c) 

Figure 48. Drag coefficients as a function of Mach number of sev¬ 
eral complete single-engine (no-nacelle) type airplane models (58) 
and of two full-scale airplanes (60). 

(b) PARASITIC DRAG OF AIRPLANES 

Drag coefficients (essentially at Cl = 0) of a number 

of airplane configurations (complete models) and of 

a few full-scale airplanes (determined by glide or dive 

tests) are presented in figures 48 to 51. 

Fighter-Type Airplanes (single-engined, no nacelles) 

have a comparatively constant drag coefficient, as 

against Mach number. Figure 49 also demonstrates 

agreement between full-scale results and model ex¬ 

periments. The steep increase of the drag coefficient 

at Mach numbers above the critical, as found in so 

many wind-tunnel model tests, is confirmed in partic¬ 

ular, by such full scale experiments. It is suggested, 

however, that the airplane as tested has been a “clean” 

experimental specimen, not yet “cluttered” with all 

the attachments and equipments possibly to be added 

when putting the aircraft into realistic service. This 

conclusion is emphasized by full-scale results of the 

Me-109 included in figure 48. Looking at that illu¬ 

stration from a statistical point of view, it is also seen 

that the critical or drag-divergence Mach number de¬ 

creases systematically as the basic drag coefficient is 
increased. 

Figure 49. Drag characteristics (60,c) of North American P-51 
lighter airplane (World War II period), (a) as tested on a wind 
tunnel model, and (b) as determined by full-scale dives. 

The “Meteor”, represented in figure 50 is a British 

twin-jet-engine fighter airplane (developed around 

1945, it seems). Agreement between full-scale and 

model-tested drag coefficients (whatever agreement is 

found in the graph) can be said to be accidental 

rather than genuine. It seems that the influence of 

Reynolds number (2 107 full scale as against 5 105 

in the model) combines with that of increased surface 

roughness in the full-scale tests, in such a manner 

that the total drag coefficient comes out roughly 

equal. There is also some “creeping” increase of the 

coefficient in the model results (beginning at M ^ 

0.65) probably caused by low-R’number fuselage and 

nacelle interference with the wing. This effect is evi¬ 

dently reduced at the much higher numbers of the 

full-scale investigation; the drag coefficient of the real 

airplane increases at a lesser rate, accordingly. 
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Figure 50. Drag characteristics of British Gloster "Meteor’’ twin- 
engine fighter airplane, (a) as found on a wind-tunnel model 
(59,b), and (b) as tested full-scale (60,d). 

Twin-Engine Configurations. The “Meteor” is al¬ 

ready an airplane carrying two engine nacelles. Figure 

51 presents results on two more twin-nacelle configu¬ 

rations. The He-177 (not designed to be flown at 

higher Mach numbers, but investigated nevertheless) 

shows a high-level drag coefficient and a low drag- 

divergence Mach number (corresponding to a root 

thickness ratio of t/c = 17% or t/(2-x) = 28%). 

Because of strong interference effects in the nacelles 

(as explained in section “b”) such configurations have 

basically higher drag coefficients, a higher growth of 

the drag coefficient as against Mach number and a 

lower critical M’number, than single-engine (no¬ 

nacelle) airplanes. British designers have apparently 

realized this fact and their more recent high-speed 

twin-engine airplane types have the machinery more 

or less built into wing and/or fuselage, accordingly— 

while in the United States pylon-suspended (easily 

maintainable and exchangeable) arrangements seem 

to be preferred in multi-engine airplanes. 
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(c) STATISTICAL COMPRESSIBILITY METHOD 

Figure 51. Drag coefficients of two tunnel-tested twin-engine-na¬ 
celle airplane configurations (58). 

Characteristics of component parts of airplanes and 

those of complete configurations are presented in the 

preceding sections of this chapter. In order to arrive 

at a simple engineering type of drag prediction for 

higher subsonic Mach numbers, a statistical evalu¬ 

ation is presented as follows. 

Interference. It is proposed (as in connection with 

figure 40) to divide the drag of average more or less 

“clean” airplanes and other configurations (such as 

missiles) into two basic components. One of these 

corresponds to an essentially constant subsonic type 

of coefficient. The other one is expected to increase 

as a function of Mach number, possibly in proportion 

to (‘P’)'“), We will now designate the latter com¬ 

ponent as with the subscript “3” reminding of 

the exponent of the Prandtl factor. When applying 

this method, experimental points are suitably plotted 

against a scale of (‘P’)3 (as done in the lower part 

of figure 40). Such plotting presents two more ad¬ 

vantages. First, extrapolating the test points to “P” = 

1, the incompressible value (Cq0) of the coefficient 

is easily obtained. Second, the critical or drag-diver¬ 

gence Mach number is found more accurately than 

when plotting against M. The Prandtl factor thus 

serves as a convenient function for interpolation and 

statistical evaluation (45) of available experimental 

data. It is clear, however, that the method does not 

work in cases where considerable variations take place 

as a function of M’number because of boundary layer 

transition shifting back or forward (such as in figures 

11 and 49, for example). 
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TYPE OP BODY OR CONFIGURATION 

smooth 12% airfoil section (with»= turbulent BL) 
fuselage, coefficient including wing interference 
fuselage (with canopy) including wing interference 
external store (on wing) including interference 
nacelle (added to wing) including interference 
airfoil mounted wall to wall in wind tunnel 
crossed pair of foils, mounted between tunnel walls 
fuselage coefficient including wing interference 
wing plus fuselage combination, wind-tunnel model 
complete twin-nacelle airplane model in tunnel 
horizontal tail (on fuselage) with interference 
Me-163, very smooth wind-tunnel model at Cj, = 0 
same Me-163 wind tunnel model, but at Cp, = 0.1 
"Meteor" (with twin nacelles) full-scale results 
"Meteor" (with 2 nacelles) smooth tunnel model 
Ju-287 smooth wind-tunnel model without nacelles 
Ju-287 complete wind-tunnel model, with nacelles 
"Spitfire" fighter complete wind-tunnel model 
P-51 fighter, complete but smooth tunnel model 
Me-262 wind-tunnel model, without nacelles 
Me-262 complete wind-tunnel model, with nacelles 
4-engine airplane, complete (smooth) tunnel model 
He-177 complete (but smooth) wind-tunnel model 
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^Dwet CD3//CDo REFER. 

o.0034 1% fig H 
o .0045 4.3 fig 43 
O.0045 11% fig 43 
o.0045 7% fig 45 
O.0050 23% fig 42 
o.0043 14% fig 40 
o.0045 11% fig 40 
o .0029 2% (58,f) 
O.0038 6% Me-328 
o.0052 22% tested 
O.0053 22% at DVI 
o.0032 0% ' fig 48 
O.0038 3% fig 48 
O.0040 3% fig 50 
o.0042 6% fig 50 
o.0035 5% fig 53 
o.0048 11% fig 53 
O.C043 6.9 fig 48 
O.0048 11% fig 49 
O.0035 5% R 58,a 
O.0040 12% fig 51 
O.0053 19% fig 53 
o.0051 29% fig 51 

TABLE — presenting some statistical values indicating the 
percentage of the drag coefficent of airplanes and 
other body configurations — approximately increas¬ 
ing in proportion to the cube of the Prandtl factor. 

Airplane Configurations. After splitting up the drag 

of an airplane (or any other configuration) into the 

two components described above, its coefficient as a 

function of Mach number corresponds to 

= CDo+(('P')3- ')CM (55) 

Applications of this function are shown in figures 51 

and 53. Model-tested values of the drag coefficient are 

very well interpolated when assuming that certain 

percentages (as noted in the graphs) of the basic co¬ 

efficient (CDo) may vary in proportion to (‘P’)®. 

The drag characteristics of the various configurations 

plotted on the preceding pages, and some other con¬ 

figurations such as wings plus nacelles, for example, 

have been evaluated in the manner as described 

above. The resultant drag coefficients (CDo in the 

form of CDwep and C0j represented by the ratio 

Cd^/Cq0) are listed in the TABLE reproduced on 

this page. As far as complete airplanes are concerned, 

it is seen that the ratio (C^/Cqo) varies between 5% 

for very clean single-engine designs, some 8 to 13% 

for other airplanes (without nacelles) and up to 22 

or 23% for multiple-engine configurations ( having 

nacelles on their wings). If assuming percentages of 

^Di/^Do = 10% (and 20%, respectively) it can be 

calculated that commercial airplanes, for example, 

operating at comparatively low speeds (around 300 

mph), have less than 5% (or 10%, respectively) drag 

increase on account of compressibility. Military air¬ 

planes, on the other hand, flying at higher (but not 

yet critical Mach numbers) can be expected to show 

drag increases between 10% (or 20%, respectively) 

and 20% (or 40%, respectively). For example, the 

four-nacelle configuration in figure 51, represents 

such an increment of 37% (when flying at the critical 
Mach number). 

Importance of Interference. Among the configura¬ 

tions listed in the TABLE, nacelles installed on wings 

show the highest percentages, up to 47% if referred 

to the incompressible drag of and due to such nacelles. 

As outlined in Chapter VIII at length, combination 

of a nacelle with a wing presents considerable inter¬ 

ference drag. It is evidently this type of drag in part¬ 

icular, which causes the drag coefficient of airplanes 

to increase appreciably at speeds still below the crit¬ 

ical Mach number. Interference drag thus takes on an 

increasingly important role when flying at higher 

speeds. To reduce interference in high speed air¬ 

planes, it therefore appears advisable to apply ex¬ 

tended wing-root fillets, to avoid lift differentials and 

induced interference drag (see Chapter VIII) in wing- 

body configurations; and it may pay to increase the 

fineness ratio of nacelles and possibly to enlarge the 

wing area, thus reducing lift coefficient and subse¬ 

quent pressure gradients along the suction side. Any 

increase of wetted area incurred in doing all this, may 

not be too objectionable insofar as skin friction does 

not lead into any critical conditions such as all types 

of the displacement-bound pressure drag do. 
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Based on Wetted Area, the drag coefficient of a body 

with pure skin-friction drag, may roughly be in the 

order of 0.003. Any amount exceeding this value, very 

roughly indicates the pressure-drag component. The 

“wetted” area drag coefficient of airplanes or other 

configurations may thus be a suitable parameter 

against which the percentages listed in the TABLE 

(on the preceding page) can be plotted. 

so 
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Figure 52. Statistical drag percentages of airplane and other con¬ 
figurations approximately growing in proportion to the cube of the 
Prandtl factor, plotted against their wetted-area drag coefficient. 

Figure 52 proves that in this way, some systematic 

order is obtained among the various experimental 

results that originally seemed to have comparatively 

arbitary rates of drag increase on account of subsonic 

compressibility. Approach and method presented are, 

of course, of a statistical nature. Utilization of the 

Prandtl factor is partly heuristic, rather than correct 

(45). It is felt, however, that simplicity is also an im¬ 

portant quality in methods to be used in engineering 

applications. The fact that some of the results in 

figure 52 are close to the percentage line starting 

from Cp,wep= 0.004 can be explained by assuming 

that certain parts of the configurations tested have 

individual drag coefficients, not sensitive in regard 

to Mach number. The beginning of the Cqj com¬ 

ponent is shifted, accordingly, to somewhat higher 

Coweto values. It must concurrently be expected that 

the method does not directly apply to configurations 

involving bluff shapes such as dive brakes or as those 

in the second section of this chapter. 

(62) Drag of swept-wing configurations: 
a) Ludwieg and Others, Swept-Wing Configurations, AVA 
Gottingen Rpts 1940/8/7, 1940/8/13, 1940/8/14. 
b) Junkers-287, as in reference (58,d). 
c) Whitcomb, Combinations, NACA T.Rpt 1273. 
d) Boddy-Morrill, Interference, NACA RM A7J02. 
e) A favorable fuselage effect is indicated by experiments 
in NACA RM L50L07, K28 and K27; and L52K04. 
f) King-Pasteur, Tapered Wings, NACA T. Note 3867 
(1956); see also RM L52K04 on other combinations. 
g) Kuchemann, Contouring Theory, ARC RM 2908(1956). 

(d) SWEPT-WING CONFIGURATIONS 

Fuselage Interference. Drag characteristics of one 

(very clean) swept-wing airplane configuration are 

included in figure 48. Considering the results (62,a) 

included in figure 30, it is found that a smooth fuse¬ 

lage body does not make any or much of a difference 

when added to a swept wing. Similar results are avail¬ 

able in (62,e) where tests on swept wings are reported 

without and with a fuselage added. Inasmuch as the 

supervelocities are usually highest in the center of a 

swept wing, the fuselage may thus be considered serv¬ 

ing as a fairing (or as a local increase of sweep angle) 

covering the most sensitive part of the wing. Speaking 

in terms of the transonic area rule (see Chapter XVI) 

it may also be speculated that wing-fuselage inter¬ 

ference is reduced when sweeping the wing, because 

of a more favorable distribution of displacement along 

the axis of the aircraft configuration. In conclusion, 

swept-wings may not exhibit any or much of a re¬ 

duction of their critical Mach number when adding 
a slender fuselage. 

Figure 53. Drag coefficient of the model of the swept-forurard 
Ju-287 airplane type (58,d), with and without engine 
nacelles, and of a smooth 4-engine airplane model(57). 
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Fuselage Contouring. Certain attempts have been 

made (62,g) of improving the characteristics of swept 

wings by “contouring” the fuselage walls in such a 

way as to accommodate the cosine type of transonic 

flow over the wing panels, and to permit this type of 

flow also to develop along the wing roots. Practical 

results confirm expectations insofar as the increase 

of the drag coefficient above the critical Mach number 

is somewhat reduced. 

I' 

b a 39 ft w'out tip tanks 

S = 313 ft2 (SH - 28 ft2) 

A = 4.9 = aspect ratio 

A a 36 degrees of sweep 

ff = 14900 lb w'out tip tanks 

To 
* 5800 lb thrust, J-47-GE 

vx 
= 574 kts at 10,000 ft 

Mx 
= 0.9 designed for 

w - 8000 ft/min climb 

°lx * 1.1 with slats open 

Figure 54. North-American "P-86 Sabre Jet" fighter airplane 
(65,b) as an example of swept-wing application. 

“P-86” Fighter. The gain in maximum subcritical 

speed to be obtained by applying a reasonable angle 

of sweep, is not really spectacular, if taking into ac¬ 

count increased structural expenditures as well as 

certain complications in the handling qualities of such 

airplanes. However, to show that the mechanics of 

swept wings are not just laboratory results, the ex¬ 

ample of a successful airplane incorporating a sweep 

angle of 35°, is presented in figure 54. For a wing 

section thickness ratio of 12%, and a location at 40% 

of the chord, the effective ratio is found to be 0.12/ 

0.8 = 15%. The corresponding critical Mach number 

of a straight wing (as found on the basis of figure 19) 

is Mct,;{. = 0.77. Indeed, we have a full-scale maxi¬ 

mum level-speed result of the straight-wing “P-80” 

(65,a) slightly exceeding this Mach Number. For an 

angle of sweep of 35° (as in the “F-86”) the critical 

M’number is raised to *• 0.84 (as per figure 29), 

thus representing a gain of 9%. The record speed 

flown by the “P-86” in 1952 in level flight close to 

seal level corresponding to a Mach number in the 

order of 0.87 was obtained with a special wing, how¬ 

ever (65,b). Of course, the critical M’number is not 

a “wall” or “barrier” rigidly limiting the maximum 

speed of an airplane. The steep increase of the drag 

coefficient above the critical speed, for example in 

the order of 100% for an increment of AM = 0.05, 

naturally places the level speed limit closely above 

the drag-divergence M’number. Statistically, there¬ 

fore, knowledge of wing thickness ratio and angle of 

sweep, permits to make an estimate on the maximum 

speed potential of a subsonic type of airplane. 

10. DRAG ABOVE DRAG DIVERGENCE 

Above the “critical” Mach number, we are in the 

transonic regime, specifically treated in the next chap¬ 

ter. Inasmuch as subsonic-type airplanes are occasion¬ 

ally also driven beyond that M’number, their drag 

characteristics under such conditions are considered 

in this chapter, however. “Critical” conditions in any 

aircraft configuration are first reached in the wing. 

Drag divergence and drag increase, primarily of air¬ 

foil sections and of three-dimensional wings are eval¬ 

uated accordingly. 

The Critical Mach Number can be considered to be 

part of the transonic similarity system as explained 

in Chapters XVI and XVII). Some correlation of 

critical and/or drag-divergence Mach numbers of foil 

sections has been obtained accordingly (71,d). Pre¬ 

requisites of such similarity are not really fulfilled, 

however, in foil sections above drag divergence; i.e. 

stagnation, viscosity, flow separation and compression 

shocks (not included in the theoretical analysis) are 

most certainly involved. Critical and/or drag-diver¬ 

gence M’numbers are treated (on a different basis) in 

sections 5, 6 and 7 of this chapter. 

Nature of Drag at Supercritical Mach Numbers. Sev¬ 

eral graphs presented in this chapter demonstrate that 

after exceeding the drag divergence Mach number, 

the drag coefficient of airfoil sections increases rapidly, 

eventually reaching values (at M 1) which may 

be 10 times as high as those below the critical M’num¬ 

ber. Based upon frontal area, a 10% thick foil section 

(see figure 11 in Chapter XVII) may thus exhibit a 

maximum transonic coefficient in the order of CQ = 

1. Drag at this level is pressure-bound, of course. 

Corresponding distributions along the surface of a 

symmetrical foil section (at CL = 0) are shown in 

figure 55, together with wake-survey results. Phases 
are as follows: 

(a) At and below the critical M’number, the pressure 

distribution is essentially of the same type as in non- 

compressive fluid flow. The drag coefficient of the 

section in figure 55,a is 0.009; and the wake simply 

represents the momentum loss of the boundary layer. 

(b) At M = 0.80 (in that particular foil section) we 

see that a supersonic expansion takes place along the 

section’s forebody, attaining a maximum speed at 

x = 0.64 c, corresponding to a local M’number of 

~ 1.2. The supersonic flow then breaks down aft of 
this station by way of a shock (because the downstream 

pressure gradient is no longer sufficient to maintain 
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Figure 55. Pressure distribution, flow pattern and wake character¬ 
istics of a 15% thick foil section (70,a) at three 
higher subsonic Mach numbers. 

(63) See also in Chapter XVI on "cranked” wings. 

(65) Full scale speed-records of fighter airplanes: 
a) Lockheed "P-80 Shooting Star" obtained a world speed 
record of 623 mph ~ 540 kts, flown on a hot summer day 
near sea level in 1947. The Mach number corresponding to 
38 °C is 0.79. A special wing was built for the record 
attempt with a maximum thickness ratio of 11% at «45% 
of the chord, while the standard version of this type has 
65-213 sections (seeJ.Aeron.Sci. 1948 p.28 and 31). Wind- 
tunnel results on these wings are included in figure 29, 30. 
b) Dimensions of the North American "F-86A” are given 
in NACA T.Rpt 1250 (1955). The wing has 2° twist. 
Foil section is 0012-64 at the root and 0011-64 at the tips 
(both modified). Leading edge slats are needed to prevent 
wing-tip stalling. The "F-86E Sabre Jet" set a world speed 
record in 1952 "in California”, of 698.5 mph ~ 610 kts. 
c) Other results: Gloster "Meteor” as in figure 50 with 
t/c = 12%, attained M = 0.82; "Me-163" as in figure 48 
with t/c = 13% and A = 23° reached M = 0.83 

(70) Flow pattern and characteristics of foil sections: 
a) Goethert, Pressure and Forces of 0015 (40) Section at 
High Speeds, Yearb.D.Lufo 1941 p.I, 101 and 148; see 
also in ZWB Tech. Berichte 1944 p.235. 
b) Daley, Characteristics to M = 1, NACA T.Note 3607. 
c) Rogers, Foil Section at High Speeds, ARC RM 2863. 
d) Daley, 6-Series in Open Tunnel, NACA TN 3607. 

(71) Analysis of drag rise above critical Mach number: 
a) Nitzberg, Drag Past Critical, NACA T.Note 1813. 
b) ARC, Analysis of Shock Drag, RM 2401 and 2512. 
c) Oswatitsch, Analysis of Drag Increase, ARC RM 2716. 
d) Similarity in regard to Mdq has been considered in 
ARC RM 2715, in NACA RM A51A12 and in (a). 
e) Anderson (25,c). Aspect Ratio, J.Sci.1956 p.874. 

(73) Interaction between boundary layer and shocks: 
a) Liepmann, Interaction Between BL and Shock Waves, 
J.Aeron.Sci.1946 p.623, and in NACA Tech Rpt 1100. 
c) Turner, 6% Foil at M ~ 1, Australia ARL Rpt. A.99. 
d) Love, Shock-Induced Separation, NACA T.Note 3601. 
e) Lindsey, BL and Pressure Rise, NACA T.Note 3820. 
f) Pressure Required for Separation, J.A.Sci.1953 p.858. 
g) Lange, Shock-Induced Separation, NACA TN 3065. 
h) Wood, LE Flow Separation, NACA T.Note 3804. 

the expansion). This shock does not cause separation 

(in this particular case), and the flow continues to 

the trailing edge. The wake pattern shows a some¬ 

what enlarged drag area, however, the larger part of 

which is believed to be due to increased BL thickness, 

while a smaller part may directly correspond to the 

momentum losses across the shock. 

(c) At M= 0.86 (the highest number tested in that 

investigation) the shock has reached the trailing edge. 

The strong negative pressure gradient corresponding 

to an expansion to a maximum local M’number of 

~ 1.6, is likely to prevent flow separation. Behind 

the shock (at a distance aft of the trailing edge equal 

to 3 times the chord, where the survey was made) we 

now recognize two different components of drag. The 

viscous boundary-layer type is concentrated near the 

wake’s center line; while the momentum deficiency 

in the two “wings” of the wake represents the losses 

in the upper and lower branch, respectively, of the 

compression shock, reaching up and down some 2 foil 

chords each. Wake traverses similar to that at M = 

0.86 in figure 55, are also reported in (73,c). 

BL Separation. As the Mach number is increased 

within phase (b) as described above, the shock moves 

toward the trailing edge where it ultimately forms the 

tail wave as in supersonic flow. While moving, the 

shock also increases its intensity. Interaction between 

the shock and the boundary layer is a function of 

Reynolds number (with laminar or turbulent BL 

status, respectively) and foil-section shape (thickness 



15-40 FLUID-DYNAMIC DRAG 

ratio) as well as angle of attack (lift coefficient). The 

resultant flow pattern has been studied in elementary, 

form (73). Velocities within the boundary layer are 

(at least partly) subsonic, of course. The compression 

(pressure jump) taking place across the shock, is easily 

transmitted, therefore, through the “lower” sheets of 

the boundary layer, not only downstream but also 

upstream. Boundary layer material may then be 

backed up into the space ahead of the shock, thus 

giving rise to an extended oblique forward “leg” of 

the shock wave. Schlieren pictures presented in (73,c) 

and in (70,b) prove that the double-dip wake dis¬ 

tribution as shown in figure 55,c, corresponds to the 

combination of an oblique shock wave (originating 

along boundary layer and/or viscous wake) with a fi¬ 

nal normal shock (located in the vicinity of the trail¬ 

ing edge). Such a shock pattern has been sketched in 

the illustration, accordingly. The two lateral peaks 

in the wake distribution thus indicate locations some¬ 

what outside the junctures of the weak oblique with 

the strong normal shock waves. An extreme example 

for BL separation is also shown in figure 4, where at 

M «=• 0.7, and at a number Rc = 8 105 (at which 

in that case, the BL is still laminar) the flow is “com¬ 

pletely” separated from the afterbody. However, in 

slender shapes (and as long as the boundary layer is 

thin) separation may not take place (as for example, 

in figure 55,b where compression continues aft of the 

shock to even positive values of the coefficient). The 

pressure differential required to produce separation 

has also recently been investigated (73). Inasmuch as 

separation is a function of the pressure gradient (su¬ 

personic expansion ahead of the shock) and the shock 

intensity a function of BL and wake thickness, the 

mechanism as a whole cannot properly be predicted, 

however, by theoretical analysis. 

Growth of Drag Coefficient. The pressure loss in a 

stream tube going through a shock, is a known quan¬ 

tity. Analysis (71) of the corresponding drag of a 

foil section is involved, however, let alone any con¬ 

sideration of boundary-layer interaction and flow sep¬ 

aration as mentioned above. For practical purposes, 

we therefore revert to a statistical approach. Evalua¬ 

ting the drag functions in figures 13 and 17, it is thus 

assumed that the rise of the drag coefficient of the 

foil sections tested may correspond to 

ACd - (AM/(1 - Mdd))3 (36) 

where A M = M — and MDD = M’number 

where drag divergence takes place. Figure 56 presents 

results from various sources and on different families 

of airfoil sections, plotted against the M’number para¬ 

meter as in the equation. Best correlation among the 

various foil sections in figure 13 is then obtained 

when referring the drag coefficient to the area (b l/Tc) 

which thus represents some mean between “wing” and 

frontal area. However, coefficients in this form would 
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Figure 56. Increment of section-drag coefficient above 
M&1), evaluated from results such as in figures 13 and 17. 

not be very convenient to be used in practical appli¬ 

cations. Rather, we have therefore plotted coefficients 

in the usual definition. The incremental drag of foil 
sections is then indicated by 

ACDs= K(AM/4Md)3 (58) 

where AMd = (1 — M0D) and where K is a func¬ 

tion of thickness ratio, section shape and lift coefficient 

(considered within the limits of — 0.1). We can ten¬ 

tatively say that 

K = 0.35 for 6-series foils in open tunnel 

= 0.40 for foil sections with t/c ~ 6% 

= 0.50 for thicker and for 6-series foils 

Testing conditions (4,b) are thus equally important 

as the secondary parameters. The seemingly simple 

result is very much a function also of the value of 

Mdd assumed in the evaluation of the experimental 

results (in figure 56) or selected in any application of 

the method. 
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Aspect Ratio. Figure 56 represents the drag rise of 

airfoil sections (tested under two-dimensional flow 

conditions). Three-dimensional fluid flow as in finite- 

aspect-ratio wings, offers significant relaxation, how¬ 

ever, for pressures and forces in the transonic regime 

of fluid flow. The drag rise above MDD reduces ac¬ 

cordingly. This effect is analytically treated in (71,e). 

For practical purposes, and for aspect ratios not lower 

than those usually applied in subsonic-type airplanes 

and for M ’numbers not too far above divergence, re¬ 

sults of that analysis can be simplified very much. The 

drag coefficient of a finite wing is then equal to that 

of the foil section (as in equation 58) shifted to a 

higher Mach number by the differential 

AM/M = (Aw/V) (1 + 0.2 M2) (59) 

where M ~ M’number at which the finite-span wing 

is flying. The average (integrated) velocity relaxation 

corresponds to 

Aw/V ~ 0.2 (t/2x)A/(1 — M2) (60) 

where x as defined in figure 19, and A = 1/A = 

“c”/b. Figure 57 shows this function, evaluated for 

t/2x = 10%, for an assumed average value of M = 

0.85 and for a drag differential (equal to drag rise 

above divergence Mach number) of ACDs=0.01. 

Experimental points confirm the theoretical function 

for aspect ratios above 5. At ’A' values above 0.2, 

higher-order terms (available in reference 71,e) have 

to be added. The analysis also predicts that AM 

should increase in proportion to t/2x. However, ex¬ 

perimental results obtained in 0012 airfoils, are not 

higher in the graph than wings with 8 and 9% thick 

sections (possibly because of tunnel effects). 

(75) Transonic experimental results on wings: 
a) For subsonic results see footnotes (20) and (26). 
b) Nelson, Straight Wings, NACA T.Note 3501 & 3502. 
c) NACA, Straight Wings, Tech Rpts 877 and 922. 
d) "Bump” tests such as in (b) show generally a creeping 
increase of the drag coefficient below and at divergence 
(because of wall interference). Closed-tunnel results such 
as (a) and (c) show, on the other hand, some tunnel block¬ 
age, particularly in larger aspect ratios. Correct values may 
be between the results obtained by those two methods. 
e) For results on swept wings see footnote (32), figures 
30 and 31, and footnote 60 in Chapter XVI. 

Figure 57. Increment of M'number at which ACpS == 0.01 
is obtained in finite wings, as a function of their 'A.' ratio. 

Practical Result. Experimental results (such as in 

figures SO & 31 and in footnote 75) and analysis (71,e) 

yield equally, not only a reduction of the drag rise as 

such, but also a reduction of its rate as indicated by 

the exponent in equation 58. Analysis of experimen¬ 

tal data tentatively leads to the function 

ACDs = (K/103) (10 AM/ AMD)n (62) 

where K as in equation 58, AMQ = (1 — MDD) and 

the exponent possibly 

n = 3/(1 + A) (i> 3) 

It is only after repeated application of these statistical 

functions that more definite constants could be ob¬ 

tained. 

Complete Airplanes. The most sensitive component 

part of an airplane (in regard to compressibility) is 

its wing. We have so far covered in our analysis only 

wings, accordingly. Comparison of the results on 

complete airplanes (in figures 48 through 50) with 

those on wings (such as presented in figures 30 and 

31, and in Chapter XVII) reveals, however, that their 

drag increase is noticeably higher. Also, the growth 

of the drag coefficient is found to be still higher in 

multi-engine (nacelle-type) configurations (see figure 

53). Tentatively the maximum slope of the coefficient 

above drag divergence, for average aspect ratios, is: 

dCD/dM = 0.40 for airplane wings alone 

= 0.70 for smooth configurations 

— 0.90 for multi-engine airplanes 



15-42 FLUID-DYNAMIC DRAG 

Angle of Sweep. Sweeping the panels of a wing means 

postponing the “upper” critical Mach number from 

M = 1 to M = 1/cos.A . In the terminology as in 

figure 56, the parameter 6Md = 1 — MDD can 

then be replaced by AMdj\ = (1/cosA ) — so as 

to make that graph possibly applicable to swept wings. 

Another, not so complicated method of obtaining the 

drag rise of swept wings, is presented in figure 58. It 

is suggested that the variation of the drag rise (at 

Mach numbers not too much above divergence) ap¬ 

proximately corresponds to 

ACD = (sin371)ACDo (65) 

Where 4C^0= drag increment of a straight wing 

having the same aspect ratio as the swept wing. A 

physical explanation of the reduction is obtained 

when considering a swept wing to be the sum of a 

straight piece (representing the center part and in¬ 

creasing in drag as indicated by equation 62) and of 

the two panels (whose drag coefficient is taken not to 

be affected by the increase of M beyond Mod)- The 

size of that center part then determines the function 

as in figure 58. That graph also reflects the variation 

of the maximum transonic drag coefficient as shown 

in figure 43 of Chapter XVI. 

* A = 4, t/c = 6% (32,ilk 
a P-80, on Bump (32,q) 
+ Others (mostly NACA) 

DRAG RATIO 

Figure 58. Reduction of the drag rise of finite-span wings above 
drag-divergence Mach number, as a function of their 
angle of sweep. 
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CHAPTER XVI - DRAG AT TRANSONIC SPEEDS 

An extended range of speeds in the vicinity of M = 1, 

is generally called “transonic". Fluid-dynamic char¬ 

acteristics are found in this phase different from those 

in the subsonic as well as in the truly supersonic re¬ 

gimes of flow. Inasmuch as any increase of maximum 

aircraft speeds leads first into this range, consideration 

of drag at Mach numbers in the vicinity of unity, 

is of great practical importance, of course (1). Spe¬ 

cifically, flow patterns shall be understood to be tran¬ 

sonic in character, whenever supersonic speeds are 

combined with localized phases of subsonic flow. The 

transonic regime can thus be considered to begin at 

the critical Mach number, which is treated as such in 

Chapter XV. At supersonic speeds, on the other hand, 

subsonic-type flow characteristics are found, for ex¬ 

ample, on delta wings (at least at their leading edges) 

up to Mach numbers in the order of 2. Indeed, a 

subsonic component of flow never disappears in blunt 

and in many bluff body shapes where the compression 

wave, originating from the forward face, is always de¬ 

tached. Separating subjects into such that are to be 

treated in this chapter and others which properly 

belong into the next chapter, dealing with super¬ 

sonic characteristics, is often impossible, accordingly. 

Among the characteristics presented in this chapter, 

are bluff bodies, cones and swept wings, in particular. 

Treatment of straight wings is concentrated, however, 

in Chapter XVII. 

(1) Theoretical advances in the transonic field, experiment! in¬ 
formation and their dissemination in form of articles, papers 
and reports have been so numerous within the last years, that 
a special chapter has been provided for the treatment of this 
subject. As the flux of new information continues, further 
expansion and revision of this chapter is bound to be desirable 
after some time. 

(2) Gas-dynamic and/or thermodynamic functions and principles 
can be found in (a) many text books and/or in the sources 
listed in footnote (1) of Chapter XV; (b) see Bailey in 
J.Aeron.Sci. 1944 p.227; (c) most suitable for engineers is 
Liepmann-Roshko’s "Elements of Gasdynamics” (Wiley 
1957). 

1. ELEMENTS OF TRANSONIC FLUID FLOW 

Cross-Section Area. Considering a stream tube in 

non-compressive flow, its cross-sectional area varies 

as a function of speed in such a manner that the vol¬ 

ume flow (in fts/sec) is always constant; law of con¬ 

tinuity. Considering next an obstacle affecting the 

velocity within the stream tube, the cross-section area 

increases accordingly when approaching a stagnation 

point; and it reduces when passing the sides of a solid 

body. We can also say that the average velocity of the 

fluid flow around the solid, must increase because of 

its displacement (thickness). Thermodynamic con¬ 

sideration of a stream tube in compressive fluid flow 

leads eventually to entirely different results, however. 

Upon increasing speed, and decreasing static pressure 

accordingly, the density (in lb/ft^ of the gas con¬ 

sidered reduces, and the specific volume (in ft3/lb) 

increases significantly. Figure 1 shows the corres¬ 

ponding development of the stream tube’s cross-sec¬ 

tional area SQ. This area reaches a minimum at sonic 

speed where the static pressure (in air) is p( = 0.528 

»po, with subscript “o” indicating the “reservoir” 

pressure (5). At the speed corresponding to local M 

= 1, the variation of density is such that dSa/dV = 

0. This result means that upon increasing the speed, 

say from M = 0.99 to 1.00, or from M = 1.00 to 1.01, 

the cross section area SQ of a stream tube remains, 

for all practical purposes, constant. The area ratio of 

the tube (as plotted in figure 1) is SQ/Sm;n = (q * 

“a”)/(q V); and the continuity law is now Sa q V 

= constant. At speeds above M = 1, the relation 

between velocity and required cross-section area of 

the stream tube considered is thus qualitatively re¬ 

versed; and (to say it in different words) the area 

increases as the speed is further increased. For k 

= 1.4 (as in air under almost all practical conditions) 

the area ratio is 

VSm,n = ((1 + 0.2 M1 2)/L2fu (1) 
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Figure 1. Basic one-dimension¬ 
al thermodynamic pressure 
functions and the area ratio of 
a stream tube, as a function 
of Mach number (based on 
ambient velocity of sound). 

Laval Nozzle. A famous engineering application of 

the thermodynamic functions plotted in figure 1, is 

deLaval’s expanding nozzle originally used in steam 

turbines operating at supersonic speeds. Fluid flow 

(of steam, gas or air) in such a nozzle reaches sonic 

speed within the narrowest section. The velocity then 

continues increasing into the expanding part of the 

nozzle, while pressure and density continue decreas¬ 

ing and the specific volume keeps on increasing so as 

to fill the expanding cross-sectional area of the nozzle 

by progressive expansion. One important feature of 

such nozzle flow is the fact that the so-called critical 

speed in the “bottleneck” corresponds to M= 1 (based 

on thermodynamic conditions within that section). 

As far as wind tunnels are concerned, those designed 

for supersonic speeds, all have the Laval-nozzle-type 

of expansion. For the very high Mach number of 10 

(for example) the geometrical expansion ratio is in 

the order of 536, as indicated by equation 1. 

Free Air Testing. The drag of projectiles has been 

and still is measured by recording their path-time his¬ 

tory during free flight in ballistic ranges (7,e,f); and 

this technique has recently been developed to very 

high velocities (4,e). Because of the difficulties ex¬ 

plained in the next paragraph, related methods have 

also been developed for testing bombs, missiles and 

similar configurations in the atmosphere after drop¬ 

ping them (4,g) from airplanes or after propelling 

them somehow into higher altitudes (4,c). Special 

test “vehicles” have been developed for this purpose, 

particularly by the NACA, involving multiple-chan¬ 

nel telemetering devices. All of these methods make 

use of the free air space, where available cross-section 

areas are extremely large and where reflections of 

pressure waves are zero accordingly. 

Transonic Wind Tunnel. In a subsonic tunnel the 

average velocity across the test section “simply” in¬ 

increases so as to permit the total volume flow of air 

to pass the model placed in that section. Considering, 

however, conditions of a compressive fluid flow in a 

closed-type tunnel, any increase of velocity at M » 1 

does not help, insofar as the stream tubes cannot any 

longer contract (because of S0/q == constant or V<) 

= constant) when increasing their speed. Ordinary 

closed-type tunnels, therefore, start “choking” at 

speeds corresponding to M = 0.9 (let us say, or at 

even lower speeds depending upon the geometrical 

and aerodynamic blockage ratio). Efforts in the de¬ 

velopment of wind tunnels (particularly in the Uni¬ 

ted States after World War II) have solved this prob¬ 

lem now (4,b) by giving the test section slotted walls 

through which a certain expansion is permitted, with¬ 

out reflection of the pressure field produced by the 

model placed in that section. 

“Critical” Pressure. The static pressure in the throat 

of a Laval nozzle (producing supersonic speeds) is 

always equal to 0.53 pe (as marked in figure 1) and it 

is called the critical pressure. In the free stream of a 

compressive fluid, this pressure corresponds to sonic 

velocity obtained at the point where that pressure is 

found. In form of a coefficient, the critical or “sonic” 

pressure differential (in air with k = 1.4) is indica¬ 
ted by 

Cpcrit = (0-75 (1 -f 0.2 M2f— 1.43)/M2 

This coefficient is zero at M = 1; it is negative at sub¬ 

sonic, and positive at supersonic speeds. 
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Normal Shock. Considering again the one-dimension¬ 
al stream-tube flow as in figure 1, we will assume that 
the velocity is supersonic, say at Mj = 2.2. If now 
leading that tube into a field of increasing static pres¬ 
sure, deceleration and recompression take place, usu¬ 
ally in a sudden and discontinuous manner, i.e. in 
form of a shock. For constant cross-sectional area (as 
in a duct) the velocity then returns to a subsonic 
value. The pressure differential corresponds to 

Ap/q = (4/M2) (M2- l)/(k + 1) (2) 

where q = dynamic pressure of the undisturbed su¬ 
personic stream. In the example considered, the in¬ 
crement is Ap/q = 1.32 (as indicated in the graph 
by an arrow). Referred to the undisturbed ambient 
pressure, the increment is Ap/pamb = (Ap/q)/(pamb 
/q) = 1.32/0.295 = 4.5, and the total static pres¬ 
sure behind the shock is p^ /panib = 1 + 4.5 — 5.5. 
The pressure jump is also accompanied by a temper¬ 
ature increase. “Total pressure” or enthalpy (= ther¬ 
modynamic potential) does not reach the same 
value as was prevailing at the same speed (V2) 
when first accelerating the stream tube, as in 
the nozzle of a wind tunnel. As explained in Chap¬ 
ter XVII, the entropy increases accordingly in the 
“irreversible” process of a shock. To say it in differ¬ 
ent words, as a consequence of viscosity within, and 
heat-transfer across a shock wave, a momentum de¬ 
ficiency is left behind, thus representing the equiva¬ 
lent of the “wave drag” experienced by the obstacle. 

Stagnation Pressure. At transonic and supersonic 
speeds, stagnation = deceleration of air particles in 
front of every blunt obstacle, occurs in two steps; 

(3) Thermodynamic effects including their influence upon skin 
friction are treated in Chapter XVII. 

(4) Transonic testing techniques: 
a) Weaver, Bump Technique, J.A.Sci.1948 p.28. 
b) Wright-Ward, Transonic Tunnel, NACA T.Rpt 1231. 
c) Thompson, Flight Research at Transonic and Supersonic 
Speeds, Proc. Internat. Aeronautical Conf. 1949, p.582. 
d) Delsasso, Free Flight Ballistics, J.A.Sci.1948 p.605; see 
also references (42,c and m). 
e) Charters, Gas Gun for Firing Models up to M = 20, see 
in Shell Aviation News December 1956 p.12. 
f) Free-flight Testing, see references (51) to (53). 
g) Kell-RAE, Falling Test Vehicle, ARC RM 2902. 

first in form of a sudden increase of pressure across a 
detached shock wave (in the form as explained above) 
and second, in form of a steady adiabatic increase (at 
velocities which are then subsonic) when approaching 
the stagnation point of the obstacle. The total in¬ 
crease, that is, the stagnation pressure increment de¬ 
noted by “q” (with quotation marks to make it dis¬ 
tinct) is higher than the dynamic pressure q = 0.5 
(i V2; thus for k = 1.4 as in air: 

“q”/q = 1.84 - (0.76/M2) + (0.166/M3 4) 
/_ 

Figure 1 shows that this pressure ratio increases stead¬ 
ily, up to the limiting value of 1.84 at M—a- oo. 
In the example considered above, the pressure finally 
reaches “q”/q — 1.69. Again referred to pQmg, the to¬ 
tal increment is 1.69/0.295 = 5.7, and the total pres¬ 
sure corresponds to Rfc/Pamb = 5.7 + 1.0 — 6.7. 
The isentropic stagnation pressure (5) corresponds, 
on the other hand, to p0/p0n\b = 1/0.094 = 10.7 (as 
marked in the graph.) The difference between the 
two ratios represents the pressure loss across the shock, 
resulting in Ap/q = (10.7 - 6-7) (panlb/q) = 4.0 
0.29 = 1.16. 

Static and Dynamic Pressures. Substituting in the 
equation of the dynamic pressure, q — 0.5 ^ V2, the 
velocityV by M (‘a’), and the velocity of sound 

‘a’ = (6) 

the relation between dynamic pressure and ambient 
static pressure “pQmb is found to be 

q = 0.5 k Pam MZ = 0.7 pam M2 (7) 

where k = 1.4 for air in tropospheric and strato¬ 
spheric applications. This equation (also plotted in 
figure 1 in the form of pQtt1(,/q) is found to be useful 
in converting aerodynamic coefficients that are some¬ 
times given in the form of 

(force or pressure)/ (pam S) (8) 

into the more conventional and “standard” coeffi¬ 
cients, based upon dynamic pressure, rather than upon 
the absolute static pressure. 

The Minimum Pressure which can possibly be 
reached in a gaseous fluid is that of vacuum, and is 
thus equal to zero. The corresponding pressure differ¬ 
ence Apw;n = |p | based upon the dynamic pres¬ 
sure is 

Pamb/q = 2/(k M2) = 1.43/M2 (10) 

As illustrated in figure 1, this pressure ratio decreases 
considerably as the Mach number is increased, ulti¬ 
mately approaching zero, as M —oo. 
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2. BASE DRAG AT TRANSONIC SPEEDS 

Base drag at transonic speeds has received extensive 

consideration within the last 10 years, evidently on 

behalf of guided missiles where (after “brennschluss”) 

the outlet opening of the rocket motor produces an 

appreciable value of suction drag. No basic or com¬ 

plete solution of the problem has been established, 

however; and none of the semi-theoretical correlations 

found (13) (16) seems to be better than statistical 

evaluation of the available experimental material. 

Some such evaluation, presented as follows, is also 

guided by the principles laid down in Chapter III on 

the same subject under non-compressive conditions. 

Function of M. Figure 2 presents a compilation of the 

available data on drag originating past the base of 

three-dimensional bodies, such as projectiles and mis¬ 

sile shapes. Three phases are evident; (a) a rise of the 

coefficient upon approaching M = 1 (with a peak at 

M « 1.0), (b) a “transonic” range in which the co¬ 

efficient is comparatively constant (9,a) and (c) a “su¬ 

personic” regime in which the coefficient decreases 

steadily as the Mach number is further increased. 

‘‘Subsonic’’ Phase. Some comparatively modest increase 

of the base drag coefficient in the subsonic phase, is 

apparent in several of the experimental results of fig¬ 

ures 2 and 11. The increment can be explained on 

the basis of a local increase of speed along the sides 

of the body and past the base, which in turn can be 

expected to develop corresponding to subsonic com¬ 

pressibility rules (see Chapter XV under the subhead¬ 

ing of “wedges”). Such an increase may first take place 

in proportion to a certain power of the Prandtl factor. 

Approaching M = 1, the maximum local velocity may 

then be appreciably above the sonic speed; and the 

interaction (mixing) with the dead space must be in¬ 

tensified to such a degree that the drag coefficient is 

raised to the peak values as shown in figure 2 (and 

even more so in figure 11). — Two of the bodies repre¬ 

sented in figure 2, show very low base-drag coeffi¬ 

cients at subsonic speeds. Analysis on the basis of 

figure 37 in Chapter III, indicates that values in the 

low order of CDe> == 0.05 correspond to the high 

forebody drag coefficient ~ °-3- It is thus sugges¬ 

ted that in the two cases considered, some flow separ¬ 

ation from the rim of the conical head may have 

existed, thus producing Cp&~0.3 as postulated above. 

It must then be assumed that between M = .8 and 

1.0 the flow around the shoulder of the cone improves 

progressively by means of a Prandtl-Meyer type of 
supersonic expansion (see Chapters XV and XVII 

on this subject), so that the base drag coefficient in¬ 
creases accordingly. 

(a) PLAIN "CYLINDRICAL" PROJECTILE BODIES: 

Figure 2. Base drag coefficients (on base area S^) of various sim¬ 
ple projectile and missile body shapes as a function of 
Mach number. 

+ J. H. UNIVERSITY FLIGHT WITH FINS(7,g) (7,o) 
A I/d = 12 IN WIND TUNNEL AT 5 107 . . - (7,m) 
A ABERDEEN BALLISTIC RANGE («= 2 106) • • (7,e) 
a AACHEN WIND TUNNEL, PRESSURE DISTR. (7,d) 
s KOCHEL CONE-CYLINDER BODIES ( » 106) (7,c) 
♦ NACA VARIOUS REPORTS - • (l3,o,b,g) (7,k) 
v NOL 60“ CONE-CYLINDER (FIGURE 8) • . (7,h) 
o OALWINDTUNNELf* 2 107) REPORTED IN (7,g) 
> VIRGINIA, SMOOTH PROJECTILE SHAPE - - <7.g) 
x "CYLINDRICAL" MISSILE WITH FINS - , - (8,g) 
O "STRAIGHT" MISSILE BODY Ri - 3I07- (7n) 
* AT HIGH MACH NUMBERS REPORTED IN - (7,g) 
(b) VARIOUS SIMPLE BODY SHAPES: 
• KOCHEL, BEHIND SPHERE AT Rj « ICT - (7,c) 
® NOL, BEHIND DISK REPORTED IN• - - (7,p) 
V NPL STRAIGHT 2 x 10“ CONE (>10*’) - - (7 1) 

(c) BOAT-TAILED MISSILES WITH FINS: 
X FLIGHT TEST ON SLENDER SHAPE-(8,h) 
h RM-10 MISSILE IN FLIGHT AT R. « I08 (8 e) 
* DITTO 1/2 SCALE FLIGHT (3 -JO7)-(8e) 
A RM-10 MISSILE AT Ri = 8'107- _-(8f) 
I DITTO 1/2 SCALE AT R. - 3 107.(8 f) 
v I/d = 28 WIND-TUNNEL TEST - - - _ — (8 o) 

3 .4 .5 ko .8 1.0 1.5 2 3 4 5 6 8 10 
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Figure 3. Basic Flow pattern past the base of a three- 
dimensional projectile or missile body. 

(5) The subscript "amb” generally describes conditions in the un¬ 
disturbed ambient fluid space (at or near the location of the 
flying object). In the system usually considered by engineers 
(aircraft moving through given air space at constant alti¬ 
tude) the speed of sound is constant. The Mach number as 
used in this book is generally based on ambient air tempera¬ 
ture, accordingly; and not on any local, "sonic” or other speed 
of sound. The subscript "o" indicates the isentropic stagna¬ 
tion or absolute "reservoir” pressure, while "q” = p^ — 
Pamb refers to the actual stagnation pressure p# (obtained by 
way of a normal shock plus subsequent adiabatic compression). 

(6) General information on transonic and supersonic flow: 
a) NACA, Shape of Shock Waves (Cones) T.Note 2000. 
b) NACA, Tables of Various Mach Number Functions, 
Tech.Rpt 1135 and Tech.Note 3981 (1957). 

(7) Base pressure and/or drag on 3-dimensional bodies: 
b) Stamm, Pressure Distribution Behind Flying Bodies, ZWB 
Rpt UM 8103; see NACA Tech.Memo 1101. 
c) Erdmann, Drag of Cones and Spheres, Pressure Distribu¬ 
tion at Supersonic Speeds; ZWB Lilienthal Rpt 139/1 p.28; 
also in RAE T.Note Aero 1742. 
d) Bach (Aachen), Pressure, ZWB Doct UM 6057 (1945). 
e) Charters, Ballistic Contributions, J.A. Sc.1947, p.155. 
f) Charters and Turetsky, Base Pressure Free Flight, Aber¬ 
deen Proving Ground, BRL Rpt 653 (1948). 
g) Hill (John Hopkins), Base Pressure at Supersonic Speeds, 
J.Aeron.Sc.1949 p. 153 and 1950 p.185. 
h) Kurzweg, BL and Base Pressure, J.Aeron.Sci.1951 p.743. 
Additional information on the cone-cylinder bodies in this 
source, stems from unpublished NAVORD reports. 
k) Reller-Hamaker, M = 2.73 to 4.98, NACA T.N. 3393. 
l) Gadd, See (25,g), ARC Current Paper No. 271 (1956). 

m) Petersen, "Cylindrical” Body, BRL Aberdeen BB Rpt 44. 
n) Hart, Transonic Flight Finless Body, NACA RM L52E06. 
o) Faro, "Cylindrical” Missiles, J.H.Univ. BB Rpt 106. 
p) Behind Disks, NAVORD 1950; see in J.A.Sci.1951 p.141. 
q) Walberg IAS Martin Fund Student Paper 1956 p.128. 

(8) Drag and pressure on parabolic bodies: 
a) NACA Documents RM E50D10 and 28. 
c) Hasel and Others, NACA Document RM L52A14. 
d) Welsh-Moraes, Flight Tests, NACA RM L51E18. 
e) Evans, RM-10 Missile Flight and Tunnel, NACA T.Rpt 
1160 (1954) ; see also other reports in (51). 
g) "Straight" Missile, NACA Document RM L50l28a. 
h) Flight Tests Boat-Tailed Missile, NACA RM L51J29. 

Figure 4. "Transonic” base drag coefficient of smooth projectile 
(and missile) bodies plotted versus their length ratio. 

■> 

Flow Pattern. Figure 3 shows the flow pattern past 

the base of a cylindrical body as it has been sketched 

and presented in many publications. In comparison 

to the conditions explained in Chapter III, the pat¬ 

tern is, of course, modified by the supersonic expan¬ 

sion and compression phenomena as indicated in the 

illustration. Studies have been made (16) to deter¬ 

mine the influence of “mixing” taking place along the 

boundary (or sheer layer at “M”) between external 

flow and dead space. Other investigators (13) try to 

give an analytical interpretation of the expansion ob¬ 

served at “E”. In all these efforts, location of and 

flow conditions at the “bottleneck” (at “B”) is found 

to be the critical item. Some qualitative explanations 

are presented in the following paragraphs. 

“Transonic” Phase. Between M = 1 and an upper 

limit of M between 1.5 and 2.5 (or even higher, de¬ 

pending upon wake diameter), figure 2 displays sever¬ 

al roughly constant levels of the base drag coefficient 

(9,a). Considering the corresponding flow pattern (in 

figure 3,a) we realize that the “bottleneck” is “open” 

in this phase (9,e) in such a manner that we have a 

re-entry (backflow) of fluid material (9,c) from the 

wake aft of the conical compression shock into the 

dead space (adjoining the base surface). The com¬ 

pression shock (“S”) terminating the supersonic flow 

arriving at and proceeding beyond the base, may not 

have much of an influence upon the flow pattern in 

the wake, under these conditions. As a consequence, 

this pattern may then primarily be a function of sub¬ 

sonic-type “viscous” mixing rather than the specific 

consequence of supersonic effects. As explained in 

Chapter III, the boundary layer developing along the 

length of the forebody may thus be the most impor¬ 

tant and tentatively a universal parameter against 

which the various levels of the drag coefficient in the 

transonic regime can be correlated. Since that thick¬ 

ness is not directly known, the wetted surface ratio 

Swet/SB, or in case of cylindrical afterbodies simply 

the total length ratio “1/dy may then be utilized in 

a statistical evaluation such as presented in figure 4. 

a M = 1.5 LAMINAR MAXIMA AT 5 10* <13,a) 
o M — 1.6 LAMINAR MAXIMA AT 4 1CT (13,b) 
0 M = 1.6 LAMINAR MAXIMA AT 8 itf (I3,c) 
» M - 1.6 AS IN FIGURE 8 AT 4 10* (7,h) 
* M — 1.8 BOAT TAIL BODY AT > 107 (8,e) 
© M = 2 PROJECTILE WITH FIRING BAND (42,b) 
• FILLED SYMBOLS FOR FORCED TURBULENCE 

LAMINAR MAXIMA 

FOR FORCED TURBULENCE 

LENGTH RATIO {/A 

0 

0 1 4- 6 8 to 12 |4 16 18 20 22 
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The value of base-drag or base-pressure coefficient re¬ 

duces systematically as the length ratio is increased. 

There is some difference, however, between base drag 

developing from laminar and turbulent boundary 

layer flow, respectively. The turbulent boundary 

layer exhibits a considerably higher loss of momen¬ 

tum than a laminar layer. Suction and base drag for 

turbulent condition are less, accordingly, than for 

laminar flow (on the basis of equal wetted-area ratio). 

FLIGHT TEST WITH FINS, 2 I07-(7.o) 
NACA, SMOOTH SHAPES, Reference (13,b) 
DITTO, AT M = 1.5,Ri~ 10‘-(13,o) 
NACA SMOOTH AT Rt = 106-(A7A31o) 
OTHER VARIOUS EXPERIMENTAL RESULTS 
FORCED TURBULENCE AT M = 1.6 (I3,g) 
MISSILE BODY, TURBULENT BL-(8,b) 
OTHERS BOAT-TAILED, TURBULENT (13,e) 
SUBSONIC, FIGURE 37 in CHAPTER - - III 

"VISCOUS" FOREBODY DRAG COEFFICIENT Q 

0 .02 .04- .ofc .08 .lo .12 .14 .lb .18 .20 .22 

Figure 5. Correlation between "transonic” base-pressure drag co¬ 
efficient and the "viscous” forebody drag coefficient. 

o.4 

0.3 

0.2 

Q>b 

|C„„| 
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ca \ 
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“Viscous” Forebody Drag. Another way of presenting 

base-drag coefficients, is by plotting them against the 

same forebody drag parameter (9,b) as in Chapter 

III. The resulting graph (figure 5) shows an empiri¬ 

cal function very similar to that in figure 37 of that 

chapter. Indeed, a set of points taken from that illus¬ 

tration is included in figure 5; and it comes close to 

the two or three branches as found for “transonic” 

speeds. Mixing and suction (now considered on the 

basis of the same forebody drag coefficient Cp^) are 

somewhat stronger in fully turbulent flow than in a 

mixing flow which begins in laminar fashion (and 

then turns turbulent). Other discrepancies found in 

the graph, can be explained by the uncertainty in 

selecting proper values for the skin-friction drag co¬ 

efficient (9,d). The result seems to prove, neverthe¬ 

less, that within a certain transonic regime, base drag 

is an essentially “viscous” phenomenon. 

Terminating M’number. The “transonic” type of 

flow pattern (described in the preceding paragraph) 

is obviously facilitated by a heavy “viscous” wake 

(laminar or turbulent, but heavy) produced by a long 

forebody, a rough forebody surface and/or by a fore¬ 

body whose diameter (determining wetted surface) is 

larger than that of the base surface (in parabolic or 

boat-tailed shapes). Under all conditions, there is a 

limiting Mach number, however, above which that 

flow pattern discontinues. As the M’number is in¬ 

creased, a Prandtl-Meyer type of expansion (explained 

in the introductory section of Chapter XVII) takes 

evidently place around the rim of the base (9,f). It 

is suggested that such expansion can only develop to 

any significant degree when and if the “bottleneck” 

is “sealed’,’ so that backflow is prevented and an effec¬ 

tive ejector-type scavenging or pumping effect is ob¬ 

tained along the mixing surface (as in figure 3,b). 

The experimental results in figure 2 show that the 

terminating M’number corresponds to the transonic 

level of the base drag coefficient. That number can 

thus be comparatively high, under conditions where 

the base-drag coefficient is low. 

“Supersonic” Phase. The presence of the dead space 

as shown in figure 3,b converts the afterbody into a 

somehow conical shape. The base drag then corres¬ 

ponds to the conical shock wave (“S”) originating 

from the vicinity of the “bottleneck”; and it is appar¬ 

ent that the base drag is then essentially wave drag. 

As shown in figure 2, the coefficient decreases accord¬ 

ingly, as a function of Mach number, in a manner 

similar to that of wedge-like afterbodies as presented 

in Chapter XVII. As pointed out in (13,g) turning 

angle (corresponding to the boundary of the conical 

dead space in figure 3,b), expansion pressure and base 

pressure, are all a function of location of and flow 

pattern through the bottleneck (“B” in figure 3,b). 

None of these parameters can be predicted, however, 

without first knowing one or two of the others. An 

upper limit is imposed to the base drag,however, by 

the minimum possible static pressure, corresponding 

to vacuum. For p = 0, equation 10 then yields the 

maximum possible base-drag coefficient. The experi¬ 

mental points in figure 2 suggest a certain percentage 

° LAMINAR MAXIMA - - ■ ■ I/d = 2 
• TURBULENT MINIMA FIGURE 8 
+ VARIOUS POINTS FROM FIGURE 2 
R MINIMUM VALUES FROM FIGURE 2 

Figure 6. "Supersonic” base-pressure ratio of 3-dimensional "cyl¬ 
indrical’' bodies as a function of M’number. 
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Figure 7. Various phases of wake mixing and base pressure be¬ 
hind a cone-cylinder combination, as a function of R’number. 

/ NPL on projectile models of M — 2.5, quoted in 

/ Howarth's "Mod. Dev. Fluid Dynamics", 1953 p.701. 

-*— fully turbulent theory (I3,i) 

(9) Notes on transonic flow past the base of bodies: 
a) This "transonic” constancy of the base-drag coefficients of 
cylindrical bodies is not a generally accepted fact. Analyse as 
in (13) and (16) rather tend to produce a continuation of 
the "supersonic” function into the transonic phase (as found 
indeed in two-dimensional conditions as in figure 11). Con¬ 
stant base-drag coefficients are clearly presented, however, for 
parabolic bodies such as in (51) for example. 
b) The forebody of a streamline or pointed body at transonic 
Mach numbers, also produces an appreciable amount of wave 
drag. This type of drag generally appears in form of mo¬ 
mentum losses extending sideways into the space of super¬ 
sonic fluid flow. Wave drag, therefore, does not appear in the 
boundary layer and/or in the viscous wake developing along 
the obstacle; and it usually does not noticeably affect veloci¬ 
ties, flow pattern and pressures at and past the base of 
"cylindrical” base-ended bodies. It is, therefore, proper to use 
in the definition of only the "viscous" skin drag com¬ 
ponents (frictional as well as due to surface roughness and/or 
flow separation, if any). Such consideration of momentum 
losses in the BL (rather than body geometry and Reynolds 
Number) permits to include the effects of surface roughness 
and attachments placed on the surface of the forebody. 
c) This type of back flow is specifically mentioned by Wick in 
"Effect of Boundary Layer on Flow Through Abrupt Area 
Change” (J.Aeron.Sci. 1953 p.675). 
d) For fully laminar flow pattern, the skin-friction coefficient 
was assumed to be equal to that as presented in Chapter II. 
For "turbulent" boundary-layer flow, a mixed composition was 
estimated on the basis of M'number, R'number and body shape. 
e) It appears that the diameter of such open throats and that 
of the downstream wake (in the transonic phase) roughly 
corresponds to the constant ratio dn/dB = 2 CDB. 
f) A limited expansion around the rim, followed by a weak 
shock, has experimentally been determined (13,g) thus pro¬ 
ducing absolute rim pressures noticeably below the pressure 
in the center part of the base. 

of the theoretical maximum; so that the coefficient in 

this phase is tentatively: 

CDB = K (1.43/M2) (14) 

The ratio (17,a) K — CDB/CDB)C is not constant, 

however, within the series of test points plotted in 

figure 6. Rather, the ratio increases as a function of 

Mach number; and it seems that K approaches unity 

as M —*■ oo. 

Reynolds Number. Since “viscous” mixing is an im¬ 

portant part of the flow pattern (see figure 3), bound¬ 

ary layer and Reynolds number of the forebody can 

have considerable influence upon base drag. Mixing 

as a function of R’number has, therefore, been studied 

(16,c); and five or more distinct phases have been 

found to exist: 

(a) At very low R’numbers (in the order of 10^) 

flow conditions are completely laminar, of course. 

Large viscous forces obviously produce base-drag co¬ 

efficients of appreciable magnitude (13,k). This phase 

(in the left-hand part of figure 7) is only of 

practical importance, however, under rarefied con¬ 

ditions of fluid flow. 

(b) At low R’numbers (in the order of 10'’ on body 

length) the boundary-layer flow and the shear flow 

past dead space and wake are still laminar. Suction 

as a consequence of laminar mixing is weak, the value 

of the absolute pressure is high accordingly; the pres¬ 

sure differential Ap = (p — p ) representing 

base drag, is low. ^ Qrn° ® 
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(c) As the Reynolds number is increased (very rough¬ 

ly from 10* or 10^ to 10& or 107) transition from 

laminar to turbulent type of mixing takes place along 

the wake. As the transition point moves toward the 

base, the intensity of mixing thus increases consider¬ 

ably. As a consequence, the absolute base pressure re¬ 

duces appreciably; and the base-drag coefficient in¬ 

creases accordingly. Correlation is obtained (13,b) in 

the higher R’number part of this phase when plotting 

base-drag or base-pressure coefficients (at constant 

Mach numbers) against the parameter ($/d/\/""Rj). 

This parameter represents the thickness of the BL 

arriving at the rim of the base, corresponding to length 

“1” and to the laminar skin-friction drag coefficient of 

Cp ~ 1/ (as presented in Chapter II). 

(d) The base pressure pQ then reaches a minimum 

(and the base drag a maximum) at the, and for a cer¬ 

tain interval above the R’number at which the trans¬ 

ition point reaches the body’s base (as marked in the 

graph). Mixing is most efficient in this condition; 

while the essentially laminar “viscous” forebody drag 

is near minimum. 

(e) As the Reynolds number is further increased, the 

skin-friction drag coefficient C- evidently grows along 

one of the transition lines as shown in figure 5 of 

Chapter II. Boundary layer thickness and momen¬ 

tum losses of the fluid flow arriving at the rim of the 

base, are increased accordingly. The scavenging or 

pumping effect of the shear flow past the dead space 

behind the base is then reduced; the base pressure in¬ 

creases again and the base drag reduces to some degree. 

Figure 8. Base pressure and base drag 
of a cylinder-cone combination, at M 
= 3.24 as a function of length ratio. 

(f) Transition from laminar to turbulent type of flow 

along the surface of the forebody may finally be 

“complete”; or turbulent flow may be forced by stim¬ 

ulation elements placed near the nose of the forebody. 

Correlation is then obtained (13,b) by plotting base- 
drag coefficients against the parameter (1/d /r'^) 

where the fifth root represents the simplest approxi¬ 

mation to turbulent skin friction (see Chapter II).— 

In full-scale applications, phases “a” and “b” may not 

be of much importance (14), if disregarding rarefied 

conditions (see Chapter XVIII). It appears, however, 

that laminar BL flow and/or laminarization by means 

of supersonic expansion along the smooth surface of 

missiles (no firing bands as in artillery shell) is very 

well possible to numbers in the order of Rj = 107 

Forebody Shape. An important difference between 

supersonic and subsonic flow is found around “cor¬ 

ners”. While at subsonic speeds, separation is likely 

to occur and boundary-layer transition is •=. certain 

to take place, neither one of these two events must 

necessarily be expected under supersonic conditions. 

So for example, flow pattern and skin friction past the 

comparatively bluff cone-cylinder configuration as 

in figures 7 and 8, are entirely laminar to Reynolds 

numbers between (1 and 2) *10^ (based on body 

length) at Mach numbers between 2 and 4. The fore¬ 

body shape does have an influence, however, upon 

flow pattern and parasitic drag developing along the 

surface. Figure 8 demonstrates, for example, that a 

more slender, and ogival shape (+) has a higher 

base-drag coefficient (because of lesser viscous fore¬ 

body drag) than the bluffer cone shape (A ) tested 

under the same (forced-turbulence) conditions. Trans¬ 

ition (in the wake as well as subsequently along the 

surface of the forebody) is also a function of shape. 

The sharp corner in the contour of the 60° cone-cyl¬ 

inder combination (in figures 7 and 8) induces trans¬ 

ition at lower Reynolds numbers, while smooth ogival 

shapes such as in (7,h) and (13,h) preserve laminar 

flow to considerably higher R’numbers. 

2 « 30' CONE PLUS CYLINDER AT M - 3.24 : 

4 NOL (7,h) NATURAL TRANSITION AT Rj 3 10s 
‘ NOL (7, h ) FORCED TURBULENCE AT R<j - 3 10s 
* NOL (7, h ) FREE FLIGHT TESTS AT Rj - 3 10” 
• NPL (7, JO MAXIMUM VALUES AT Rl 2 I04 
o NPL (7,A ) MINIMUM VALUES AT Ri - 2 10r 
a KAVANAU (13,f) AT M - 2.84 and Rj = 2 I0E 
x KOCHEL(7,c) ATM-3.10 ond Rj - 2 10E 
+ NACA (13,k) OGIVAL SHAPE AT 3.24 and * 5 10‘ 
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NATURAL TRANSITION R( = 6 10" (7,k) 
NATURAL TRANSITION R, = 3 10" (7,h) 
LAMINAR MAXIMA R< = 3 10" (13,e) 
FLIGHT WITH FINS Rt = 1 I0( (7,o) 
LAMINAR VALUES Rf = 2 10" (13,b) 
LAMINAR MAXIMA R, = 6 10" (I3,c) 
TURBULENT NATURAL R, - 1 10" (13,g) 
LAMINAR MAXIMA R, = 4 10, (I3,b) 
FORCED TURBULENCE R< = 4 10" (13,b) 
FILLED SYMBOLS FOR FORCED TURBULENCE 

VACUUM 

Figure 9. "Supersonic" base drag ratio (at certain constant Mach 
numbers) as a function of length ratio 1/d, representing the ratio 
of wetted forebodv area over base area. 

(13) Influence of viscosity on base pressure: 
a) Chapman-Perkins, At M = 1.5, NACA Tech Rpt 1036. 
b) Chapman, Correlation, NACA T.Rpt 1051 (T.N. 2137). 
c) Bromm-Goodwin, R'Number, NACA T.N. 3708(1956). 
d) Bogdonoff (Princeton), J.Aeron.Sci. 1952 p.201. 
e) Grigsby-Ogburn, Cone-Cylinder, NACA RM L53H21. 
f) Kavanau, at M = 2.84, J.Aeron.Sci. 1954 p.257. 
g) Love, Analysis for Turbulent BL, NACA T.Note 3819. 
h) VanHise, R’Number WakeTransition, NACA T.N. 3942. 
i) Cope (NPL), ARC Current Paper No. 118 (1946/53). 

k) Kavanau, At Very Low R’Numbers, J.A.Sci. 1956 p.193. 
(14) A bullet (1 inch in length and thus considered to be the 

smallest practical application) flying at M = 2 or at •=» 
2200 ft/sec, has an R'number, on length, above 10 . A shell 
(say 1 foot in length) moving at the same speed at 30,000 
feet altitude has a number Rj w 5 106. 

(16) Analysis of free-boundary mixing process: 
a) Chapman, Laminar Mixing, NACA T.Rpt 958. 
b) Gooderman and Others, Turbulent, NACA T.Rpt 963. 
c) Crocco-Lees, Mixing Theory, J. Aer.Sci. 1952 p.649. 

(17) Notes on "supersonic” type of base drag: 
a) When plotting experimental results, the base drag co¬ 
efficients as in figure 2 (and in other graphs) are suitably re¬ 
placed by the ratio = ApB/pamb,where "x” 
refers to the limiting coefficient as indicated by equation 10, 

and where ApB = FWffi — PB- 
b) It seems, the possibility of'separation' from the rim of 
the cone has not really been considered in other sources. 
Reynolds number, turbulent versus laminar boundary layer 
flow and mixing theories are discussed instead. Proof for 
the correctness of the separation hypothesis is found in low 
minimum base drag coefficients, the values of which do not 
correlate with results on configurations with finer conical 
nose shapes; see "A ” in figures 6 and 8. Schlieren pictures 
in (13,f) show also directly a heavy boundary layer, the 
"viscous" wake, a fully open "bottleneck” and the absence 
(weakness and /or diffusion) of a shock wave otherwise ex¬ 
pected to originate from the wake. 

Length Ratio. The 30°/60° cone-cylinder body as in 

figure 7, has extensively been investigated in various 

places as well (7,1) (13,d,f,k) as with length ratios 

varying between 0.9 and 12.9 (7,h). At 1/d <= 0.9, 

representing the cone without a cylinder added, suc¬ 

tion pressure is strongest. Suction and/or base drag 

then reduce appreciably as cylinder length is added; 

and it is believed that this effect is due to an inter¬ 

ference of the afterbody with the mixing process. We 

may assume, for instance, that the flow loses momen¬ 

tum when getting around the cone’s shoulder. The 

lowest branch (o) in figure 8, corresponds to fully 

laminar flow conditions (at «=: 2 10^) as described 

above under “b”. The intermediate branch (A) rep¬ 

resents conditions where the Reynolds number in¬ 

creases in proportion to the body length. Two effects 

are thus superimposed. Taking results from other 

sources ( • ) into account, it can be concluded, how¬ 

ever, that between J/cJ = 0.9 and = 5, a change 

takes place in the flow pattern; and it is believed that 

this change is a re-attachment of the flow (17,b) aft 

of the cone’s rim and the establishment of “full” su¬ 

personic expansion around that corner. Suction and 

base pressure are increased as a consequence; and they 

reach maximum values at certain ratios which in turn 

are a function of R’number. This mechanism is further 

illustrated by a series of test points obtained with B’lay- 

er stimulation (A ). It appears that re-attachment is 

facilitated by forced turbulence as early as at 1/d = 3 

(at the particular R’number as in those tests) while 

without this effect, a similar flow pattern is only ob¬ 

tained at 1/d 7. However, stimulation is seen to 

produce base-drag coefficients smaller (because of in¬ 

creased BL thickness) than those obtained by natural 

transition. This difference is consistent and genuine. 

Finally (above 1/d = 8, in figure 8) the base drag 

reduces slowly as further length is added, on account 

of increasing viscous forebody drag. It should be 

noted that this variation is different from that in 

figure 7, where the base drag increases above R^ = 

107 because of the reducing trend of the skin-friction 

drag coefficient along the forebody. 

Wetted Surface Ratio. The thickness of the boundary 

layer arriving at the rim of the base grows with the 

forebody’s area, or with the area ratio Inas¬ 

much as in shapes with cylindrical rear end, this ratio 

is proportional to the length ratio (1/d), this para¬ 

meter is thus employed in figure 9 in correlating base- 

pressure or drag coefficients (17,a) from various 

sources. The values of the ratios plotted (each set 

of points at M = constant) reduce systematically as a 

function of that parameter, in a manner similar to, 

but not as strongly as the function plotted in figure 4. 

The mechanics of “supersonic” base drag are more 

complex, however, insofar as generally reduces 

as a function of M (as in figure 2). Presenting the 

results in the form- of the base-pressure or base-drag 

ratio (as in figure 6) does not help much either, in- 
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sofar as this ratio increases as a function of Mach num¬ 

ber. As long as we do not have a basic and simple 

“solution” for this type of base drag, further correla¬ 

tion appears to be futile. Qualitatively, it can be said, 

however, that the base drag must be expected to de¬ 

crease as a function of the forebody-drag coefficient 

in a manner similar to that as shown in figure 5. It 

then follows that base drag is not only a function of 

geometry and Reynolds number, but also of forebody- 

surface conditions (roughness, attachments, firing 

bands and so on). A single point (®) has been added 

in figure 4 demonstrating this effect. 

A M — ] .5 I/d ==7 R. =4 10 (13,b) 
*■ M — 2.0 I/d — 5 LAMINAR (I3,b) 
<r M *= 1.5 I/d —7 Rj = 4 1 Cr (13,b) 
r M =2,0 I/d =5 ALL TURBULENT (13,b) 
x M—2.9 I/d =-7 R, —7 10° (18.b) 
♦ M — 2.7 I/d = 4 FREE FLIGHT ( 7,f ) 
o M » 2.7 I/d —5 R< — 3 I06 ( 7,k ) 
• M - 4.5 I/d —5 ALL TURBULENT (7, k ) 

Figure 10. Base pressure (drag) coefficient as 
a function of sting diameter ratio. 

Sting Effect. When testing three-dimensional bodies 

such as streamline or projectile- and missile-type 

shapes in wind tunnels, they need to be supported in 

such a manner that the flow pattern is not disturbed 

to any significant degree. The preferred method of 

supporting blunt-based solids, is by means of a sting 

contacting the model from downstream. Figure 10 

shows the influence of sting diameter upon base drag 

for smooth and slender forebody shapes at Mach 

numbers between 1.5 and 4.5. It appears that the 

sting has the largest influence at “transonic” M’num- 

bers, where the “open” bottleneck seems to be filled 

and “closed” by the sting. At M’numbers above “2”, 

diameter ratios below 0.4 appear to be permissible. 

At ratios in the vicinity of .8, most of the experimen¬ 

tal results show an appreciable increase of the pressure 

(drag) value. The three-dimensional flow pattern past 

the base is evidently converted into a more two- 

dimensional (annular) pattern, in this case. At M = 

4.5, ratios up to .6 or 0.7 do not seriously affect the 

value of the base pressure tested. 

Rocket Nozzle. Base drag has an interesting conse¬ 

quence in the arrangement of the rocket-jet nozzle 

within the base of a missile. There is usually an 

annular clearance space left open around the nozzle. 

Full-scale investigations on experimental rockets (24) 

indicate, for example at M = 2, a base drag coeffi¬ 

cient CQB in the order of .1 in “power-off” condition. 

For a jet pressure equal to ambient pressure, the base 

pressure in the annulus is reduced to a Cp in the 
order of — 0.05. In “power-on” condition, the “an¬ 

nulus” is subjected to the pumping effect both of 

the outside flow and of the jet discharging through the 

rocket nozzle. The value of the base-pressure coeffi¬ 

cient is increased, accordingly, to the order of «-0.2, 

while the total pressure in the rocket jet reaches a 

value between (2 and 3) times the ambient pressure, 

corresponding to a Cp(.04a( (on dynamic pressure of 

the outside flow) between 0.7 and 1.0. For a diameter 

ratio of 0.9, and an annulus- against base-area ratio 

of **» 20%, the base pressure thus takes away some 

4% of the rocket thrust, so to speak. It might be 

simple, however, to extend the nozzle to somewhat 

beyond base and base diameter of the rocket vehicle, 

so that the drag in the annulus is avoided. 

Boat Tail. “Streamline” type projectile or missile 

shapes, having a base diameter smaller than the maxi¬ 

mum of the forebody, are called “boat-tailed”. Their 

drag is discussed later, together with the wave drag 

originating from the boat-tail sides. In regard to base 

drag, figure 2 demonstrates that the character of drag 

and flow pattern in boat-tailed missile bodies is 

usually “transonic”. Contrary to figure 3,a, the com¬ 

pression shock is bound to be located closer to or even 

at the base, however, thus permitting the “bottleneck” 

to stay open to higher limiting Mach numbers (to 

M 3 or 4, as in figure 2). As far as the magnitude 

of suction pressure is concerned, the mechanism as a 

function of forebody-drag coefficient C^B (as in figure 

5) can very well be applied in slender and slowly 

tapering body shapes to explain and/or to predict 

the value of the pressure coefficient. The wetted area 

ratio Swe4/SQ of such bodies is evidently proportional 

to (1/d) as in figure 4, times (S#/SB) = (d/dfi)2. 

Results of one experimental investigation have been 

plotted in that graph as an example. The points (sfc) 

obviously continue the functions obtained at lesser 

length or area ratios (on bodies having cylindrical 

ends with dg = d). Other such points can be evalu¬ 

ated from (8,a) for ratios of (1/d) (d/dR)2 in the 

order of 30. The same and other results are included 

in figure 5 plotted against estimated forebody-drag 

coefficients It must be said, however, that 

flow conditions past the base of boat-tailed missiles 

(such as the NACA’s RM-10, see footnote 51) are 

not very consistent. The “transonic” results of such 

shapes in figure 2 show certain ups and downs; and 

it is sometimes not clear whether the boundary layer 

or the telemetering devices play tricks on us in this 

phase. Reference (8,e) demonstrates, however, that 

a stable condition at the RM-10 base is reached at 

R’numbers (on body length) above 107. Below this 

number, the flow along the forebody is essentially 



XVI — AT TRANSONIC SPEEDS 16 — 11 

laminar. Because of smaller R’numbers (between 

106 and 107) the pressure coefficients of boat-tailed 

bodies in reference (13,c) (having 1/d — 8) do there¬ 

fore not correlate very well on the basis of CfB' 

reason for this result is most likely laminar-type and 

shock-induced separation from the end of the “boat 

tail”. Separation also takes place in projectiles in 

cases where the boat-tail angle exceeds a certain per¬ 

missible value (see the later section on this subject). 

• 14% WEDGE, LAMINAR-Rc = 6 10s <25,0 
X A 2.7 FLIGHT 6% STRAIGHT = 7 I06 (25,c) 
□ A = 3 STRAIGHT IN TUNNEL AT = 3 I06 (25,a) 
« COMPILATION OF NACA DATA IN REF. <25,k) 
- 3% to 10% STRAIGHT SECTIONS R. > I06 (25,e) 
4 NPL 12.5% WEDGE AT- R0 > 106 (25,g) 
I LAMINAR MINIMA-Rc 5 10s (25,a) 

Figure 11. "Base” drag originating from the blunt trail¬ 
ing edge of airfoil sections, as a function of M’number. 

(18) Influence of sting support on base pressure: 
a) Perkins, At M = 1.5, NACA T.Note 2292 (1948). 
b) See the information in reference (13,b). 
c) Cahn, At Transonic Speeds, NACA Doct. RM L56Fl8a. 
d) Donaldson, At M w 2, Aeron.Quart. 1955 p.221. 
e) Love, Summary on Base Drag, NACA Doct. RM L53K12. 

(22) Interference of tail surface on base pressure: 
a) Spahr-Dickey, Fin, NACA T.Note 2360 (1951). 
b) Tail-Wing Interference, NACA T.Note 2360. 
c) Hart, Fins and Sting in Flight, NACA RM L52E06. 
d) Love, Fins and Sting, NACA Doct. RM L52j21a. 

(24) Base drag around rocket outlet nozzles: 
a) NACA, Rocket Jet Effect, RM L50I18 and L51J29. 
b) Cortright, Aeron’l Engg.Review, p.59. 

(25) Experimental results on two-dimensional base drag: 
a) Chapman, Blunt TE's, NACA T.Rpt 1109 (TN 2611). 
b) Chapman, included in NACA T.Rpt 1051 (13,b). 
c) Morrow, Flight Tests, NACA T.Note 3548(L50El9a). 
d) Chapman, TE Thickness, NACA T.Note 3350(1955). 
e) Goin, Blunt T’Edge Wings, NACA Doct. RM L52D21. 
f) Sawyer, Cylinder and Wedge, NACA Doct. RM L8B13. 
g) Gadd, as in (7,1) ; also NPL Symposium Rept. 1955. 
h) Stanton, Cylinders in Tunnel, ARC RM 1210 (1928). 
i) Chapman, Supersonic Airfoils, NACA Doct. RM A9H11. 

k) Chapman, Compilation, NACA Conference Rpt 1950. 
l) Dugan, On 3% Airfoil, NACA Doct. RM A52E01. 

Fin Interference. While projectiles are usually stabi¬ 

lized in their flight by “spinning” them, missiles are 

generally kept in direction by means of fins (similar 

to those of airships, bombs and/or torpedoes). These 

fins can ciffect base pressure in several ways. They 

may change status and thickness of boundary layer 

and/or wake; and they can thus either increase or 

decrease the base-pressure coefficient, in the order 

of — 10% in “straight” projectile shapes such as in 

(7,g,n,o) for example. This type of interference can 

be much stronger, however, in boat-tailed missile 

bodies, whose flow pattern is more sensitive. Refer¬ 

ence (8,c) shows, for example, an increase of the 

base-drag coefficient from practically zero (for lami¬ 

nar flow at R( = 3 10^) to— = 0.11, which 

is a value close to that in forced-turbulence condition 

(0.12). It is suggested that some laminar separation 

(from the boat tail) ahead of the base, is eliminated in 

this case through addition of the fins. Another inter¬ 

ference effect of fins is directly a consequence of their 

pressure field. For common locations (adjoining or 

somewhat ahead of the base) this effect seems to be 

comparatively small. For positions tvith the fins’ 

afterbodies extending beyond the base, the influence 

can be expected to depend upon the pressure dif¬ 

ferential between fins and base space. This differ¬ 

ential may be negative (in particular for fins rvith 

higher thickness ratios) or it may be positive. For a 

typical missile configuration (RM-10 in reference 

8,c) with four 10% thick and 60° swept fins, the value 

of the negative base-pressure coefficient (tested with 

fixed boundary-layer transition) is, for example, in¬ 

creased on account of the fins, from—CpB == 0.09 

to 0.13. When moving the fins further back in this 

swept configuration (by some 50% of their chord so 

that they protrude that much beyond the base), it 

might be possible to reduce the base drag by letting 

the positive part of the fins’ pressure field corres¬ 

ponding to a measured differential of ACp ~ 0.05 

“impinge” upon the dead-air space behind the base. 

Blunt Trailing Edges. The two-dimensional equiv¬ 

alent of the “base” of a projectile, is a thick and blunt 

trailing edge as we find it in wedges, for example, or 

in airfoil sections whose rear end has been cut off 

or thickened. Figure 11 presents available experi¬ 

mental results, mostly on shapes with flat and parallel 

sides. Contrary to the characteristics of three-di¬ 

mensional bodies (in figure 2) there is no » con¬ 

stant “transonic” level found in any of the sections 

investigated. Two-dimensional mixing is obviously 

more effective, so that “sealing” of the “bottleneck” 

(as in figure 3,b) is easier obtained. The sketch in 

figure 13 displays a very narrow wake “throat”, ac¬ 

cordingly. It should also be noted that the down¬ 

stream tvake shows the familiar fluctuating vortex 

“street” pattern (see Chapter III). In conclusion, the 

“base” drag of two-dimensional and of finite-span air¬ 

foils as well, has usually a "supersonic” character. 
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Maximum Base Drag. Two-dimensional base-drag 

characteristics follow the principles outlined in con¬ 

nection with three-dimensional projectile- and mis¬ 

sile bodies (under the subheadings of “viscous fore¬ 

body drag”, “supersonic phase” and “Reynolds num¬ 

ber”). To show how far the influence of R’number 

(corresponding to that in figure 7) can go in two- 

dimensional base flow, some laminar minima ft) are 

included in figure 11 (obtained at Rc = 2 105). As 

in three-dimensional bodies (see figure 9) the turbu¬ 

lent maximum drag values are somewhat lower than 

the maximum suction pressure (drag) ^coefficients ob¬ 

tained (in the vicinity of Rc = 10”) for laminar 

BL along the foil sections (26,a). 

I.o 

0.8 

o.6 

oA 

Ponb 
’drag" ratio 

A JH university BODY W'FINS (7,g) 
* MAXIMUM VALUES NACA (25,o) 
- WEDGES AT R. - 2-10‘l (25,k) 
* NACA SMOOTH SECTION (25,e) 
* NACA WEDGE SECTION (25,k) 
° ROUGHNESS (TURBULENT) (25,k) 
« FROM VARIOUS REPORTS (NACA) 

THEORY (26,b) 

*// 

0.2 

0 

0 I 

MACH NUMBER - V/V 

2 3 4-5 

“Transonic” Phase. Figure 12 demonstrates that the 

agreement between experimental results and the 

limiting theory (26,b) discontinues as the Mach num¬ 

ber reduces below ~ 1.3. Indeed, tested drag co¬ 

efficients are higher than indicated by the theory. 

We must thus conclude that in a comparatively 

narrow transonic range of the Mach number, the flow 

pattern past base (and forebody) is different from 

the one assumed in the theoretical formulation. As 

a possible reason for increased base drag, presence 

and mechanism of a vortex street (see Chapter III) 

in combination with supersonic effects is mentioned 

at this point. 

Forebody Drag. Figure 13 presents an attempt of 

correlating the base pressure (drag) ratio (17,a) with 

the viscous forebody coefficient (9,b) 

C-fB = CDs (c/h) (18) 

where C^5 = “viscous” section drag coefficient. In¬ 

asmuch as this coefficient is not usually measured 

separately, most of the C-f£> values used in plotting 

the points in figure 13 have necessarily been calcu¬ 

lated (or estimated, respectively; see footnote 9,d). 

To demonstrate the application, we will consider a 

blunt-ended foil section with t/c = 5%, flying at 

Rj( =107, where laminar boundary layer flow is still 

possible with the help of some negative pressure 

gradient. The skin-drag coefficient CDsos=-2 

is then expected to be in the order of 0.002 for lam¬ 

inar and of 0.006 for turbulent flow. For thickness 

of the trailing edge h = t, the corresponding coeffi¬ 

cients on base area are = 0.04 and = 0.12 

respectively. For a Mach number M = 1.5, the base 

Figure 12. Variation of suction-pressure or base- 
drag ratio of several blunt-ended airfoil 
sections as a function of Mach number. 

Figure 12 shows the variation of pressure or drag 

ratio (17,a) as a function of Mach number. The 

highest experimental points essentially agree with 

a theoretical solution (26,b) for two-dimensional flow 

involving no or comparatively thin boundary layers. 

This (numerically solved) solution, obtained “with¬ 

out the aid of any experimental data”, is thus 

supposed to indicate a lower limit of the base pressure 

or an upper limit of the corresponding base drag. 

Results from tests at Reynolds numbers (between 

10^ and 107) where the boundary layer is still lami¬ 

nar over most of the foil section chord, are seen to 

agree with the theoretical function very well. 

(26) Theoretical analysis of 2-dimensional base drag: 
a) Chapman, NACA T.Rpts 1051 and 1063 (T.N.2264). 
b) Korst, Base-Pressure Theory, J.Appl.Mech.1956 p.593; 
see also J.Aeron.Sci. 1954 p.568. 
c) Klunker, Supersonic Drag, NACA T.Note 2828(1952). 

° STRAIGHT SECTIONS, LAMINAR (25.o) 
• VARIOUS SECTIONS, TURBULENT (25,o) 

—-•-“ A STRAIGHT SECTIONS, TURBULENT (25,e) 
CPB • "BOAT-TAILED" — LAMINAR BL (25 a) 

0 0.1 0.2 0.3 

Figure 13. Correlation between base drag and "viscous” 
forebody-drag coefficient, for a blunt-ended foil section. 
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drag coefficient corresponding to vacuum (as shown 

in figure 11) is CDB*=: 0.6. Using the two CfB values 

as found above, figure 13 then yields the two base 

drag coefficients = 0.6‘0.6 = 0.36 and = 0.6- 

0.65 = 0.12, respectively. The sum total of the co¬ 

efficients, for section and Mach number considered 

(not including the forebody wave drag which is as¬ 

sumed to be independent of boundary layer and base 

flow) is: 

Cfcf, + Cjyg, = 0.04 + 0.36 — 0.40 (laminar) 

= 0.12 + 0.39 = 0.51 (turbulent) 

The laminar boundary layer flow is thus more de¬ 

sirable in this particular case (where h = t). Other 

combinations of TE thickness ratio and Mach num¬ 

ber leading to similar results, or to opposite results 

respectively, can be found by going through the same 

procedure. Further analysis, including wave drag on 

forebody and tapering afterbody, is presented in Chap¬ 

ter XVII. 

Boat-Tailing. Boundary-layer flow is usually laminar 

in transonic wind-tunnel tests (unless stimulation is 

applied). As explained in Chapter XVII, laminar 

flow is also not unrealistic in full-scale supersonic ap¬ 

plications. There are a number of points included in 

figure 13, at C-FE> below 0.1, showing considerably 
reduced base pressure (drag) ratios. It appears that 

all of these were tested in the presence of laminar 

B’layer. However, all the low values were also ob¬ 

tained on heavily boat-tailed shapes. Rather than 

blaming the result on laminar “mixing”, it is there¬ 

fore suggested that an interaction between shock 

wave and B’layer is taking place under these con¬ 

ditions, thus resulting in some influence of the higher 

pressure behind the tail shock wave upon the pressure 

level at the base. 

3. BLUFF BODIES AT TRANSONIC SPEEDS 

(a) Drag Of Blunt Bodies 

The Blunt Cylinder as in figure 14, exhibits a fully 

detached and rounded shock wave (of the form as 

illustrated in figure 20). The average positive pres¬ 

sure coefficient on the cylinder face is, therefore, 

closely related to the stagnation pressure as indicated 

by equation 4 or in figure 1. Disregarding a negligibly 

small component of skin friction, the forebody drag 

coefficient of the blunt cylinder may accordingly be: 

CDfore.= Kfor(‘V/q) (20) 

where the factor is tentatively K^ov.e = 0.90, as found 

from pressure distribution tests in (30,e); see the ( + ) 

points in figure 14. The total drag coefficient increases 

accordingly, while the transonic base-drag coefficient 

remains at a constant value of « 0.2. Approximately 

at M = 2, the base pressure coefficient can be expected 

to begin decreasing in the manner as pointed out in 

general in Section 2 of this chapter and as shown in 

particular in figure 2. Tentatively, the base drag com¬ 

ponent may be assumed to be 0.6 of the maximum 

possible function (corresponding to vacuum). A com¬ 

puted drag function is obtained in this manner, 

matching and extrapolating the experimental points 

in figure 14 very well. It so happens that the total drag 

coefficient assumes a roughly constant level, tenta¬ 

tively terminating at 1.65 = 0.9 T.84, where 

1.84 = terminal stagnation pressure coefficient as in 

figure 1. Somewhat different factors and values for 

the two components of drag can, of course, be assumed 

or they may eventually be tested. 

O GOTTINGEN (a) 
a PEENEMUNDE (c) 
0 GOTTINGEN (b) 
+ NOSE PRESSURE (e) 
♦ AACHEN (d) 

Figure 14. Drag characteristics 
of blunt cylinders in axial flow 
(30), as a function of M'number. 

CTLIRDRR FIRINGS [30,f) 

TOTAL Fig 38 Cb»p XVIII 

FACS FRE33CRS F3S/STIII 

BASS F30JSOTIXSS (56,•) 

(30) Drag of and pressure on cylinders in axial flow: 
a) In Wind Tunnel, AVA Docts. 1940/8/1,1942/H/12. 
b) AVA Gottingen, see reference (42,e). 
c) Peenemiinde, see references (7,c)(42,a). T 
d) Naumann, Subsonic, ZWB Tech.Berichte 1943 p.278. 
e) Nose pressure distribution, reference (36,b). 
f) Long, Firings to M = 8, NAVORD Rpt 4382(1956). 

(32) Drag of bluff bodies at high speeds: 
a) Hansche-Rinehart, Cubes Fired, J.A.Sci.1952 p.83. 
b) British Tunnel Tests on Various Bluff Bodies, quoted in 
Aberdeen BRL PG Report 425 (1943). 
c) Strassl, Beveled Cylinders, AVA Doct. B 1942/H/12. 
d) Schardin, Schlieren Pictures, ZWB Lilth.Rpt 139/1. 
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Bluff Heads. Reference (30,a) proves that the length 

of cylinders in supersonic axial flow does not notice¬ 

ably affect their drag coefficient, i.e. not between 1/d — 

2 and 5 as tested. The same source also shows that 

beveling the forward end of such cylinders, reduces 

the pressure drag coefficient on that end as indicated 

in figure 15. All of the bluff shapes in that illustration 

exhibit total drag coefficients which are comparatively 

constant between M = 2.0 and 3.4. Assuming the 

base-drag component to be = 0.2 (see figure 2), 

approximate wave-drag or nose-pressure coefficients 

can be obtained; see figure 15. They show then that 

beveling, tapering, rounding and/or pointing reduces 

that type of drag significantly. Figure 16 presents the 

total drag coefficients of such solids at M = 2, as a 

function of the length or fineness ratio (x/d) of their 

forebody shape. 

CDB = 

SotaT 

A 
0.19 0.20 0.21 0.20 o.2o 

1.69 1.27 0.93 0.83 0.30 

(F-14) (30,a) (36) (F.28) RM 
A52BI3 

Figure 15. Drag coefficients of several more or less blunt or 
bluff-ended circular cylinders in axial flow at M = 2. 

1.8 

Figure 16. Drag coefficients of various more or less bluff, rota- 
tionally-symmetric shapes, as a function of their forebody length 
ratio; (a) total drag of bodies as indicated, at M = 2; (b) fore¬ 
body drag (head pressure) of a group of spheroidal heads (36,b) 
at M = 1.6. 

+ BASED ON Is AREA (a) 
X ON 1 5 Is AREA (a) 
□ CUBE "FLAT" (b) 
<> CUBE CONERWISE (b) 
o CYLINDER, I = 2 d (c) 

Figure 17. Drag coefficients of rotating cubes 
fired through a ballistic range(32,a). 

Rotating Cubes. The drag of steel cubes somehow 

rotating in an uncontrolled manner, was tested by fir¬ 

ing them through a ballistic range at speeds up to 

4000 ft/sec. Figure 17 presents the average drag co¬ 

efficients obtained, originally based on a frontal area 

equal to 1.5 where l — edge length of the cubes 

tested. This area roughly represents an average pro¬ 

jected frontal area of the cubes when rotating. By 

coincidence, the drag coefficients are then somehow 

compatible with those of cubes from a different source 

(32,b) tested in “cornerwise” position. Actual frontal 

areas are S. = l2 for the “flat” cube, = l2 for 

edgewise motion, and «= 1.7 l2 for all positions 

with one of the corner points first. After referring the 

drag coefficient to the area l2 (as in a “flat” cube) the 

points are also more or less compatible with results 

(32,b) on cubes in a position where two of the faces 

are normal to the direction of the fluid flow. The 

rotating cubes thus represent average conditions be¬ 

tween all positions statistically possible. 

Two-Dimensional Plate. Blunt bodies such as the 

cylinder in figure 14, or as plates and/or disks in 

supersonic fluid flow in a direction normal to their 

forward face, always exhibit a fully detached and 

rounded shock wave pattern. It has been found on 

bluff wedges (33,a) that under these conditions the 

pressure distribution along the sides begins with p = 

1.893 p^ at the LE; and it ends at p p^ at the 

shoulder (where p* = critical pressure correspond¬ 

ing to sonic speed). Experimental results for a certain 

wedge obtained at various transonic M’numbers, 

therefore, collapse into one distribution function 

when plotting p/p against wedge length or thick¬ 

ness. Shape of, and pressure drag coefficient corres¬ 

ponding to this distribution are thus a function of 

wedge angle (and not of M’number). This type of 

similarity is utilized as follows to predict the average 
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pressure coefficient on the forward face of a flat plate 

in two-dimensional normal flow, at “transonic” 

speeds: 

CD#= K (“q”/q) - 2 (1 - K)/(k M2) (21) 

where “q”/q = stagnation pressure coefficient as in 

equat.4, and K = factor indicating the fullness of the 

pressure distribution. For a wedge angle of 2 “90' as in 

a plate or in a blunt and square leading edge, it was 

found that K = 0.92 (33,a) and K = 0.94- (36,b) 

respecitively. Applying an average factor of 0.93 (and 

for k = 1.4 as in air) a face-pressure drag coefficient 

of 0.93 (1.84) = 1.71 is thus obtained for M —► oo. 

Bluff Wedges. “K” values to be used in equation 21 

have been evaluated for a few “wedges”, including the 

flat plate (having £ — 90°). They are plotted in 

figure 19 as a function of the half-apex angle 

At 8 = 180°, the theoretical value of K = 1 is 

applied indicating “scoop” type shapes (such as 

“cups” or other open and sharp-edged forms). The 

available points for two-dimensional shapes can then 

be interpolated by. f#_ 
K = sin (£/2) (22) 

For conical shells (moving point-first or moving with 

the opening against the air-stream, respectively) there 

is a second line indicating coefficients somewhat lower 

than for the two-dimensional wedges and “folds”, 

respectively. Selecting the proper coefficient, the drag 

corresponding to positive face pressure can then be 

calculated through the use of equation 21 (for “any” 

Mach number). The method ceases to be applicable, 

however, as soon as the bow shock wave attaches itself 

to the body surface (as in slender cones and/or 

wedges). A very similar method of drag analysis is also 

applied in Chapter XVIII, where characteristics of 

bluff bodies are further considered, under “hyper¬ 

sonic” conditions (33,c). 

Further analysis and improved "K” values, see Chap. XVIII. 

(33) Results on blunt heads and disks: 
a) Griffith, Wedge Theory, J.Aeron.Sci.1952 p.249. 
b) NOL Experimental Results on Disks, as in (7,p). 
c) Blunt bodies appear to be a case where the distinction 
between "subsonic”, "transonic”, "supersonic” and "hyper¬ 
sonic” gets lost to a large degree. 
d) Face pressure, included in reference (36,b). 

(34) Drag of spheres at transonic/supersonic speeds: 
a) Helie, Traite de Ballistique, Paris 1884. 
b) Charters & Thomas in J.Aeron.Sci. 1945 p.468. 
c) Clark & Harris, Pendulum, J.Aeron.Sci. 1952 p.385. 
e) Hodges, Tech Rpt T-656 (1949) N.M.School of Mines. 
f) Ferri, R' and M’Number, Atti Guidonia 67, 68, 69 
(1942) p.49; also by Eula in Aerotecnica 1940 No. 1. 
g) See Erdmann, reference (7,c), Peenemiinde. 
h) NOL, Firings at M = 8.7, unpublished 1956. 
i) Lehnert, Base Pressure, NAVORD Rpt 2774 (1953). 

+ N A C A WEDGES, XVltl 

A Griffith, WEDGES (33,a) 

A CONE, from figure 23) 

• BLUNT CYLINDER fig. It) 
Wedges 

Figure 19. Factor "K” to be used in equation 21, in order 
to determine the transonic and/or supersonic forebody wave- 
drag coefficient of blunt bodies and bluff cones or wedges. 
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Base Pressure. The detached-shock mechanism as de¬ 

scribed in the preceding paragraph, is now tentatively 

applied to the three-dimensional case of a disk. For 

the face of a blunt-ended circular cylinder, the factor 

K. was found (36,b) to be 0.88. Figure 19 suggests, 

however, that a value of 0.90 might be more consist¬ 

ent with other results. Applying now this factor to 

the disk, its face pressure is then determined through 

application of equation 21. In regard to rear-side or 

base pressure, figure 18 shows a tested function (33,b) 

very roughly corresponding to =^65% of the maxi¬ 

mum possible differential corresponding to vacuum 

(equation 14). The drag coefficient of the disk at high¬ 
er supersonic speeds is thus tentatively 

CD>= 1.62 + (0.1/M2) (24) 

Assuming that the drag of a disk may be equal or 

similar in magnitude to that of a short cylinder in 

axial flow, values have been selected among those in 

figure 14 in such a manner that the total drag coeffi¬ 

cient (as found for those cylinders) is equal to the sum 

of face pressure coefficient as tested (36,b) plus base 

drag coefficient as determined behind disks (33,b). 

The resultant function is a likely indication for the 

drag coefficient of disks at transonic and supersonic 

speeds. — Supersonic results on two-dimensional 

plates (tested between walls) do not seem to be avail¬ 

able. We may make a guess, however, concerning the 

negative pressure at their rear surface; and we will 

assume this pressure possibly to correspond to 75% 

of the coefficient indicated by vacuum (see figure 12). 

Adding to equation 21, the drag coefficient of a plate 
between walls is then tentatively: 

(b) Drag Of Rounded Shapes 

Spheres. Figure 20 presents a transonic and super¬ 

sonic continuation of the drag function of spheres as 

in figure 6 of Chapter XV. Schlieren pictures (34,b) 

show that the separation point on the surface of the 

sphere moves from 15° ahead, to ~ 20° aft of 

the “equator”. It could then be speculated that there 

may be some variation of the drag coefficient, at tran¬ 

sonic and supersonic speeds, as a function of Reynolds 

number and boundary layer development. Tests in 

ballistic ranges (34,b,e,h) between Rj= 1(A and lO6, 

seem to indicate only comparatively small variations. 

Experimental results only at such higher R’numbers 

are plotted in figure 20. Characteristics at “very small” 

R’numbers are discussed in Chapter XIX as a sub¬ 

ject of rarefied fluid flow. — Results of pressure dis¬ 

tribution tests on hemispherical head shapes, included 

in figure 20, may be considered also to represent the 

forebody-drag coefficient of spheres. Between M = 

1.5 and 2.0, this component corresponds to approxi¬ 

mately 44% of the stagnation pressure (as in figure 

1). The percentage grows, however, as the M’number 

is increased. At M’numbers between 5 and 7, the 

pressure at the surface of the sphere is found (36,c) 

and (38,k) to correspond to a hypersonic type of dis¬ 

tribution, as described in Chapter XVIII.The result 

is a terminal pressure drag coefficient of C^,. = 0.92 

(for hemispherical heads as well as for spheres) as 
indicated in the graph. 

CD#= 1.72+(0.3/M2) (25) 

This drag coefficient is plotted in figure 18 together 

with that of the disk. The “synthetic” functions (for 

the disk as well as for the plate) are qualitatively con¬ 
firmed . 
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Figure 20. Drag coefficients as a function of M’number 
(a) of spheres; (b) of circular cylinders (between walls). 
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RESULTS ON SPHERES : 
« ABERDEEN, FIRINGS — <34,b) 
• PEENfMONDE, TUNNEL (34,g) 
• HELIE, BALLISTIC TESTS (34.o) 
• FERRI. TUNNEL TESTS <34,f) 
A N.ORDNANCE LABOR AT. (34 } 
• NEW MEXICO FIRINGS <34,e) 
D PENDULUM METHOD - (34,c) 
• NACA, PRESSURE DISTR.(36,o) 
- NPL, NOSE PRESSURE — (36,b) 

CYLINDERS BETWEEN WALLS (38): 

ARC, TUNNEL TESTS (e) 
o AVA, WIRES i.TUNNEL (b) 
* NACA TUNNEL-(f) 
+ NACA, FLIGHT TEST (d) 
* BRITISH, STANToN (o) 
A DVL, SUBSONIC-(b) 
▼ JUNKERS, TUNNEL (h) 
* NACA, SUBSONIC - - (h) 

BASE DRAG: 
* SUBSONIC CYLINDER (38,g) 
« SUBSONIC CYLINDER (38,e) 
= TRANSONIC CYLINDER (25,f) 
•* SUBSONIC SUPERSONIC (38,f) 
l SPHERE (CORRECTED) (34,g) 
x NAVORD, SPHERE (34,0 

g |0 * FROM OTHER SOURCES 



XVI — AT TRANSONIC SPEEDS 16 - 17 

Base Drag. The rear-side or base-drag coefficient of 

the sphere (as tested, see figure 20) increases from 

» 50% of the maximum possible value (correspond¬ 

ing to vacuum) at M = 1.5, to some 70% of that 

function at M = 3.0, thus presenting a growth of the 

ratio similar to the lines in figure 6. 

Spheroidal Head Shapes of varying length ratio have 

been investigated by pressure distribution method 

in (36,b), between M = 1.4 and 1.8. Figure 16 

demonstrates how the nose drag coefficient of a cyl¬ 

inder in axial flow decreases from the value as found 

for the blunt form (see figure 14) by giving the 

forward end a spheroidal shape more and more in¬ 

creasing in fineness ratio x/d. 

Cylinder in Cross Flow. Drag coefficients of circular 

cylinders in two-dimensional flow (tested between 

tunnel walls) are presented in figure 20 over the “full” 

range of the Mach number. The up-down-up irreg¬ 

ularity at higher subsonic M’numbers (treated at 

length in Chapter XV) is seen to correlate very well 

with base-drag results. The drag coefficient then 

reaches a transonic peak slightly above 2.1. At super¬ 

sonic M’numbers, the base-drag coefficient is on the 

average in the order of ~ 70% of the value cor¬ 

responding to vacuum, as tested between M = 1.5 

and 2.9 and as included in the illustration. On ac¬ 

count of the base pressure, the total coefficient reduces 

considerably (between M = 1 and 2). The compo¬ 

nent due to positive pressure on the forward side of 

the cylinder is in the order of 0.66 of the stagnation 

pressure. Extrapolating the total coefficient to higher 

M’numbers, this value tentatively indicates the ter¬ 

minal level, while the base-drag component reduces 

to zero; see again under “hypersonic characteristics” 

in Chapter XVIII. 

(35) Influence of Reynolds number on spheres: 
a) Charters (Aberdeen) as in reference (34,b). 
b) May and Witt, Free Flight, J.Aeron.Sci.1953 p.635. 
c) May, Firings at Small R’Numbers, NAVORD Rpt 4392. 

(36) Characteristics of spheroidal heads: 
a) NACA, Hemispherical Noses, RM A52B13 & L52K06. 
b) Holder-Chinneck (NPL), Supersonic Flow Past Series of 
Half-Body Shapes, Aeron.Quarterly 1954 p.317. 
c) GALCIT, Bluff Bodies, J.Aer.Sci.1956 p.177 & 1054. 
d) References (c) and (38,k) prove that the Newtonian 
type distribution does not very well apply to cones. 

(38) Circular cylinders in high-speed cross flow: 
a) Stanton, Pressure Distribution, ARC RM 1210 (1928). 
b) Ludwieg, Drag of Wires, AVA Doct 8/16/1939. 
d Welsh, Transonic Flight Tests, NACA T.Note 2941. 
e) Knowler-Pruden (NPL), ARC RM 1933 (~ 1942). 
f) Gowen-Perkins, R' and M’Numbers, NACA T.Note 2960. 
g) Orlin, Hydraulic Analogy, NACA T.Rpt 875 (1947). 
h) Various test points at subsonic speeds correspond to those 
plotted in figure 5 of Chapter XV; in figure 20- 
k) Penland, Cylinder and Sphere, NACA RM L54A14. 

AVA (1932) 

Figure 21. Drag coefficient of a circular cylinder (tested 
between tunnel walls, reference XV11) at M 
= 1.5, without and with various fairings. 

Cylinder Fairings. Since the mechanism of supersonic 

drag is different from that at subsonic speeds (or in 

incompressible fluid flow) the influence of form upon 

drag is also different. A series of simple section shapes, 

possibly to be used as fairings around circular cyl¬ 

inders, are presented in figure 21. The single wedge 

with the cylinder ahead, has a much higher drag co¬ 

efficient than in the sharp-edge-first direction. This 

result demonstrates again that in transonic and super¬ 

sonic flow, stagnation pressure on any type of bluff 

shape leads to high drag coefficients, while at super¬ 

sonic (but not at transonic) speeds, drag due to neg¬ 

ative base pressure can be comparatively low. In fact, 

at M = 1.5 as tested, the drag of the wedge (moving 

sharp-edge-first) is only slightly larger than that of 

the biconvex section included in the illustration 

for comparison. Characteristics of blunt-ended foil 

sections are further treated in Chapter XVII. 

Elliptical Cylinders. We do not have results on ellipti¬ 

cal cylinders as such. A series of half-body type ellipti¬ 

cal “edges” has been investigated, however, by pres¬ 

sure-distribution method (36,b). Figure 22 shows how 

the drag coefficient (on frontal area) reduces as the 

leading edge is made elliptical with a more and more 

increasing length or fineness ratio x/t. 

Figure 22. Drag coefficient of a 'leading edge' from pressure 
distribution (36,b) as a function of the length ratio x/t. 
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4. TRANSONIC DRAG OF SLENDER BODIES 

The shape of projectiles and missile bodies designed 

for transonic and supersonic speeds, shows usually a 

pointed nose and a more or less blunt and flat base. 

Drag due to separation from that base is treated in 

the second section of this Chapter. Disregarding some 

skin-friction, the rest of the drag of such bodies cor¬ 

responds to compression waves (shocks) originating 

from the forebody and its more or less conical nose, 

and possibly from the afterbody (if boat-tailed). 

Conical Flow is theoretically treated as a half-infinite 

pattern of flow, a substitution which accounts for pres¬ 

sure (which is then constant along the cone length) 

and drag on cones of finite length and/or of conical 

nose shapes in truly supersonic axial flow. However, 

at subsonic and transonic speeds, the pressure on the 

surface of a physical cone starts from an (infinitely 

small) stagnation point; and it reduces from there to 

values below ambient pressure at the cone’s rim or 

shoulder. At high subsonic speeds, the flow pattern 

undergoes changes similar to those described else¬ 

where (in Chapter XV and in this chapter here). 

Theoretical methods have been established describing 

and correlating these changes, and the subsequent 

variation of the pressure drag coefficient across the 

transonic range, by means of similarity functions (40). 

a NPL TM (40,a) 
O P'MONDE (41, d) 
x CALTECH (41,a) 
0 OTHER SOURCES 

0-4 o.f> 0.8 1.0 is l 3 4 6 8 10 

Figure 23. Theoretical (40) and experimental (41) 
drag coefficients of various conical heads 
at transonic and supersonic Mach numbers. 

Most of these methods employ certain linearized 

terms, however, so that transonic applications are only 

realistic for very small cone angles (45). Really suit¬ 

able parameters to be plotted (45,f) are also complex; 

“a source term has to be subtracted out” (2,c). Rather 

we are using, therefore, a statistical approach. One 

component of the similarity system (41,a) (40,e) is 

utilized, however, in figure 23, indicating the slope of 

the drag coefficient across M = 1; thus: 

dCD#/dM = (4/(k + 1))-(1 - 0.5 CD1#) (26) 

where CD|. = drag coefficient at M = 1, and k = 
1.4 for air. 

Figure 24. Drag coefficient of conical heads at M = 1. 

At M = I. Besides the transonic result in figure 23, 

we have only another point from the same source 

(41,a) indicating drag at M = 1. These two points are 

plotted in figure 24 in combination with a theoretical 

solution (45,g) and with a value estimated for the disk 

(which is a cone with £ = 90°) on the basis of figure 

18. The correlation thus obtained looks encouraging. 

Tentatively, therefore, the empirical function as in¬ 

dicated in the graph, can be used for the cone part of 

cone-cylinder configurations at M = 1. A value of 

CD.= 0.56 has accordingly been taken for & = 

30° and plotted in figure 28 together with the slope 

function (equation 26) thus indicating a likely con¬ 

tinuation across M = 1, of the experimental results 

obtained in supersonic wind tunnels. — The drag co¬ 

efficient of the conical noses in figure 23, reaches a 

peak closely above M = 1; and it then connects to the 

supersonic function described as follows. 
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Figure 25. Maximum permissible half-vertex angles of cones 
(40,a) and u/edges (6,b) at which the shock wave 
detaches from point or leading edge, respectively. 

Supersonic Cone Flow. Within the transonic range, 

the shock wave is detached from the point of the cones 

considered; and the front is round rather than conical. 

Figure 25 shows the Mach numbers at which the 

shock then attaches itself to the point. This event 

does not immediately terminate the mixed transonic 

regime, however. The flow pattern only becomes truly 

supersonic at certain slightly higher Mach numbers 

also indicated in the graph. Above the latter numbers, 

the pattern is “conical” which means according to the 

results of theoretical (40) and experimental studies, 

characteristics as follows: 

Regarding cones under hypersonic conditions of flow, see J.Aeron. 
Sci.1951 p.529, 631, 641 and (74) in Chapter XVII. 

(39) The graph in figure 25, indicating another type of "critical” 
Mach number, is a very useful aid in the analysis of tested, 
or in the prediction of transonic and/or supersonic drag 
coefficients. 

(40) Pressure and drag on conical heads; theory: 
a) Taylor-Maccoll, Theory, Proc.Royal Soc.A 1933 p.278. 
b) Tabulated evaluation of (a) see reference (6,b). 
c) Ehret, Hypersonic Similarity, NACA T.Note 2250. 
d) See also "streamline bodies” in footnote (45). 
e) Similarity at M «1, also in NACA T.Rpt 1094. 
f) Parker, Optimum Shape, NACA T.Note 3189. 
g) MIT, Theoretical Cone Tables, published in 1947, dis¬ 
cussed by Roberts in J.Aeron.Sci.1954 p.336. 
h) Characteristics of non-symmetrical cones are reported in 
J.A.Sci. 1953 p.513, 563; also NACA T.Notes 2236, 2515. 

(41) Pressure and drag of cones, experimental: 
a) Solomon, Transonic Pressure Distribution, NACA 
T.Note 3213; J.Aeron.Sci. 1953 p.627. 
b) Johnston, Cones and Wedges, J.A.Sci.1953 p.378. 
c) Bergdolt, Transonic, J.Aeron.Sci.1953 p.751. 
d) Cones in Peenemiinde Tunnel, see reference (7,c). 
e) Ferri, Guidonia Tests, NACA W.Rpt L-152 (1945). 
f) Drougge, 2 * 45° Cone in Transonic Flow, Medd.No. 
25 (1948) of Swedish Flygtek. Forsoksanstalt (FFA). 
g) Eggers, Minimum-Drag Bodies, NACA T.Note 3666. 
h) Sommer, Blunted Cones, NACA Doct. RM A52B13. 

(a) The shock wave is truly conical, at least to the 

point where the expansion waves originating from 

the cone’s shoulder interfere with the compression 

wave. 

(b) The angle of the conical wave is larger than that 

of the cone, a property which is (at least qualitatively) 

equal to that in theoretical two-dimensional wedge 

flow. 

(c) The pressure distribution along the cone surface 

is uniform (a property which is different from that in 

the transonic range). 

(d) Velocities and/or local Mach numbers are con¬ 

stant along “rays” originating from the cone point. 

In spite of these apparently well defined conditions, 

there is no explicit solution available, predicting pres¬ 

sure and drag of cones at supersonic speeds. It has 

been possible, however, to determine the wave drag 

by numerical evaluation (40,a). The theoretical re¬ 

sults, plotted in figure 23 for 3 selected cone angles, 

are sufficiently well confirmed by experimental re¬ 

sults. As a function of the cone angle “ £, ” (at M — 

constant) the drag coefficient increases, roughly in 

proportion to (£ )’*^ . Figure 26 presents the coeffi¬ 

cient in this form, for M = 2. The thickness ratio of 
the cone is obviously 

d/x = 2 tan & (27) 

Substituting this ratio for the angle & , the pressure 

coefficient is found increasing approximately as (d/x)1'. 

0 10° 20° 30° 40° e 

Figure 26. Pressure-drag coefficient of conical heads 
at M = 2, as indicated by theory (40,a) and as tested. 
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I NACA T. RPT. I2V9 
A NACA T. Note (4),g) 
X T'MACCOLL-- (40.a) 

Figure 27. Supersonic pressure-drag coefficient of 
conical heads, presented in the form 
of "hypersonic" similarity parameters. 

Supersonic Similarity. At higher supersonic Mach 

numbers, pressure and/or nose drag of cones or con¬ 

ical points can conviently be correlated on the basis of 

a hypersonic similarity law (40,c,d) by plotting the 

quantities as in figure 27. It is seen that available 

experimental data collapse very well when applying 

this system. The function has practical limitations, 

however, at both ends of the M'number parameter. 

The influence of boundary-layer displacement (at 

small cone angles and/or at high M’numbers) is ex¬ 

plained in the "hypersonic” | Chapter. 
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Figure 28. Drag components of a simple and smooth 
cone-cylinder configuration (42, h). 

On the other hand, at smaller Mach numbers (slight¬ 

ly above the “transonic” regime) experimental results 

consistently seem to indicate drag coefficients higher 

than indicated by infinite cone theory. On the basis 

of figure 27. 

CD# = 2.1 sin*£ + 0.5 (suiS/Vm2—1) (29) 

is therefore suggested as a simple approximation. The 

similarity terms as plotted, do not have a direct mean¬ 

ing for the engineer. Values of Cp as a function of M 

can easily be computed, however, by means of the 

last equation; and then be plotted as, for example, in 

figure 23. 

Non-Symmetrical Cones have also been investigated 

(40,h). In comparison to a circular cone (having the 

same length and the same-size cross-section area) 

wave drag is expected slightly to be reduced in such 

shapes; for example, by 3% in a 2 : 1 elliptical cone, 

and by some 6% in an essentially triangular shape (at 

M’numbers between 2 and 9). 

Cone-Cylinders. By combining the information avail¬ 

able on conical heads, with that on base drag (in 

section 2 of this Chapter) the drag of simple cone- 

cylinder configurations can be predicted. Figure 28 

presents experimental results on one particular com¬ 

bination, together with an analysis of the drag compo¬ 

nents involved. The skin-frictional part is compara¬ 

tively small. The base-drag and cone-pressure com¬ 

ponents add up properly, except for the highest 

M’numbers tested. The total-drag coefficients between 

M = 6 and 8 seem to indicate the presence of some 

boundary layer (effectively increasing the cone angle). 

— Downwards, the experimental function is extra¬ 

polated across M = 1, in the manner as pointed out 

before (under the subheading “at M = 1”). 

Optimum Fineness Ratio. Figure 29 presents an anal¬ 

ysis of the drag coefficient of smooth cone-cylinder 

configurations (at M = 2) as a function of their 

thickness ratio "d/1”. The total length of the bodies 

is assumed to be 1 = 2 x. The total drag, including 

friction, then reaches a minimum (in relation to 

frontal area) at or below d/1 = 0.1. The optimum 

body thus has a ratio (1/d) above 10 (at M = 2 as 

in the graph). Based on volume (as explained in 

Chapter VI) the optimum length ratio (carrying the 

most volume at the expense of a certain drag value) 

is even higher, somewhere above 15. It must therefore 

be concluded that the shape of projectiles (with a 

length ratio 1/d in the order of only 5) is dictated by 

considerations other than aerodynamic drag — such 

as diameter and working area of the cartridge for 

example. It seems, however, that modern guided (or 

not-guided) missiles have, on the average, greater 

fineness ratios than typical projectiles, shells or 
bullets. 
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Figure 29. Total drag coefficient of, and analysis of that co¬ 
efficient, at M = 2, for a simple cone-cylinder configuration, as 
a function of diameterjlength ratio. 

A CONE-CYLINDERS (7,e) 
n PROJECTILES (42,f) 
V CONE-CYLINDERS (7,g) 
• FROM FIGURES 16 AND 15 
o FROM OTHER SOURCES —) 

<•> With Firing BANDS (42.4 

(42) Projectile bodies at supersonic speeds: 
a) Erdmann, ZWB Lilienthal Rpt 139/1 p.28. 
b) Ferri, German-Italian Tests, NACA W.Rpt L-152. 
c) Kent, Firings, Mech.Engg.1932 p.644. 
e) Walchner, ZWB Lilth.Rpt 139/1; NACA T.M.1122. 
f) AVA Gottingen, Tunnel Tests, Doct. 8/14/1939. 
g) Naumann, A.Inst.Aachen May 1942 for "RheinmetaU1 ’. 
h) Allen, Configuration (as in figure 28) Tested in NACA 
Hypersonic Wind Tunnel, Agard Rpt AG17/P7 (1954) 
p-333; J.Appl.Phys. 1950 No. 11; NACA RM A52Al4b. 
k) Aachen, Projectile Models, ZWB Doc-ument FB 1048. 
m) Eberhard, Shell, Artill. Monatshefte 1912 p.833. 

(43) Boat-tailed projectile-type bodies: 
a) Lehnert, 9 Models, ZWB Doct. Lilienth. Rpt 139/2. 
b) Walchner, Projectile Bodies, ZWB Lilienthal Rpt 139/1 
(NACA Translation T.Memo 1122). 
c) Jack, Theory on Boat-Tail Pressure and Wave Drag, 
NACA T.Note 2972 (1953) ; with other references quoted. 

(44) An example of an experimental shell (J.A.Sci.1948 p.39) 
has d= 4.5 inch (diameter), muzzle velocity Vx = 2000 
ft/sec, M ~ 1.7, Rji ~ 5-106, C^ = 0.002 (turbulent). 
The rate of spin is roughly such that the circumferential 
velocity is =■ 10% of V. Skin friction has been measured 
by telemetering the deceleration of spin (same source). 

Ogival Noses, such as used particularly in projectiles, 

can roughly be approximated by pieces of cones fitted 

to their shape. Assuming then that (at least in truly 

supersonic flow) the drag of each element may corres¬ 

pond to the local angle of inclination “ g/’, the wave 

drag of such shapes can be appraised on the basis of 

equation 29. Doing so, an optimum shape (giving a 

minimum of wave drag in relation to constant frontal 

area) can be determined by trial-and-error. More elab¬ 

orate methods have also been applied (40,f). The 

optimum shape is somewhere between conical and 

parabolic or ogival (as in many projectile bodies). 

Preferably, the surface angle should be larger 

at and near the point (41 ,g) and smaller, respectively, 

when approaching the “shoulder” where the nose 

joins the more or less cylindrical afterbody. The drag 

differential between equal-length noses may be in the 

order of — 10% for the optimum shape in compari¬ 

son to the cone, while the truly ogival shape has a wave 

drag possibly 10% higher than that of the cone. Ex¬ 

perimental results in figure 31 confirm this analysis, 

if considering that only ~ half of the drag of the 

shapes presented is wave drag (while the other half 

is base drag at the M’number as tested). As a function 

of Mach number, ogival noses have drag character¬ 

istics similar to those of cones (see figure 23). 

Figure 30. Transonic and supersonic drag characteristics of 
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Figure 31. Drag coefficients of various smooth projectile 
bodies, tunnel-tested at M = 2; (42). 

Projectiles (44) are most likely the first bodies ever 

tested (by firing them) at transonic and supersonic 

speeds. The cone-cylinder configurations in figure 29 

can already be considered to represent smooth pro¬ 

jectile or shell shapes. Figure 30 shows drag character¬ 

istics of this, and of the more familiar type with ogival 

head form. Skin friction is comparatively small in 

these bodies, particularly at supersonic speeds (see 

Chapter XVII). “Transonic” base drag corresponds to 

the functions in figures 2 and 5. The wave drag origi¬ 

nating from the forebody is similar to that in figure 

23; for the shapes as tested, this component approxi¬ 

mately corresponds to a conical head of 2 times IT 

(see then equation 29). Including tested base drag 

coefficients (7,f) the drag of those smooth projectile 

bodies is thus explained. The fact that (in figure 30) 

five different shapes give one and the same experi¬ 

mental function should not be construed, however, 

as indicating that “all” projectiles would have the 

same drag characteristics. Results on similar shapes 

have simply been selected from the material avail¬ 

able, so that a common function is obtained in the 

illustration. 

Roughness. Real mass-produced projectiles (shell) are 

not at all as smooth as the models represented by 

figure 30. To make them spin, they also have one or 

two firing bands protruding from their surface. “Vis¬ 

cous” drag (including separation aft of the bands) 

is increased, accordingly. The base drag must then be 

expected to be somewhat reduced (as can be con¬ 

cluded from figure 5). As an example, figure 4 in¬ 

cludes one single point (0) showing a reduction from 

Cpg = 0.20 to 0.13 caused by the addition of a firing 

band to a projectile shape. In regard to total drag, 

figure 31,d demonstrates an increment, however, over 

that of smooth shapes. Base drag is thus more than 

replaced by additional forebody drag. 

Boat-Tailing. Figure 31 presents several groups of 

projectile models, all tested at M = 2, showing certain 

shape effects. The strongest influence is that of the 

nose length or fineness ratio x/d. The illustration 

shows also the influence of boat-tailing upon the drag 

coefficient. Upon reducing the base area, the base 

drag is effectively reduced in two ways. First, the area 

is reduced upon which negative base pressure can act; 

and second, the magnitude of the suction pressure 

coefficient is reduced in the manner as explained in 

the “base pressure” section, in connection with figure 

5. The experimental results plotted in figure 32 show, 

accordingly, an appreciable decrease of the base-drag 

component. However, when departing from the cy¬ 

lindrical shape of the projectile’s afterbody, addi¬ 

tional wave drag is produced along the boat tail. 

Utilizing the information presented further down, 

in the paragraph on “streamline bodies”, that drag 

can very well be estimated. For the purpose of this 

particular application, we may say that the absolute 

value of the wave-pressure coefficient on the conical 

boat tail portions in figures 31 and 32, is equal to that 

on a corresponding piece of cone having the same 

slope (indicated by “ £ ”) as in the forward end of 

the projectiles considered . We can thus apply the 

function as in figure 27, or any suitable interpolation 

formula, such as equation 29, for example. For M = 

2 (as in figure 26) the wave drag corresponds to 

CDW. « (n'Vseo (32) 

For an average boat-tail angle of 7°, we then obtain 

the second drag component plotted in figure 32. For 

that particular angle (and at M = 2) minimum total 

drag is obtained at S„/S# » 0.2, corresponding to 
dg/d ^ 0.4. 

Boat-Tail Angle. Equation 32 indicates, of course, 

that the wave drag originating from a boat tail, 

reduces appreciably as the tail angle is reduced. As far 

as projectiles are concerned, a straight cylindrical 

shape is desirable, however, in regard to the mechan¬ 

ics of firing and rifling. The boat-tail length is kept 

short, therefore, as shown in figure 31. Optimum 

angles (giving minimum total drag) are then between 
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5 and 10°. When applying larger angles, the flow 

simply separates from the boat tail, particularly when 

firing bands are placed on the forebody, thus increas¬ 

ing BL thickness ahead of the boat-tail portion. For 

full separation, the body then assumes approximately 

the same base- and total-drag coefficients as for a 

“cylindrical” shape (with the boat tail cut off). 

Figure 32 shows how this happens upon reducing 

the area ratio below 0.5 or 0.4 (under the particular 

conditions as tested). In each type of body, we have 

a constant fore-body coefficient corresponding to 

wave drag plus skin friction. The base drag decreases 

as the base area ratio is reduced, while the boat tail’s 

wave drag increases until separation takes place, event¬ 

ually. 

Parabolic Bodies, with cut-off or thickened (blunt- 

based) rear end, are applied in certain missiles, thus 

providing a natural outlet opening for the nozzle of 

the rocket-motor. When finally coasting (after “brenn- 

schluss”) without jet, base drag must, of course, be 

taken into account. Figure 32,b presents the drag 

characteristics of a family of such bodies, at M = 1.93. 

The variation of the components of the drag coeffi- 

(45,g) Yoshihara, Cone-Cylinder at M — 1; Wright Field 
Rpt, see Proc.Midwest.Conf. FI.Dy.Univ.Minnesota 1953. 

(45) Theoretical characteristics of "streamline" bodies: 
a) vonKarman-Moore, Bodies, Trans ASME 1932 p.303. 
b) Lighthill, Bodies of Revolution, ARC RM 2003(1945) ; 
and Quart.J.Mech. and Appl.Math. 1948 p.90. 
c) Fraenkel, Evaluation of (b) Theory, ARC RM 2842. 
d) Heaslet-Spreiter, Three-Dimensional Transonic Flow, 
NACA T.Note 3717 (1956). 
e) Statements in certain of the available references (not 
listed here) saying that a particular "solution” is "complete” 
and that it applies to all speeds from subsonic to hypersonic 
Mach numbers, are misleading. In the fine print it is usually 
found that such solutions only apply to "very slender” shapes. 
f) A discussion of transonic similarity principles as de¬ 
veloped by Oswatitsch and Berndt, is included in (d). 
g) Yoshihara, Solution for Cone at M = 1, evaluated in(d). 
h) Hayes, Transonic Similitude, J.A.Sci.1954 p.721; this 
paper gives a dear exposition of conditions at M = 1. 
i) VanDyke, Supersonic Theory, J.Aeron.Sci.1951 p. 161; 

see also NACA T. Rpt 1081 (1952). 
(46) Experimental investigation of streamline bodies: 

a) Danforth, Wing-Flow Method, NACA RM L7K12. 
b) Figure 35 in Chapter XV shows a few results on stream¬ 
line bodies extending to and slightly beyond M = 1. 
c) Lopatoff, Spheroid, NACA Doct. RM L51E09. 
e) Pressure distributions in NACA Documents RM 
L5lL07a, L52D21a, L53H04 and L53L28a. 
f) Skin friction in NACA Docts. RM L51B12 and L52A14. 

(48) Boat-tailed missile-type or parabolic bodies: 
a) Chapman-Perkins, NACA T.Rpt 1036 (1951). 
b) Bromm-Goodwin, 7 Bodies, NACA T.Note 3708. 
c) See Footnotes (8,a) and (8,d). 
d) Adams, Theoretical Analysis, NACA T.Note 2550. 

(49) Separation from the boat-tail is clearly demonstrated by 
schlieren pictures in NACA T.Rpt 1036. 

(50) Analysis of "optimum" body shapes: 
a) Sears, Projectile, Qu. Appl. Math. Vol. 4 p.361 (1947). 
b) Ward, Bodies, Quart. J. Mech. Appl. Math. 1949 p.75. 
c) Graham, Aero.Quart. 1955 Pt. 2 p.99 and NACA T. M. 
1421. 
d) Heaslet, Ducted Shapes, NACA Tech. Rpt 1256(1956). 

Figure 32. Drag analysis of boat-tailed bodies at M ~ 2; 
(a) various "cylindrical” projectile models and 
(b) a group of parabolic missile shapes (48,b). 

cient as a function of base-area ratio is different from 

that of the projectiles insofar as the shape of the fore¬ 

body in the group investigated, changes together 

with the area ratio. Minimum drag is obtained at a 

similar ratio, however (Sg/S,~ 0.4). Flow pattern and 

drag coefficients of parabolic bodies are also a function 

of Reynolds number. At R’numbers below the range 

of BL transition, shock-induced separation from the 

rear end (ahead of the base) is easily found (49). 

Such separation can be eliminated or postponed by 

introducing (forcing or stimulating) turbulence. Con¬ 

sequences are: 

a) The suction pressure at the base is increased be¬ 

cause of increased BL momentum and stronger turbu¬ 

lent mixing. Based upon the forebody’s frontal area, 

the increment may be in the order of AC&#= 0.02. 

b) The forebody drag is increased because of friction. 

For example, at R^ = 3 TO6, Cp^.ot.g~ 0.003 and 

C-fLatn== 0.001 (or even smaller); the corresponding 
increment of the body’s coefficient is in the order of 

°'03- 
c) Wave drag is increased because of expansion along 

the boat tail. This component roughly replaces the 

pressure drag due to separation. 

Depending upon the magnitude of the various com¬ 

ponents involved, the total drag is then changed; and 

it is certainly increased as far as the skin-friction com¬ 

ponent is concerned. 
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Double Cones. For rotationally-symmetric bodies in 

transonic and supersonic flow, having somehow taper¬ 

ing or pointed afterbodies, it seems there is no simple 

solution available among the theoretical treatments 

listed. Reference (45,c) presenting an evaluation of 

the essentially linearized and slender-body theory in 

(45,b) permits an, at least qualitative, appraisal of 

the pressure forces originating along tapering after¬ 

bodies, however. For example, the drag of double 

cones as in figure 33, is equal to that of the forebody 

(as per figure 27 or as indicated in figure 23) plus a 

basic amount for the afterbody (assumed to have 

the same but negative surface slope as the forebody) 

equal to that of the forebody, plus a component of 

“interference” wave drag. For the double cone, this 

component (reflecting increased expansion around 

the body’s “shoulder” corresponding to an angle of 

deflection twice the cone angle “ £- ”) is roughly equal 

to 100% of the basic cone-drag coefficient. In other 

words, the wave drag of the afterbody is really twice 

that of the forebody, in the case of the double cone 

considered. Including skin friction (assumed to cor¬ 

respond to Cp = 0.002) we thus find an optimum 

thickness ratio for the double cone configuration in 

the order of d/1 = 5 or 6% only. The graph also 

demonstrates that a single cone (having a base-drag 

coefficient in the order of CDB = 0.2 as in figure 2) 

presents drag values appreciably smaller than those 

of the double cone, at diameter/length ratios above 

•=. 15%. Comparison with the cone-cylinder con¬ 

figuration in figure 29, shows on the other hand, that 

base drag is less expensive than “conical” drag at 

diameter-length ratios below 10%. All this analysis 

is made for M = 2. Corresponding results can also 

be worked out for other M’numbers. We could also 

evaluate certain optimum boat-tailed shapes (some¬ 

where between the three types considered). 

Figure 33. Theoretical drag coefficients of single and 
double cones at M = 2, as a function of diameter ratio. 

Criticol M'numbers: 

at M 1.4 Max. Fin Drag 
at M 3 0 Base Drag 
at M 1.2 14* Cone Drag 
at M 3.0 46* Cone Point 

o.8 

Figure 34. Transonic drag characteristics (52,b,c) of a series 
of fin-stabilized bodies of revolution, varying in 
the location of maximum thickness. 

Streamline Bodies, to be applied in transonic and 

supersonic flow, are meant to be more or less slender 

shapes, having a pointed nose and a somehow taper¬ 

ing afterbody form, possibly ending in a point as in 

the subsonic type of "streamline” bodies. Finding op¬ 

timum body shapes has recently become a mathe¬ 

matical venture (50). Inasmuch as viscosity is not 

included in such theoretical studies, their practical 

consequences are not too great, however. As far 

as simple “streamline” bodies are concerned, any¬ 

thing between conical and ogival is close to “opti¬ 

mum”. An approximation to such a shape is, for 

example, the combination of a more or less conical 

head with a cylindrical middle body and a conical 

afterbody. Reference (45,c) predicts for such a com¬ 

bination an afterbody wave-drag coefficient equal to 

that of a head cone having the same vertex angle, 

with no “interference” effect, as long as the middle 

portion is long enough (say, with a length in the 

order of that of fore and/or after cone). We can then 

conclude that slender parabolic shapes (such as that 

of the missile in figure 37, for example) follow approx¬ 

imately the same principles, and that the supersonic 

wave drag of a symmetrical body of this type (with 

maximum thickness at 50% of its length) is approx¬ 

imately, and/or at least, equal to twice the forebody 

drag. Experimental results to prove these predictions 

are practically non-existent (46,b). The tested total 

drag coefficients of bodies such as those of the missiles, 

for example, shown on these pages, are to some degree 

the consequence of viscous skin friction variations. 

A systematic series of tests on fin-stabilized “para¬ 

bolic” bodies (52) permits some evaluation, however, 

in respect to the drag of the body as such. 
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“Critical” M’Numbers. Flight-tested drag coefficients 

of a group of bodies having a fineness ratio 1/d = 6, 

are presented in figure 34. After subtracting a value 

for skin-friction plus base-pressure drag (assumed 

to be equal to the subsonic drag coefficient in the 

order of 0.1), the rest is wave drag originating from 

the body as well as from the fins. Corresponding to 

an angle of sweep of 45°, the critical M number of 

the latter ones is 1/cos 45° = \[2. Above this number, 

the fin drag coefficient (calculated through applica¬ 

tion of the principles presented in the “supersonic” 

chapter) is as indicated in the graph. The “critical” 

M ’number of the body proper corresponds to the 

vertex angle of the conical point. The Mach numbers 

at which “supersonic” cone flow becomes fully estab¬ 

lished (see figure 25) are indicated in the graph. It 

is only above these latter numbers, that we can ex¬ 

pect a truly supersonic flow pattern and a “super¬ 

sonic” drag function for each of the shapes investi¬ 

gated. Cone angles equivalent to each of the stream¬ 

line bodies, have empirically been determined in such 

a manner that the “supersonic” drag function calcu¬ 

lated on the basis of equation 29, matches in each 

case the tested drag coefficients. It is then realized 

that the' bluffest' nose shape (corresponding to x = 

0.2 1) has a very wide “transonic” phase (extending 

to M - 3.0 and that this fact is the reason for the 

rising trend of the drag coefficient for this shape (as 

far as tested). The coefficient grows within this phase 

to a level appreciably above those of the other three 

bodies represented in the graph. 

Thickness Location. The cone angle discussed above 

is of course a function of the thickness location of 

the bodies considered. Figure 35 shows the total drag 

coefficient of the fin-stabilized configurations plotted 

as a function of x/1. Minimum drag (at M = 

1.5, as at other M’numbers between 1.0 and 1.6) is 

obtained for a location at x <= 0.55 1. The wave-drag 

components originating from fore and afterbody, re¬ 

spectively, are obviously “balanced” at this location. 

(51) Aerodynamic investigation of RM-10 missile: 
a) Evans, Tunnel and Flight Tests, NACA T.Rpt. 1160. 
b) Jackson, Drag and Base Flight Tests, NACA TN3320. 
c) Hasel, in Supersonic Tunnel, NACA Doct. RM L52A14. 
d) Czarnecki, NACA T.Rpt 1240 (T.Notes 3165&3166) 
e) Carros, Correlation of Results, NACA T.Note 3171 
f) Piland, Finless Flight Model, NACA Doct. RM 54H09. 

(52) Transonic drag of fin-stabilized streamline bodies: 
a) Alexander-Chauvin-Rumsey, NACA RM L8A05. 
b) Katz, Thickness Position, NACA RM L9F02. 
c) Hart-Katz, Several Shapes, NACA RM L9I30. 
d) Thomson, Thickness Location, NACA RM L8A28b. 
e) Welsh-Moraes, Slender in Flight, NACA RM L51E18. 
f) Katz, Nose Fineness, NACA Doct. RM L7B19. 

Figure 35. Total drag coefficients of several fin-stabilized 
bodies (of the type as in figure 34) as a func¬ 
tion of their thickness location. 

Transonic Drag. Information on the wave drag of 

conical and/or streamline shapes at transonic speeds 

(where the bow shock wave is detached) is mostly em¬ 

pirical to this time. Figure 23 shows characteristics 

of a particular conical head; transonic characteristics 

of other cones are as suggested in the graph. 

D 1/d = 8.5, MAC* TN 3218 

o I/d = 6.0 (60%) (52,b) 
a. I/d = 8.9 (40%) (53,o) 
x I/d = 7.9 (63%) (52,a) 
• I/d -> 8 9 (40%) (52.c) 

02. 0.3 0.4 o.b 0.8 to L5 2 3 4 5 6 R 10 

Figure 36. Transonic drag coefficient (on frontal area) 
of flight-tested fin-stabilized missile models (52). 

Fin-Stabilized Missile. I he drag coefficient of a 

“streamline” missile at transonic speeds is presented 

in figure 36. Drag divergence (at M ^ 0.95) corre¬ 

sponds to the body shape (see figure 37 in Chapter 

XV) while the lower critical number of the thin fins 

having a 45° angle of sweep (see figure 19 in Chapter 

XV) seems to be slightly higher than that of the body. 

The steep increase of the coefficient at M ^ 1 is 

similar to that of the streamline shapes in figure 34. 

The M’number for shock attachment (and for “su¬ 

personic” type of flow) at the body’s conical nose is 

roughly M = 1.1. The shape of the drag function 

above this M’number is partly dictated by the fins, 

whose drag coefficient is expected to reach a max¬ 

imum at their upper critcial M number (which is in 

the order of 1.4). From there on, pure supersonic 

functions should be expected of the type as indica¬ 

ted in the graph. 
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<5 FLIGHT TESTS 107 TO 10® (8,e) 
c FLIGHT TESTS 107 TO 10® (51.b) 
< TUNNEL TESTS Ri > 2-107 (8,e) 
A SC-50 BOMB AS IN FIGURE 38) 

|d=lft 

1 0.1 } V 0.1 
I Rooy Friction 

MACH NUMBER V/'o' bcse drag 

0.2 o3 0.4 04 0.8 1.0 IS 2 3 4 5 B 8 10 

Figure 37. Subsonic to supersonic drag characteristics of 
the NACA's RM-10 experimental missile (51). 

The RM-10 Missile is an experimental “vehicle” de¬ 

veloped and extensively tested by the NACA (51) 

full-scale as well as on tunnel models, as a standard 

configuration suitable for transonic and supersonic 

speeds. The upper critical M’number of the 60° 

swept fins is in the vicinity of 2. A small hump or 

discontinuity can be expected, accordingly, at that 

number. Tunnel-tested values for base, skin-friction 

and forebody-wave drag are indicated in figure 37. 

Using these components and what is known about 

their variation as a function of M’number, the mis¬ 

sile’s drag coefficient is then extrapolated into the 

range above M — 3, where tests have not yet been 

carried out. In spite of the fins, the total coefficient is 

lower than that of the projectile shapes as in figure 

30, particularly at Mach numbers between 1 and 2. 

o DVL, SMOOTH i.TUNNEL (a) 
• DVL, FREE FALL TESTS (b) 
□ AVA, SC-50 i.TUNNEL (d) 
8 AVA, OTHER BOMBS (d) 
• AVA, IN OPEN TUNNEL (c) 
x NACA, MISSILE w'FlNS (g) 
• STREAMLINE MODEL (e) 

Figure 38. Transonic drag characteristics of "SC-50” 
and of similar bombs, as determined on wind-tunnel 
models and by full-scale free-fall tests (55). 

Drag of Bombs. Figure 38 presents the drag charac¬ 

teristics of one particular bomb (and those of similar 

configurations) from subsonic, through transonic and 

into supersonic speeds. Approaching M = 1, the drag 

coefficient increases from a level of CDt = 0.1 or 0.2, 

to a maximum value of 0.8; a fact that can only 

be explained on the basis of flow separation combined 

with a compression shock originating from afterbody 

tail-cone shoulder or wake, respectively. For a boat- 

tail angle of the SC-50 bomb between 18 and 19°, a 

separated flow pattern can be expected at supersonic 

speeds. The drag is then essentially that of a compara¬ 

tively bluff “projectile” shape without boat tail. On 
the basis of figure 5 we can estimate a corresponding 

“transonic” base-drag coefficient in the order of 0.11. 

At higher supersonic Mach numbers, the total drag 

coefficient is correctly at a level roughly equal to that 

of the bluffest shape in figure 34. However, within 

the extended transonic phase, drag characteristics of 

the bombs are entirely different from those of the 

parabolic bodies (in figure 34), exhibiting above all 

the high peak values between M = 1.0 and 1.2 (as 

described above). The reason for this difference must 

be in the afterbody shape. — For comparison, figure 

38 also includes results on a smooth and streamline 

bomb model (55,e). Subsonic magnitude and slope 

of the drag coefficient at M «=» 1, are appreciably 

lower than those of the “SC-50” bomb. Flow pattern 

and drag components of that “streamline” shape are 

thus close to those of the missile configurations (as in 

figures 34 and 36). 

Rounded Noses. The drag coefficient of the sphere is 

shown in figure 20. A hemispherical head is also 

represented in that illustration. All such “round” 

shapes display a certain drag component rising across 

the transonic regime in proportion to the stagnation 

pressure as in figure 1. Rounding now the conical tip 

of a streamline body in the manner as shown in figure 

39, some such influence of stagnation-pressure can 

very well be expected. The graph demonstrates that 

a really rounded nose shape, having a frontal area 

corresponding to the ratio of (dno/d) = 0.782= 0.6, 

produces significantly increased drag coefficients. Anal¬ 

ysis suggests that the coefficient should further grow, 

as indicated in the graph. The drag function is then 

similar in character to those of the bluff-nosed bodies 

in figures 34 and 38. Round noses are also system¬ 

atically investigated (53,c) on a conical body having 

a length 1 = 3 d. At Mach numbers between 3 and 

7, the optimum diameter ratio (giving minimum drag 

on frontal area) is approximately 15%. At M = 2, 

that ratio is 25%, growing further as the M’num¬ 

ber is reduced further. 

SC-SO kg £ —1.1 m 
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Conical Shield. Tests have been carried out on a 

round-nosed body with a rod sticking out ahead 

(53,b). By means of a “windshield” (conical point on 

that rod) protruding 1.6 body diameters ahead of a 

round nose similar to the one in figure 39, drag is re¬ 

duced from CD> = 0.82, by ACj^ = 0.19, at M 
= 1.4; while a pointed body shape extending to the 

same distance, has an only slightly lower drag coeffi¬ 

cient (CD> = 0.62). Similar results are reported in 

(53,f) for a “spike” protruding from a hemispherical 

head shape by one head diameter. 

5. DRAG OF SWEPT AND POINTED WINGS 

Swept wings and the related type of “pointed”, “con¬ 

ical” and/or triangular wings are specifically suitable 

(at least in respect to drag) to be used at transonic 

speeds. 

Figure 39. Drag characteristics of fin-stablized body, 
flight-tested for three different nose shapes (53a). (A) CHARACTERISTICS OF SWEPT WINGS 

(53) Influence of nose bluntness on drag: 
a) Hart, Nose Shape, NACA Doct. RM L50l08a. 
b) Influence of Conical Shields Ahead of Body Nose, 
NACA RM L6Jl6a, L6K08a and L8L07a. 
c) NACA, Blunt Cone Nose, Doct. RM A52B13. 
d) NACA, Documents RM L6D10, L6G27, L7B19, L9CI1. 
e) Hart, Transonic Flight, NACA RM L51E25. 
f) Stalder, Hemispherical Head with Spike, NACA T.Note 

3287. Drag is defined in this report for pB = 0. 
(54) In several graphs (figures 34, 36, 37, 38, 40) a constant 

coefficient has been assumed for skin friction. Actually, that 
coefficient must be expected to reduce as the Mach num¬ 
ber is increased. 

(55) Transonic drag of fin-stabilized bombs: 
a) Goethert, Tunnel Tests, ZWB Doct FB 1663 (1942). 
b) Goethert-Kolb, SC-50 kg Drop Tests, ZWB Document 
UM 1173 and Tech.Berichte 1944 p. 252; NACA TM 1186. 
c) Roth-Hahn, "Fritz" Bomb, AVA Doct 1941/8/13. 
d) Weber, Various Bombs, ZWB Doct UM 3127 (1944). 
e) Stoney-Royall, Series of Bombs, NACA RM L56D16. 
f) Aberdeen Ballistic Res.Laboratory Rpt No. 647. 
g) NACA, "Cylindrical” Missile, Doct. RM L50l08a. 

Experimental Results. Some experimental results on 

swept wings at high subsonic speeds and at M ~ 1, 

are presented in figures 30 and 31 of Chapter XV. 

Partly the same and other drag coefficients are plotted 

in figures 40 (and in 42) continuing those functions 

across the transonic range. Most of the results in 

figure 40 have been obtained by free-flight technique 

(60) on “yawed” type wings. Note that results of two 

“sheared” wings are included in the graph. One of 

these, with 45° angle of sweep and with a 65A006 

foil section (defined in the direction parallel to the 

axis of symmetry) corresponds to an 8.5% “yawed” 

type wing as indicated. The other one, having A — 

60° and a 64A005 section, represents a « 10% thick 

yawed-type wing. The thickness ratio of a “yawed” 

wing is simply that of a “sheared” wing multiplied 

with cosine A. 

Figure 40. Drag coefficient of "yawed’’ type 
swept wings at transonic speeds (65). 

A°% 
A - - 3.8, 65 - 009, 0’ (naca) 

+ A 4.0. 65 - 009, 0’ (43,f> 
1 Chap. 17, biconvex, 0* (61 ,b) 
a A 4.0, 6% (7.2%) 35’ <61,b) 
• A 3.8. 6% (7.2%) 3 V (61, b) 
A A 3.8, 6% (8.5%) 45* (noco) 
A A 2.7, 65 - 009, 45* (60, f) 
0 A 2.0, D'Wedge, 50’ (60, g) 
* A 2.0, 5% (10%) 60* <62,d) 
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Figure 41. Drag of small-aspect-ratio swept wings at M = 1, 
correlated on the basis of transonic area rule. 

Drag Rise. Swept wings at subsonic speeds are treated 

in Chapter XV, including their critical Mach number 

(page 15-22). The drag rise above MDD is described 

on page 15-38 and illustrated in figure 56 of the 

same chapter. At and in the vicinity of M = 1, avail¬ 

able experimental results on small-aspect-ratio wings 

can be correlated on the basis of the transonic area 

rule (see in a later section of this chapter). Applica¬ 

tion of this rule suggests that the type of plot as in 

figure 49 can also be made for a group of swept wings 

having the parameter (A tan.A) = constant. We have 

plotted in figure 41, for M = 1, the corresponding 

slope parameter 

ACD /(A t/c) as a function of (A tan .A) (37) 

The result (only to be expected to be correct for 

small aspect ratios and/or for larger angles of sweep) 

is similar in character to the (cos)3 function in 

figure 43. 

M(max). The drag coefficient of larger-aspect-ratio 

straight wings reaches a peaked maximum value at 

or in the close vicinity of M = 1. We may, therefore, 

also call this number “M (max)”. Corresponding to 

the cross-flow or cosine principle as explained in 

Chapter XV (see figure 26 in that chapter), the upper 

critical Mach number of swept wings and the cor¬ 

responding value of M (max) for the wing panels 

(rather than for the whole wing) is increased to 

M (max) = 1/cos A (38) 

To say it in different words, at this Mach number, 

the leading edges of cylindrical wing panels come in 

contact with the Mach cone originating from the 

vertex point; and the Mach angle in this condition is 

simply 

pi (max)°= 90° - A° = £° (39) 

In conclusion, the drag coefficients of swept wings 

are expected to show maximum values at or near 

M (max) rather than at M = 1. 

ACDi| 
A (t/c) 

▼ P-80, Bump (61,a) 
O Others (NACA) 
O 65-009 (Fig. 40) 
*■ 65A006 (NACA) 

A ianA 

I 2 3 

“Supersonic” Drag. At Mach numbers above M 

(max), linearized theory (64, b) gives explicit answers 

in regard to the wave drag of swept wings. If defining 

the foil-section thickness ratio (t/c) in the plane 

normal to the panels’ edges (as in Chapter XV), the 

wave drage due to thickness can be written as 

CDA/CDo = cosU/J 1 - (tan2A/(M2 - 1))' (42) 

where Cjj0 represents the wave drag at zero angle 

of sweep (see Chapter XVII). The wave drag of 

wings with symmetrical double-wedge sections, then 

corresponds to 

CbA/(t/c)2' = 4 cos2A/7m2 - 1 - tan2/! (43) 

Figures 40 and 42 show that this function decreases 

as the Mach number is increased, in a manner similar 

to that of straight wings. The graph also shows that 

the level of the wave-drag coefficent reduces signifi¬ 

cantly as the angle of sweep is increased. This is true 

for “yawed” type swept wings, i.e. when defining the 

section thickness ratio (t/c) as above. However, when 

considering “sheared” wings (where the panel’s foil- 

section chord is defined in the direction of flow or 

flight) the drag coefficient comes out to be higher in 

swept wings than in straight wings. The theoretical 

wave drag coefficients for this type of swept-wings 

are obtained from those shown in the illustrations, by 

multiplying them with 1 /co^A. Coefficients for 

wings in this definition of sweep, eventually reduce 

to those of straight wings, i.e. at higher supersonic 

Mach numbers (63). 

4 17% (30%) 43’ (60,a) 
k 63A017% (61,c) 
• 12.5% (41*) * 
V 65AQ12.7% 
4 12.7%, A = 6 
A 12 7%, A = 6 
■ NACA, 9.5% 
❖ 65AQ09.5% 

(61,a) 
(60,e) 
(61 ,b) 
(61,c) 
(F.40) 
(60, f) 

♦ 9.3% D'Wedge (60,o) 

-0.01 
_'* ' “t -. ~ 

SKIN FRICTION —-- " 
‘ ~ • . ~ ' • t • t * . . . ', • , |. . * - * - . • _ ■ MocH ^Number M = V/*o*^ 

0,4 o .<0 o.S to 1.2 1.4 1.6 1.8 2.0 2.2 

Figure 42. Drag coefficient of wings having 45° angle of sweep, 
but varying in thickness (and aspect) ratio (65). 
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Figure 43. Maximum (see text) transonic drag coefficients of 
non-lifting wings as a function of the angle of sweep. 

Transonic Hump. The experimental results in fig¬ 

ures 40 and 42 are expected (65) somehow to connect 

across the transonic range to the lines representing 

supersonic theory. Such theory also predicts a certain 

peak to occur at M (max) as defined by equation 39. 

It seems, however, that the theoretically possible 

peaks of the drag coefficient do not come true. 

Rather, extended “humps”, such as suggested in 

figures 40 and 42, may be expected instead. Such 

hump values are plotted in figure 43. Inasmuch as 

transonic results on swept wings, extending to and 

beyond M (max) are rare, “maximum” values have 

also been included in the graph, “as measured” (63). 

They do not correctly represent the maximum co¬ 

efficients; they may give an indication, however, of 

the variation to be expected as a function of the angle 

of sweep. It is seen that the transonic coefficients of 

swept wings having constant foil sections, reduce ap- 

(60) Free flight tests on swept wings at transonic speeds: 
a) Kolb, Swept Wings, unpublished DVL results (1944). 
b) Mathew-Thompson, Rectangular and Swept, NACA T. 
Note 1969; see Proc. Int. Aeron. Conf. 1949 p.582. 
c) See the references under (36). 
d) Kell, Falling Test Vehicle, AgC RM 2902 (1955). 
e) NACA, Docts. RM L6L24, L7C05, L52F30. 
f) Mathews-Thompson, 65-009 Wings, NACA T. Rpt 988. 
g) Pittel, Tapered Wings, NACA T. Note 3697 (1950). 

(61) Transonic results by tunnel "bump” technique: 
a) Weaver, P-80 Tests, J. Aeron. Sci. 1941 p.31. 
b) Polhamus, Summary, NACA T.Note 3469 (L51H30). 
c) NACA Docts. RM L9B25, L9G26, L50A12, L50B03a, 
d) Turner, Family of Wings, NACA TNote 3468 (1955). 
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preciably as the angle of sweep is increased. The test 

points suggest that roughly: 

= C<*”A <40> 

where n is between 2.0 and 2.5 for “sheared” wings 

and probably between 3.5 and 4.0 for “yawed” wings. 

Thickness. Besides the angle of sweep, other para¬ 

meters have of course an effect upon the transonic 

drag of wings, such as aspect ratio and thickness ratio 

in particular. If assuming that pressure or wave drag 

at or near M = 1 increases as (t/c)5'3 (as in two- 

dimensional foil sections, see Chapter XVII) the re¬ 

sults in figure 43 may collapse onto a common line 

when plotting 

CDS*/(t/C)5/V C0*/(t/C>2/3 <41> 

instead of the plain coefficent. Figure 42 demon¬ 

strates the influence of the thickness ratio on the 

drag of a group of wings having a 45° angle of sweep. 

Combination of low thickness ratio with a suitable 

angle of sweep (and possibly with a low aspect ratio) 

thus tends to produce transonic drag coefficients 

which are only a fraction of those found in the ordi¬ 

nary subsonic type of airplane wings. In fact, employ¬ 

ing an angle of sweep of 60° in combination with 

t/c = 6% (“yawed”) or 3% (“sheared”), a tran¬ 

sonic drag function is obtained hardly to be dis¬ 

tinguished from the skin friction component (CQs ~ 

0.005). 

Drag Due to Lift. As in the case of straight wings 

(see in Chapter XVII) the drag-due-to-lift ratio of 

swept wings applied at Mach numbers where the LE 

flow pattern is “supersonic”, is expected to be equal 

to their “lift angle”; thus for conditions where £, 

dCj/dC* = dot /dCL = 0.25 /\12- 1 - tan2./) (44) 

Inasmuch as the angle of attack required to produce 

a certain lift coefficient in swept wings under “super¬ 

sonic” conditions, is smaller than in straight wings, 

this type of drag is expected to be lower than in those 

wings. 

Transonic Theory. Within the transonic M'number 

range (where the wing panels are swept behind the 

Mach cone originating from the vertex point) con¬ 

ditions are more complicated. Because of the sub¬ 

sonic-type of flow, a certain suction force can be 

expected to originate “around” the leading edge. 

For “slender” wings (where \/M2— 1 /tanj\ is small) 

there is a solution available for this type of flow 

pattern (discussed in the section on “conical wings”). 

Some theoretical analysis is also presented in (64, d). 

It appears, however, that suction does often not 

develop to any significant extent. We will therefore 

revert to a statistical approach. 
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A Straight Wings (78,cd) 
x Including Body (62,b) 
O NACA, On Bump (62,d) 
• FROM OTHER SOURCES 

Figure 44. Lift-curve slope at M = 1, of various wings, having 
A = 4, as a function of their angle of sweep. 

“Lift Angle’’. As long as LE suction does not develop, 

the combined (induced plus wave) pressure drag 

simply corresponds to the angle of attack. As for 

“supersonic” LE, we will thus assume that 

CqL— CLtanot; dCD/dC2 = dot/dCL (45) 

To obtain drag due to lift, we then have to know the 

“lift angle”. In aspect ratios larger than “small”, 

experimental results may be used. Figure 44 shows 

as an example, the L’curve slope at M ~ 1 of various 

swept wings, all having an aspect ratio of 4 (and 

airfoil sections of or similar to 65-006, tested at 

Rc «■ 106). Without any claim as to complete theo¬ 

retical justification, we make the statement that the 

lift-curve slope reduces in proportion to the cosine 

of the angle of sweep (68). 

(B) POINTED AND/OR TRIANGULAR WINGS 

Triangular and/or delta wings could be considered 

to be variants of swept wings. In practical applica¬ 

tions they always have small aspect ratios, however. 

Under such conditions, their flow pattern is “coni¬ 

cal”, in a manner similar to that of circular cones as 

described in a previous section of this chapter; and 

their treatment is different from that of swept wings, 

accordingly. 

“Critical’’ M’Numbers. Triangular wings such as those 

in figure 45 for example, are theoretically expected to 

have three different “critical” Mach numbers; cor¬ 

responding to the angles of sweep at the trailing edge, 

at the line on which the maximum thickness is located 

and at the leading edge. A “delta” wing (having a 

straight trailing edge) encounters a first critical at 

M — 1, and a last critical when the leading edges 

come in contact with the Mach cone originating from 

the vertex point. The Mach number corresponding 

to the leading edge angle, is as indicated by equation 

38, when considering A to be the sweep angle of the 

leading edges. Below this number, the edges are thus 

called “subsonic” while above that M’number, they 

and the rest of “delta” wings are subjected to an 

entirely supersonic type of fluid flow. The charac¬ 

teristics of such wings can accordingly be presented 

as a function of the parameter tan L/tan pi, where 

£,° = 90° — A°. Inasmuch as tan S = A/4 and 

tan pi = 1/7 M2— 1 , characteristics can also be pre¬ 

sented against the “reduced” aspect ratio 

A /m2— 1 = 4 (tan &/tan pi) (46) 

Thickness Line. The coefficient of drag due to thick¬ 

ness is expected to show a peak at tan£./tan pi — 1, 

i.e. at the Mach number where pi = £ . The “criti¬ 

cal” Mach number corresponding to the angle of 

sweep indicating the location of maximum thickness, 

in terms of tanC/tan pi, is defined by tan£/tan£t 

where “t” denotes the vertex angle of the thickness 

or ridge line. For “delta” wings (with straight trail¬ 

ing edges), the critical condition due to thickness 

corresponds to 
(tan e/tan pi) = 1 — (x/c) (47) 

where x = location of maximum thickness on chord 

“c”. Thus, in case of the wing as in figure 46, that 

critical condition is found at tan£/tan pi = 0.5, 

corresponding to M = 2 where the drag coefficient 

shows theoretically another peak value. To obtain a 

really substantial reduction of drag, it thus appears 

to be useful to keep the thickness line swept behind 

the Mach cone. One method of doing this, is to 
Figure 45. Wave-drag coefficients of various "delta" 

wings at transonic and supersonic speeds. 
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move the location of maximum thickness forward. As 

an optimum for wings such as those in figures 

45 and 46, theory (70,e) predicts a location in the 

vicinity of x/c = 12%. Experimental results are 

included in that graph for a delta wing (73, i) having 

a thickness location at 18% of the chord. These 

results and other data (73,c) show that the variation 

of drag as a function of thickness location does not 

conform very well with the theoretical prediction. 

(62) Transonic tunnel tests on swept wings-. 
a) Goethert, Arrow-Type Wings, ZWB Doct. FB 1813. 
b) Luoma, Family of Wings, NACA RM L51D13. 
c) Ludwieg, ZWB Lilienth. Rpt 127 (AVA 1940/8/14). 
d) NACA RM A9D25, A9J24, L52E14, L52K04, L53B02. 
e) Ellis-Hasel, see reference (73,d). 
f) Vincenti, 60° Swept Forward, NACA RM A8E05. 
g) Kemp, A = 4 at M = 1.4, NACA Doct. RM L50G14. 

(63) Swept wings are generally suitable to be used at high subsonic 
and at sonic speeds. This is evidently the reason for the 
lack of experimental points at higher transonic and at super¬ 
sonic speeds. Combination of sweep with low aspect ratios 
leads to "delta” wings to be discussed in the next section. 

(64) Analysis of swept wings at supersonic speeds: 
a) Busemann, "Arrow"-Type Wings, Lufo 1935 p.210; see 
also ZWB Lilienthal Rpt 164. 
b) VonKarman, Supersonic Principles, J. A. Sci. 1947, 373. 
c) Nonweiler, "Supersonic” Swept Wings, ARC RM 2795. 
d) Cohen, Supersonic Characteristics, NACA T. Rpt 1050. 

(65) With respect to the functions presented in figures 40 and 42, 
it should be noted that certain experimental results on swept 
wings exhibiting peak values between M = 1.0 and 1.3 
(not shown), cannot be considered to be realistic for such 
wings if tested without body interference. The drag co¬ 
efficients must necessarily continue to rise so that they 
eventually meet the functions as indicated by linearized 
theory. The "supersonic" lines in the right side of the two 
graphs are calculated for biconvex section shapes, for which 
the constant is 5.3 instead of 4.0, in the equation indicating 
their wave drag (see Chapter XVII). 

(68) It is also suggested that the mechanism as explained on 
page 7-8, is involved in these results. 

(69) We will define ",delta” wings to be triangular shapes flying 
point first and having a straight trailing edge, such as in the 
Greek letter "A”. Note that the thickness ratio t/c of such 
wings is defined in the direction of motion (as on the center 
line). An "arrow-head" wing is similar to the "delta” 
shape; it has a swept trailing edge, however. 

(70) Theoretical analysis of pointed wings: 
a) Jones, Low-Aspect-Ratio Pointed Wings, NACA T. Rpts 
835, 851, 863, 1032, 1033, 1107; also T. Note 3530. 
b) Grant, Arrow Wings, NACA T. Note 3185 (1954). 
c) Cooper, Optimum Foil Sections, NACA T. Note 3183. 
d) Brown, Triangular Wings, NACA T. Rpt 839 (1946). 
e) Puckett, Supersonic Wave-Drag Theory of Small AR 
Wings, J. Aeron. Sci. 1946 p.475 and 1947 p.567. 
f) Robinson, Delta Wings, ARC RM 2548 (1946). 
g) Fowell, Delta-Wing Solutions, J. A. Sci. 1956 p.709. 
h) Beane, Biconvex Delta Wings, J. Aeron. Sci. 1951 p.7- 
i) Spreiter, Transonic Similarity, NACA T. Rpt 1153. 

No Peaks ! A linearized, but three-dimensional 

theoretical solution (70, e) has been applied to the 

particular case of a 10% thick double-wedge 60° 

“delta” wing, plotted in figure 45. It becomes then 

evident that the highest peak (as indicated by theory) 

occurs at the critical Mach number corresponding to 

the thickness line (rather than to that of the leading 

edge), a result which agrees with that of swept wings 

(where the thickness line is usually ~ parallel to the 

quarter-chord line). Experimental results demon¬ 

strate again the differences between theory and real¬ 

ity. The theoretically expected peaks do not come 

true. In fact, one can hardly find any correlation at 

all in figure 45, at transonic Mach numbers, between 

theory and experiment (76). 

Other “Conical” Shapes. Theory applies not only to 

triangular or “delta” wings, considered in the pre¬ 

ceding paragraphs, but also to a large family of other 

plan forms fitting basically into the same type of 

conical flow. Such shapes are in particular those 

which can be obtained from the “delta” wing (as in 

figure 45) by sweeping the trailing edge either back 

(by moving the center point forward - see footnote 

69) thus approximating swept and highly tapered 

wing shapes, or by sweeping that edge forward (thus 

producing a diamond shape). Optimum locations for 

the three characteristic lines (of LE, thickness and 

TE) can theoretically be found for operation at partic¬ 

ular Mach numbers. The critical numbers in all such 

shapes can easily be determined by introducing into 

equation 38 each of the three sweep angles (of LE, 

thickness location and TE). 

Reversal Theorem. By turning a conical type wing 

around through 180°, i.e. by reversing the direction 

of flow or motion, the three critical Mach numbers 

obviously remain the same as in the original direction. 

Reversed-flow equalities go further, however. As de¬ 

rived and pointed out by several authors (71) the 

theoretical aerodynamic forces of all three-dimension¬ 

al low-aspect-ratio wings are identical in supersonic 

flow upon reversing the direction of flow or flight 

(72). Considering as an example a “delta” wing, the 

wave-drag components of fore- and afterbody some¬ 

how correspond to the sweep or vertex angles of 

leading and trailing edges, respectively. Flying point 

first, the forebody drag may be small accordingly, and 

the afterbody drag larger. In the reversed direction, 

the forebody component is then large, and the after¬ 

body drag is smaller. The sum of the two components 

of wave drag is constant. A triangular wing was drag- 

tested, both in the point-first and in the reversed 

direction (73, a). The results essentially confirm the 

theoretical prediction. Different development of the 

boundary layer is likely to have some influence, 

however, when reversing the direction (72). 
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Trailing Edge. The Mach number, “critical” in re¬ 

gard to the trailing edge, is M = 1, for a straight form 

of the edge. The corresponding value of tane/tan 

is zero. Theory does not include a solution for 

this condition. It is possible, however, to correlate 

experimental results of “delta” wings (having straight 

trailing edges) at M = 1, on the basis of the transonic 

area rule. Such results are included in figure 49. 

X Double Wedges (73,h) 

Figure 46. Maximum transonic drag coefficients of "delta” 
wings as a function of foil section thickness ratio. 

Maximum Transonic Coefficients of “delta” wings 

are plotted in figure 46. Thinking again in terms of 

the transonic area rule (see a later section of this 

chapter) slender wings can be expected to show a 

pressure-drag coefficient (based on frontal area) in¬ 

creasing in the same manner as that of a streamline 

or conical body (such as shown in the left corner of 

the graph in figure 24). Referring then the co¬ 

efficient to the wing area, 

CD5*~ (t/c)* <48> 

is tentatively obtained for “delta” and similar wings 

at M ~ 1. Figure 46 seems to confirm this analysis. 

“Lift-Curve Slope”. In “supersonic” condition (that 

is, when £ > yu) the drag due to lift of triangular 

(and that of similar shapes) is simply a function of the 

angle of attack, in the manner as indicated in Chapter 

VII for flat plates; and the lift coefficient is simply 

equal to that in two-dimensional supersonic flow 

(see Chapter XVII). This range of the function is 

plotted in the right-hand part of figure 47 as a 

horizontal line. For the “subsonic” type of leading 

edge, there is some flow around that edge to be ex¬ 

pected. This flow is maximum near tan £./tan ju 

~ 0, i.e. when & is small in comparison to the 

Mach angle ju. Lift and lift-curve slope are then 

equal to those in uncompressed fluid flow (74, b); 

see Chapter VII. In terms of “slender” wing similar¬ 

ity, thus: 

/U2- 1 (dCL/do<)= (ir/2) A(/ m2- 1 (55) 

Figure 47 shows (among others) that this function 

applies up to “effective” aspect ratios A V M2—1 

» 1. In addition to this linear component of lift, 

a second non-linear component can be expected in 

small-aspect ratio wings. This second term, treated 

at length in Chapter VII, does not seem to be very 

large, however, in “delta” wings. 

Slender Wings. A consequence of the LE flow men¬ 

tioned above, is a suction force at the edge. As in 

subsonic fluid flow, drag can then be expected to be 

reduced by a certain component of “thrust” corres¬ 

ponding to that suction. For slender wings, i.e. for 

“pointed" wings in conditions where the parameter 

/M2— 1 /tan A is small, theory (74, b) predicts 

a minimum drag due to lift corresponding to 

dCD/dCL = (Mr) + (A (M2— l)%ir) (56) 

where A. == 1/A. In terms of “delta”-wing similarity 

as used in figure 47, this component corresponds to 

(dcjVdCD)^M2— 1 = 4 ir (tan £./tan /u) (57) 

as plotted (in reversed manner) in the left part of that 

graph. Experimental points prove, however, that LE 

suction does not always materialize. Without such 

suction, the drag due to lift of small-aspect-ratio wings 

(up to A \/Me — 1 « 1) is then twice as high as with 

developed LE suction. 

Drag Due to Lift. The simplest method of presenting 

the function as indicated by equation 56, is by plot¬ 

ting the parameter as in figure 47. However, without 

LE suction, drag-rise simply corresponds to 

dCD/dC^ = drt/dCL (60) 

as shown in the graph by plotting lift-curve slope 

values (•) in the same manner as the (Cl/Cdl) func¬ 

tion. Experimental results also show that drag due 

to lift can generally be some 10% higher than indi¬ 

cated by theory (including or excluding suction, re¬ 

spectively). The reason for this result is obviously 

found in a certain lift deficiency caused by develop¬ 

ment of and/or shock-wave interaction with the 
boundary layer. 
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Figure 47. Drag due to lift function of triangular or delta 
wings, as a function of their "aspect ratio". It is shown by 
Lampert (J.Aeron.Sci.1957 p.667) that, at tane./tan /i — 1, the 
shock wave does not attach to the leading edge. As a consequence, 
lift has not developed yet to the "supersonic" level at that point. 
Experimental values recover, however, as tans/tan /u is further 
increased. 

(71) Presentation of transonic reversal theorem -. 
a) The theorem has been discussed and/or treated by var¬ 
ious authors; see J. Aeron. Sci. 1947 p. 373, or 1949 p.496, 
or J. Appl. Phys. 1950 p.159. 
b) Further treatment in NACA Tech. Rpts 986 and 1119- 

(72) The reversal theorem is interesting. It does not mean, how¬ 
ever that a reversed wing would also have the same "viscous 
properties and/or the same behavior in respect to lateral 
motions, for example. As a consequence, the reversal 
theorem does not have a direct engineering application. 

(73) Experimental investigations of pointed wings: 
a) Kehl, "Zitterrochen” Tunnel Tests, ZWB Documents 
UM 3122 & 3161; see NACA T. Memo 1159. 
b) Lange-Wacke, Series of Small AR Wings, ZWB Docu¬ 
ments, translated as NACA T. Memos 1146 and 1176. 
c) Vincenti, Comparison, NACA T. Note 2100 (1950). 
d) Ellis and Hazel, Supersonic Investigation of Triangular 
and Sweptback Wings, NACA T. Note 1955 (1949). 
e) Emerson, Clipped Delta Wings, NACA T. Note 3671. 
f) NACA Documents RM A9L01 and A50K24. 
g) NACA, 90° Delta Biconvex, RM A51D30 and A51F21. 
h) Welsh, 60° Delta, NACA T. Note 3650 (1950). 
i) Love, 22 Triangular Wings, NACA T. Rpt 1238 (1955). 
j) Page, Wing and Body, NACA Tech. Note 3872 (1957). 
k) Continuation of (i) at M = 4 and 7, RM L52K19. 

(74) Analysis of small-aspect-ratio lifting wings: 
a) VonKarman, Supersonics, J. Aeron. Sci. 1947 p.373. 
b) Jones, Theory of Low AR Wings, NACA (70,a); also 
J. Aeron. Sci. 1950 p.307; 1951 p.75; 1952 p.813. 
c) Adam-Sears, J. Aer. Sci. 1953 p.85; also 1952 p.424. 
d) Henderson, Optimum Delta Wings, NACA TN2858. 
e) Brown, Triangular Wings, NACA T. Rpt 839. 
f) Lomax, Slender Wing Theory, NACA T. Rpt 1105. 

(75) Experimental results on lifting "delta” wings: 
a) See most of the references under (73). 
b) Petersen, With End Plates, NACA RM A53J14. 
c) Hatch, LE Suction in Delta Wing, NACA RM L53I08. 

(76) It is said in (70,i) that "the range of applicability of linear 
theory increases as the aspect ratio decreases". Thinking, 
however, in terms of transonic area rule, there should not 
be any sharp drag peaks in three-dimensional wings such as 
in figure 45 — a conclusion which is indeed confirmed by 
the experimental results. 

Optimum Wing Shapes. Equation 56 is part of a 

general theoretical analysis (70 and 74) encompassing 

large “families” of wings. For example, for elliptical 

loading, minimum drag is obtained as indicated by 

dCD/dC* = \JM2- 1 ‘ \J (1/16) + (M2- 1)/ (irA)2 

For A-*- oo, this equation yields the function as 

for two-dimensional supersonic flow (Chapter XVII). 

For A —•- 0, we obtain the induced-drag formula as 

for uncompressed fluid flow. In regard to frontal 

area, the optimum foil section is either the double 

wedge, or when disregarding base drag, the single 

wedge. With respect to wing volume, double-arc or 

biconvex shapes are optimum. 

Wing Tips. In a manner similar to that as mentioned 

in Chapter VII in regard to the performance of 

highly tapered wings, the pointed tips of delta wings 

are not very effective in transonic and in supersonic 

flow. Clipping them (73, e) so that the taper ratio is 

increased from zero to the order of 0.1, increases the 

slope of the lift coefficient, and it reduces the drag 

rise due to lift accordingly. Reference (75, b) also 

shows that adding end plates, improves the lift-curve 

slope, and it reduces drag due to lift further. 

6. DRAG OF AIRCRAFT CONFIGURATIONS 

So far, we have considered in this chapter the tran¬ 

sonic drag characteristics of more or less simple and 

elementary shapes such as pointed bodies, for exam¬ 

ple, and “delta” wings. Upon integrating these with 

each other and with other component parts into an 

“aircraft” configuration, certain interference effects 

(different from those expounded in Chapter VIII) 

have to be taken into account. Through discovery of 

the “area rule” a few years ago, a new approach has 

evidently been established in the analysis of all types 

of solid shapes and their configurations, not only in 

the transonic but in the supersonic regime of fluid 

flow, as well. We will try to explain principles and 

to present practical results. 

(A) THE TRANSONIC AREA RULE 

Drag Rise. Cones (as in figure 23), streamline bodies 

such as those in figure 34, and small-aspect-ratio wings 

as presented in figure 45, all these three-dimensional 

shapes exhibit a more or less steep rise of the drag 

coefficient when approaching M = 1. Through sys¬ 

tematic experiments (77, a) it was then found that 

the drag of small-aspect-ratio wing plus slender-body 
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DRAG COEFFICIENT (ON "WING" AREA) 

configurations “is primarily dependent on the axial 

distribution of cross-sectional area normal to the air 

stream”. It thus appears that at transonic speeds, the 

“extensive” flow field is approximately the same for 

the wing-body combination as for the body with the 

displacement (volume) of the wing ‘“wrapped 

around” at the proper location. The shape including 

the “bulge” is thus the body equivalent in regard to 

wave drag to the wing-body configuration; and the 

two have approximately the same pressure drag co¬ 

efficient (suitably based on total frontal area). 

Indentation. A “smooth-streamline” shape has ob¬ 

viously less drag than the “bulging” equivalent body, 

not only on the basis of frontal area, but also because 

of a more favorable shape. Minimum drag is then 

obtained in a wing-body configuration by re-distri¬ 

buting the combined cross-sectional area in the same 

manner as that of a streamline body having the 

highest possible fineness ratio. This is done in the 

“airplane” shown in figure 48, by taking away from 

the sides (and from top and bottom) of the fuselage 

the volume of the wing. The graph proves that such 

body indentation postpones the transonic drag rise 

effectively, thus reducing the drag at M 1 signifi¬ 

cantly (79). Drag reduction is less spectacular at 

Mach numbers above unity; and it fades out upon 

approaching M ^ 1.5 (in the particular example as 

in figure 48). Some drag reduction can also be ob¬ 

tained by adding to a given configuration volume in 

such places where the original distribution has in¬ 

dentations, so that a smoother effective shape is thus 
produced. 

Wing Similarity. The simple area distribution con¬ 

cept explained above, is a limiting case, correctly 

applying only to rotationally-symmetric bodies in 

combination with very-low-aspect-ratio wings. With¬ 

in limits, results on wings varying in aspect ratio and 

thickness ratio, can thus be correlated with each other 

on the basis of the area rule, which then simply 

appears as a “sonic” similarity rule. A wing with 

A = 1 and t/c = 0.10, for example, can be expected 

to have the same drag coefficient (at M = 1 and 

based upon frontal area) as a wing with A = 2 and 

t/c = 0.05; simply because A (t/c) = 0.10 = con¬ 

stant. In terms of the area rule, the two wings have 

one and the same (rectangular) axial distribution of 

cross-section area (b-t). Figure 49 presents experi¬ 

mental results; and these results are seen to line up 

properly against A (t/c). A more complete transonic 

similarity rule is shown to apply to these same wings, 

and to still other combinations of A’ratio and thick¬ 

ness ratio, in figure 12 of Chapter XVII. Up to A 

(t/c)/3 =1.1, we can derive from that graph that 

ACd# = 2.3 A (t/c) (55) 

This function agrees sufficiently well with the experi¬ 

mental results in figure 49. It also appears that the 

maximum transonic pressure-drag coefficient can be 

correlated against A (t/c)-*- see the uppermost 

experimental function in figure 49. Finally, results 

on triangular or “delta” wings can also be correlated 

very well with each other, as shown by the lowest 
branch in the graph. 

A Oi Exposed Wing Areo (73,j) 
V Tested on Bump (73,e) 
A From Other NACA Sources 

Figure 49. Drag of straight and of triangular wings at 
M = 1, presented in terms of transonic area rule. 
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0-0'4- M 

Figure 50. Arrangement and drag of a supersonic type of biplane, 

designed for M = 1.7; (a) wave-drag plus estimated skin-friction 
drag coefficient, (b) experimental results (80,b,c). 

(77) Publications concerning transonic area-rule: 
a) Whitcomb, Drag Rise of Wing-Body Combinations, 
NACA Doct. RM L52H08. This is the original report 
(1952) presenting the "area rule" derived from experimental 
results; see also Aeron. Engg. Rev. June 1956 p.42, and 
NACA T. Rpt 1273 (1956). 
b) Spreiter, Transonic Area Rule, NACA T. Note 3673. 
d) A configuration similar to that in figure 48 is tunnel- 
tested by Osborne in NACA RM L52E14. Subsonic values 
(x) from this report are used in the illustration as basis 
for the test points from (a). 
e) Lindsey, Flow Pattern, NACA T. Note 3703 (1956). 
f) Wave drag of bumped and indented bodies is investigated 
by McLean-Rennemann in NACA T. Note 3744 (1956). 

(78) Experimental wing results on transonic area rule: 
a) See results in (35) and (38) of Chapter XVII. 
c) Nelson, 22 Rectangular Wings, NACA T. Note 3501 
(1955) ; see also McDevitt in T. Rpt 1253 (1955). 
d) Nelson, 38 Cambered Wings, NACA T. Note 3502. 

(79) The author considers postponement and a rate reduction of 
the drag rise to be the result of area-rule application. The 
drag-divergence Mach number is obviously increased and the 
rise of the coefficient above that number is apparently re¬ 
duced in a manner very similar to that when applying wing 
sweep. Fuselage "contouring "(see (62,g) in Chapter XV) 
similar to indentation as in figure 48, although a different 
approach, seems to lead to the "same” results as the area 
rule. Successful experiments are reported in J.Aeron.Sci. 
1955 p.173, by Hilton. 

(80) Dealing with the supersonic type of biplane: 
a) Busemann, Lufo 1935 p.210 and 1937 p.55; also in 
"Foundations of High-Speed Aerodynamics" Dover 1951. 
b) Walchner, Lufo 1937 p.55; Yb. D. Lufo 1937 p.I,198. 
c) Ferri, Biplane Experiments, Atti Guidonia No. 37 & 38, 
1940; see also Analysis in J. A. Sci. 1957 p.l. 

d) Reference (84,c) shows that the biplane drag oscillates 

between a maximum function and zero, as the Mach number 
is varied (multiple reflection). 

(81) Characteristics of shrouded bodies: 
a) Ferrari, L’Aerotecnica 1937 p.507. 
b) Byrd, Shrouded Theory, NACA T. Note 3718 (1956). 
c) The shroud presents additional viscous drag, of course. 

(82) Friedman, Between Bodies, NACA T. Note 3345 (1954). 

(B) INTERACTION AT SUPERSONIC SPEEDS 

Interference and/or interaction at supersonic speeds 

between the component parts of air borne vehicles 

(such as wing, fuselage, tail and possibly other ele¬ 

ments) have recently been analyzed and/or recon¬ 

sidered in a broad and general manner (84). Some 

examples are listed as follows. 

Biplane. As pointed out in (80, a) wave drag due to 

thickness (at zero lift) can be avoided by arranging 

two wings in biplane form as shown in jigure 50. 

At a certain Mach number (for which the biplane 

configuration must specifically be designed) the pair 

of compression waves originating from the two lead¬ 

ing edges, meets the opposite wing surfaces at points 

where expansion waves of the same intensity are 

just about to start (80, d). The two types of waves 

thus cancel each other, at least theoretically. Wind- 

tunnel tests (80, c) with the arrangement as in figure 

50 show a drag reduction from CDs — 0.014 or 0.042, 

respectively, to 0.008, where the coefficients are based 

upon the wing area or the sum of the areas, respec¬ 

tively. Inasmuch as a skin-friction component is in¬ 

cluded in these values, drag is not reduced to zero. 

Depending upon the wing that may be considered 

to be the equivalent monoplane, the total-drag re¬ 

duction is between 43 and 81%. 

Figure 51. Two examples of shrouded bodies, illustrating 
supersonic type of interaction. 

Shrouded Body. The three-dimensional equivalent 

of the biplane is a “shrouded” body possibly in the 

form as in figure 51. The right-hand part of the 

illustration represents a configuration “free of wave 

drag”. The cylinder (straight on the outside) must 

be positioned, with respect to the center body, in such 

a manner that its rims are located on the two Mach or 

shock cones, respectively, as shown. On the inside, 

the cylinder must then be given a shape which com¬ 

bines with that of the center body so as to provide 

complete cancellation of all compression and expan¬ 

sion waves (81, c). 
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Supersonic Area Rule. The left-hand part of figure 

51 is an example for what is called the “supersonic 

area rule” (84). The ogival body of revolution is 

the equivalent of the thin “spindle” in the center 

plus the ring or tube having a 6% thick biconvex 

section. The “ogival” shape as shown in the illustra¬ 

tion, named “SearsHaack” body (50 and 84) provides 

minimum drag for a given volume. Note that this 

shape is among others a function of the Mach angle 

(controlling the angle of the conical points). In a 

wing-body combination, the fore and after Mach 

cones (each touching the wing tips) also deter¬ 

mine the length on the central body where an inden¬ 

tation similar to that in figure 48 must be applied in 

order to minimize the displacement- or wave-type 

interference drag. Theoretical prediction and experi¬ 

mental results (84, c) show, however, that the reduc¬ 

tion of drag thus obtained is by no means as spec¬ 

tacular (79) as at or near M = 1. — For M = 1, 

where the angle ja = 90° (and for diameters which 

are small in comparison to the length of the com¬ 

bination) the transonic area rule is automatically 

obtained from the geometry as shown in figure 51. 

Figure 52. Drag at transonic speeds of and due to a pilot’s canopy 
(88,c); (a) total drag coefficient with and without canopy, 
(b) drag coefficient (on canopy frontal area) of the canopy 
including interference with the "fuselage” body. 

* Under Wing (o) 
o On Mid-Wing (d) 
• Ducted Nacelle* (a) 
i Under Wing (b) 

Store Alone: 

• With Delta Fins (97,a) 
* With Swept Fins (90,c) 

Figure 53. Drag coefficient of and caused by external 
stores and/or engine nacelles based on their 

frontal area, all tested (90) on swept wings. 

(C) DRAG OF COMPONENT PARTS 

Canopy. The transonic drag characteristics of a can¬ 

opy added to a missile body, are presented in figure 

52. Application of the area rule qualitatively explains 

the magnitude of the added drag. Assuming, for 

example, that the shape (surface angles) of the added 

canopy be sufficiently similar to that of the “main” 

body, it may then be expected that the total wave drag 

coefficient (on combined area) grows in proportion 

to the square of the frontal area (see figure 24 near 

d/x = 0). In case of the canopy (figure 52) having 

a combined frontal area S# = 1.16 Sm« we may thus 

expect, the drag of the combination to be 1.16^ = 

1.34 times that of the main body alone. As tested at 

M = 1.02, wave-drag components are approximately 

as follows: 

for main body alone 
CD. = 022 (0.10) 

canopy differential = 0.07 (0.08) 

on canopy area = 0.40 (0.25) 

for combined wave drag = 0.29 (0.18) 

based on total area : 0.25 (0.17) 

The experimental result of “0.29” is equal (in this 

case) to the analytical value of 1.34 0.22 = 0.29. 

Another canopy investigation (88, a) yields the values 

as listed above in parentheses. This time, the experi¬ 

mental coefficient (at M = 1) of “0.18” is higher 

than the analytical estimate of 1.102 • 0.10 = 0.12. 
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Drag may reduce, when placing the canopy away 

from the maximum thickness of the fuselage body 

(see also the speculation in this respect on page 15-30 

and the experimental result on the "belly” tank on 

page 8-8). 

(83) Comments on area rule methods: 
a) “Area" rules are not precisely new inventions. As early 
as 1944, tests have been conducted on fuselage indentations 
in conjunction with swept wingsfsee Frenzl in ZFW 1957). 
b) A recent treatment of the subject is by Vandrey in 
Zeitschr.FlugWiss. 1957 p.44. 

(84) Wing-body configurations (supersonic area rule): 
a) Jones, Wing & Body, NACA T. Rpt 1284 (1956). 
c) Lomax & Heaslet, Wing & Body, J. Aeron. Sci. 1956 
p.1061; also "Body Distortions”, NACA T. Rpt 1282. 
d) Cramer, Presssure Distribution, J. A. Sci. 1957 p.629- 

(85) Experiments on wing-body interference: 
a) Katzen, Cylinder Plus Delta, NACA T. Note 3794. 
b) Estabrooks, Cylinder Versus Parabolic, RM L52Kl2a. 

(86) Supersonic interaction, including lift: 

a) Jones, Minimum Drag, J. A. Sci. 1951 p.75; 1952 p.813. 
b) Nielsen, Cylinder + Wing, NACA TR 1252, TN 3722. 
c) Graham, General Theory, J. Aeron. Sci. 1957 p.142. 
d) Graham (Douglas), General, NACA Tech. Memo 1421. 

(88) Drag of airplane canopies at transonic speeds: 
a) Welsh, Canopy on Body, NACA Doct. RM L51A29. 
b) Alexander, Windshield on Body, NACA RM L8E04. 
c) Purser, Pilot’s Canopy, NACA Document RM L7L22. 

(90) Transonic drag of streamline stores and/or nacelles: 

a) NACA, On Swept Wing, RM L51D26 and L52J22. 
b) Jacobsen, Under Delta Wing, NACA RM L52H29. 
c) Mason, Under Fuselage, NACA Doc. RM L53J22. 
d) Pepper, Smooth Nacelles, NACA Doc. RM L50Gl7a. 

(91) Transonic drag of and due to wing-tip tanks: 
a) English, On Straight Wing, NACA RM L54F29a. 
b) Coe, Ducted on Small AR, NACA Doct. RM A52J21. 
c) Hoffman, Smooth on Swept Wing, NACA RM L51L27. 
d) Spreeman, Smooth on Swept Wing, NACA RM L9J06. 

(92) Notes on transonic interference drag: 
a) The peak of the bomb-drag coefficient in figure 38, 
marked by (>$:) has a shape similar to those of the stores 
in figures 53 and 54. 
b) A Likely mechanism of transonic interference drag is as 
follows. Along the wing root (in the corner between wing 
and body) the boundary layer grows and accumulates more 
than anywhere else. The compression shock originating from 
the wing's trailing edge, may then easily cause an extended 
flow separation. Figure 11 demonstrates that the resultant 
"base” drag can be very high, in the vicinity of M = 1. 
c) Transonic interference drag in wing-body combinations 
is significantly less for cylindrical than for parabolic body 
shapes. Both (77,a) and (85,b) show that a drag peak (as 
in several of the illustrations) does not occur in configura¬ 
tions where the wings are attached to the cylindrical part of 
the fuselage. 

External Stores. Experimental results on several 

stores (and/or engine nacelles) are presented in 

figure 53. While a swept wing of the type as shown, 

is expected to have drag characteristics similar to 

those in figure 42, the combination with the pair 

of bodies installed on the wing panels, produces an 

additional component, peaked at M«1 (92, a). 

It seems to be this component (also evident in figures 

52 and 54) that can be reduced effectively by a 

redistribution of volume (as explained in connection 

with figure 48). It is furthermore suggested that not 

only wave drag is involved in producing the drag 

peaks, but that boundary-layer and shock-induced 

separation may also be responsible for a significant 

part of the drag increment (92, b). 

• Straight Wing (91,o) 
X Store on Wing (91,c) 
A Ducted Body (91 ,b) 
Q Subsonic Tests (91, d) 

Figure 54. Drag coefficient of and due to wing-tip tanks (91). 

Wing-Tip Tanks are an efficient means of carrying 

outside loads at subsonic speeds (see Chapter XIII). 

Figure 54 proves, however, that tanks of this type can 

produce a component of transonic interference drag 

(92, b) in the order of 100% (or even more) of their 

basic drag at such speeds, i.e. when flying alone. 

Figure 54 also demonstrates that the tank drag co¬ 

efficient is largest in combination tvith a straight 

wing, and less in a small-aspect-ratio swept config¬ 

uration. 
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(D) INTERNAL FLOW AT TRANSONIC 

SPEEDS 

Mechanism of drag caused by flow through internal 

systems is treated in Chapter IX. Conditions at trans¬ 

onic and supersonic speeds are different, however, in 

certain respects, from those in uncompressed fluid 

flow. Characteristics are as follows. 

Open-Nose Inlet. When driving one of the subsonic- 

type nose-inlet or cowling shapes (such as in figure 

47 of Chapter XV, for example) beyond M = 1, a 

detached bow wave originates ahead of the opening. 

Pressure losses across such an essentially normal shock 

are known, and they are comparatively small as long 

as the Mach number does not exceed unity too much. 

Such an inlet opening might basically be used in an 

aircraft designed for this speed range. — Figure 55 

presents the drag coefficient of a fin-stabilized para¬ 

bolic body of revolution in three different conditions; 

(a) as the basic body with solid pointed nose, (b) as 

ducted body with a mass-flow ratio in the order of 

0.8, and (c) as open-nose body without internal flow 

(w = 0; blocked duct). — After cutting an unob¬ 

structed cylindrical duct into a “streamline” body 

(exposed to a supersonic fluid flow) the external wave 

drag of that body (102) is reduced, simply because 

the displacement of the ducted body is smaller than 

that of the solid shape. Not counting the drag due 

to internal losses of momentum, the drag of the con¬ 

figuration can thus be smaller than that of the same- 

size solid body. Certain experimental results (see 

reference 99) confirm this conclusion qualitatively. 

Also, figure 55 shows such a drag reduction at Mach 

numbers between 1.0 and 1.2. 

Additive Drag. Drag of a body (fuselage or nacelle) 

equipped with an internal duct (including inlet and 

outlet opening) is basically equal to that of the ducted 

body plus an internal component of drag, correspond¬ 

ing to the loss of momentum of the stream tube pass¬ 

ing through the duct. Another component of drag 

arises, when reducing the mass flow through the sys¬ 

tem (q w SD) below what is called maximum (with 

w = V). To explain the increment, it is useful first 

to consider conditions in subsonic (uncompressed) 

flow. As pointed out in Chapter IX, an inlet opening 

is usually designed for a certain velocity ratio w/V 

(where w = inlet velocity). Upon reducing that ratio 

below the design value, the flow must “spill” over the 

rim of the inlet. In subsonic (uncompressed) fluid 

flow, it is theoretically possible that this flow around 

Figure 55. Drag coefficient (99,a) of a fin-stabilized parabolic 
body; (a) solid and pointed body, (b) ducted body with 0.8 
mass-flow ratio, (c) open-nosed body with zero internal flow 

(blocked duct). 

the rim (or “lip”) takes place without any loss of mo¬ 

mentum and without an increase of the external drag. 

A certain component of the increased static pressure 

across the inlet opening is simply counterbalanced by 

pressure and suction forces (equivalent to negative 

drag or to thrust) on the inside, at the rim and on the 

outside of the cowling. Actually, the flow loses some 

momentum, because of viscous friction, and it may 

eventually separate from the outside shape. The re¬ 

sultant additional component of external drag(102,f) 

corresponds to what in supersonic aerodynamics is 

called the “additive” drag (96). The mechanism at 

Mach numbers above unity is, of course, different in¬ 

sofar as a detached shock wave is involved, of the form 

as indicated in figure 55. Behind the shock front, the 

flow turns sideways, thus “spilling over” to the extent 

as the quantity (qamt)V Sa) is larger than the corre¬ 

sponding quantity (qow SQ) in the duct entrance. 

Additive drag is thus found to correspond to the mass 

flow of air spilling from the inlet opening; and it can 

thus also be called “spillage drag’’ (106,a). The addi¬ 

tive drag is maximum at zero flow ratio (that is, for 

a blocked duct with open nose) where it corresponds 

to the stagnation pressure. Based on inlet area, the 

coefficient is then 

CDQQ = ‘<Cl”/Cl <6°) 

where “q” as in equation 4. In the range of smaller 

flow ratios, the additive drag coefficient is roughly 

CDan ** 1 ~ “m”/“nW (61> 

where “m” = mass flow through the duct in slugs/sec, 

and “m’|^iax= flow ratio corresponding to w = V. 
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More accurate (and more complicated) formulas are 

listed in (96,a). Some negative component of drag due 

to suction develops, however, in body or cowling 

shapes which are conical and/or parabolic on the out¬ 

side rather than cylindrical. Additive drag is, there¬ 

fore, sometimes found (99) to be less than indicated 

by theory; and equation 61 may then very well be 

adequate for engineering purposes, to predict the 

magnitude of spillage drag in open nose arrangements. 

(95) Transonic mechanism of air inlets: 
a) Nichols-Pendley, Summary, NACA Doct. RM L52A07. 
b) Principles, ZFW 1954, 235 & 300; 1955, 165. 
c) Wyatt, Turbojet Inlets, Aeron.Eng.Review Oct. 1951. 
d) Connors-Meyers, Design Criteria, NACA T.Note 3589. 
e) Luskin-Klein, Turbojet Installation Principles, Trans¬ 
actions ASME 1950/51 p.375. 
f) Stubbs, Supersonic Inlets, SAE J.1957 p.34. 
g) Drell, Induction Systems, A.Eng. Review Nov. 1956. 
h) Watson, Analysis of 6 Systems, NACA RM A53H03. 

(96) Additive or incremental drag of air intakes: 
a) Sibulkin, Additive Drag, NACA T.Rpt 1187 (1951). 
b) Klein, Scoop Drag, Douglas Rpt SM-13744 (1950). 

(98) Transonic drag of parabolic bodies of revolution: 
a) NACA, Store Alone W'out Fins, Doct.RM L50Gl7a. 
b) Loving, 4 Streamline Bodies in Tunnel, RM L52J01. 
c) Pendley, Body In Transonic Tunnel, RM L52H22. 
d) NACA, Flight Tests, Doct. RM L53J22. 

(99) Experimental characteristics of open-nose inlets: 
a) Sears and Others, Flight Tests on Normal-Shock Inlets, 
NACA Doct. RM L50L18 = Tech.Note 3218. 
b) Continuation of (a) in NACA Tech.Rpt 1281 (1956). 
c) Brajnikoff, 4 Supersonic Inlets, NACA T.N. 3724. 
d) Pendley, Subsonic Inlets, NACA Tech.Note 3436. 
e) Blackaby, Low-Speed Tests, NACA T.Note 3170. 
f) Sears, Continuation of (a), NACA RM L51E02. 

(100) Experimental characteristics of twin inlets: 
a) Stroud, Forebody Influence, NACA Doct. RM A51K14. 
b) Carter, Merlet, Flight Tests, NACA RM L53E05. 
c) NACA, Side Inlets are further treated in Docts. RM 
E51G06. E52E02, E52G08, E52G23, E52H20, E53G09. 

(102) Theoretical shape characteristics of ducted bodies: 
a) Parker, Minimum Drag Bodies, NACA T.Rpt 1213. 
b) Benneff, Open-Nose Bodies, J.Aer.Sci.1953 p.720. 
c) Ferri, Theory, NACA Technical Report 841 (1946). 
d) Brown-Parker, Calculation, NACA T.Rpt 808 (1945). 
e) Heaslet, Minimum Drag, NACA T.Rpt 1256 (1956). 
f) Fradenburgh, Subsonic Inlets, NACA Tech.Rpt 1193. 

(104) Characteristics of conical-nose inlets: 
a) Ferri, New Type Inlet, NACA T. Rpt 1104 (1951). 
b) Ferri, Theory and Experimental, NACA T.Rpt 1189. 
c) Oswatitsch, Diffusion, NACA T.Memo 1140 (1947). 
d) Pendley, 5 Annular Inlets, NACA RM L53F18a, 
e) Moeckel, Conical Separation, NACA RM E51J08. 
f) Dailey, Flow Pattern, J.Aeron.Sci.1955 p.733. 
g) ARC, Inlet Flow Pattern, Report RM 2827. 

(106) Controlled-internal-flow configurations: 
a) Gorton, Translating Spike, NACA RM E53G10. 
b) Merlet-Putland, Axial Position, NACA RM L54G21a. 
c) Beke, Bypass Discharge, NACA RM E52L18a. 
d) Evvard, Perforated Inlets, NACA T.Note 3767. 
e) Simon, Scoop Inlet with Ramp, NACA RM E52H29. 

(107) An example for variable-geometry air intakes are those of 
the Lockheed F-104 "Starfighter”. On each side of the 
fuselage, a half-cone spike is automatically "moving back 
and forward, to focus the shock wave onto the rim of 
the intake opening”. 

Figure 56. Additive (spilling) drag coefficient (on 
total inlet area) of various inlet openings. 

Oblique-Shock Inlets. Since losses of momentum a- 

cross oblique shocks are less than those through a 

normal shock, placement of a conical nose ahead and 

in the center of the inlet (as shown in figure 56) 

produces configurations (104) that are more efficient 

internally (producing higher compression across a 

second or last normal shock). Operation of this type 

inlet can be subcritical (with the normal shock ahead 

of the opening; see reference 104,a) or critical (with 

the normal shock in the diffuser throat; see reference 

(104,c)or supercritical (with the last shock in the ex¬ 

panding part of the internal diffuser). It is reported 

that only the last type is stable (while the subcritical 

type is prone to produce back and forth oscillations of 

the normal shock). - Conical-nose (oblique-shock) in¬ 

lets have also less additive drag. In the range of higher 

mass flow ratios and/or for critical and possibly super¬ 

critical operation, that drag component corresponds 

to the pressure coefficient “Cpo of the conical center- 

body as in free flow. The additive drag coefficient (on 

inlet area including the cone) is then approximately 

CD.= Cpo(I “ “m''/“mmax) (64) 

The graph (figure 56) roughly confirms this equation. 

However, for subcritical operation and/or at flow 

ratios approaching zero, higher drag coefficients are 

obtained, depending upon the location of cone and 

conical wave in relation to the rim of the inlet (see 

analysis in reference 96,a). It should also be noted 

that the drag coefficient as indicated by equation 60, 

increases as a function of M’number, while that of 

conical-nose inlets (in critical operation; equation 64) 

reduces in proportion to the cone-drag coefficient. 
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Controlled Inlets. The type of inlet as in figure 56 is 

most efficient (a) with the conical shock wave located 

at a small distance ahead of the inlet lip, and (b) with 

the second (or last, and normal) shock located at or 

slightly aft of the diffuser throat (where velocity and 

shock loss are the smallest possible). Flow pattern and 

mass flow ratio required, vary very much, however, 

as a function of craft speed (Mach number). To re¬ 

tain favorable conditions through a certain M’num¬ 

ber range — variable geometry (95) (106) is therefore 

desirable. So, by moving the center body as in figure 

56 (also called “spike”) in fore-and-aft direction, both 

the external pattern (the location of the conical shock 

with respect to the rim of the inlet) and the internal 

geometry (the shape of the diffuser) can be changed 

and/or controlled together in such a manner that 

optimum internal and external conditions of fluid 

flow may be approximated; see the example (107). 

Optimum Outside Shape. Analytical studies con¬ 

cerning the shape of ducted bodies are listed in (102). 

These investigations and experimental results in (99) 

prove that conical outside shapes result in somewhat 

smaller external body drag than parabolic shapes. In 

fact, theory (see reference 102,b in particular) indi¬ 

cates that convex (hollow) cowling shapes may be 

optimum in regard to drag. 

Internal (Momentum) Drag in the form as treated in 

Chapter IX, is not to be considered as such in jet-type 

engines. Their thrust results from the differential 

between entering and “exhausted” momentum, so 

that the drag corresponding to that of the stream 

tube “captured” by the inlet, is part of the engine 

system. However, in cases where air is led into an 

airplane for purposes other than propulsion, the mo¬ 

mentum drag, as in Chapter IX, must be considered. 

2- 3 4- 5 ARC RM 3007 

Figure 57. Combination of a blunt-faced cylinder with a cone-pointed "spike”, extend¬ 
ing ahead by various length ratios x/d. The results demonstrate supersonic interference 
effects as well as the mechanism of diffusion and external (and/or additive) drag in 
conical-nose air inlets. Phases as a function of spike length are as follows: 

(a) With the spike protruding to a distance in the order of the cylinder’s diameter, 
the shock wave originating from the conical point, combines with the detached wave in 
front of the cylinder’s blunt face. We thus have a two-shock deceleration (or diffusion) 
and a drag coefficient (of cylinder face plus conical point) which is noticeably reduced. 

(b) At spike length ratios around x/d = 2, an optimum flow pattern is then obtained. 
The roughly conical (oi/ogival) separation space behind the conical tip has grown in 
this case to such a diameter that the "conical” flow as shown in the illustration, passes 
just outside the edge of the cylinder. As a consequence, there is only one (slightly 
curved) shock front. Flow pattern and drag coefficient are essentially the same as in a 

solid forebody having the same shape as cone plus dead air space. 

(c) As the spike is made longer and longer (to and beyond x/d = 3) the conical 
tip assumes the same flow pattern as in free flow (i.e. on a sting, but without interfer¬ 
ence from the larger cylindrical body). This means that the flow closes in behind the 
cone’s base (likely as in figure 3,b). The interaction with the blunt cylinder is then 
a matter of separation along the stem of the spike caused by the viscous wake developing 
along that stem. The graph shows that the influence of the spike upon the flow pattern 
is still appreciable in this phase; the drag coefficient of the combination is reduced 

from x1.4 (without spike) to the level of ~ 0.4. 
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CHAPTER XVII - DRAG IN SUPERSONIC FLOW 

In the first edition of this book, this chapter was 

introduced by saying: “Only a few guided missiles 

and one or two experimental airplanes have flown 

at speeds above that of sound — as of today (1951). 

Theory and experimental information are rapidly 

progressing, however, in the field of supersonic aero¬ 

dynamics? Today (6 years later) there are dozens of 

missile types, some of them “available” as standard 

military equipment. Several types of airplanes have 

also been developed, repeatedly flown and timed at 

speeds up to twice the velocity of sound, in various 

countries of this earth. One or two of these have been 

produced in numbers; and they can be flown at 

supersonic speeds as a matter of routine. Plans are 

also under way at this time (in England) of develop¬ 

ing an airliner carrying some 100 passengers at Mach 

numbers around 1.5. Characteristics of these air¬ 

craft are more transonic, however, than supersonic. 

Most of the aerodynamic information pertaining to 

them is presented in Chapter XVI, accordingly. In 

distinction from that chapter, more “pure” super¬ 

sonic characteristics are discussed in the text that 

follows below, such as those of straight wings in par¬ 

ticular. 

1. ELEMENTS OF SUPERSONIC FLOW 

Mach Angle. A body flying at a velocity greater than 

that of sound, causes a sudden compression of those air 

particles which are more or less directly encountered 

by its nose. As indicated by the sketch in figure 1, the 

corresponding compression is propagated in all di¬ 

rections as a spherical wave, essentially with the sonic 

velocity “a”. At the same time, the body proceeds at 

its own velocity ‘V’, however. Seen from the system 

of the body, a wave with an essentially straight front, 

therefore, originates from the advancing point of 

compression, composed of the velocities “a” and V. 

The angle between the wave and the flight direction 

is the Mach angle “p”, named (as the Mach number 

“M”) after the physicist Mach (3): 

sinyu = ‘a'/V = 1/M (1) 

In the three-dimensional case, the wave forms the 

surface of a cone. Compression waves produced by 

two-dimensional shapes such as airfoil sections, have 

the shape of a wedge’s surface. 

Compression Front. The angle as per equation 1, only 

applies to the limiting case of vanishingly small com¬ 

pression, as from a mathematical point or from a 

“leading edge” line, respectively. In physical bodies 

such as the foil section in figure 14, for example, ad¬ 

ditional waves originate, however, from the surface 

between “a” and “b”; and these waves start out at a 

Mach angle corresponding to local conditions of flow 

and measured against the sloping surface rather than 

against the general direction of motion. All these 

waves subsequently combine; and they end up on a 

compression or shock front. Because of the magnitude 

of the pressure changes involved, the shock wave (as 

distinct from the Mach wave above) has an angle 

larger than indicated by equation 1. However, as 

the intensity of the shock decreases toward the out¬ 

side space, the wave then curves back in such a man¬ 

ner as to approach the Mach angle at some larger 

distance away from the body, where the compression 

across the front, approaches zero. Figure 1. Basic Mach angle functions. 
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Silent Space. Since any pressure change caused by the 

approaching body, cannot proceed faster than the 

speed of sound, all of the space ahead of a compres¬ 

sion front originating from the foremost point of an 

obstacle, is necessarily entirely undisturbed. In other 

words, that space is silent in respect to any noise pro¬ 

duced by the body, as demonstrated by bullets and/or 

missiles approaching at supersonic speeds. This lack 

of ‘ warning” in supersonic flow is greatly different 

from conditions of potential fluid flow at lower 

speeds (below the critical Mach number as explained 

in chapter XV). 

Expansion. An important characteristic of supersonic 

flow is its capability of turning around a corner with¬ 

out causing or experiencing separation. The analyti¬ 

cal solution of this type of flow is known as “Prandtl- 

Meyer” expansion (4). The physical mechanism is 

the combination of a pressure drop, around the cor¬ 

ner considered, with the volumetric expansion of the 

gas upon entering the reduced-pressure space at super¬ 

sonic velocity. For example, at an initial velocity cor¬ 

responding to M = 1, a fluid flow is theoretically 

capable of turning through a maximum angle of 130°, 

i.e. for the maximum possible pressure drop (into 

vacuum) obtained at M —s- oo. For considerably 

smaller pressure reductions, the expansion mecha¬ 

nism is still so powerful that existing flow separations 

past bluff shapes and/or sharp leading edges of foil 

sections can be eliminated, reduced or postponed 

significantly. A number of examples of this type are 

presented in Chapter XV under headings such as "up- 

down-up” and “drag dip”. The pressure drop cor¬ 

responding to expansion can also be utilized in the 

prediction of wave drag originating along tapering 

afterbodies; and it thus represents part of the super¬ 

sonic “shock-expansion” theory. Expansion as such 

takes place without loss or dissipation of momentum 

or energy. However, the deceleration eventually re¬ 

quired to restore the static pressure to the ambient 

level, usually takes place in form of a compression 
shock, thus involving wave drag. 

Stagnation Temperature. In incompressible fluid flow 

Bernoulli’s principle (see Chapter I) states that the 

sum of static plus dynamic pressure is constant, as 

long as no momentum is added to, or diverted from 

a given stream of fluid. As a consequence, dynamic 

pressure (0.5 q V2) is converted into a static pressure 

differential (the magnitude of which is equal to 

0.5 q V2), obtained at every stagnation point (where 

w = 0). In a compressible fluid, the temperature 

changes, however, as a function of pressure; and an 

exchange takes place between kinetic and heat energy. 

In gasdynamics, constant total energy must, therefore, 

replace Bernoulli’s constant. Upon reducing speed, 

part of the kinetic energy of the air particles is then 

transformed into heat. The increment corresponds to 

AT/Tamb = 0.5 (k - 1) (V2 — w2)/ ( a’)2 (4) 

where — ambient absolute temperature and w 

= local velocity at a certain point within a given flow 

pattern. For a ratio of k = Cp/Cv = 1-4 as in tro¬ 

pospheric and stratospheric altitudes 

therefore: 

AT/Tamb = 0-2 M2 (1 - (w/V)2) (5) 

and for the stagnation point (where w = 0): 

AT = o.2 Tmb M2 (6) 

For example, for “normal” air with an absolute tem¬ 

perature T = 288 °C, the increment is then 

AToc = 57.6 M2 (7) 

Thus flying near sea level at M = 1 (corresponding 

to 1120 ft/sec), the increment is theoretically expec¬ 

ted to be ss: 58 °C or 104 °F. Although increments 

actually obtained are only 90% of the theoretical 

maximum, operation of man-carrying aircraft under 

these conditions (for periods of time longer than a 

few minutes) is already impossible without some 

means of “refrigeration.” Considering next a pro¬ 

jectile or a guided missile traveling at M = 2 (say 

at 40,000 ft altitude where the absolute temperature 

may be T = 238 °K), the increment of temperature 

will theoretically be 230 °C or 415 °F. Temperatures 

caused by compressibility at supersonic speeds are 

spectacularly illustrated by the fact that practically 

all of the many meteors striking the earth's atmos¬ 

phere (at very high speeds) simply disintegrate (melt 

and vaporize) as a consequence of the heat generated 

on their surface by fluid friction. 

Entropy. To illustrate the transformation of dynamic 

energy into heat, as it partly takes place in compressi¬ 

ble fluids, an experiment presented in (l,a) is quoted 

(in somewhat modified form) as follows. Consider¬ 

ing the flow of a gas in a pipe of constant diameter, 

the average velocity is constant (under ordinary condi¬ 

tions). The speed can be increased, however, by in¬ 

troducing heat (by heating the pipe from the outside). 

The maximum speed thus obtainable is sonic. Com¬ 

puting now velocity as a function of heat flux, one 

finds that supersonic speeds may only be obtained 

after subsequently taking out heat, a process which 

corresponds to that of supersonic expansion (in¬ 

creased cross-sectional area of a stream tube) as shown 

in figure 1 of Chapter XVI. Assuming next that 

supersonic flow be established in the pipe considered, 

the speed can suddenly drop to a well defined sub¬ 

sonic value, by means of a shock. Corresponding to 

the compression taking place across the shock front. 
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the temperature rises; kinetic energy is converted into 

heat, a process which is readily possible. By cooling 

the pipe, we can then restore the original flow at sub¬ 

sonic velocity as considered first in this paragraph. 

The important parameter in the cycle considered, is 

the temperature level at which heat is added or taken 

out, respectively. According to the second law of 

thermodynamics, mechanical energy must be applied 

when introducing heat into a system at higher tem¬ 

perature, and/or when taking out heat at lower tem¬ 

perature. As a consequence, any sudden transition 

from subsonic to supersonic speed, in the pipe flow 

considered, by means of what we may call an “expan¬ 

sion shock” is not possible. Or, to express it in differ¬ 

ent terms, the entropy increases (a process common 

in nature) in a compression shock while a sudden 

expansion in the pipe flow considered, would mean 

a reduction of entropy (a process which is physically 

not possible). Every discontinuous compression (iden¬ 

tical with a shock) is thus coupled with an increase of 

entropy. Considering an airplane flying at transonic 

or supersonic speeds, where shock waves are pro¬ 

duced, any increase of entropy, means heating the 

air particles passing through the shock sheets. Corre¬ 

sponding to the heat thus produced by the craft, its 

drag is necessarily increased. Shocks produced by 

slender obstacles are comparatively “weak”, however. 

Drag due to growth of entropy can be so small, accord¬ 

ingly, that it may be neglected altogether, within a 

limited range of supersonic Mach numbers. In fact, 

linearized supersonic theory (involving only “small 

perturbations”) gives realistic results without taking 

into account heat transfer as explained above. 

2. SKIN-FRICTION IN COMPRESSIVE FLOW 

Skin-friction drag can be small at supersonic speeds 

in comparison to pressure drag. Shapes of wings and 

bodies have been improved to such a degree, how¬ 

ever, that viscous friction can now be said to have the 

same importance as wave drag. 

BL Temperature. Because of the increase of temper¬ 

ature within the boundary layer as explained in the 

preceding section, skin friction generally tends to de¬ 

crease as a function of Mach number. The mechan¬ 

ics of this effect can easily be understood by the simple 

analysis described as follows. Directly at the surface 

of a flat plate in tangential fluid flow, the velocity is 

zero. The temperature is consequently increased by a 

value approaching that as indicated by equation 6. 

The average density within the boundary layer is re¬ 

duced, accordingly, in the proportion of o ~ 1 /T,, ; 

thus 

Sw/?«b = TQmb/TBL= 1/(1 + o M^) 

where o = suitable integration constant. Skin fric¬ 

tion is also a function of viscosity p. (in sec/ft2); and 

this type of viscosity (see Chapter I) can be assumed 

to be roughly 

A*BL ^amb = (^) 

Considering now laminar BL flow, skin friction drag 

is 

E^ ~ q Cp ~ y/R 2 — /l'^y/c^ 

(1) Modern information on supersonic fluid flow: 
a) VonKarman, "Foundations of High-Speed Aerodynam¬ 
ics”, Vof.V of "Jet Propulsion and High Speed Aerody¬ 
namics” by Summerfield (Princeton University Press), ab¬ 
stracted in Proc.U.S.Cong. Appl.Mech.1951 (ASME 1952). 
b) See Prandtl’s, Liepmann’s and Ferri’s books as quoted in 
footnote (1) of Chapter XVI; see also Bonney’s "Engineer¬ 
ing Supersonic Aerodynamics", McGraw-Hill 1950. 
c) Certain other texts on gas dynamics are highly "mathe¬ 
matical”. About one of them Munk has said: The volume 
"presents itself to the engineer as an endless and dreamy 
parade of shadowy and colorless mathematical statements". 
d) A "complete” compilation of basic gas dynamic equations, 
and of tables and graphs representing shock wave mechanics, 
Prandtl-Meyer expansion and cone-wedge pressure forces — 
is given in NACA T.Rpt 1135 (1953). 

(2) In atmospheric air, up to some 300,000 ft (»r90 km) of 
altitude, the especific heat ratio or "k” (as denoted in 
this book) is = 1.405 1.40 = 7/5. Because of this con¬ 
stancy, we have eliminated "k” from most of the equations 
and/or parameters used in this chapter and in Chapter XVI. 

(3) Ernst Mach, Austrian physicist 1838 to 1916. 
(4) "Expansion”, by Prandtl, Physikalische Zeitschrift 1907 p.23; 

and by Meyer, Forschungsheft VDI No. 62 (1908) ; Transl. 
by Cornell Res.Foundation, also Transl. by British MOS. 
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Figure 2. Mean-total laminar skin-friction para¬ 
meter as a function of Mach number (8). 
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Figure 3. Turbulent skin-friction (12) 
drag ratios (local and/or mean-total) as 
a function of Mach number; (a) without 
heat transfer (Twou — Trec> where the 
recovery temperature Tree corresponds to 
90% of the stagnation-point temperature) 
and (b) cooled to Twon = Tom(j. Exper¬ 
imental points are selected from (11). 

In other words, for laminar BL flow, compressibility 

and temperature do not affect the magnitude of fric¬ 

tion and/or that of the skin-friction drag coefficient 

(based upon ambient physical properties). Actually, 

and when making a more refined analysis, some small 

reduction js found for laminar BL flow. Evaluation 

of a complete solution (8,f) by mechanical computa¬ 

tion (8,g) yields the function plotted in figure 2. 

Experimental results (obtained to M «= 3) confirm 

the theoretical prediction very well. Up to M ~ 5, 

laminar friction may be approximated by 

C-fco«Amc = l/VT + 0.045 M2 (12) 

Turbulent Friction. As far as turbulent boundary- 

layer flow is concerned, the reduction of density due 

to increased temperature (as explained above) is pre¬ 
dominant. On the basis of Cp ~ i/r'/<5 _ (as found 

in Chapter II) our simple analysis started above, 

yields for turbulent boundary layer a drag 

Dp ^ ?/Rl/6~ /6 9V6~ (Tbl/Tamb)V(TBL/TQwbf6 

= (TBL/TQmb)2/^1/(1+oM2)2/3 (13) 

A more accurate analysis is much more complicated. 

The fact that there are one or two dozens of theo¬ 

retical treatments available (10) suggests that a strict 

solution (without the assistance of experimental 

terms) is not possible. The existing experimental 

material is presented in figure 3 in the form of the 

ratio Qpc0frl/C_p taken (12) at constant Reynolds 

number (with the number based upon surface length 

“1” or “x”). For the condition of “no heat transfer” 

(insulated body skin) the results can be expressed by 

= 0 + °-15 M2r°-58(I5) 

For example at M = 4, turbulent skin friction is 

thus reduced to less than one half the uncompressed 

value (as indicated by the Schoenherr function, for 

instance, presented in Chapter II). Considering, how¬ 

ever, boundary-layer and skin temperature at such a 

Mach number, some type of cooling (refrigeration) 

will be absolutely necessary to make any aircraft 

“operational”, when flying at such speeds. A second 

function for turbulent friction is included in fig¬ 

ure 3, accordingly, indicating the friction ratio for the 

condition of Twql( = T^rab. Skin friction is higher 

in this case; the reduction as against the value in 

un-compressed fluid is still appreciable, however. 

BL Stability. Considering now a Reynolds number 

of Rc = 107, for example, the turbulent skin fric¬ 

tion coefficient Cp;ttc~ 0.003 is found to be more 

than 6 times as high as the laminar value (which is 

somewhat less than 0.0005 at that R’number). It then 

becomes evident that the stability of the laminar 

boundary layer flow and the Reynolds number of BL 

transition as a function of Mach number, are of 

great importance, not only for skin friction as such 

but also for a possible interaction of the BL with 

shock waves. The first part of this problem is the 

development of the laminar boundary layer at con¬ 

stant pressure, such as for instance along a plane wall. 

Analytical investigation (15) indicates that stability 

and R’number of transition reduce in this case as a 

function of increasing Mach number, such as shown 

in figure 4 up to M’numbers between 4 and 5 (16). 

^rTrotil 

▼ CONE, NACA (I6,p) 
v CONES. AGARD (I6.n) 
A CONES. CALTECH (I6.h) 
• FLAT. CALTECH (16.0 
■ FLAT PLATE (I6,c) 
♦ HOLLOW CYLINDER (16,c) 

♦ HOLLOW CYLINDER <l6,o> 
a PLATE. CALTECH (I6.d) 
A. CONE. NOL TUNNEL (!6.o) 
4 QUOTED IN REF (16,fl) 
x CONES. QUOTED IN (16,9) 
A CONES, NACA (16,*) 

MACH NUMBER V/‘o' 

Figure 4. Reynolds number indicating transition in the BL flow 
along flat plates and straight cones (where pressure is ~ constant) 
as a function of Mach number. 
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However, upon withdrawing heat from the BL 

(through the solid surface) i.e. by cooling the bound¬ 

ary layer, stability can be increased very significantly. 

Such cooling (heat transfer onto the moving body’s 

mass of metal) takes place during the short duration 

of firing projectile models in a ballistic range or dur¬ 

ing the initial seconds or possibly minutes after 

launching a missile such as the “V-2”. As a conse¬ 

quence, critical R’numbers (indicating BL transi¬ 

tion) have been found under such conditions (15,b) 

in the order of Rx-tmni= (2 to 9) 107 (see figure 
5) at M’numbers between 1.3 and 2.7. Correspond¬ 

ing transition numbers obtained on a “RM-10” 

missile model (15,g) when cooled to ambient tem¬ 

perature, are doubled as against the number for nat¬ 

ural BL heating; they are then in the order of 2 107 

at M = 1.6. At larger M’numbers, the experimental 

results plotted in figure 4 seem to indicate a reversal 

in the variation of the transition R’number. The 

growth of those numbers above M ~ 4 (also pro¬ 

posed in reference 16,f, to be real) may very well be 

a consequence of hypersonic BL flow conditions with¬ 

in the narrow space between body surface and shock 

wave. 

Cone Flow. The fact that in figure 4 the experi¬ 

mental points obtained on cones are on the highest 

level, is not accidental. Because of the conical flow 

pattern, the BL is continuously thinned and thus 

stabilized. The equivalent flat-plate Reynolds num¬ 

ber on conical and/or ogival noses can be between 

1/2 and 2/3 of that computed on the basis of the 

distance “x” from the point, along the surface (10,e). 

Vice-versa, critical R’numbers can thus be obtained 

on such body noses which are possibly two times as 

high as they would be on a flat surface under other¬ 

wise equal conditions (13). 

Pressure Gradient. As in subsonic aerodynamics, size 

and magnitude of the pressure gradient along the 

surface of a solid body, has a very great influence 

upon stability and transition, respectively, of the BL 

flow. Contrary to conditions in uncompressed fluid 

flow, negative gradients are necessarily obtained at 

transonic and supersonic speeds, by means of the 

PrandtI-Meyer type of expansion around corners, and 

in particular past curved shapes. A 10% thick bicon¬ 

vex foil section, for example, in a flow at M = 2, will 

have a steadily reducing pressure distribution corre¬ 

sponding to a total differential between LE and TE 

of Ap/q of the order of 0.4. Corresponding (but 

lesser) gradients are found on streamline shapes (such 

as on the missile bodies in figures 34 through 37 of 

Chapter XVI). Transition R’numbers are plotted in 

figure 5, as tested on ogival and/or parabolic body 

shapes (where a favorable pressure gradient is pre 
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Figure 5. Reynolds number indicating BL transition as found on 
ogival and parabolic body shapes (having a negative pressure 
gradient) as a function of M’number. Note that the V-2 results 
are obtained on the conical part of that vehicle's nose; cooling 

(rather than a favorable pressure gradient) seems to be responsible 
for the very high transition R'numbers found in that case. 

sent). We see (a) that in contrast to those in figure 

4, the critical R’numbers grow steadily as the Mach 

number is increased; and (b) that levels are reached 

in this manner far above those in figure 4. The 

lowest line in figure 5 at supersonic speeds, corre¬ 

sponds to transition tested near the base of ogive-cyl¬ 

inder combinations (16,1) where a favorable pressure 

gradient is available only part of the way, i.e. past 

the ogival nose. 

Surface Roughness. Basically in the same manner as 

under subsonic (uncompressed) conditions (described 

in Chapter II) boundary layers in supersonic fluid 

flow are also very sensitive against added disturb¬ 

ances such as mechanical vibrations (from any type 

of machinery connected with the testing), tunnel tur¬ 

bulence, sound waves and finally against surface 

roughness. Such factors are evidently responsible for 

the various levels in figure 4 (and partly for those in 

figure 5 as well). Boundary-layer transition as a func¬ 

tion of roughness is treated in Chapter II. At super¬ 

sonic speeds (corresponding to M = 3.5) uniformly 

distributed roughness has, for example, been investi¬ 

gated in (19,b). On the cooled surface (i.e. with TwaLt 

= TQmjj) of an ogive-cylinder body, the transition 

R’number was found to be reduced to ~ 1/2 the 

original value by a grain size “k” roughly four times 

that required to obtain the same relative reduction 

in figure 10 of Chapter II. Experiments with vari¬ 

ous single roughness elements such as in (19,a) and 

as quoted in (16,f) and in (16,g), show that at M’num- 

bers between 1.5 and 3.5, the “grain” size (height) of 

these elements required to produce the same relative 
reduction in transition R’number as in uncompressed 

fluid flow, is between 3 and 10 times as large as 

under those conditions. Such results agree very well 

with the general experience that laminar BL is so 

often found in supersonic testing at Reynolds num¬ 

bers where in subsonic aerodynamics, most certainly 

turbulent flow is to be expected. 

Critical Roughness Size. Figure 6 is presented as an 

example, showing how on a parabolic body of revo¬ 

lution the grain size (in a “sand” strip near the nose 

extending over a length equal to 3.5% of that of the 

body) required to produce fully turbulent BL flow, 

grows considerably as the M’number is increased. It 

can now be assumed that the “permissible” or “re¬ 

quired” roughness size may grow in proportion to the 

thickness of the boundary layer, and in particular to 

that of the sublayer where finer surface protuber¬ 

ances develop their influence upon BL flow. The 

thickness of that layer increases in proportion to 1/^ 

T. Applying then equation 6, the roughness 

size “k” required, can be expected to increase as a 

function of M’number at the rate of 

“k”~ 1 + 0.2 M2 (17) 

For example, at M = 3, we thus obtain a size “k” 

that is almost 3 times the value in uncompressed 

fluid flow (as in figures 10 and 11 of Chapter II). 

By the same reason, one can also expect that the max- 

imum-permissible grain size, in turbulent BL flow (in 

the definition as given in Chapter V, indicating the 

beginning of roughness-type flow) should be higher 

at supersonic speeds, at least in the same ratio as 

given above in equation 17. The experimental re¬ 

sults in figure 6 confirm this argument, at least 

qualitatively. In one of the two examples pre¬ 

sented, the grain size required to produce turbu¬ 

lence, grows to ~ tenfold as the Mach number 

is increased from 1 to 4. A simple conclusion to be 

drawn from this result, is the possibility that when 

increasing “R” in proportion to “M”, the boundary 

layer of this body can be entirely turbulent at M = 1; 

- and it can then become completely laminarized 

upon approaching M = 4. This is indeed a reversal 

from what is to be expected in uncompressed fluid 

flow (such as at smaller subsonic Mach numbers). 
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ROUGHNESS 

-— -l-~ ~~l_1 TE. = (7 to 10) I06 1 i *- 

Figure 6. Example for the influence of supersonic compressibility 
upon boundary-layer stability; roughness grain size (in a narrow 
strip near the nose of a parabolic body) required (19,c) to pro¬ 
duce fully turbulent BL flow — as a function of Mach number. 

Drag Due to Roughness. In the case of roughness 

elements (such as sand grains) uniformly distributed 

over the surface, it can be argued that above the 

R’number at which roughness-type BL flow (as ex¬ 

plained in Chapter V) becomes established for a cer¬ 

tain grain size, viscosity does no longer affect the 

drag. Equation 13 may then be rewritten as 

0Wtbl) ~ 1/(1 + ° m2) <18> 

A preliminary guess (20,a) is that the exponent in 

equation 15 be doubled in order to represent drag in 

(17) Influence of pressure gradient upon transition: 
a) Weil, Biconvex Section, J.Aeron.Sci.1951 p-311- 
b) Probstein as in footnote (l6,f). 
c) Allen, On Airfoil Sections, NACA T.Note 1255(1947). 
d) Critical R'number of spheres, figure 10, Chapter XV. 

(19) Influence of surface roughness on transition: 
a) Brinich, Single R’Elements, NACA T.Note 3267(1954). 
b) Jedlicka, BL on Ogive Cylinder, NACA T.Note 3342. 
c) Fallis, Stimulation, J.Aeron.Sci.1955 p.339. 
d) Results on cone-ogive-cylinder combinations similar to 
those in (c) are reported by Luther (Caltech) in Journal 
Aeronautical Sciences 1957 p.579. 

(20) Influence of surface roughness on drag: 
a) Hoerner, Influence of Compressibility on Drag, German 
ZWB Rpt UM 7810 (1944); also T.Rpt F-TR-1188-ND, 
ATI 43187 (USAF Wright Field, 1947). 
b) Hopko, Rivets and Lap Joints, NACA RM L52F09- 
c) Jackson, Sand Roughness, NACA RM L52B26. 
d) Wade, Experimental, UTIA Rpt 34 (1956). 
e) Liepmann explains in J.Aeron.Sci.1957 p.784 that tur¬ 
bulent friction along rough surfaces corresponds to C^corn 
= Cf;nc/(I + 0.18 M2). This function confirms equa¬ 
tion 18 very well. 

developed roughness flow. This type of boundary- 

layer-bound drag can thus be expected to decrease 

as a function of M’number at a rate which is greater 

than that of the turbulent skin friction coefficient 

as indicated in figure 3. An experimental result (20,c) 

confirms this prediction insofar as skin-drag coeffi¬ 

cients are indicated at a level which is even below that 

of the equation. A stabilizing influence of the pressure 

distribution along the parabolic body used in these 

tests may have preserved laminar flow, however, over 

some portion of the forebody-in spite of surface 

roughness. It is clear, at any rate, that the coefficient 

for a rough surface cannot reduce to a level below 

that for smooth (but turbulent) BL flow. Read also 

footnote (20,e). 

Lap Joints, similar to those in figure 10 of Chapter V 

have been investigated on the cylindrical body of a 

free-flight model (20,b). Evaluation by means of the 

principles presented in that chapter, indicates “re¬ 

duced” drag coefficients “c^” (on the lap joints’ fron¬ 

tal area) roughly 3 times as high as those known for 

uncompressed flow conditions. It is therefore con¬ 

cluded that the drag produced by these joints is, at 

least partly, wave drag. This conclusion is confirmed 

insofar as the incremental drag coefficients as tested, 

reduce from “2” to “1”, as the M’number is increased 

from 1.2 to 2.1. This reduction roughly corresponds 

to that of two-dimensional wave drag (equation 30). 

3. TRANSONIC DRAG OF STRAIGHT WINGS 

The transonic characteristics of airfoil sections and/or 

straight wings are treated in this “supersonic” chap¬ 

ter, rather than in Chapter XVI, for reasons of con¬ 

venience. 

Flow Pattern. In the beginning of Chapter XVI, it is 

explained that flow conditions in a closed duct (wind 

tunnel) are critical at and in the vicinity of M = 1. 

Even in free flow (with an unlimited space available) 

conditions are still critical, particularly past all types 

of sections in two-dimensional fluid flow. The sub¬ 

ject of transonic characteristics is also problematic in 

regard to theoretical analysis, where mostly numerical 

solutions have only been established so far, for a few 

selected shapes. Considering a wing flying at a speed 

approaching M = 1, a detached shock wave of van¬ 

ishingly small intensity originates at an indeterminate 

distance ahead of that obstacle. Upon increasing the 

Mach number to and very slightly above unity, the 

shock wave approaches the wing very rapidly. Slightly 

subsonic speeds are found behind this wave. A com- 



17-8 FLUID-DYNAMIC DRAG 

Figure 7. Flow pattern past a two-dimensional double-wedge sec¬ 
tion at a certain transonic speed. "E” = expansion fan. Note; we 
cannot show the flow pattern at M = 1, inasmuch as it extends to 
infinity (up and down). 

pressible, but first subsonic type of flow pattern then 

develops along the forebody of the airfoil section, 

accelerating again and reaching sonic speed at the 

location where the stream tubes have the narrowest 

cross section, tentatively as indicated in figure 7. 

Supersonic expansion takes place there, around the 

section’s shoulder; and the flow is finally restored to 

ambient pressure across a shock wave originating 

from the trailing edge of the airfoil section. Within 

the two fields of subsonic velocities bounded by 

shock and sonic lines, the air is given the opportunity 

of turning somewhat sideways (up and down, re¬ 

spectively, in the illustration) in order to “get around” 

the obstacle, using a bypass, so to speak. As the Mach 

number at which the wing moves against the air (or 

vice versa) is further increased above M = 1, the 

boundary line at which sonic velocity is reached, 

moves toward the leading edge, while the head wave 

moves in the opposite direction; and we then have 

a flow pattern different from the one as shown in 

figure 7. Finally, at a supersonic Mach number, the 

magnitude of which is a function of airfoil thickness 

ratio or leading-edge wedge angle (see figure 25 in 

Chapter XVI), the shock attaches itself to that edge; 

and at a still very slightly higher M’number, shock 

front and sonic boundary meet each other, thus 

starting “pure” supersonic flow. 

Similarity Rules. The mixed subsonic-supersonic flow 

pattern as in figure 7, is not readily susceptible to 

simple and explicit theoretical treatment. Similarity 

rules have been established, however, for the tran¬ 

sonic range of the Mach number. Such rules, based 

upon physical properties, body dimensions and speed 

or speed components, are very useful tools in the 

analysis, interpolation, extrapolation and correlation 

of experimental results. There are dozens of simi¬ 

larity “rules” in fluid dynamics, also called “laws” or 

not given any specific name, usually based upon a 

certain non-dimensional parameter such as the Rey¬ 

nolds, Froude or Mach number, in particular. Simi¬ 

larity then means that (disregarding the influence of 

certain other parameters) flow conditions (pattern, 

pressures, forces) in one particular set of dimensions, 

speed and/or physical constants, are similar (or equal 

when given in coefficient form) to those in a different 

combination of parameters, provided that the “simi¬ 

larity number” is the same (see also text in Chapter 

I on this subject). Such rules are of particular im¬ 

portance in cases where a quantitative solution of a 

certain problem has not yet been established. A simi¬ 

larity rule is then a welcome expedient of concluding 

from one specific experimental result upon the char¬ 

acteristics of a series of other combinations of dimen¬ 

sions, speeds and/or physical properties of the fluid 
involved (29). 

Transonic Similarity. Disregarding skin friction and 

flow separation (if any) and if applied to slender 

shapes, similarity analysis (28,b and f) predicts for 

airfoil sections in two-dimensional flow, that 

Cd.(M/£) ^ is a unique function of 

(M2— 1)/(M2s)2/3 (20) 

On wedges (in symmetrical flow) the drag coefficient 

(on projected frontal area) is also equal to |Cp|, 

taking into account the proper sign (as a function of 

surface inclination, against or away from the oncom¬ 

ing flow). For application to airfoil sections other than 

wedges, the surface angle “ & ” is to be replaced by 

the thickness ratio (t/c) when using the last equation. 

Wedges, with the sharp edge ahead, are a type of body 

comparatively easy to test. A number of experimen¬ 

tal results are available, accordingly, on such single 

wedges. Figure 8,a presents their forebody drag co¬ 

efficient (not including any base drag) in form of the 

similarity parameters as indicated by equation 20. 

It should be noted that in double-symmetric double 

wedges the half vertex angle & = t/c, where c = 

chord of the double wedge. Figure 8,b presents the 

pressure drag coefficient of the afterbody of such sec¬ 

tions. It is seen that the coefficient of this drag com¬ 

ponent decreases as a function of M’number, while 

that of the forebody increases across the transonic 

Mach-number range. It follows from this mechanism, 

that for high subsonic speeds (and at small super¬ 

sonic speeds) slightly reduced drag may be obtained 

by using a double wedge (or other foil shape) whose 

forebody is shorter than the afterbody, as we have it 

in practically all subsonic-type airfoil sections. 
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Transonic Theory. Sharp-shouldered double wedges 

are one of the special shapes mentioned above where 

theoretical analysis has been successful. The simplest 

approach to the subsonic type of flow past the wedge’s 

forebody is as described in Chapter XVI, under the 

subheading of “two-dimensional plate”. Figure 8 

shows certain theoretical points for M — 1. At this 

M'number, the drag of double wedge sections corre¬ 

sponds theoretically to 

CD1. » 1.25 (t/c)2/3 for the forebody 

CDL ~ 2.75 (t/c)2/3 for the afterbody 

CD| — 4.00 (t/c)% for the D’wedge 

where t/c = tangent of half-vertex angle S. Based 

(26) Airfoil and wing theory at M = 1: 
a) Guderley, Airfoil Theory at M == 1; USAF ATI Tech 
Data Digest 1947 No.9;AMC Tech Rpt 5783 (1949) ; also 
J.Aeron.Sci.1950 p.723 and 1956 p.96l. 
b) Gardner, Transonic Acceleration, J.A.Sci.1950 p.47. 
c) See also the sources in footnote (60). 
d) Joshihara, Transonic Wedge, J.Aeron.Sci.1957 p.66l. 

(28) Principles of transonic similarity: 
b) Spreiter, NACA Tech Note 2273 and T.Rpt 1153. 
c) Bomelburg, Generalization, ZFW 1955 p.313. 
d) Oswatitsch, numerous papers on transonic similarity, 
referenced, for example, in (31,g). 
f) The improved type of correlation (including "M2”) in 
the parameters as in figure 8, is discussed and confirmed 
in NACA T.Notes 2724, 2887, 3096 and 3225. 

(29) An incompressible example of this sort is the vonKarman- 
Schoenherr line (in Chapter II). While to this date, a 
"solution” of turbulent skin-friction drag has not been 
found, application of a similarity law concerning flow pat¬ 
tern and shear forces in the boundary layer, makes it possi¬ 
ble to predict this type of skin friction drag for Reynolds 
numbers between 10s and 10^, and evidently to infinity — 
on the basis of one single correctly tested point, anywhere 
within that range. Of course, to prove the law, thousands 
of points have been determined over a period of 50 years; 
ana a debate regarding the proper slope is still going on 
(see Chapter XI). 

(31) Wedge analysis at transonic speeds: 
a) Guderley, Wedge at M = 1, J.Aeron.Sci.1950 p.723. 
b) Coles, Wedge at M ** 1, J.Math. and Phys. 1951 p.79. 
c) Vincenti-Wagoner, NACA T.R. 1095 (TN 2339, 2528). 
d) Liepmann-Bryson, J.A.Sci.1950 p.745. 
e) Bryson, Interferometric Tests, NACA T.Rpt 1094. 
f) Truitt in J.Aeron.Sci.1954 p.860. 
g) Spreiter, Evaluation of Transonic Similarity, NACA 
T.Note 2726 or T.Rpt 1153; also J.A.Sci.1954 p.70 & 360. 
h) Tilling, Transonic Wedge Flow, ZAMP 1953 No. 5. 

(32) Transonic experimental results on wedges: 
a) Humphreys, 10% D’Wedge, NACA T.Note 3306. 
b) NACA, Two Double Wedges in T.Rpt 1106. 
c ) See references ( 31 ,d,e ) ; and ( 5 ) in chapter XV. 
d) Nelson, Pressure Distribution, NACA RM L52C18. 
e) Griffith, Shock Tube Results, J.A.Sci.1952 p.249. 
f) Hilton-Pruden, Force Tests on Double Wedges, ARC 
RM 2057 and 2197; see also RM 2864. 
g) Groth-Pack, Wedge Flow Pattern, ARC RM 2321, 
h) Vincenti, Transonic D'Wedge, NACA T.Note 3225, 
continuation on Finite-Span Wings in T.Note 3522. 
i) ARC, 10% Supersonic Sections, RM 2800 (1954). 
k) Lina, 6% Double Wedge, NACA Doct. RM L9A12; 
when plotting these results in figure 8,c - an estimated 
component of skin-friction drag was first subtracted. 
l) Valensi (NPL), Wedge Pressure, ARC RM 2482. 
m) Gooderum, Lifting Wedges, NACA Tech.Note 3626- 

c 

-1-M=—O —|-1-\ ■ — ■» i-1— ■ t 1-•-1- 

-‘t -3 -2 -I 0 I 2 3 4 5 b 7 

Figure 8. Pressure or wave drag coefficient of wedges, 
presented in form of transonic similarity parameters- 



17 - 10 FLUID-DYNAMIC DRAG 

upon wing area (b c) the total wave-drag coefficient 

of symmetrical D’wedges (at zero lift) is 

CDW ^ 4 (t/c)% (21) 

magnitude of which is listed above). Tested total 

drag coefficients agree reasonably well with transonic 

and supersonic theory, after adding an appropriate 

component for skin-friction. 

Figure 10 presents experimental points confirming 

this function sufficiently well. The ranges above M = 

1 (31 ,c) and below M = 1 (as in 31 ,h) have also been 

investigated analytically. The slope of the reduced 

drag coefficient against the M’number parameter, as 

indicated in (31,g), is in the notation as used in 

figure 8: 

2/(k + 1) = 0.83 (22) 

The slope for the wedge’s afterbody has the same 

but negative value. The total drag parameter (as in 

figure 8,c) shows a constant value accordingly, within 

a certain range above M = 1. The theoretical func¬ 

tions are well confirmed by experimental results (see 

figure 8). Within the range of lower supersonic 

M’numbers, the drag of the forebody (mixed flow) 

is higher than that as indicated by linear supersonic 

theory (41). Wave drag of the afterbody as tested, is 

slightly less, however, than predicted by any theory. 

The growth of the boundary layer (as marked in 

figure 8,b) is evidently responsible for the discrepancy. 

Fairing at M — 1. The function (equation 21), in¬ 

dicating the peak of transonic wave drag in two-di¬ 

mensional flow at M as 1, can be utilized to determine 

the optimum thickness ratio of a fairing (resulting 

in minimum drag for a given frontal area). Including 

skin friction, the total drag coefficient of a double¬ 

wedge section is 

CD== 2 Cf(c/t) + 4 (t/cf/3 (26) 

For example, for a skin-friction coefficient of (%= 

0.002 (a value which may be “half” way between tur¬ 

bulent and laminar BL conditions) differentiation of 

the last equation yields an “optimum” length ratio 

c/t in the order of 50, or an “optimum” thickness 

ratio in the order of 2%. This value is by far smaller 

than the corresponding value found in uncompressed 

fluid flow (which is in the order of t/c = 25%, as 

shown in Chapter VI). 

Drag of 10% D’ Wedge. Specific drag coefficients across 

the transonic range can be evaluated from the general 

functions in figure 8. Figure 9 presents, as an example, 

the coefficient of a 10% thick symmetrical D’wedge 

section plotted against Mach Number. The constant 

part of the similarity function (see figure 8,c) results 

in a reduction of the pressure-drag coefficient at the 

rate of 

dCD/dM = - (2/3) CD, (27) 

where CD| = coefficient at M = 1 (the theoretical 

A Biconvex or Double-Arc section (12% thick) has 

been tested by pressure distribution technique across 

the transonic range (31,e). Characteristics are similar 

to those of double wedges (as in figures 8 and 9). 

Reference (34) presents a solution (based on linear¬ 

ized transonic theory) for the pressure distribution of 

a symmetrical double-arc section at M = 1: 

Cp/(t/c)2/3= (J / - 4 /*7? (28) 

Integration of this function over the chord “c” of a 

10% thick section yields drag coefficients 

CD# = 0.32 for the forebody 

Cjj. = 0.52 for the afterbody 

= 0.84 total pressure drag 

The total wave (pressure) drag is found to be the 

same as that of a double-wedge section having the 

same thickness ratio (as indicated by equation 21). 

Distribution of the drag between fore and afterbody 

is somewhat different, however. The forebody pres¬ 

sure drag of the biconvex shape is somewhat smaller 

than that of the D’wedge, whose components are 

listed in context with figure 8. Experimental results 

in figure 9 show that the pressure drag of a double-arc 

section (33,c) is smaller than that of the D’wedge, at 

speeds below M = 1. 

WAVE DRAG COEFFICIENT {ON "WING" AREA) 

0.10 

0.0 8 

o.ofe 

ao4 

odZ 

0 

FROM FIGURE 8,e 
OTHER D'WEDGES 
D'WEDGE (32,o) 
DITTO, NACA (32d) 
D'WEDGE (32,i) 
10% BICONVEX (i) 
BICONVEX (33,c) 
STREAMLINE,Rtf 2&3 
9% BICONVEX 

M’NUMBER V/V 

0 113 

Figure 9- Wave-drag coefficient of 10% thick double¬ 
wedge section at transonic Mach numbers. 
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Round-Nosed Airfoil sections of the conventional 

subsonic type (extrapolated where necessary to A = 

oo) have somewhat smaller total wave drag coeffi¬ 

cients (at and below M = 1) than symmetrical double¬ 

wedge sections. Analysis predicts optimum thickness 

locations between 40 and 50% of the chord in two- 

dimensional flow (in straight wings) at M ’numbers 

between 1.0 and 1.3. The comparative drag char¬ 

acteristics of D’wedges and of “streamline”-shape 

sections reverse their order, however, from one end 

of the transonic regime to the other. This can already 

be concluded from the results in figure 9, where at 

M = 1.95 and 2.47, the wave drag of a biconvex 

section is found to be higher than that of a double 

wedge having the same thickness ratio. Regarding 

truly “round-nosed” sections see again later. 

(33) Experimental results on biconvex sections: 
a) ARC, RM 1130, 2196 and 2800 (also RM 2057). 
b) Daley-Lord, 6% Sections, NACA T.Note 3424. 
c) In Transonic Tunnel, Michel, ONERA Rpt 65 ; AGARD 
Rpt AG17/P7-1954; see in NACA T.Note 3970. 
d) Bryson, Interferometric Tests, NACA T.Rpt 1094. 
e) See also footnotes (43) and (48,e). 
f) NACA, 10% Biconvex Section, Doct. RM A9G18. 
g) Pressure distributions on biconvex foil sections, at M 
— 1, for various thickness locations (tested by Michel, 
ONERA) are correlated with transonic theory by Spreiter 
in NACA T.Note 3970 (1957). 

(34) Maeder, Biconvex Section at M = 1, J.A.Sc. 1956, 187. 
(35) Transonic tunnel tests on straight wings: 

a) Nelson, 22 Rectangular, NACA T.Note 3501. 
b) Nelson, 36 Symmetrical Wings, NACA T.Note 3529. 
c) Nelson, Cambered Wings, NACA T.Note 3502. 
d) Polhamus, Bump Summary, NACA T.Note 3469. 

(36) Transonic Flight-test results on straight wings: 
a) Mathews-Thompson-Katz, Free Falling Results, NACA 
Docts. RM L5E03, L6J14, L6J16, L6J30, L6K08C, 
L7E08, L7K14, L8F24; also Thompson, Proc.Internat. 
Aeron.Conf.1949 p.582. 
b) Mathews-Thompson, 65-009, NACA T.Rpt. 988. 
c) Kell (RAE), Free Falling Vehicle, ARC RM 2902. 
e) Mellenthin, 0015 on Bump, NACA T.Note 3036. 

* THEORY FOR DOUBLE WEDGE (31,o) 
• 65 SERIES EXTRAPOLATED (36,a) 
O BICONVEX SECTION (31,e) 
A DOUBLE WEDGE, FROM FIGURE 9 
+ EXTRAPOLATED TO A = oo FIGURE 13 

Figure 10. Pressure drag coefficient of symmetrical 
airfoils at M = 1 (in 2-dimensional flow at zero lift). 

Finite Wings. The above considerations of two-di¬ 

mensional flow characteristics are somewhat academic, 

insofar as in aircraft and/or missile wings (where 

those sections are to be used) the aspect ratio has an 

important effect upon the magnitude of wave drag 

at transonic speeds. Upon reducing the A’ratio of a 

wing from infinite to «Pzero, its flow pattern trans¬ 

forms naturally from a two-dimensional to a three- 

dimensional one. Pressures and forces at transonic 

speeds become relaxed, accordingly. Figure 11 pre¬ 

sents results primarily of certain groups of wings 

(having constant thickness ratio each) demonstrating 

the influence of the aspect ratio at transonic speeds. 

Reduction of the A’ratio has consequences as follows: 

(a) The subsonic drag divergence M’number is con¬ 

siderably increased (see Chapter XV on this subject). 
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(b) The growth of Cps at M’numbers above drag 

divergence (also treated in Chapter XV) is reduced. 

(c) The peak of the drag coefficient (at M a 1) typi¬ 

cal of 2-dimensional characteristics, is completely 

eliminated as the aspect ratio is reduced below 5 or 4. 

(d) As a consequence of (c), the drag coefficients now 

exhibit maximum values at M’numbers in the lower 

supersonic range, rather than at M «= 1. 

(e) The coefficient is also reduced at higher transonic 

speeds. It is suggested, however, that all wings finally 

approach a supersonic function similar to that as 

shown in the graph (figure 11). 

Aspect Ratio. The system of transonic similarity re¬ 

lations includes also the A’ratio of wings (38) thus 

permitting evaluation and correlation of experimen¬ 

tal results. Figure 12 shows how pressure or wave drag 

(at zero lift) decreases, eventually to « zero (38,d) as 

the aspect ratio parameter A(t/c)'/3 is reduced. The 
linear part of the function (below A (t/c)l/3«s 1) 

results in 

CDW= 23 A(l'/C) (29) 

In the range of larger aspect ratios, of the magnitude 

as in subsonic-type airplanes (if using them at super¬ 

sonic speeds) the alleviating effect is less significant. 

Above A(t/c)^3~4, the experimental results ap¬ 
proach an upper limit, the level of which is related 

to the theoretical and experimental values as in figure 

10. Functions similar to that in figure 12 have also 

been established (35) for values of the M’number 

parameter (M2 — 1) (t/c) /3 different from zero (as 

for M = 1 in our illustration). It is suspected, how- 

BUMP TESTS 
BUMP TESTS 
FREE FLIGHT 
FREE FLIGHT 
FREE FLIGHT 
BUMP TESTS 
BUMP TESTS 

63A-SERIES (35,c) 
63A-SERIES (38,b) 
65 -SERIES C58,c) 
65 -SERIES (36,o) 
RAE-101 (36, b) 
63A-SERIES (35,o) 
63A-SERIES (35,d) ( 

P-80 (32,q) l3*/o 

Figure 13. Maximum transonic drag coefficients (at M between 
1.0 and 1.2) of wings with symmetrical foil sections (at zero 
lift) as a function of their aspect ratio. 

ever, that more of this type of presentation (although 

scientifically correct) may not give the engineer the 

desirable more direct information. We have there¬ 

fore plotted, in figure 13, transonic maxima of the 

drag coefficient (at zero lift) directly taken from the 

experimental material (such as in figure 11) as a func¬ 

tion of the wing aspect ratio. For each family of 

wings with constant foil section each, the coefficient 

is seen monoton ically decreasing along one of the 

lines, as the aspect ratio is reduced. Qualitatively the 

same reduction is also obtained by theoretical analy¬ 

sis as in (38,e). 

• BUMP TESTS A = 1 to 6, 63A-SERIES, t/c -= 14 to 10)% (38,b) 
x FLIGHT TESTS A = I to 7, 65 -SERIES, t./c - (6 to 12)% (J8,o) 
A BUMP TESTS A - 2 to 4, 63A-SERIES, t/c = (4 to 8)% (35,o) 

CppreSS / 

(t/c)S/3 / 

ASPECT-RATIO PARAMETER A (t/c)l/3 

0 I 2 3 4 5 6 

Figure 12. Reduction of pressure or wave drag (at zero 
lift) of wings at transonic speeds as a function of their 
aspect ratio, presented in form of similarity parameters. 
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4. STRAIGHT WINGS IN SUPERSONIC FLOW 

Flow Pattern. Figure 14 gives an illustration of flow 

pattern and pressure distribution of a double-wedge 

section at zero lift. The drag corresponding to the 

positive pressure on the forebody is the equivalent of 

the momentum losses (or momentum transfer) taking 

place along and across the compression shock wave 

originating from the leading edge (at “a ). At the 

corner “b”, the flow is then accelerated by means of 

a Prandtl-Meyer-type expansion to a speed exceeding 

that of the undisturbed flow. The second component 

of drag, due to the negative pressure on the D wedge's 

afterbody, corresponds to the tail wave (originating 

from the trailing edge at “c”). Considering very small 

thickness ratios (equivalent to “small” perturbations) 

in non-viscous fluid flow, pressure as well as velocity 

are restored to the respective ambient values when 

passing through the tail wave. Under realistic con¬ 

ditions, the static pressure also increases to the level 

of the undisturbed flow, while a deficiency of speed, 

momentum, “total” pressure and/or enthalpy is nec¬ 

essarily left behind the moving wing. This deficiency 

is not concentrated, however, in form of a wake simi¬ 

lar to that corresponding to skin friction. Rather, a 

loss of speed is spread out sideways (that is, up and 

down in figure 14) in form of a “shadow”. 

(38) Transonic aspect-ratio correlation: 
a) Spreiter, Similarity Theory, NACA T.Note 2273(1951). 
b) McDevitc, Similarity Correlation, NACA T.Rpt. 1253; 
transonic bump results in T.Notes 3501 and 3502. 
c) Danforth, Similarity Correlation, NACA RM L51G20. 
d) Boundary-layer thickness (displacement) becomes ap¬ 
parent in foil thickness ratios of and below 2 or 3%. 
e) Gardner, Accelerating Flight, J.A.Sci.1950 p.47. 

(41) Airfoil theory at supersonic speeds: 
a) Ackeret, Airfoils at Speeds Faster Than Sound, ZFM 
1925 p.72; NACA T.Memo 317; also in Vol. 7 of Hand- 
buch aer Physik, Berlin 1927. 
b) Busemann, Second-Order Theory, Forschung 1933 p.87 
(Brit.RTP Transl.1786) ; also Handb.Exp.Physik WH Vl. 
c) Taylor, Application of (a), ARC RM 1467 (1932). 

Figure 14. Flow pattern and pressure distribution of a 
D’wedge airfoil section in supersonic flow (at Msa-1.4). 

Thin-Airfoil, Linearized Theory (41) applies under 

conditions where the perturbation velocities caused 

by the airfoil’s displacement, are small; it neglects 

heat transfer, assumes infinitely weak and straight 

shock waves and it disregards viscosity, of course. It 

then predicts for every element on the surface of 

slender two-dimensional shapes a pressure coefficient 

Cp = 2 £ tan p = 2 &/Zm2- 1 (30) 

where £ = local angle of inclination of the element 

(considered to be positive when the surface is in¬ 

clined against the oncoming flow) and where ja = 

Mach angle as in equation 1 or in figure 1. Integra¬ 

ting the pressure function over the surface of the 

section, the wave-drag coefficient (subscript “W”) of 

this and of other symmetrical airfoil shapes, based on 

frontal area, is found to be 

CDW. = K (t/c)//M 2 - 1 (31) 

or based on plan-form or “wing” area: 

CDW = K (t/c)2//M2 - 1 (32) 

The factor is K = 1 for single wedges (moving with 

the sharp edge ahead, and disregarding base drag); 

K = 4 in case of symmetrical double-wedge sec¬ 

tions. As a function of the location of the maximum 

thickness along the chord, the factor of double-wedge 

sections, as indicated by linearized theory, is 

K == (c/x)/(l - (x/c)) (34) 
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Figure 16. Pressure coefficient on the sloping 
surfaces of double wedge sections. 

Second-Order Theory. Surface pressure coefficients 

obtained on double wedges, tested at various angles 

of attack, are plotted in figure 16. In comparison to 

linearized theory, the graph shows a considerable in¬ 

fluence of second-order terms as treated later (see 

equ. 84) as a hypersonic phenomenon. Forces in the 

forebody are thus larger than, and those in the after¬ 

body are smaller than indicated by simple theory 

(equation 30). For double wedges at moderately high 

supersonic Mach numbers, we can approximate the 

hypersonic term for practical purposes by 

Acp = +1.2 r2) ± 1.2 r2 (35) 

where T = (t/c) in double-symmetrical D’wedges at 

zero angle of attack. 

Afterbody Drag. There is also noticeable (in figure 

16) an additional effect due to the presence (displace¬ 

ment) of the boundary layer, particularly at “X” = 0, 

where a component of Cp roughly in the order of 

0.01 is found for each of the sections tested. This 

effect too, is explained later (in the last section of 

this chapter) as a hypersonic phenomenon. For ex¬ 

ample, in a 10% thick D’wedge section at zero lift 

and at M = 2.5, the total differential in the pressure- 

drag forces on fore and afterbody respectively (caused 

by second-order terms in combination with the BL 

effect) is thus in the order of - 15%. In other words, 

the forward half of a symmetrical section has a wave 

drag somewhat higher, and the rear a drag somewhat 

lower than indicated by equation 30 or 31. As a con¬ 

sequence, the optimum shape of a double wedge sec¬ 

tion (giving a minimum of wave drag in supersonic 

flow) is expected to have a thickness location slightly 

aft of 50% of the chord. 

Biconvex Sections. The wave-drag term CDyy/(t/c) 

= K tan /i is easily obtained as a multiple of the 

Mach angle function in figure 1; and it decreases as 

such in the same manner as that function — when 

the Mach number is increased. Figure 9 displays 

characteristics of a 10% thick double-wedge section; 

and equation 32 is seen to represent the supersonic 

phase of the pressure-drag function of that section. 

— The pressure distribution of a slender biconvex 

(or symmetrical double-arc) section along the chord 

“c”, corresponds to 

Cp = 4 (t/c) (1 - 2x/c)/l/M2 - 1 (39) 

Integration of this distribution over the thickness “t” 

of the section yields the factor K(as in equation 31) 

equal to 16/3 = 5.3. This factor is larger than that 

of the double wedge (see the experimental results in 

figure 9 at M = 1.85 and 2.47). In fact, integration 

of equation 30 over the thickness of any foil section 

proves that the double wedge (with constant surface 

angle “£,”) yields the least wave drag coefficient (based 

upon frontal area). 

Round-nosed airfoil sections (not covered by any of 

the thin-wing theories) have still higher wave-drag 

coefficients. The drag of one particular such section 

shown in figure 15, is significantly reduced upon re¬ 

versing the direction of flight (so that the sharp edge 

is leading), although a noticeable component of drag 

is then caused by separation from, and suction at the 

bluff “base”. Round-nosed sections exhibit, of course, 

a detached bow wave and a stagnation point, in a man¬ 

ner similar to that of bluff and/or round bodies. Ex¬ 

perimental results (42,c) thus show on the nose of a 

65-009 shape, a positive pressure “peak” of apprecia¬ 

ble magnitude. The corresponding component of the 

drag coefficient increases as a function of Mach num¬ 

ber, in a manner similar to the stagnation pressure 

in figure 1 of Chapter XVI. A constant “K” value 

can, therefore, not be expected for this type of stream¬ 

line sections. If such values are computed for the 

V 
CD.= 40 

1°) 

= 5.3 

= 7.7 

(b) 

= 3.8 

Figure 15. Comparison of the reduced pressure drag coefficients 
of four types of airfoil sections, at a Mach number of 1.5; (a) 
as indicated by theory (equation 31,) and (b) as tested (skin 
friction subtracted). 
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65-009 section mentioned (tested by pressure plotting) 

they are, for example, K ~ 7.5 at M= 1.65 and K. ~ 

11 at M = 2.4. Wave drag of round-nosed foil sec¬ 

tions is thus significantly larger at super/hypersonic 

speeds, than that of wedges and/or sharp-nosed other 

shapes. “K” values have also been estimated for vari¬ 

ous foil shapes when applied in swept and/or “delta” 

wings (42). They are approximately: 

K = 5.5 for streamline foils with x/c = 50% 

= 6.0 in round-nosed foils with x/c = 30% 

= 6.5 for a slender elliptical airfoil section 

Obviously, these values can only be used in applica¬ 

tions where (on account of the three-dimensional 

“swept” flow pattern) the bow wave is attached to the 

leading edge. 

Experimental Results AT M = 2 
x total drag (others) 
A pressure drag (32, i) 

Figure 17. Profile drag coefficient of double-wedge sections, based 
on frontal area, calculated for M = 2. 

(42) Relative merits of various foil-section shapes: 
a) Nonweiler, Analysis for Swept Wings, ARC RM 2795. 
b) Cooper, For "Arrow” Wings, NACA T.Note 3183. 
c) Rainey, 65-009 Press. Distribution, NACA RM L9L16. 

(43) Investigation of foil sections at supersonic speeds: 
a) Busemann, Forschung 1933 p.87, as in (4l,b). 
b) Double Wedges, see footnote (32). 
c) Biconvex sections also in NACA T.Notes 3548 & 3550. 
d) See also footnotes (33), (42,c) and (48,e). 
e) Mueller, Spoiler on Wedge, NACA RM L52L31; TN 4-180. 
f) Czarnecki, Biconvex with Flap, NACA RM L50J19. 

(48) Airfoil sections with blunt trailing edges: 
a) For base pressure see reference (25) in Chap XVI. 
b) Morrow, Flight Tests, NACA T.Notes 3548 and 3550. 
c) Chapman, Theoretical Analysis, NACA T.Rpt 1063. 
d) Chapman, Thick T’edges, NACA (A9Hll)T.N. 3503. 
e) Katzen, 31 Airfoils Tested, NACA RM A54B08a. For 
thickness between 2 and 6%, this report does not show 
any drag reduction due to thick TE, at M = 2. 
f) Syvertson, M = 3 and 5, NACA RM A53B02. 
g) Chapman, Hypersonic Analysis, NACA T.Note 2787. 

Optimum Fairing. Combining the wave-drag co¬ 

efficient as in equation 31 with a skin-friction com¬ 

ponent of 2 C_p (c/1), the drag coefficient Cj5<is ob¬ 

tained (based on frontal area). For a symmetrical 

double-wedge shape, this coefficient is plotted in fig¬ 

ure 17 for M = 2 and on the basis of Cp = 0.002. 

One set of experimental points (43,e) demonstrates 

again that in the forebody, pressure drag is higher 

than indicated by linearized theory (see equation 35). 

In respect to total drag (including skin friction) the 

graph indicates an optimum thickness ratio (pro¬ 

ducing a minimum of drag on the given frontal area 

of a fairing, for example) below 5%, at the particular 

M’number considered. Using now a single wedge 

section, similar to the one in figure 15, with a blunt 

edge aft, drag coefficients almost as low as those of the 

D’wedge section are readily obtained for a fairing. 

This result then leads to the analysis as follows. 

Blunt Trailing Edge. To this date, we do not have a 

simple and explicit solution for the base drag origi¬ 

nating at the cut-off or thickened blunt end of a foil 

section. On the basis of the mechanics of this type of 

drag explained at length in Chapter XVI, we can very 

well make an estimate, however, using in particular 

the “maximum” function (ApB /pomk) in figure IZ 

of that chapter. We can also approximate the influ¬ 

ence of viscous forebody drag through the use of fig¬ 

ure 13 in the same chapter. The base drag of a blunt- 

ended section, flying at supersonic speed, then corre¬ 

sponds to the coefficient (on wing area) 

CD(b)= (h/°) (B l-43/M2)/(l + E Qf (t/hf) (44) 

This function was evaluated (numerically) for a 10% 

biconvex section at a Mach number of 1.5. In doing 

this, the constants “B” and “E” were selected in such 

c 

Figure 18. Drag coefficient of a 10% foil section as tested and 
as determined by computation (see text) as a function of trailing 
edge thickness ratio, at M = 1.5. 
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a manner that tested base-drag values were matched 

— The wave-drag coefficient of the type of section as 
in figure IS is approximately 

CDW = 5 tan H Vc? 0 - ° 5 (h/t(45) 

The illustration presents the drag coefficient as a 

function of the TE thickness ratio h/t. The optimum 

ratio (giving minimum drag under the conditions 

stated) is found in the vicinity of h/t = 38%. Ex¬ 

perimental results (48,d) confirm the analysis. The 

reduction of drag is not spectacular; the decrement 

grows, however, as the section thickness ratio is in¬ 

creased. Inasmuch as the base-drag component redu¬ 

ces rapidly as a function of M ’number (see figure 11 

in Chapter XVI) more favorable results can also be 

expected at higher Mach numbers. For example, at 

M —*- oo , where the base drag component is zero, 

full thiclytess of the trailing edge (with h = t) is 

bound to be the optimum, then yielding for all slen¬ 

der types of sections a pressure-drag coefficient which 

may only be as low as 25% of that of the original 

double-symmetrical shape. The same problem is also 

treated analytically in (48,c) using hypersonic shock- 

expansion theory. As an example, figure 19 shows 

results taken from that source, for an 8% thick bicon- 

vex-fQil section. The reduction of pressure drag is 

modestin the range of Mach numbers below 3, 

where the optimum trailing edge thickness is in the 

order of 0.4 t. However, significant reductions of 

drag are obtained at hypersonic M'numbers (approach¬ 
ing 1/M — 0 in the graph). 

Figure 19. Example (48,g) showing "optimum” characteristics 
of an 8% thick biconvex foil section (similar to that in figure 18) 
at supersonic and hypersonic Mach numbers. 
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Figure 20. Variation of supersonic wave-drag and lift character¬ 
istics of straight rectangular wings, as a function of 
their ”aspect ratio”. 

Aspect Ratio. Corresponding to the mechanics of su¬ 

personic flow, only the triangular portions behind 

the two Mach lines originating from the front corners 

of rectangular wings, shaded in figure 20, can have a 

three-dimensional flow pattern. All other points along 

the trailing edge, between these limiting Mach lines, 

cannot "know” that the wing span is limited; no sig¬ 

nal is transmitted from the front corners to that 

portion of the wing. The part of the wing span with¬ 

in each of the two Mach cones is defined by 

A b = c//M2 - 1 (48) 

as marked in figure 20. The term 

b/Ab = A i/m2 - 1 (49) 

is a type of “effective” aspect ratio, accordingly, of 

such rectangular wings in supersonic flow. As pointed 

out in (53), the wave drag due to thickness (indicated 

by equations 31 and 32) is then affected by aspect 

ratio, only below the limiting value of A v/ M2 — 1 

= 1. The corresponding geometrical aspect ratio 

is comparatively low; at M = 1.5, for example, it is 

approximately A = 1. Figure 20 shows how drag due 

to thickness reduces below the limiting A’ratio para¬ 

meter, approaching zero as A —*- 0. It is suggested, 

however, that the lateral wing edges (particularly 

when square) may have some influence upon drag 

(not covered by wave theory). 
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5. DRAG OF WINGS DUE TO LIFT 

(A) DRAG AT SUPERSONIC SPEEDS 

Induced Drag. The mechanism of drag in finite-span 

lifting wings caused by the downward deflection of 

an equivalent “stream tube” (as described in Chap¬ 

ter VII) also applies in supersonic fluid flow (52). In 

the same manner as in thin, sharp and flat plates 

and/or as in planing bottoms (Chapter XI) consid¬ 

eration of induced drag as such does not lead to any 

practical results, however, in supersonic fluid flow. 

The induced component appears always intimately 

coupled with another wave-type component of drag 

due to lift; and total pressure drag due to lift is a 

function of the angle of attack rather than of lift. In 

order to obtain drag as a function of lift, it is neces¬ 

sary to consider lift as a function of the angle of attack, 

or what we call the “lift angle” dd/dC^, which is then 

equal to dCD/dcj\ 

(52) Induced drag at supersonic speeds: 
a) As explained in Chapter VII, the equivalent mass of 
fluid deflected by a wing corresponds to a "tube" having 
a diameter equal to the wing span. 
b) The problem has been studied under supersonic condi¬ 
tions (in NACA Tech Rpts 957 and 983) with respect to 
the doumwash field behind the wing. This field is somewhat 
different from that at subsonic speeds; the induced drag as 
such is essentially equal to that at subsonic speeds, however. 
c) Physical aspects of lift generation at supersonic speeds 
are also considered by vonKarman in J.Aeron.Sci.1947 
p.383. The trailing vortex pattern is naturally confined to 
the space within the Mach cone originating from the frontal 
projection of the wing. Far behind the wing, the same pair 
of vortices will remain as in subsonic (uncompressed) 
fluid flow. 

(53) Theory of supersonic finite-span wings: 
a) Schlichting, Finite Aspect Ratio, NACA T.Memo 897, 
corrected presentation by Taunt-Ward in ARC RM 2421. 
b) Bonney, Rectangular Wings with Finite Aspect Ratio, 
J.Aeron.Sci.1947 p.110; also in his book (l,b). 
c) VonKarman, as in footnote (52,c). 
d) Nielson, AR and Taper, NACA T.Note 1487 (1947). 

(54) Notes on characteristics of finite-span wings: 
a) The transonic and supersonic mechanics of slender 
wings are derived and expounded in the publications listed 
in footnotes (70,a) and (74,b) of Chapter XVI. 
b) The constant of equation 66 is 2, instead of 0.5 fT as 
in small-aspect-ratio wings in uncompressed fluid flow. 
c) By cutting off the triangular wing tip portions in figure 
20, the added drag due to finite aspect ratio can theoretically 
be eliminated. Theory does not give any information, how¬ 
ever, on the parasitic type of drag possibly originating from 
the lateral edges of such a plan-form shape. 
d) The wing-tip wave drag might also be eliminated by 
end plates; see J.Aeron.Sci.1956 p.808 on this subject, and 
NACA Document RM E53A02 (at M = 2). 

In Two-Dimensional Flow. Equation 30 can readily 

be applied to a flat plate inclined against the fluid 

flow by an angle of attack. The resulting positive 

pressure on the lower side together with the negative 

component on the upper side give the lift coefficient 

CL = 4 cx tan/i; dCL/do< = 4/Vm2- 1 (55) 

Since the pressure forces are necessarily normal to 

the surface of the plate considered, the “lift” presents 

a component in the direction of flow, namely the 

drag due to lift, the coefficient of which is 

CQ|_ = Cl<X = 4cX2tan/u (56) 

After replacing oC by Cl (as per equation 55) drag 

due to lift in two-dimensional supersonic flow corre¬ 

sponds to 

CDL = 0 25 CL/tan M = 0 25 CL Vm2 - I 

As in uncompressed fluid flow, the drag due to lift is 

proportional to the square of the lift. It is always 

larger than the induced drag (as indicated by lifting¬ 

line theory; Chapter VII); and it does not reduce to 

zero as the aspect ratio is increased to infinity. Since 

(in supersonic flow) lift and wave drag are but two 

different components of one and the same pressure 

forces, they can be predicted from eaiih other. Com¬ 

bining equations 55 and 57, drag due to lift is thus 

found to be 

dCDL/dC2 = d(X/dCL = 0.25 \/ M2- 1 (58) 

Some experimental results on airfoils (tested be¬ 

tween tunnel walls and/or in higher aspect ratios) 

are plotted in this form in figure 22. 

Total Drag. As far as skin friction is concerned, a 

basic component must be considered in the form 

of 2 C.p where Cp= coefficient to be determined 

through application of figure 3 (or possibly of figure 

2). “Viscous” effects also reduce lift, so that the drag 

ratio dCD/dCL as in figure 22, is between 10 and 15% 
higher than predicted by theory. Within the bound¬ 

aries of linearized supersonic theory, the wave drag 

due to lift can be added to that caused by thickness. 

The sum of equations 32 and 57 then presents the 

total pressure drag of straight wings having higher 

aspect ratios. 

Lift (Aspect Ratio). Equation 57 (correct for A—>- <*=) 

may for practical purposes be applied in higher as¬ 

pect ratios. As pointed out in (53) some flow around 

the wing tips takes place, however, within the shaded 

triangular areas as in figure 20, from the pressure to 

the suction side. As a consequence, the pressure differ¬ 

entials due to angle of attack on these wing-tip por- 
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• BRITISH RAE TESTS (61.i) 
o VARIOUS SOURCES (NACA) 
A dC^/dCD AT M-1.5 (55,b) 

5 

Slender Wings. Figure 21 also represents the range 

of small-aspect ratios, below unity and approaching 

zero (54,a). The lift-curve slope is here simply 

dCL/do! = 2 A (66) 

This function is identical with that for slender wings 

at subsonic speeds (see Chapter VII) except for the 

constant (54,b). Drag due to lift is again a component 

of the normal force, due to lift of slender wings: 

dC0/dCL = 0.5/A (67) 

' / 

0 2 

ASPECT-RATIO PARAMETER fWn2-1 

4 6 8 

—s- applies to A’ratios corresponding to A V M2— 1 

< 1. The similarity of the graph (figure 21) with 

(and/or the differences against) that in figure 47 of 

Chapter XVI (representing “delta” wings) should be 
noted. 

Figure 21. Lift-curve-slope of straight (rectangular) wings at 
"supersonic” Mach numbers (above shock-wave attachment) as a 
function of their aspect ratio. 

tions, are on the average only half as large as in two- 

dimensional flow. The lift of the wing is reduced 

(54,c) accordingly, corresponding to 

Acl/GL~ = - °-5 (A\/M2-l) (64) 

Figure 20 demonstrates that this function is different 

from that indicating drag due to thickness. — Upon 

reducing the lift-curve slope, wave drag due to lift 

(as in the left part of equation 58) is increased; 

namely in proportion to 

(dCD/dC2L)/(dCD/dc5co= 2/(2 - (l/\Jmz— l' A)) 

Figure 21 shows (again) that tested lift-curve slopes 

and/or experimental values of the drag-due-to-lift par¬ 

ameter (dCjVdCD) are 10% below the theoretical 

function. 

Ring-Shaped Wings (in form of a cylindrical piece of 

shell) are analyzed and/or tested in (56). As long as 

the diameter/chord ratio 

d/c > tan jx m, l/\J M2— 1 (68) 

the wave drag due to thickness of such wings may be 

equal to that of the respective airfoil section as in 

two-dimensional flow. Analysis (56,a) predicts that 

the ring’s lift corresponds to 

dCL/dct= 2/\j M2— 1 (69) 

where Cl is based upon the developed wing area 

(dire). In this definition, thus the lift-curve slope 

is 1/2 that of a wing in two-dimensional flow as indi¬ 

cated by supersonic theory (equation 55). Drag due 

to lift of the ring foil at truly supersonic Mach num¬ 

bers is Dl = cX L; thus: 

dCD/dC^ = 0.5 \/m2- 1 (70) 

(a) At Subsonic M'numbers: 
a 63A006 on Bump (38,c) 
a 63A008 Cylinder (58,a) 
■ Ditto, A = 4, Drog — f(lift) 

(b) "Lift Angle” Results: 
• 65A006, A'ratio = 4 (61 ,h) 
6 8% Double Wedge (61,f) 
+ Between Tunnel Walls (58,b) 

(c) Drag-due-to-Lift Results: 
* Guidonio Sections (55,d) 
♦ 8% Double Wedge (61,f) 
a 6% D'wedge Section (32,f) 
o From Various Other Sources 

Figure 22. "Lift angle" and drag due to lift of air¬ 
foil sections and of straight wings at 
transonic and supersonic Mach numbers. 
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(B) DRAG DUE TO LIFT AT TRANSONIC 

SPEEDS 

Flow Pattern. At transonic speeds (where the bow 

shock wave is detached) some flow is expected to 

take place around the leading edge of airfoils. The 

corresponding suction force not only affects lift and 

lift-curve slope, it also tends to reduce drag due to 

lift, particularly in round-nosed sections. Similarity 

laws such as in (60,c) are again available, suitable to 

correlate transonic results. In regard to drag, con¬ 

ditions are complicated, however, by presence and 

interference of the boundary layer. Only a more 

qualitative presentation can therefore be made in the 

following paragraphs. 

(55) Experimental results on supersonic lift and drag: 
a) Gooderum, D’Wedges at M = 1.3, NACA T.Note 3626. 
b) Nielsen, Aspect Ratio, NACA Document RM A8E06. 
c) Vincenti, Comparison, NACA T.Rpt 1033 (1951). 
d) Ferri, Guidonia Tunnel Results, NACA T.Memo 946. 

(56) Characteristics of ring-shaped "wings”: 
a) Mirels, Drag and Lift Theory, NACA T.Note 1678. 
b) Ribner, Journal Aeron.Sciences 1947 p.529. 
c) Ehlers, With Cylinder Body, J.Aer.Sci.1955 p.239. 
d) Nordstrom, Body Interference, ZFW 1956 p.272. 
e) See also "shrouded” bodies in Chapter XVI, (81). 
f) See also ring wings in Chapter VII, footnote (28). 

(58) Wings at high subsonic Mach numbers: 
a) Allen, Various A'ratios, NACA Doct. RM A53C19. 
British ARC, "Memos" 7308, 7703, 7705 (1943/44). 
c) Stivers, 64A-Series Sections, NACA T.Note 3162. 

(60) Lift analysis at transonic speeds: 
a) Guderley, at M = 1, J.A.Sci.1953 p.757 (Wedge), 
1954 p.26l (Plate), 1956 p.96l (A’ratio). 
b) Vincenti-Wagoner, Transonic, NACA T.Rpt 1180. 
c) Harder, Similarity, NACA T.Note 2724 (1952). 
d) Spreiter, Similarity, NACA T.Note 2273(1951). 
e) Spreiter, Analysis at M = 1, NACA T.Note 3970. 

(61) Experimental results on wings at transonic speeds: 
a) Vincenti, D'Wedges, NACA T.Note 3225 (1954). 
b) McDevitt, Similarity Correlation, NACA T.R. 1253. 
c) Gooderum, Lifting D'Wedges, NACA T.Note 3626. 
d) Nelson, 36 Wings on Bump, NACA T.Note 3529. 
e) Mellenthin, 0015 on Bump, NACA T.Note 3036. 
f) Vincenti, D'Wedge Wing, NACA T.Note 3522. 
g) Nelson, 38 Cambered Wings, NACA T.Note 3502. 
h) Sleeman, In Transonic Tunnel, NACA RM L51F14. 
i) Orman, Wedge, Proc.R.Soc.London A 1951, 1098 p.309. 
k) See also footnotes (32) (33) (35) (36) (38). 

(62) Information on the Atlas launch vehicle: 
a) Atlas-Mercury performance; various NASA publications. 
b) Fuller, Model Investigation, NASA T N D-1497 (1962). 

Drag and Lift. Figure 22 gives a general survey on 

“lift angle” and drag-due-to-lift parameter as a func¬ 

tion of Mach number: 

(a) At subsonic speeds, drag due to lift (induced 

drag) is a function of aspect ratio. The drag para¬ 

meter is different from the lift-curve slope. 

(b) Approaching M = 1, the drag due to lift ratio 

increases appreciably. Suction around the leading 

edge is evidently lost in this phase, so that the value 

of dCg/dCL grows until it equals that of da' /dCL, 

as in flat and sharp plates (see Chapter VII). 

(c) Conditions at and in the vicinity of M = 1, will 

be discussed in the next paragraph (below). 

(d) At certain supersonic Mach numbers (see figure 

25 in Chapter XVI) the bow shock wave attaches it¬ 

self to the leading edge of wedge-type foil sections. At 

or shortly below these M’numbers, theory (60) pre¬ 

dicts a maximum suction force to develop around the 

L’edge. Figure 22 gives proof that this effect can 

actually take place (though to a degree appreciably 

below the theoretically possible). The graph shows, 

on the other hand, that suction does not develop at 

any M’number, in a particular round-nosed foil sec¬ 

tion as tested. In this case, we can then expect that 

dCD/dC^ = da/dCL. 

(e) Finally, at “supersonic” speeds (above M^=1.4 

in figure 22) drag due to lift is as explained in the 

preceding section of this chapter. 

The Aspect Ratio governs, of course, the drag due to 

lift at subsonic speeds (below Mcr;b). Its influence 

at “supersonic” Mach numbers is as shown in, and ex¬ 

plained in connection with figure 21. Experimental 

results on a family of round-nosed wings (61,b) at 

transonic speeds and at M = 1 in particular, are pre¬ 

sented in figure 23. Conclusions are as follows: 

(a) At aspect ratios of and below unity, slender-wing 

theory (54,a) applies again. We see that wings with thin 

and/or cambered foil sections more or less follow the 

straight line representing 

dCD/dC|L = 1/ir A (70) 

which is simply the subsonic type of induced drag 

(see Chapter VII). 

(b) Where leading-edge suction does not develop, 

drag due to lift in slender wings is twice as high as 

the induced drag. This result is identical with that 

of sharp and flat plates (see again Chapter VII) where 

D = L tan <X. We see in figure 23 that a wing with 

63A010 foil section switches from one condition to 

the other, between A = 1 and 2. It is also suggested 

that wings with sharp leading edges (with double¬ 

wedge sections, for example) may not develop much 

of a thrust due to nose-suction. 
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• Between 2 and 4% Camber (38,b) 
o Straight Foil 63A00X (38,b) 
x Ditto, Lift-Curve Slope dot/dCi, 

Figure 23. Drag-due-to-lift function of a family of rect¬ 
angular wings (61,b) at M ~ 1. Note that the inverse of 
(<1Cd/(1Cl ) is plotted so that the limiting straight-line 
functions are obtained as in the left side of the graph. 

(c) Between small and large aspect ratios, we have a 

transition in figure 23 similar to that at “supersonic” 

speeds (figure 21). 

(d) Conditions at larger aspect ratios rapidly ap¬ 

proach those in two-dimensional flow. Transonic 

theory (60) predicts here that 

do(/dCL = (1/3) ((k + l)M2(t/c)) (72) 

Under conditions where thrust due to suction around 

the L’edge does not develop (such as in wings with 

sharp edges) the drag-due-to-lift parameter may thus 

be expected to increase at the same rate as the “lift 

angle” i.e. in proportion to (t/c)^3 and in proportion 

to M2/3. 

lift coefficient is small. If furthermore taking into 

account the presence of frictional drag (in the wing 

as well as in the fuselage or body of the configuration 

considered), we may then very well assume that at lift 

coefficients of and below 0.1, the total drag coefficient 

of the vehicle be ~ constant. As a consequence, 

L/D = Cl/Cd~Cl (74) 

at constant Mach number, and for C|_ values below 

0.1 or below 0.2 at the most. Assuming next a rough 

value for dC^/dC2 (as for instance on the basis of fig¬ 

ures 22 or 23) we may extend our practical estimate 

to still higher lift coefficients, and to other Mach num¬ 

bers. 

6. DRAG OF ROCKET VEHICLE 

Cone-cylinder configurations are discussed in Chap¬ 

ter XVI. Their drag consists of wave drag originating 

at the nose, skin friction developing along the cylin¬ 

der, and of some base drag. 

Rocket Vehicles usually consist of a conical nose, of 

a cylindrical main body, and of certain appendages 

needed in their operation. A model of the Atlas ve¬ 

hicle shown in figure 24, was tested at Rj — 7 (10) , 

and at M between 1.5 and 4.6. Without the capsule 

(but with an essentially conical “payload”) drag at 

M = 1.9 is estimated to correspond to the coefficients 

listed in the illustration. The base area of the two 

shrouds (needed to keep low the hinge moments of 

the swivelling.rocket nozzles) is about 40% of that 

of the main body. A component of 0.10 can be at¬ 

tributed to the instruments, actuators and fuel lines 

on the outside of the vehicle. 

Foil-Section Camber. On the basis of the last equa¬ 

tion, experimental results can be correlated with each 

other, in regard to thickness ratio (as done indeed in 

reference 61,b). Presentation as in figure 23 demon¬ 

strates more directly the influence of thickness, how¬ 

ever; and it also shows that camber has an influence 

of the same, or of an even larger magnitude than 

thickness. The horizontal lines shown in the right 

side of the graph are extrapolated values; they agree 

by order of magnitude with two-dimensional trans¬ 

onic theory (60). 

Practical Approach. Taking into account all the para¬ 

meters considered in the last paragraphs, drag due 

to lift at transonic Mach numbers is found to be a 

complex subject. Inasmuch as this component of drag 

grows in proportion to the square of the lift, it is of 

lesser importance, of course, in such designs of air¬ 

planes and/or other supersonic vehicles, in which the 

Figure 24. Full-scale 
dimensions of the 
Atlas D liquid-fuel 
launch vehicle (62) 
with a manned Mercury 
space capsule on top. 
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CHAPTER XVIII - DRAG CHARACTERISTICS AT HYPERSONIC SPEEDS 

The term “hypersonic” indicates the range of higher 

supersonic Mach numbers. Hypersonic speeds are 

usually said to be above M — 5. Experimental re¬ 

sults have recently become available up to M above 

20. There are two types of such results, however. 

In most of the tests, high temperatures are simply 

avoided, so that the same gas (air) is involved as at 

transonic and lower supersonic speeds. In fact, prac¬ 

tical applications at or above M = 5, may only be 

possible in the higher layers of the atmosphere, 

where heating is only a fraction of what it is near 

sea level. In some other types of hypersonic flow, 

temperature rises to such extreme levels, however, 

that the chemical or molecular constitution of the 

air (gas) changes. Presentation in this chapter leads 

from supersonic to the “harmless” type of hyper¬ 

sonic results. The so-called real-gas effects are then 

discussed in a more qualitative manner. 

(5) Theoretical foil characteristics at hypersonic speeds: 
a) Tsien, Similarity Law, J.Math.Phys.1946 p.247. 
c) An intelligible explanation of shock- and expansion 
pressure forces in hypersonic flow is given in (l,b) XVII. 
d) Eggers, Hypersonic Theory, NACA T.Rpts 1123 and 
1249; J.Aeron.Sci.1955 p.231, NACA T.Note 3666(1956). 
e) Dorrance, Moderate Hypersonic, J.A.Sci. 1952 p.598. 
f) Hamaker, Similarity Law, NACA T.Rpt 1147. 
h) Flanagan, Review of Theory, J.A.Sci.1953 p.150. 

(6) Hypersonic characteristics of cones and bodies: 
a) See footnotes (40) and (41) in Chapter XVI. 
b) VanDyke, Hypersonic Cone Theory, J.A.Sci.1954 p.179 
(also 1951 p.499); see also NACA T.Rpt 1194. 
c) Seiff, 30° 60° 90° Cones, NACA RM A52Al4b. 
d) Eggers, Ogives, NACA T.Rpt 1249 (1955). 
e) Eggers, Minimum Drag, NACA T.Rpt 1306 (1956). 
f) Similarity rules for bodies of revolution are basically 
given in terms of or tan 6 = d//. VanDyke (b) 
has found, however, that at hypersonic speeds, use of the sine 
function gives best correlation. 
g) Miele, Minimum Drag Bodies, AIAA Journal 1963 p 168. 

(7) Fin-stabilized free-flight investigations: 
a) Morrow, Two 6% Thick Sections, NACA TN 3548. 
b) Lina, Wing With 6% Double Wedge Section, L9A12. 

(8) NACA, wind-tunnel investigation of airfoil sections: 
a) Syvertson, 6% Biconvex Section, RM A53B02. 
b) Czarnecki, Circular Arc with TE Flap, RM L50J18 & 19. 
c) Goin, Various Wings with Blunt T’Edges, RM L53D13. 
d) Ridyard, With T’Edge Flap at M = 6.9, L56B24. 

(A) DRAG OF AIRFOIL SECTIONS 

Similarity Parameter (5). Hypersonic characteristics 

of airfoil sections (and of slender bodies of revolu¬ 

tion) are classified by the parameter 

'H’= (£ M) or (t/c)M or (d/ji) M (1) 

We must thus conclude that besides high speed (M) 

a certain thickness ratio (t/c or d/Jt) is also necessary 

to produce “hypersonic” fluid-flow conditions. It can 

then be postulated that such characteristics will ap¬ 

pear in a less slender body at smaller M ’numbers than 

in a more slender body. If assuming that “hyper¬ 

sonic” type of flow is established when the similarity 

parameter above, is equal to unity, a Mach number 

M = 10 is obtained, for example, for a thickness 

ratio of 10%. This type of definition does no longer 

hold, however, for bluff and/or blunt bodies such as 

for example a sphere (having a thickness ratio d/l 

= 1). A qualitative condition for hypersonic type of 

flow may, therefore, said to be the presence of a com¬ 

paratively narrow space between body surface and 

forward shock wave. Whether attached (as in slender 

and pointed shapes) or detached (as in bluff shapes) 

that bow wave is at hypersonic speeds somehow 

“wrapped around” the obstacle in a manner related 

to a Mach angle which is, for example at M = 10, 

approximately equal to 1/M = 0.1 ~ 6°. These »-6 

degrees are also ~ equal to the surface slope of a sym¬ 

metrical 10% thick double-wedge foil section; and 

that is the physical meaning of the definition men¬ 

tioned above, involving a hypersonic similarity para¬ 

meter equal to unity. 

Drag Due to Thickness. Because of the narrowness of 

the space between shock wave and a foil section’s 

surface, in hypersonic flow, certain second-order 

terms usually neglected in thin-airfoil supersonic 

theory, take on a greater or possibly predominant im- 
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<> 9% Biconvex XVII <43,f) 
+ ARC Various (32,i) 
• NACA M = 6.9 (10,a) 
* NACA t/c = 7.8% (32,h) 
O Others (NACA and ARC) 

Figure 1. Wave drag of symmetrical airfoil 
sections presented in form of super- 
hypersonic similarity parameters. 

portance. Both the positive pressure aft of the shock 

wave on the forebody of slender foil sections, and the 

negative pressure behind a Prandtl-Meyer type of ex¬ 

pansion, can be correlated against the similarity par¬ 

ameter as in equation (1). It has been pointed out 

(6 ,b) however, that hypersonic pressure or drag co¬ 

efficients can be combined with supersonic charac¬ 

teristics, when plotting them against the parameter 

“H” = £ /M2 - 1 (2) 

where £ = t/c. In terms of hypersonic similarity, the 

pressure-drag coefficient of the double wedge as indi¬ 

cated by equation 31 in Chapter XVII, is: 

Cd./€2 = 4/“H” = 4/(S M-l ) (3) 

Double Wedges. Experimental pressure results ob¬ 

tained on various double wedges, are plotted in 

figure 1, against 1/‘H’, so as to make the basic func¬ 

tion of the drag coefficient a straight line. Hyper¬ 

sonic theory (5,a,d,e) including higher-order terms, 

predicts for fore — or afterbody of a double-wedge 
section: 

Cp = (2/M)£ + 1.2 £2 + 0.4 Me3 (4) 

Note that S is positive in the forebody, and negative 

in the afterbody. The total pressure drag of D’wedge 

sections then corresponds approximately to 

CD>/ (t/cf = (4/‘H’) + °.8 ‘H’ (5) 

Using equation (2) with £ = t/c, we obtain 

CD , = 4 (t/c)/M + 0.8 (t/cf M (6) 

For small thickness ratios, this equation can be writ¬ 

ten as 1/M. It then follows that wave drag is 

approximately D ~ VZ/M ~ V. This is one of the 

exceptions where drag is not proportional to the 
square of the speed. 

Afterbody Drag. Equation (4) is plotted in figure 2. 

This graph is of the same type as that in figure 16, 

in Chapter XVII. Experimental results obtained on 

a double-wedge surface confirm the theoretical 

function very well at M = 5. At negative angles (in 

the afterbody) exceeding some 5°, the presence of the 

boundary layer evidently reduces the value of the 

negative pressure coefficient considerably. At M — 

8, the boundary layer also seems to affect the pres¬ 

sure in the forebody. The displacement due to the 

layer increases the effective surface angle, particu¬ 

larly between T = 0 and 10°. With or without 

boundary layer, figure 2 demonstrates the fact that 

the pressure-drag coefficient in the forebody of a 

double wedge increases with a higher power of (t/c). 

At the same time, the coefficient reduces in the af¬ 
terbody. As pointed out in (14) it can be said that 

above ‘H’ = 1, the afterbody pressure corresponding 

to 

CDP./(t/c)2 is by (k + 1) = 2.4 (8) 

smaller than that of the forebody. As a consequence, 

the afterbody drag reduces to zero, as “H”—*- oo. This 

one reduction is of the same nature as that of the 

base-drag coefficient; see figures 2 and 11 in Chap¬ 

ter XVI. 
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M = 8 
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SURFACE ANGLE T 

Figure 2. Pressure coefficient at the surface elements of wedges or 
fiat plates, tested (10, f) at hypersonic speeds. 
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Single Wedge. As a consequence of what is ex¬ 

plained above, a single wedge (with a blunt trailing 

edge) has less drag at hypersonic speeds than a 

double-wedge section having the same thickness 

ratio. For a single wedge, the half-vertex angle is 

tan£ = 0.5 t/c. The equations above then indicate 

a forebody drag corresponding to 

CD./(t/cf= (0.5/‘H’) + 0.3 + 0.1 ‘H’ 

For hypersonic M’numbers (where 7M2 — 1 ~ M) 

this equation reduces to 

C-. = (t/c)/M + 0.3 (t/c)2 + 0.05 (t/c)3M 
(11) 

A Narrow Wedge is shown in figure 3, tested in 

comparison to a ^4 power “conical” body having the 

same length ratio Jl/b. If increasing the thickness 

of the wedge so that it has the same volume as the 

“cone”, the drag coefficients can be expected to be 
approximately alike. However, if increasing diam¬ 

eter and length of the “cone” (by a factor in the 

order of 1.4) so that it produces the same lift as the 

wedge, when at an angle of attack, its drag (in 

pounds) would approximately be doubled. 

Figure 3. Forebody drag coefficient of a narrow wedge (11) in 
comparison to that of a cone-like body having a diam¬ 
eter equal to the width (span) of the wedge. 

(9) Magnitude of skin friction at supersonic speeds: 
a) Jack, Slender Body at M = 3.1, NACA RM E51H13. 
b) Kayser, AGARD Model at M = 8, Arnold Center AEDC 
TN-1960-34; also Mathews, At M = 10, TDR-1964-31. 

(10) Lifting wedges and plates at hypersonic M'Numbers: 
a) Linnell (MIT) in J.Aeron.Sci.1949 p.22; also "Super- 
Hypersonic Formulas", 1956 p.398. 
c) McLellan, 5% Wedges at M = 6.9, J.Aeron.Sci.1951 
p.64l; additional results in NACA RM L.51D17. 
d) Tellep-Talbot, Plates, J.Aeron.Sci.1956 p.1099. 
e) Linnell, Analysis of Lifting Flat Plate in Hypersonic 
Flow, J.Aeron.Sci.1949 p.22 and 1956 p.398. 
f) Randall, Pressure, Arnold Center AEDC TN-1960-173. 

(11) Resnikoff, Narrow Wedge Comparison, NACA A54B15. 
(12) Hypersonic characteristics of "ogival” nose bodies: 

a) Theory of optimum bodies in reference (6). 
b) Dennis, Family of Shapes, NACA RM A52E22; also (f). 
c) Jack, Slender Nose Bodies, NACA RM E53J27. 
d) Kayser, Wing Body at M = 8, AEDC TN-1960-34. 
e) Okauchi, Pressure Distribution, NAVWEPS Rpt 8048. 
f) Perkins, Slender Noses to M = 7, NACA T Rpt 1386. 
g) Neice, Cones and Ogives, NACA Memo RM A52K07. 

[__| ///,,.. t \ /f/''/////1'(/''• 'Si '/ i I 
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Figure 4. Total drag coefficient of 6% thick double-symmetric 
sharp-nosed airfoil sections, tested from transonic to hy¬ 
personic Mach numbers. 

For Double-Arc or biconvex sections, an approxi¬ 

mate solution (5,e) indicates the pressure-drag co¬ 

efficient 
CD#^5(t/c)/M + 2(t/c)3M (13) 

Experimental results in figure 4 confirm this func¬ 

tion, when assuming a reasonable value for the co¬ 

efficient representing skin friction. 

Skin Friction drag can be very small in comparison 

to supersonic and hypersonic pressure drag. In slen¬ 

der sections, the wetted surface area is large, how¬ 

ever, in comparison to the frontal area. Skin friction 

was measured in (9,a) on a slender ogive-cylinder 

configuration at M = 3.1. Transition from laminar 

to turbulent boundary-layer flow, takes place at 

~ 4 (10)6. In laminar condition (around R* = 

2 (10)^) the coefficient is in the order of = 0.001, 

while at R’numbers above transition, the coefficient 

is between (1.5 and 2.0)/1000. — The variation of 

the turbulent coefficient with Mach number is pre¬ 

sented in figure 3, on page 17-4. The contribution 

of skin friction to the drag of a slender airfoil sec¬ 

tion generally corresponds to 

ACd#=2 Cf(c/t) (14) 

This equation also applies for cones (to be discussed 

later) if replacing (c/t) by the fineness ratio (i/d). — 

The type of skin friction presented in this para¬ 

graph, originates at higher Reynolds numbers and 

in the “harmless” variety of hypersonic flow (where 

high wall temperatures are avoided). More severe 

influences of viscosity are discussed later, in con¬ 

nection with “heat” and with “rarefaction”. 
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At “H”—>■ co. The second-order function as indi¬ 

cated by equation (4), is of practical importance not 

only at hypersonic speeds, but also within the range 

of moderately high Mach numbers. This is demon¬ 

strated in connection with figure 16 in Chap XVII. 

Equations (4) through (9) are not complete, however. 

The permissible limit of their application may be 

at “H” = 2. Limiting values for the drag of double- 

symmetric sections are indicated in figure (1) (at 

1/‘H’ = 0). The pressure drag of a double wedge 

(equal to that of the forebody) then corresponds to 

CD. = 2.4 (t/cf (17) 

Note that this coefficient increases in proportion to the 

square of the (t/c) ratio. Drag values of wedges or 

cones, predicted by inviscid theory for M —*- oo (or 

for l/'H’—>-0) are completely academic, however. 

Presence and progressive growth of the boundary 

layer along the surface of these bodies have a very 

strong influence upon flow pattern and aerodynamic 

forces. — As stated in (10,e) the pressure at a flat 

surface (such as a flat plate) at M ——> oo, corre¬ 

sponds to the coefficient 

Cp = (k + 1)t2 (18) 

where X as in figure 2. For k = 1.4 as in ordinary 

air, this function has the same constant as equation 

(17). It applies only for positive surface angles, how¬ 

ever, while the pressure differential for negative 

values, such as in the afterbody of a double wedge 

or at the upper side of a lifting flat plate, is expected 

to be zero. — When considering the drag of a wedge 

section, the last equation shows that both the com¬ 

ponent due to thickness and that due to lift, grow 

with the square of the surface angle. It is not permis¬ 

sible, therefore, to compute the two and then to add 

them to each other. Rather, the pressure on each 

part of the surface has to be determined through the 

use of equation (18), in order to obtain lift as well 

as pressure drag. 

(B) CONES AND SIMILAR BODIES 

Cones (and other three-dimensional slender shapes) 
follow the same type of hypersonic similarity law as 

foil sections. Their drag is presented in this form 

in Chapter XVI (see figure 27 there). As long as 

the pressure distribution along the surface of a cone 

(at zero angle of attack) is constant, pressure drag 

can easily be measured. The formulation derived 

in Chapter XVI (equation 29) is well confirmed by 

experimental points (in figure 23, in that chapter) 

up to M 8. We are also in a position to check 

the equation against experimental results reported 

(24,b) for a cone with £ = 9°, tested in a nitrogen 

tunnel (in “cold” condition) at Mach numbers be¬ 

tween 15 and 19. After extrapolation to zero vis¬ 

cosity, the following comparison is obtained: 

CD = 0.063 experimental pressure drag 

CD# = 0.054 calculated (equation 29) 

Of course, when including some viscosity, forebody 

drag is increased, particularly for the slender cone 

considered. — As a function of cone angle, figure 5 

presents total drag coefficients tested at Mach num¬ 

bers almost equal to 7. Since the experimental re¬ 

sults are somewhat below the values indicated by 
equation (29) in Chapter XVI, the following formu¬ 

lation of pressure drag may also be used: 

CE> = 2 sin2e+ 0.5 sins/^M2— 1) (19) 

Optimum Shapes (Theory). — A large bibliography 

is available on the subject of three-dimensional bodies 

moving at hypersonic speeds (6) in essentially in¬ 

viscid fluid flow. Newton’s principle of momentum 

transfer (see Chapter XIX ) has been re-examined 

(4 l,b). It is found to apply at M —»- co, for k = 1 or 

for small values of (k — 1)/ (k -f 1). In case of a para¬ 

bolic shape (corresponding to equation (23) the 

drag coefficient in axisymmetrical flow is 

CD.= (y/xfn2(3n - l)/(2n - 1) (20) 

For n = 1, representing a straight cone, we then ob¬ 

tain CD>= 2 (y/xf — 2 £2 as in hypersonic analysis 

(Chapter XVI). The optimum shape (giving a min¬ 

imum CqJ as found through application of the 

0.2 

1 
sru-raicTicw dbas 

HALF VERTEX ANGLE £, 

Figure 5. Forebody drag coefficients of several series of cones, 
tested at Reynolds numbers in the order of R^ = 106. 
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(0.092) 
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00IVAX 
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Figure 6. Forebody drag coefficients of a series of "conical” nose 
shapes, tested (12,b) at Mach numbers between 3 and 5. 

Ogives. The drag of an ogival or otherwise curved 

half-body shape cannot easily be tested by pressure 

distribution. When measuring by means of a bal¬ 

ance, skin friction and base drag are included in 

the results. Forebody drag coefficients are listed in 

figure 6 for three shapes differing from that of the 

cone. Two of these shapes are defined by the func¬ 

tion of the radius: 

r/(d/2)= (x//) (23) 

equation, corresponds to n = 2/3. Its drag is (in non- 

viscous fluid flow) expected to be 2/3 of that of the 

straight cone. For specific heat ratios other than “1”, 

a second-order term appears, depending upon the 

ratio “c” = (k — 1)/ (k 1). The pressure on the 

surface of slender cones then corresponds to 

Cp= C0#= (2 + 0.5 “c”) S2 (22) 

which yields for k = 7/5 (as in air) the terminal co¬ 

efficient of Cp= 2.08 e2 (43). The hypersonic flow pat¬ 

tern (including shock front and “shock layer”) is 

different, of course, from that in free-molecule flow. 

Similarity is solely based upon the principle of mo¬ 

mentum transfer — from the gaseous stream normal 

to the solid surface. 

(13) Experimental characteristics of cones: 
a) Cooper, Series of Cone Cylinders, NACA RM L51J09. 
b) Ladson, Series of Cones, NASA TN D-1473 (1962). 
c) Penland, Lifting Cone Cylinders, NASA TN D-840. 
d) Peckham, Slender Cones, RAE Rpt Aero-2863 (1963). 
e) Jack, 5 Cone-Cylinder Bodies, NACA RM E52C10. 
f) See also references (41) in the "supersonic” chapter. 

(14) Reymond, Hypersonic Cone Theory, J.Aeron Sci 1957 p 389. 
(15) Influence of blunting the tip of slender "cones”: 

a) Sommer, Truncated Cones, NACA A52B13; see (12,f). 
b) Whitfield, Viscosity, AEDC TDR-1963-35 & 1964-1. 
c) Jack, Cone-Cylinder Bodies, NACA RM E52C10. 
d) Rounded cones have an advantage over pointed ones in 
regard to heat transfer at re-entry into the denser layers of 
the atmosphere; Allen's Wright Brothers Lecture (1957). 

(17) Free-flying configurations at hypersonic speeds: 
a) James, Fin-Stabilized Body, NACA RM A53D02. 
b) Ulmann, Ballistic Missiles, NACA RM L54D. 
c) Bixler, Missile Bodies, Nav Ord Lab T Rpt 1961-96. 

(19) Boundary layer shock interaction: 
a) Lees, Evaluation, J.Aeron.Sci.1951 p.195. 
b) GALCIT, BL-lnduced Pressure, J.A.Sci. 1955 p.165. 
c) Kuo, Along Plate, J.A.Sci.1956 p.125 and 977. 
d) Kendall, Experiments, J.Aeron.Sci. 1957 p.47. 
e) Erickson, Shock Pressure at M to 18, NACA TN 4113. 

where n = exponent, producing the type of curva¬ 

ture. Drag is lowest for the 3/ power body. The 

blunt-nosed i/2 power shape does not have higher 

drag than the cone. 

Blunted Cones. When blunting the tip of a slender 

cone, a shape is obtained, very roughly approaching 

that of certain parabolic bodies. Total drag coeffi¬ 

cients are plotted in figure 7, for a series of blunted 

cones having a constant fineness ratio i/d = 3. At 

M between 6 and 7, minimum drag is obtained for 

a bluntness ratio around 10%. Results are also 

plotted for M = 3, and = 2. It is seen that the op¬ 

timum bluntness ratio increases as the Mach num¬ 

ber is reduced. For example at M = 2, minimum 

drag is found between 15 and 20% bluntness. At any 

rate, some bluntness is not only permissible but even 

desirable. Considering frontal area, the blunt por¬ 

tion evidently contributes less than the conical parts. 

In a two-dimensional shape, such as a wing section 

for example, the same type of blunted and/ or curved 

form would not result in forebody wave drag, less 

than that of a wedge. 
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(C) FREE-FLYING CONFIGURATIONS 

Skin Friction. A fin-stabilized body is shown in fig¬ 

ure 8, flight-tested at Mach numbers between 0.6 

and 10. Since the Reynolds number varies between 

1 and 16 millions, skin friction must be assumed to 

vary accordingly. The value of the drag coefficient 

due to friction, depends upon the location of bound¬ 

ary-layer transition. A possible assumption is that 

this transition takes place at the “shoulder” (junc¬ 

ture between ogive and cylinder). The fins can be 

assumed to have laminar flow. For example, at M — 

10, skin friction drag is then estimated to be as 
follows: 

a) Laminar component corresponding to Cr = 

0.0008, for Rx = 3 (10)®, reduced to 2/3 on ac¬ 

count of Mach number (see page 17-3) and cor¬ 

responding to an area ratio of the ogive and fin 

surface involved S^/S. 40. The result is Cn= 

40(0.0008)2/3 = 0.02. 

b) For turbulent flow along the cylindrical portion 

of the body, the coefficient is 0027, at R^ = 

16 (10)6. The reduction due to Mach number 

may be down to 0.3 (see figure 3 on page 17-4). 

For a wetted area ratio of 24, the turbulent con¬ 

tribution may then be C_ = 24 (0.0027) 0.3 m 

0.02. 

The combined skin-friction component is CD> = 

0.04, at M = 10. — No explanation has been found 

for the discontinuity of total drag around M = 6. 

Figure 8. Total drag coefficient of a fin-stabilized body tested in 
free-flight (17,a) at M'numbers between 0.6 and 10. 

A Ballistic Missile is shown in figure 9, tested in a 

wind tunnel, mounted on a sting. The small fins 

have a stabilizing area Sf = 1.9 S„, while the larger 

fins have Sp = 2.8 S.. The difference in total fore¬ 

body drag is small, however. — The considerably 

larger drag coefficient of model “C” corresponds to 

the comparatively blunt nose cone. For £ = 16°, 

figure 27 (on page 16-20) indicates for (M sins) = 

1.1, a pressure-drag coefficient CD> = 0.19. Most of 

the tested coefficient (0.21) is thus explained. 

Pressure Drag at M =10. For base drag, figure 2 

(on page 16-4) suggests a contribution of CQ> = 

0.02. The wave drag of the ogival nose, may be as¬ 

sumed to be equal to that of a cone with a half-vertex 

angle £ = 8°. On the basis of figure 27 (on page 

17-20) a coefficient 0.05 is then obtained. The 

fins have sections which are a combination of a 

wedge with a slab shape. The base area of the blunt 

trailing edges is almost i/£ of the body’s frontal area. 

The fin drag is assumed to correspond to CQ = 0.01 

(on body area). Summing up all drag components, 
we obtain for M = 10: 

C0>= 0.08 

CD*= 0.04 

Ca= 0.12 
C0.= o.ll 

for pressure drag 

for friction drag 

for total drag 

experimental result 

It is seen that the drag of the configuration tested, 
can reasonably well be estimated. 

Figure 9- Forebody drag coefficient of a ballistic missile (17,b) 
shown for three modifications of shape. 
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a) SPIXBD CYLINDER PIUS PIARK 

— f » 4.5 lnohes 

C. - 0.54 
Id - 1 in oh "* 

Figure 10. Drag characteristics of two "exotic” missile models, 
tested (17,c) in free flight, at M * 8, speed •« 6000 ft/sec, in air 
at about 1/3 of atmospheric pressure. 

(D) VISCOUS EFFECTS IN SLENDER SHAPES 

Hypersonic characteristics of slender shapes (wedges 

and cones) have been considered so far in this chap¬ 

ter, without taking into account the displacement 

of the boundary layer. Under favorable conditions, 

this approach gives realistic answers in regard to sur¬ 

face pressure and wave drag. Upon reducing the 

Reynolds number sufficiently far, presence of and 

thermodynamic effects within the boundary layer 

may exert a significant influence, however, upon 

flow pattern and drag. The principle consequences 
are: 

Missile Models. A number of “exotic” missile con¬ 

figurations was tested (17,c) at hypersonic Mach 

numbers between 8 and 15, in free flight along a 

hypersonic shock tunnel. The length of the models 

is between 4 and 5 inches. The model scale is stated 

to be between 1/6 and 1/8. The test conditions vary 

roughly as follows: 

a change of shock-wave shape, 

an increase of pressure drag, 
some increase of skin friction. 

(a) Characteristics of Two-Dimensional Shapes 

air density bewteen 0.01 and 0.05 lb/ft 

dynamic pressure between 0.06 and 1.60 lb/ft? 

stagnation pressure between 0.14 and 3.30 lb/ft? 

R’number on length between 2 and 15 106 

The flow velocity is near 7000 ft/sec; the stagnation 

temperature in the order of 2000° K. Unfortunately, 

the angle of attack of the models when tested, was 

up to 30°. Only two configurations are presented, 

therefore, in figure 10, with angles in the order 

of 10°. 

increased pressure 

BL Displacement. Skin friction as a function of M 

is presented in figures 2 & 3, Chapter XVII. Con¬ 

sidering, however, as an extreme example, a boundary 

layer at M = 10, the recovery temperature near or at 

the surface of the obstacle producing the B’layer (in 

the order of 90% of the stagnation temperature as 

in equ. 6, Chapter XVII) is equal to some 20 times 

the absolute temperature in the ambient air space. At 

constant pressure (equal to pamb) the density of the BL 

sheet closest to the body surface is accordingly reduced 

to ~ 0.05 of that in the ambient space; and the 

average displacement thickness of the boundary layer 

is increased to several or many times that in uncom¬ 

pressed fluid flow. At the end of a flat plate (at the 

station “x”) the displacement thickness of a laminar 

BL will then have reached the value of 

SA^ 0.4 x M2//R^ (24) 

*-x--I 

Figure 11. Flow pattern and pressure distribution de¬ 
veloping along a thin plate, including 
boundary layer and BL-induced shock wave. 

which is 4% of the plate’s length, on one surface of 

the plate, at M = 10 and at Rx = 10^, for example. 

The B’layer developing along the thin plate as in fig¬ 

ure 11 is thus the equivalent of an 8% thick single 

wedge or, more accurately, of a two-dimensional shape 

roughly equal to the forebody of a 4% thick double¬ 

arc or biconvex foil section. 
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Figure 12. Pressure along sharp-edged plates (in tangential flow) 
or along slender wedges or cones, induced by presence and displace¬ 
ment of a laminar boundary layer, at hypersonic speeds. 

B’Layer-Induced Pressure. Figure 11 shows that a 

bow wave forms around the boundary layer in a man¬ 

ner similar to that past biconvex, streamline-type or 

even round-nosed foil sections. As a consequence, 

there is then a positive pressure as indicated in the 

illustration, the magnitude of which (19) in laminar 

tangential fluid flow (along a plane surface), is ap¬ 
proximately . 

Cp =» 0.6 Mt/RK (26) 

This function not only indicates how pressure at a 

certain point varies with viscosity. Since the Rey¬ 

nolds number Rx is proportional to the distance x 

from the leading edge, in downstream direction, the 

function also expresses the fact that the pressure in¬ 

crement reduces in proportion to 1 />/x". In other 

words, the pressure due to boundary layer displace¬ 
ment is concentrated near the leading edge — al¬ 

though the evaluation describing Ap ~ \J 1/x, breaks 

down directly at the edge. As indicated by equation 

(10) on page 16-3, the ambient pressure pa is related 

to the dynamic pressure on which the coefficient 

Cp is based. If expressing the pressure differential 

discussed, in form of the ratio (^p/$,) the last equa¬ 

tion results in 
Ap/pQ«0.4M7/Rx (27) 

This is the form in which the analyses in (20) 

through (25) are presented. It is found, however, 

that equation (26) gives much better correlation, 

collapsing results on wedges and cones differing in 

vertex angle. 

B’Layer Viscosity. Equations (26) and (27) are not 

complete. As shown on page 1-11, the “absolute” 

viscosity ju increases with the temperature. A factor 

accounting for this variation has to be added, there¬ 

fore, in the theoretical analysis of boundary-layer 

induced pressure. However, temperature and vis¬ 

cosity are a function of the Mach number. As 

pointed out in (24,a) very good correlation of pres¬ 

sure and drag coefficients is obtained over a con¬ 

siderable range of M’ and R’ numbers, when using 

the parameter K = M3/V\/K^ ■ Pressure-differential 

coefficients in the form of Cp = Ap/q, are therefore 

plotted in figure 12, against this parameter. 

Heat Transfer. Depending upon the test conditions 

(as in wind tunnels) the boundary layer directly at 

the body wall may be hot (when the surface is in¬ 

sulated, thus preventing heat transfer into the body) 

or it may be cooled (when heat is transferred 

through the wall). As seen in figure 12, the induced 

pressure differentials are higher in “hot” condition. 

Blunt Leading Edges have a certain pressure drag, 

to be discussed later. They also increase the in¬ 

duced pressure, along flat plates as presented above. 

There seems to be a limit of thickness below which 

the edge does not have any influence upon flow 

pattern and pressure distribution. This limit is in¬ 

dicated by a Knudsen number (see Chapter XIX) 

based upon leading-edge thickness, possibly above 

0.1. In terms of Reynolds number (also based on 

thickness) the limit may be below R^. = 100. At 

least, that is what is concluded in (20,b) for Mach 

numbers between 6 and 12. For results from that 

source plotted in figure 12, the Reynolds number 

R^. is only 40, and the Knudsen number is as high 

as ‘K’ = 0.3. Beyond such limits, pressure due to 

boundary layer can be increased very much, in com¬ 

parison to that for zero leading-edge thickness. Eval¬ 

uation of blunt-edged flat plates in (21 ,f) leads to 

the following formulation. In comparison to the 

“hot” function in figure 12, the slope of pressure 
increments (evidently tested with some heat trans¬ 

fer) can roughly be described by the 

(slope ratio) = 0.03 \/R^ (28) 

where Rt = v t/v — Reynolds number based on 
leading-edge thickness. Another formulation derived 

(21 ,b) from experiments is based upon the inviscid 

wave-drag coefficient of the blunt or rounded edge: 

Cp = 0.24 C*J/ (x/tp (29) 

Values for the drag coefficient can be found in the 
section dealing with "bluff bodies”. 

Wedge Pressure. Two wedges were tested in helium 

(21 ,f) at M between 16 and 24. The pressure dif¬ 

ferentials induced by the boundary layer are plotted 

in figure 12. It should be noticed that coefficients 

evaluated from wedges differing in vertex angle are 

approximately collapsed. However, the function 

thus obtained, indicates induced pressures which are 

much higher than those found on flat plates. Cor¬ 

responding to a leading-edge Reynolds number of 
1300, the wedges are evidently blunt. The high pres¬ 

sure coefficients are explained by equation (28). 
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M « 6.8 t/e - 

Figure 13. Total drag of a square wing, at zero lift, tested (20,b) 
at M = 6.8, as a function of the R’number. 

Drag of Wing. The zero-lift drag coefficient of a 

rectangular wing with A = 1, and a double-wedge 

section, is plotted in figure 13 as a function of 

(1/l/Rc). The experimental function connects readily 

with the theoretical point for zero viscosity. Most of 

the drag increment of the 5% thick section is simply 

due to laminar skin friction (the coefficient of which 

is Cp ~ 1//RJ. The additional increment is caused 

by interference between boundary layer and shock 

wave. As far as the displacement effect is concerned, 

it is not clear what takes place along the afterbody 

where the surface angle is negative. 

Wedge Section. The 5% thick single wedge, as illus¬ 

trated in figure 14, was tested at M = 6.9. For G = 

t/(2c) = 2.5%, and for 1/(M£3) = 5.8, inviscid 
theory yields a wave drag coefficient 13 (0.025 ) 

— 0.008. The base drag of this section is estimated 

(on the basis of the principles presented in Chapter 

XVI) to correspond to CDB = 0.5 (1.43/M2) = 0.015. 

Skin friction is found (fig. 8/XIX ) for Rc= 106(as 

in the test) and fora corresponding M//R^= 6.9/103, 

in the form of Cp= 0.01/M = 0.0015; thus ACD= 

(20) Boundary-layer induced pressure: 
a) Bertram, BL Displacement, NACA TN 4301 (1958). 
b) Bertram, BL Displacement, NASA TR R-22 (1959). 
c) Kendall, Experimental, J.Aeron Sci 1957 p 47. 

(21) Induced pressure due to blunt leading edges: 
a) Bertram, J.A.Sci.1954 p.430, 1956 p.899, 1957 p.627. 
b) Cheng, BIunt-Edge Analysis, J.A.Sci.1956 p.700. 
c) Bogdonoff, at M = 11 to 15, J.A.Sci.1956 p.108. 
d) Hammit (Princeton), in Jet Propulsion 1956 p.24l. 
e) Bradfield, Bluntness, J.Aeron.Sci.1954 p.373. 
f) Henderson, At M = 16 to 24, NASA Memo 5-8-59L. 

2(0.0015/0.05) = 0.060. As the last item, we must 

now take into account the boundary-layer-induced 

pressure increment as defined by equation 26. In¬ 

tegration of that pressure over the chord of an airfoil 

section yields approximately 

ACp = 1.2 (M//Rjj) 

For the wedge investigated, a AC0<= 0.008 is thus 

obtained. Summing up, we then have: 

Cq4 = 0.008 (0.008) theoretical inviscid wave drag 

= 0.013 (0.014) estimated for base drag 

= 0.060 (0.058) obtained for skin friction 

= 0.008 (0.010) for B’layer-induced pressure 

CD>— 0.089 (0.090) as the total coefficient 

The tested coefficients (listed in parentheses) confirm 

the calculated (and/or estimated) values very well. 

We realize that (in this particular case) the viscous 

pressure increment is of the same magnitude as the 

basic inviscid wave-drag coefficient. If increasing the 

Mach number further, or upon reducing the R’num- 

ber below 10 , the “viscous” components are bound 

to increase appreciably (in the manner as in figure 

13). It also appears that the viscous pressure compo¬ 

nent is only “large” in comparison to the small value 

of the basic wave drag of the thin section considered. 

RECTANGULAR WINGS with I 

M = 6.9 
t/c = 5% 

▼ DELTA WING with DOUBLE WEDGE 

Figure 14. Lifting wings, with A = 1, tested (10,a) at a 
hypersonic speed corresponding to M = 6.9. 
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Figure 15. Lift-curve slope of thin and flat rectangular 
plates, tested(10,d) in rarefied air at M ~ 3.9. 

Flat Plate Lift. Results of supersonic lifting-wing 

theory are presented in Chapter XVII. At hypersonic 

Mach numbers, where /M2 — 1 sr M, linear theory 

indicating lift-curve slope, reduces to: 

dCL/d<X ~ (4/M) - (2/AM2) (30) 

This solution does not take into account presence 

and growth of a boundary layer. Figure l4 proves 

that, at Rc= 10 , lift actually obtained agrees well 

with theory (at least at angles of attack below 10°). 

However, normal-force coefficients tested on thin and 

flat plates at considerably smaller Reynolds numbers 

(10,d) exhibit lift-curve slopes, which are noticeably 

higher than indicated by inviscid theory. Figure 15 

demonstrates how viscosity, represented by "lami¬ 

nar friction” < - (1 //H^), increases the lift-curve slope 

of those plates. The experimental points, obtained 

at an average M as 3.9 and at Rc between sas 300 and 

2000 collapse onto a common single line when plot¬ 

ting the ratio of the tested over the theoretical values 

(as obtained through application of equation 30) 

against the parameter (M5//Wc). It is suggested that 

practical results (at smaller angles of attack) for larger 

M’numbers and/or for smaller R’numbers can then 

be found by extrapolation: 

A(dCL/da)/(dCL/d<X)o« 0.21 (M3//r^) 

012 ■ i « \ 

cp* 
1 +- 

010 - - 

o.o 8 
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Wing Drag. Pressure drag corresponding to lift is 

D[_= L tano(. Hence, in the range of smaller angles 
of attack: 

C0L= (dCL/dcX) a2 = (d«/dCL) Cl (31) 

(b) Characteristics of “Conical” Bodies 

All what is presented above regarding the influence 

of viscosity on the hypersonic characteristics of plates 

and wedge sections, also takes place on three-dimen¬ 
sional bodies. To repeat the explanation, we will 

consider a cone such as in figure 16, at a smaller 

Reynolds number (where the boundary layer may 

be comparatively thick) and at a larger (hypersonic) 

Mach number (where Mach and shock angles are 

comparatively small). It is then obvious that the 

boundary layer is “squeezed” within the narrow 

space between solid surface and shock wave; and it 

is equally obvious that the B’layer’s displacement 

will force the shock front further outward. 

Conical Probes of the type as shown in figure 16 were 

tested, at M s; 3.9, as a function of Reynolds num¬ 

ber. The pressure in the orifice opening at “x” varies 

approximately as 

CP<= cPo + (°-8//RT) (32) 

where Cpo = 0.026 = theoretical cone pressure (as in 

Chapter XVI) and where R)f = Reynolds number 

based on distance x (and on ambient flow conditions). 

In the illustration is the shock flow pattern as reported 

in (24,d). In distinction to the more or less sharp and 

concentrated shock waves obtained at higher Rey¬ 

nolds numbers (see Chapter XVI), the sketch in fig¬ 

ure 16 displays a very heavy “shock sheet”. The in¬ 

tensity of the trailing shock-wave system reduces 

generally, as the Mach number is increased, until 

we ultimately arrive at a “one-wave” flow pattern. — 

Boundary-layer induced pressure increments found 

on cones with half-vertex angles between 5 and 10° 

are included in figure 12. It appears that in axi-sym- 

Figure 16. Flow pattern of, and static pressure indicated 
(at "x") by a conical probe (24,c) at M ~ 3.9. 
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Figure 17. Pressure distribution along a spiked cone-cylinder con¬ 
figuration (26) at two different Reynolds numbers. 

metrical flow, the boundary layer spreads out (its 

thickness reduces) as a function of diameter and cir¬ 

cumference of the body (27,c). As a consequence, 

induced pressure and drag increments seem to be 

smaller than under two-dimensional conditions. 

A Spiked Conical Body was tested (26) at Mach 

numbers roughly between 3 and 6. At numbers be¬ 

low 4.5, the Reynolds number (on cone length of 

4 inches) is about 3 (10)6. Laminar skin friction is 

small; and the pressure-drag coefficient C04 = 0.078 

agrees with theoretical expectation. In other words, 

the spike does not seem to have an effect when at¬ 
tached to the tip of the slender cone considered. At 

M = 4.2, the pressure distribution in figure 17, is 

essentially identical with the theoretical prediction. 

Results at M = 6.3 are different, however. The Rey¬ 

nolds number is R^ = 0.6 (10)6 only, in this case; 

and the boundary layer can be assumed to be thicker 

than under the condition stated above, at least cor¬ 

responding to the factor y/ 3 / 0.6 . Consequences of 
viscosity are: 

an increase of pressure along spike and “skirt”, 

an increase of pressure along the main cone, 

an increase of pressure drag by 19%. 

(22) Penland, Drag Brakes on Fuselage, NACA RM L55K23. 
(23) Boundary-layer displacement on conical bodies: 

a) Anderson, Wright-Patt Aeron Res Lab Rpt 1962-387. 
b) Wagner, Blunted Cones, NASA TN D-2182 (1964). 
c) Talbot, Viscous Flow, NACA Tech Note 4327 (1958). 

(24) Drag of cones in hypersonic viscous flow: 
a) Francis, Ford Aeronutronic Div Rpt U-1855 (1962). 
b) Whitfield, To M = 19, AEDC TDR 1963-35 & 1964-1. 
c) Talbot, Cone Probes, NACA T Note 3219 (1954). 
d) Stalder, NACA T Note 2244 or T Rpt 1032 (1950). 

(25) Blunt cylinder noses at hypersonic speeds: 
a) Lees, Hemispherical, J.Aeron Sci 1957 p 195. 
b) Van Hise, Analytical Study, NASA TR R-78 (1961). 
c) Wagner, Pressure and Drag, NASA TR R-182 (1963). 
d) Horstman (Princeton) Wright-Patt ARL Rpt 1963-14. 
e) Witcofski, Cylindrical Rods, NASA TN D-1266 (1962). 
f) Inouye, Comparison, NASA TN D-1426 (1962). 

The increments of pressure and drag are evidently 

caused by the displacement of the boundary layer, 

making the effective cone angles larger than the 
geometrical ones. 

Drag Brakes. An ogive-cylinder configuration is 
shown in figure 18, with a pair of “panels” which 

can be deflected from the rear end to serve as brakes. 

The drag coefficient of the “vehicle” is plotted as a 

function of the deflection angle. As far as braking 

is concerned, the flaps investigated, are very effec¬ 

tive; total drag can be increased to fourfold, when 

deflecting the flaps to 30°. To explain the drag, 

equation (29) or the function plotted in figure 27, 

both on page 16-20 may be used. In the present case, 

it is sufficient, however, to apply the first term of 

these formulations. Thus, based on geometrical 
brake-flap area: 

CDo = Cp(sin ^ = 21 (sin^ ) (33) 

To refer this component to the body’s frontal area, 

a factor of 2.3 has to be used, thus accounting for 

the size of the brake flaps. The equation then con¬ 

firms the experimental value of AC0<= 0.03, at 8 = 

10°, when adding a component of 0.01 for base pres¬ 

sure (see page 16-4). However, at & = 20° (where 

ACd>= 0.15) and at 30° (where ACD>= 0.40) the 

equation gives values which are too high. It must 

evidently be considered that the flaps are curved; 

and that at 5 = 30°, for example, the inclination of 

the flap surfaces near their lateral edges, against the 

direction of the undisturbed flow, is appreciably less 

than 30°. There is also a possibility of interference 

between the boundary layer developing along the 

body and the deflected brake flaps. Such interfer¬ 

ence is discussed in several places, in connection 

with “spikes”; and in Chapter XX in connection 

with steps in the surface. 

Figure 18. The influence of a pair of brake flaps (22) deflected 
from the rear of an ogive-cylinder combination. 
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TESTED (25,f) at HI * 15 

Figure 19. Pressure along the surface of circular cylinders, induced 
by the wave drag of blunt nose shapes. 

Blunt Cylinders have been investigated (25) at low 

Reynolds numbers, in order to get some information 

on the influence of nose shape on the drag of conical 

and similar bodies. The so-called blast-wave analysis 

considers the flow pattern produced by a blunt nose 

to be a function of its drag coefficient only. Nose- 

drag coefficients at higher supersonic speeds can be 

found later, under “bluff bodies”. Roughly, the in¬ 

duced pressure coefficient (along the cylinder sur¬ 

face) varies as 

Cp = 0.1 Vs/(x/d) (36) 

where x = axial distance from the nose point. We 

have plotted the pressure distribution for three dif¬ 

ferent nose shapes, in figure 19. Directly behind the 

nose, equation (36) does not apply. 

Skin-Friction drag along the surface of a slender 

body, at hypersonic speeds, is for laminar condition 

and without heat transfer, given by the coefficient 

Cf~0.7f(M)yro/R; (37) 

It thus increases with the induced pressure differ¬ 

ential. The function f (M) accounts for the non¬ 

linear variation of viscosity with temperature (as 

mentioned above). Tentatively it may be 

f(M) = 1/(M2— 1)/16 (38) 

which gives for small M’numbers correctly f (M) = 

1. This function agrees approximately with that in 

figure 2 on page 17-3. For hypersonic M’numbers: 

f(M)=l/M,/8 (39) 

Delta Wings. Drag coefficients (based on wing area) 
are presented in figure 20, for a series of delta wings, 

tested at zero lift and at M = 6.8. In regard to pres¬ 

sure drag it can qualitatively be said that such wings 

are between two-dimensional sections and conical 

forebodies. The variation of laminar skin friction in 

proportion to 1 //Rc is evident. In comparison to the 

function as on page 2-4, there is a drag increment, 

evidently caused by presence and displacement of 
the boundary layer. 

Total Drag of Cones. Base drag can be assumed to 

be zero, within the range of hypersonic speeds. The 

drag of a cone (or that of a conical nose) thus con¬ 

sists of 

the basic pressure or wave drag, 
the basic skin friction drag, 

the increments due to boundary layer. 

Cones have been analyzed (24,a) at hypersonic Mach 

numbers between 10 and 20, and for laminar bound¬ 

ary-layer flow. Since pressure as well as laminar skin 

friction depend upon the similarity parameter as in 

figure 12, the following equation was found (24,a) 

for the total forebody drag of cones in cooled condi¬ 

tion (with heat transfer, so that T^/T^ = 0.1): 

CD = 2 e2 + 2.9 K + (0.4/fc*)K* (40) 

where K = M^//Rjj. As plotted in figure 21, for 

cones with a half-vertex angle £ — 9°, the function 

is sufficiently confirmed by total drag coefficients 

tested at Mach numbers between 10 and 20. One 

group of points obtained in “hot” condition, shows 

that drag is higher. At K values below 0.015, the 

drag coefficient seems to have a tendency of being 

higher than indicated by the equation. Experi¬ 

mental results at M below 10, have evidently mini¬ 

mum drag coefficients higher than indicated by the 

first term of equation (40). 

Figure 20. Drag coefficients (on plan-form area) of a family of 
delta wings (20,b) varying in half-vertex angle £ be¬ 
tween 8 and 30°, as a function of Reynolds number. 
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Figure 21. Total forebody drag coefficients of cones, primarily 
with 9° half-vertex angle, at hypersonic Mach numbers between 10 
and 20, primarily in cooled condition, as a function of the viscous 
similarity parameter "K”. 

Transition to turbulent boundary-layer flow usually 

does not take place in model tests at hypersonic 

speeds. In fact, it has been reported that even with 

stimulation, transition is not obtained at Reynolds 

numbers in the order of Rj| = 3 (10) . It seems that 

the negative pressure gradient along the surface, cor¬ 
responding to equation (26) and possibly a gradient 

corresponding to the expansion around the “shoul¬ 

der” of cone-cylinder combinations, has a strong 

stabilizing effect upon the boundary layer. Transi¬ 

tion is reported and discussed in (30). Besides the 

influence of the pressure gradient as above, practical 

results are as follows: 

Characteristics of bluff three-dimensional bodies at 

supersonic speeds are discussed in Chapter XVI. 

Certain characteristics typical of hypersonic speeds 

are presented in this section. As long as skin friction 

is small in comparison to pressure forces, that type 

of drag and the influence of Reynolds number can 

very often be disregarded. 

(1) Two-Dimensional Shapes 

Blunt Shapes. The maximum pressure, in the stag¬ 

nation point of the blunt shapes presented in figure 

22, is equal to that as indicated by equation 4 in 

Chapter XVI. At hypersonic Mach numbers (above 

M 3, and in air) that pressure corresponds to 

Cp< = 1-84 - (0.76/M2) (41) 

Out of the narrow and high-pressure space between 

the solid’s face and the detached bow wave, an ex- 

Transition is delayed at higher M’numbers. 
Cooling (heat transfer) delays transition. 

Nose blunting increases transition R’numbers. 

Leading-edge sweep leads to early transition. 

Surface roughness promotes transition. 

The transition Reynolds number as found in (30,a) 

on a hollow cylinder, is in the order of R* = 6 (10) , 

at M = 6.9. — As far as roughness is concerned, re¬ 

sults in (30,e) indicate that single elements (such 

as spherical grains) fail to have an effect, as long as 

their height is less than the boundary-layer thickness. 

Turbulent Friction. Under full-scale conditions, 

transition must eventually be expected. Analysis of 

turbulent skin friction such as in (27,b) is complex. 

As an approximation, it is suggested to use the func¬ 

tions in figure 3, on page 17-4. 

(26) Neice, Spiked Cone-Cylinder Body, NACA RM A54C04. 
(27) Information on skin friction at hypersonic speeds: 

a) See (20,b); also NACA L52A14; NASA R-26 & 123. 
b) Van Driest, Turbulent B’Layer, J.Aeron Sci 1951 p 145. 
c) Probstein, Laminar Flow, J.Aeron Sci 1956 p 208. 

(28) Drag of delta wings at hypersonic speeds: 
a) A Series of Delta Wings, see in reference (20,b). 
b) Bertram, Delta Wings at M = 6.9, NACA RM L54G28. 
c) Bertram, Slab Delta at M = 7 to 18, NASA TR R-153. 
d) Elliptic Cross Section, Minnesota U Rpt ARL 1963-231. 
e) Goldberg, Delta Plate, NASA TN D-1959 (1963). 
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Figure 22. Drag of blunt shapes, at hypersonic Mach numbers. 
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pansion takes place. Sonic speed is subsequently ob¬ 

tained at the sharp edges or shoulders of such shapes; 

and the static pressure there is equal to 0.53 of the 

pressure at the stagnation point. With maximum and 

minimum pressures thus fixed, the average pressure 

on the face of blunt shapes can be expected to be 

a constant fraction of the stagnation pressure Cp, • 

Pressure drag coefficients of blunt edges and of blunt 

cylinders in axial flow (some of them previously pre¬ 

sented, in figures 14 and 18 of Chapter XVI) are 

plotted in figure 22, in the form of Cjja/Cp# Above 

M * 5, they seem to indicate constant values of 

CD>/Cp^= 0.89 for the blunt cylinder head 

= 0.94 for the blunt leading edge 

These values can be considered to be an improved 

version of the “K” values indicated in Chapter XVI 

for bluff wedges and cones. For hypersonic condi¬ 

tions, equation 21 of that chapter can be simplified to 

CD./Cp.= K - 0.76 (1 - K)/M2 (42) 

where “0.76” as in equation 4i. For K = CL /Cp> = 

0.94 as found empirically for higher Mach numbers, 

the drag decrement of the two-dimensional blunt 

shape (in figure 22) is then obtained as ACDyCp. = 

— 0.046/M2. This function matches the experi¬ 

mental points down to M = 2. 

Newtonian-Type Flow (41). The stagnation or im¬ 

pact pressure Cp> (equation 41) also predominates in 

producing drag on the forward face of bodies such 

as spheres (55) or circular cylinders in cross flow 

Away from the stagnation point, the surface pressure 

reduces; and it has empirically been found (41) that 

under hypersonic conditions, the static pressure ap¬ 
proximately corresponds to 

Cp — Cp> sin2& (43) 

where £ = local angle of surface inclination against 

the undisturbed direction of the oncoming fluid 

stream. In words, the air particles “striking” an ob¬ 

stacle, lose their normal component of momentum. 

Pressure distributions as indicated by the equation 

have been named “modified Newtonian” thus re¬ 

ferring to the mechanics of free-molecule flow (as 

explained at the end of Chapter XIX). 

Circular Cylinder. Application of the Newtonian 

principle to the two-dimensional shape of a cylinder 

(at cx = 90°, in cross flow) yields the drag coefficient 

CD.= Cp. Jcos2>pd(sin<p) = (2/3) Cp. (44) 

where ip = angle as in figure 2 of Chapter III. Pres- 

Figure 23. Pressure distribution around circular cylinders in 2- 
dimensional cross flow, as tested (42,d) at M between 
6 and 15, and at Rj between 2(10)s and 2 (10 f 

Similar distributions are found in (28,e) for M between 2 and 10. 
It should be noted that one of the reasons for the increased pres¬ 
sures tested, is viscosity (at the comparatively small Reynolds num¬ 
bers listed). 

sure distributions as tested at M 6.9 and 5.7 re¬ 

spectively (3 9,a) show, however, that the pressure 

coefficient at the sides of the cylinder, at 90° from 

the stagnation point is somewhat positive, while the 

Newtonian approximation reduces to zero in those 

places. In fact, the distribution plotted in figure 23, 

shows that the pressure is higher than according to 
the Newtonian theory. 

Shoulder Pressure. Behind edge or “shoulder” of 

bluff shapes (such as the blunt leading edge of the 

flat plate illustrated in figure 22) the static pressure 

remains positive for a distance measuring several 

times their thickness or diameter, respectively. In 

air (for k = 1.4) that pressure is estimated (21) ap¬ 
proximately to correspond to 

CP5= 01 - (0-6/M2) (45) 

This shoulder pressure is positive at hypersonic 

speeds (above M » 3); and it approaches Cp= 0.1, 

as M grows to higher values. Further downstream, 

the static pressure returns to the ambient level. 

Centrifugal Effect. Because of centrifugal forces, with¬ 

in the stream developing between shock front and 

bluff-body face, the static pressure at the solid sur¬ 

face can be slightly less than that directly behind the 

curved shock sheet. A theoretical analysis of this effect 

is given in (6,e). Experimental evidence of reduced 

pressure is occasionally found, particularly on hemi¬ 

spherical heads (54) in the vicinity of ~ 45° away 

from the stagnation point. It seems, however, that 

tested decrements (such as mentioned above) fall 

short of the theoretical prediction. 
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LEADING EDGES IN 2 DIMENSIONS: 
O PRESSURE DISTRIBUTION (55,a) 
• N P L, IN WIND TUNNEL (3b,o) 
i JAPAN, INTERFEROMETER (36,c) 

CIRCULAR CYLINDER HEADS: 

• PRESSURE DISTRIBUTION (55.o) 

Figure 24. Drag function of round shapes, 
at hypersonic Mach numbers. 

(30) Boundary layer transition at hypersonic speeds: 
a) Bertram, On Hollow Cylinder, NACA TN 3546 (1956). 
b) Krasnican, In Free Flight, NASA Memo 3-4-59E. 
c) Low, Discussion of Results, NACA RM E56E10. 
d) Bibliography, Lockheed Rpt 1962 (ASTIA AD-296,151). 
e) Holloway, Roughness Elements, NASA TN D-2054. 
f) Mabey, Roughness, RAE TN Aero 2941 (1963). 
g) NACA TN 3048 & 3103; NASA TN D-1220 & 1378. 

(36) Bluff head shapes in hypersonic fluid flow: 
a) Holder, Half Body Shapes, J.Aeron.Sci.1954 p.317. 
b) Vas, AtMse 12, Princeton Engg Rpt 382 (1957). 
c) Takamaki, L'Edges, J.Phys.Soc.Japan 1957 p.550. 

(39) Results on bluff bodies at hypersonic speeds: 
a) GALCIT; Cones Cylinder, J.A.Sci.1956 p.177 & 1054. 
c) Lees, Evaluation, J.Aeron.Sci.1957 p.195. 
d) Li, Stagnation Point, J.A.Sci.1957 p.25. 
e) Soule, Firing Models, NACA T.Note 2120. 
h) Cone — Sphere — Cylinder, J.A.Sci.1952 p.757. 
i) Freeman, Theory, J.Fluid Mech.1956 p.366. 
m) Long, Axial Cylinder at M = 8, NAVORD Rpt 4382. 

(41) Newtonian-type hypersonic pressure distribution: 
a) The approach is explained in (39,a,c) & (42,a,c). 
b) Coles, Newtonian Theory, J.Aeron.Sci.1957 p.448. 
c) Tokyo, Cylinder at M = 2, J.A.Sci.1956 p.830. 
e) Love, Newtonian Theory, J.Aeron Sci 1959 p 314. 
f) Wells, Tables of Body Forces, NASA TR-R-127. 
g) Rainey, Forces and Pressures, NASA TN D-176 (1959). 

(42) Circular cylinders in hypersonic cross flow: 
a) Penland, Cylinder at M = 6.9, NACA RM L54A14. 
b) Gowen, f (M and R), NACA Tech.Note 2960 (1953). 
c) Grimminger, Lifting Bodies, J.A.Sci.1950 p.675. 
d) Gregorek, Pressure Distribution, J.AIAA 1963 p 210. 
e) Beckwith, Heat Transfer, NASA TR R-104 (1961). 

(43) This value agrees with higher-order solutions of hypersonic 
theory; Lees, Hypersonic Similarity J.Aeron.Sci. 1951 p.700. 

(44) Wave drag due to blunt leading edges: 
a) Goldberg, Edge Shapes, NASA TN D-1793 (1963). 
b) Stainback, Delta Wing, NASA TN D-1246 (1962). 

Round Leading Edges. The influence of positive 

shoulder pressure (equation 45) is also found in two- 

dimensional shapes, such as on round leading edges 

and/or at the lateral sides of circular cylinders in 

cross flow. Some experimental drag coefficients are 

presented in figure 24. At “hypersonic” Mach num¬ 

bers (above M ~ 3) pressure drag of 1/2 circular 

edges is higher than indicated by equation (44) the 

differential being in the order of (0.69 — 0.67) = 

0.02. The reason for the increment is the same as in, 

and the variation against Mach number is similar to 

that of, hemispherical noses (see later ). 

Leading Wedge. The round leading edge in figure 

24, has less drag (0^= 1.25, at M = 6) than the 

flat-faced edge in figure 22 (CD> = 1.75). The pres¬ 

sure distributions of three groups of shapes are re¬ 

ported in (44,a), tested at M = 6. Figure 25 shows 

how the drag reduces when increasing the chord- 

wise length x of the shapes. The coefficient of the 

blunt wedges connects to the function indicated by 

equation (11). It must be realized that the flow pat¬ 

tern of blunt shapes differs from that of more slender 

wedges. For example, at M = 6, the critical half¬ 

vertex angle is theoretically e = 42°. Above this an¬ 

gle, the wedge (or any similar shape) produces a 

detached shock front. As found in (44,a) practically 

full stagnation pressure is obtained (at the vertex 

line) at angles above S = 51°, for M = 6. As a con¬ 

sequence, any Newtonian theory does not correctly 

describe the pressure distribution around such blunt 

shapes. 

Figure 25. Wave drag at hypersonic speeds due to blunt leading 
edges (44,a) as a function of their shape and length ratio. 
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Figure 26. Maximum-pressure and drag coefficient of a 
circular cylinder, tested (4 2,a) at M = 6.9, 
as a function of its angle of attack (rep¬ 
resenting inclination against the fluid flow). 

Double Arc. Within the range of higher fineness 

ratios, a circular arc (or any similar) edge shape, is 

known to have more drag than a wedge having the 

same length. At a ratio x/t = 1.1 or 1.2, where the 

tangent vertex angle of the arc shape exceeds the 

critical value, the flow pattern changes. In the more 

blunt condition, the shock wave detaches as de¬ 

scribed above. Around x/t = 1, drag is still appre¬ 

ciably higher than that of a wedge having the same 
length. It seems, however, that there is a cross-over 

point (near x/t = 0.5) where shape does not affect 

the drag coefficient. The experimental functions 

have been extrapolated into the range of hollow 

shapes, where drag corresponding to full stagnation 

pressure will eventually be reached. 

Leading-Edge Sweep. A delta wing with a half-cir¬ 

cular leading edge was tested (44,b) at M = 5. For 

an angle of sweep of 60°, Newtonian theory expects 

a reduction of pressure at the leading edge corre¬ 

sponding to cos* 60° = 0.25. The measured maxi¬ 

mum pressure increment at the edge was found to 

be Ap 0.27 “q”. A similar slab-type delta wing 
(with 70° leading-edge sweep) was tested (28,c) at 

M between 7 and 18. Evaluation at M = 7, yields 

a maximum pressure coefficient Cp^ — 0.24, while 

Newtonian theory expects a coefficent of 0.22. Ap¬ 

proximately, therefore, pressure and wave drag due 

to swept edges can be predicted through the use of 

equation (46). 

Inclined Cylinder. Drag of Cylinders in oblique flow 

panels is explained on the basis of the “cross-flow 

principle’,’ in Chapter XV. The same method now 

applied to cylinders inclined against a hypersonic 

stream of air, is found to be identical with the modi¬ 

fied Newtonian principle, applied to such cylinders a 

second time. Figure 26 shows first, that the maximum 

or stagnation pressure coefficient varies corresponding 

CO . 2 
Cp = Cp sin C\ (46) 

where cX = angle of attack of the cylinder (42)- The 

normal-force coefficient C^ on cylinder area Sa = 

d*jl, where jl = length in axial direction) is then 

CNn = CD.sin2<* (47) 

where Cj}.= drag coefficient at c< = 90° as in equa¬ 

tion (44). The drag coefficient at other angles is simply 

CD„ = CD.sin3« (48) 

and the lift coefficient is 

n 

C^q = CQ>sin « cosoC (49) 

in the same manner as in uncompressed fluid flow 

(see figure 18, Chapter III). In addition to the pres¬ 

sure forces considered, there is also a small skin-fric¬ 

tion component included in the balance-tested points 

plotted in figure 26, thus placing them slightly above 

the pressure-tested drag function. 

Spoiler. Disregarding the range of smaller Reynolds 

numbers, viscosity may not noticeably affect flow 

pattern and drag of bluff shapes at supersonic and 

hypersonic Mach numbers. There is the type of in¬ 

terference shown in figure 27, however, between an 

Figure 27. Flow pattern and pressure distribution around a spoiler 
(45,b) having a height equal to 5% of the chord of 
the 6% thick wing section shown. 
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A from figure 27 (Chop XVI) 
• NACA, tested (b,c) 
O blunt cylinder (Chop XVI) 

X FOREBODY DRAG 03,a,c)(46,1) 

O SHORT Total Drag * » 6 (57,b) 

Figure 28. Drag coefficient of bluff cones, with half-vertex angles 
up to 90°, and to 180° (thus representing hollow shapes), tested 
at and calculated for M ~ 8. 

obstacle and the boundary layer within which that 

obstacle is placed. Owing to increasing pressure, the 

boundary layer separates ahead of the spoiler plate. 

It then forms a wedge-like “dead” space; and the 
resulting flow pattern is very similar to that past a 

wedge. There is a shock wave originating from 

around the leading edge of the “wedge”. An expan¬ 

sion then takes place around the edge of the spoiler 

into a separated “base” space, where the pressure 

is negative (below the ambient level). The flow pat¬ 

tern terminates with a recompression shock wave, 

in the same manner as behind the base of a blunt 

trailing edge. The pressure differential across the 

spoiler plate is ACp = 0.8, in the case presented, at 

M ~ 2. It can be expected that this coefficient will 

vary somewhat when increasing the Mach number. 

There is a considerable influence of spoiler height; 

that is, of the ratio of height to boundary-layer thick¬ 

ness. Separation, shock wave angle and resultant 

pressures are correlated in (45,c). The mechanism 

is also discussed in Chapter XX, in connection with 

surface irregularities (steps). — As far as the effec¬ 

tiveness of a spoiler at supersonic speeds is con¬ 

cerned, it can be seen in figure 27 that the lift dif¬ 

ferential produced (AC^ in the order of — 0.08) is 

due to the increase of pressure ahead of the obstacle. 
In subsonic flow, the control effect of a spoiler is 

always based on the reduction of pressure (“spoil¬ 

ing” of flow and lift) behind the plate or flap. 

(45) Boundary-layer separation ahead of obstacles: 
a) Lange, Status of Information, NACA TN 3065 (1954). 
b) Mueller, Spoilers at M = 1.9, NACA TN 4180 (1958). 
c) Chapman, Separation, NACA T Rpt 1356 (1958). 
d) Lord, Spoiler Characteristics, NACA RM L56E22. 

(2) Three-Dimensional Bodies 

Bluff Cones. Figure 28 presents experimental and 

theoretical results at high Mach numbers (in the 

order of M = 8) in regard to the drag coefficient of 

cones up to and exceeding & = 90° (where the cones 

transform into hollow head shapes). In preparing the 

graph, two theories have successfully been utilized; 

(a) hypersonic cone theory (as approximated by equ. 

29, Chap. XVI); and (b) the “transonic”-type theory 

presented in Chapter XVI (equ. 21 and figure 

19). At half-vertex angles above 50°, where 

detachment of the bow wave is to be expected, a 

transition takes most likely place to the bluff-body 

function as indicated. That function is then expected 

to increase further until it reaches the full value of 

the stagnation pressure at S = 180° (which repre¬ 

sents a hollow “scoop”-like shape). 

Blunted Cone. It has been shown (in figure 7) that 

slightly blunting the tip of a cone, can reduce its 

drag. In this respect, shape (b) in figure 30 is evi¬ 

dently too blunt. Also included in the illustration is 

a flat but thick (slab-type) delta shape (c) having 

the same half-vertex angle as the cones. Its drag co¬ 

efficient is almost the same as that of the pointed 

cone (a). 

Figure 30. Total-drag coefficients at M — 8, of three conical 
bodies (46,g) showing the influence of shape modifications. 



18 - 18 FLUID-DYNAMIC DRAG 

CONE THEORY siH2t 

Figure 31. Pressure distribution on the surface of a 
rounded cone, tested (J9,a) at M = 5.8. 

Rounded, Cone. Characteristics of another bluff shape 

are presented in figure 31. Pressure on the rounded 

part corresponds to “Newtonian” distribution. This 

type of pressure continues to a point somewhat aft 

of the juncture with the conical portion of the shape. 

Subsequently, some compression takes place, how¬ 

ever, raising the pressure to the level as indicated by 

super-hypersonic cone theory (see Chapter XVI, fig¬ 

ure 27). Transition evidently takes place, in this 

manner, from the detached-bow-wave pattern (where 

the Newtonian approximation applies) to that of “at¬ 

tached” conical flow (where pressure corresponds to 

cone theory). Pressure-drag ratios, obtained by inte¬ 

gration of experimental distributions, are: 

CD./Cp. = 0.495 for the pointed cone 

= 0.501 for the rounded cone 

One reason for the fact that rounding does not in¬ 

crease the drag very much, is the smallness of the 

area on which pressures, in the order of that at the 

stagnation point, are found in three-dimensional 
shapes. 

Figure 32. Pressure distribution on the surface of a 
parabolic body of revolution, tested (46,e) at M = 7.7. 

Parabolic Nose Shape. The pressure distribution of 

the three-dimensional solid as in figure 32, is very 

close to the Newtonian type. Upon approaching the 

body’s shoulder (where the surface angle has re¬ 

duced to ~ 17°) one can see, however, that the 

tested pressure corresponds to cone theory, rather 

than to the approximation as indicated by equation 

(43). Here again, we thus realize that a transition takes 

place from detached to attached shock wave flow. The 

integrated drag coefficient of the parabolic body is 

CD#= 0.40. Analysis in (46,e) indicates that this 

coefficient is approximately 15% higher than that of 

a pointed cone having the same length ratio A/d = 

0.83 (or the same diameter ratio d/f. = 1.21). Be¬ 

tween these two shapes, there is an optimum (giving 

mimimum drag on frontal area) expected to be ob¬ 

tained for a parabolic form corresponding to 

r/rx = (x/,0m (52) 

where r = radius, x indicating maximum radius 

(rx = 0.5 d) and where “m” is between 0.7 and 0.8. 

Newtonian Analysis. A capsule type of re-entry body 

is presented in figure 33, tested at M = 9. Drag at 

ot = 180° corresponds to equation (19). Modified 

Newtonian theory (listed in parentheses) underesti¬ 

mates the drag in that case appreciably, while at 

o( = zero (where the shape is blunt, but “round”) 

agreement is good. In the vicinity of ot= 70° (where 

lift is zero) the area of the body projected in wind 

direction, is near a minimum, in the order of 0.6 

(dir/4). Since shape (surface angles against wind) is 

favorable at that angle, the drag coefficient is at a 

minimum in the order of 0.4. At an angle of attack 

between 90° (normal to the axis) and 123° (normal 

to the windward cone surface) shape and flow pat¬ 

tern are similar to that of a circular cylinder. For 

CD> = 1.24 as for the cylinder, and on the basis of a 

projected area ratio of 0.56, a capsule coefficient 
CD>= 0.69 is obtained, which agrees with the ex¬ 

perimental value. Another maximum corresponding 

to CD<— 0.9, is found at oC— 130° (where lift is 

again zero). Newtonian theory predicts the angles of 

maximum and minimum drag values very well. This 

theory has, therefore, been used such as in (41 ,f) to 

study drag and other forces on many basic shapes of 

re-entry vehicles. In fact, the Newtonian approach is 
the only practical one, through which forces on com¬ 

plicated shapes and/or at angles of attack different 

from zero can reasonably well be predicted. 

(46) Characteristics of bluff, rounded, blunted cones: 
a) Sommer, Truncated Cones to M«7, NACA RM A52B13. 
b) NACA, RM A52Al4b; also J.Appl.Phys.1950 No. 11. 
c) Bertram, Blunted at M = 6.9, J.A.Sci.1956 p.899. 
d) Eggers, Rounded, NACA Tech.Note 3666 (1956). 
e) Kubota, At M = 7.7, GALCIT Memo 40 (1957). 
f) Kahl, BRL Rpt (see A.Engg.Review Oct. 1957 p.63). 

g) Merz, At M = 8, Arnold Center AEDC TDR-1962-187. 
h) Seiff, Free Flight, NACA RM A52A14b; T Rpt 1222. 
i) Penland, Sharp Cones, NASA TN D-2283 (1964). 
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Figure 33. Total drag coefficients of a conical or capsule-type 
body (60,a) at several angles of attack as indicated. Modified New¬ 
tonian values are listed in parentheses. 

At Angle of Attack. Almost all of our presentation 

in this chapter deals with conditions at zero angle 

of attack (no lift). A number of reports listed under 
(13) and (46) also contain information on forces 

of, and/or pressures on cones when at an angle of 

attack. An analysis of experimental pressure distribu¬ 

tions is presented in (13,d), for M roughly between 

7 and 8. It is shown that the Newtonian principle 

of (pressure) = f (local angle of attack) can be util¬ 

ized in the interpolation and prediction of pressure 

distributions. It is thus possible to obtain the pres¬ 

sure around the circumference of a cone when at 

an angle of attack. It can also be said that approxi¬ 

mately the pressure along the windward generator 

of a certain cone (1) is equal to that of a different 

cone (2) having a half vertex angle t2= (€,+ ot). 

Figure 34. Drag of an inflatable balloon-type device (50,b) when 
towed behind a cone-cylinder body. 

Towed Cones. Parachutes, when used to decelerate 

and to recover missiles, have limitations as to speed, 

that is as to structural forces and temperatures. As 

an alternative, inflatable balloon-type drag devices 

were, therefore, developed (50,a) by the Goodyear 

Aircraft Corporation. As seen in figure 34, there is 

a critical tow-line length, below which the wake 

from the “payload” interferes very much with the 

flow pattern of the drag device. Wake plus cable 

evidently have the same effect as a spike protruding 

from the face of the towed body. This mechanism 

is explained in other places in this book; see under 

“spike”. The minimum cable length required, is be¬ 

tween 3 and 6 times the diameter of the towing 

cylinder, at M around 4. However, the interference 

described, evidently increases with the Mach num¬ 

ber. In the configuration shown in figure 33, the 
drag coefficient obtained at M = 10, is only Cn = 

0.5, for cable-length ratios between 9 and 18. The 

drag coefficient of the towing body is higher (0.93) 

0 l 4 <o ? 10 (1 

Figure 35. Total drag coefficient of "ballute”-type inflated bodies 
(50) as a function of Mach number. 

than that in figure 34 (CD,=^ 0.2). Also considering 

the area ratio (S,/S2 = 0.04) in comparison to 0.09 

in figure 34, a drag coefficient based on frontal area 

of the towed body, AC0>= 0.04 (0.93) = 0.037 is 

obtained, while in the configuration at M = 4, this 

coefficient is AC0> = 0.09(0.2) = 0.018. In super¬ 

sonic flow, not all of the loss of momentum is con¬ 

centrated in the wake. In fact, the loss due to wave 

drag is carried sideways along the shock front. At 

any rate, pressure distribution tests reported in 
(50,a) at M = 10, prove that the coefficient at the 

conical face of the towed drag body is as low as 

Cp = Ap/q = 0.11, while for & = 40° it should be 

Cp^ 2 sin2e = 0.83. The maximum pressure re¬ 

corded is near the “rim” of the cone, in the order of 

Cp = 0.5. In conclusion, at M = 10, the wake com¬ 

ing from the towing body is comparatively heavy; 

and/or it is large enough to cause the spike-type 

mechanism of separation from the point of the 

towed body. 
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Figure 36. Drag coefficients of several shapes of inflated decelera¬ 
tion devices (50) when towed behind a "payload”. 

Inasmuch as the base pressure coefficient at hyper¬ 

sonic M’numbers is ~ zero, for most practical pur¬ 

poses, equation (53) also represents the drag of spheres 

at such speeds (see figure 20 of Chapter XVI). 

Flat Disk. Several blunt-based bodies of the type 

as shown in figure 38, were tested at ot = 180°, 

that is with the flat face first. In this case, the partic¬ 

ular shape of these bodies such as length and cone 

angle, may not matter; and the base drag correspond¬ 

ing to the pressure within the “dead” space can be 

assumed to be independent of the particular shape. 

In fact, we may consider the flat-faced bodies to be 

circular disks. Their total drag coefficient is pre¬ 

sented in the illustration, as a function of Mach 

number. Since base drag is included in the tested 

values, the total drag coefficient increases? as the 

M’number is reduced. The face-pressure coefficient 

can be assumed to be the same as that in figure 22. 

Inflated Shapes. When inflating a rubber-coated 

balloon-type device, it has the tendency of bulging 

into a shape similar to that of a sphere. When towing 

such a device, its forebody tends to assume a more 

or less conical shape. The result is a so-called ballute. 

Figure 36 presents drag coefficients of this and of 

two other shapes. It should be noticed that the drag 

coefficient of a spherical balloon when towed (CD> = 

0.82) is lower than that of the spherical nose in 

figure 26 (CD> = 0.51 (1.81) = 0.92). Disregarding 

a small influence of shape, the difference is evidently 

caused by the wake in which the towed body is 

placed. Also, using equation (19) a coefficient CD> = 

0.91 is found for the 2 times 40° conical device. After 

adding a value for base drag (as in figure 20, on page 

16-16) CD>= 0.97 is obtained, while the tested co¬ 

efficient is 0.83 (in figure 36). 

O BODY A3 3BCWX ABOYZ (57,*,b) 

a AY A, CYLIHDBHS (XYI, Pig 14) 

• SDBSOBIC (Ch*pt«r XY, Pig 2) 

+ BAX - IBTBOBATXD PACK (56,f) 

X FLAT-FACE) PROJECT ILK (56,0 

H BODY SIMILAR AS SHOW (57,4) 

Spheres. Figure 37 presents the hypersonic pressure 

distribution around a hemispherical head. If plotted 

against the square of the radius (representing the 

frontal area of the sphere) a linear distribution is 

obtained; and the drag coefficient of the head is then 

simply 

Figure 38. Total drag coefficients (57) of flat-faced short bodies 
("disks”) as a function of Mach number. 
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Figure 40. Drag coefficient of a short cylindrical body (56,c) as 
a function of the rounding radius. 

A blunt Cylinder is shown in figure 40. Drag is 

maximum for a flat face; and it reduces consider¬ 

ably when rounding the rim. A radius r == 0.5 d, 

produces a hemispherical shape; and it reduces the 

drag coefficient, roughly to half the original value. 

Face Pressure. Pressure and velocity distributions 

are presented in figure 41, for several more or less 

rounded shapes. For all but the flat face, the modi¬ 

fied Newtonian theory gives a fair (or qualitative) 

description of the distribution. To repeat, pressure 

(either the differential (p — pQ) or total pressure 

(the difference being small at hypersonic speeds) 
varies approximately as 

p/p. — sin2e (55) 

where p. = pressure at the stagnation point, and 

£ = surface angle, equal to 90° in a flat face. At the 

stagnation point, the local velocity “u” is zero. It 
increases from there approximately according to 

u = >/(2/q) (p. - P) =^(2/<j)R(l -sirfe) 

(50) Inflatable balloon-type drag devices, at supersonic speeds: 
a) Alexander, Goodyear, Wright Patt ASD-TDR-1962-702. 
b) McShera, Drag and Stability, NASA TN D-1601 (1963). 
c) Kayser, Ballute at M= 10, Arnold AEDC TDR-1962-39. 
d) Charczenko, Solid Cones, NASA TN D-994 (1961). 
e) McShera, Influence of Payload Wake, NASA TN D-919. 
f) The wake characteristics behind ogive-cylinder bodies, 
to affect the effectiveness of parachutes or other decel¬ 
eration devices, are reported from subsonic to hypersonic 
speeds, by Heinrich, Wright Patterson AFSC Rpts ASD- 
TDR-62-1103 and 1104 (DDC AD-427,736 and 748; 1963). 
h) Chauvin, Pressure Distribution, NACA RM L52K06. 
i) Rose, "Hot” at M 9, J.Aeron Sci 1958 p 758. 

(54) Hypersonic characteristics of l/2 spherical shapes: 
a) Stalder, Hemisphere with Spike, NACA T.Note 3287. 
b) NACA, Hemispherical Heads, RM A52B13 & L52K06. 
c) GALCIT, At Hypersonic Speeds, in J.Aeron.Sci.1956 
p.177 and 1054; also in GALCIT Memo 40 (1957). 
d) Crawford, Hemisphere, NACA T.Note 3706, 1956. 
g) Stine, Heat on Round Nose, NACA T.Note 3344(1954). 

(55) Spheres tested at hypersonic Mach numbers: 
a) Clark-Harris, Ballistic Tests, J.A.Sci. 1952 p.385. 
b) Hodges, Firings, Journal Aeron.Sci. 1957 p.755. 
c) When plotting these results in figure 24, a small correc¬ 
tion was applied for rear-side pressure. 

(56) Drag and/or pressure distribution of blunt bodies: 
a) Canning, Flat-Faced Ballistic Tests, NACA A57C25. 
b) Cooper, Face Pressure, NASA Memo 1-3-59L. 
c) McDearmon, Family of Shapes, NASA TM X-467. 
d) Witcofski, Same at M = 24.5, NASA TN D-2282 . 
e) Spooner, Flat-Faced Shells, NACA RM SL56D27. 
f) Stanbrook, Blunt Cylinder Transonic, RAE Aero-2876. 
g) Julius, Blunt Body Shapes, NASA TN D-157 (1959). 

d ■ 2 lnoh«s 

Figure 41. Pressure distribution over the faces of several blunt 
nose shapes (56,b). 
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Figure 42. The influence of conical skirts (56,c,d) on the fore- 
body drag of a short and blunt shape. 

Conical Skirt. If using a short cylinder such as one 

of the bodies in figure 40, as a re-entry space ve¬ 

hicle, stability can be increased by adding a conical 

skirt. Figure 42 shows that the drag coefficient (on 

increased base area) reduces at first as the skirt angle 

is increased. However, when referring the drag to 

the original cylinder area, considerably increased 

coefficients are obtained. — Drag of the conical 

portions has been approximated by CD>= 2 sinV 

Referring this contribution to the combined base 

area, a theoretical function is obtained in figure 

42. The experimental points remain somewhat be¬ 

low this function; and it can be suspected that the 

boundary layer is responsible for the result. — The 

skirted bodies in the illustration can also be con¬ 

sidered to be blunted cones. The data in figures 6 

and 46 are then confirmed, showing an optimum 

bluntness (where the drag for a given fineness ratio 
is a minimum). 

Figure 43. Total drag coefficients of short bodies (57) as a func¬ 
tion of the Mach number. 

As a Function of Mach Number, figure 43 presents 

the drag coefficient of a particular round-nosed, but 

short cone, selected from the large family of shapes 

reported in (57). Between M = 4 and 16 (where a 

single point is plotted, evaluated from firing tests 

on a very similar shape) interpolation is obtained: 

a) by assuming that the wave drag would be pro¬ 

portional to the pressure as in equation (41). 

b) taking maximum experimental base drag as 
indicated in figure 2 on page 16-4. 

It is then found that the total coefficient is nearly 

constant between M = 8 and 16 (and beyond this 
Mach number). The increase of the coefficient when 

reducing M from 6 to 2, is evidently due to base drag. 

d = 2 lnohas; = 1.30 

Figure 44. Drag coefficients of 
various satellite capsules tested 
(60,d) in helium, at M = 24.5, 
for (X = 0, and 180°. The drag 
in cone-first direction can be ex¬ 
plained by CD> = 2.1 sin2£ . 

« 6(10)5 

S. “ o-ti 

r/d - 0.10 

Satellite Capsule. When developing their manned, 

re-entering and recoverable satellite vehicles, the 

Russians as well (in the “Sputniks”) as the United 
States (in the Mercury Program) arrived at a shape 

of the type as in figure 44. Basically, such capsules 

are cones. During launching they move point-first, 

forming the nose of the rocket vehicle. When re¬ 

entering, the conical body is steered so that the blunt 

base meets the atmosphere. Maximum drag is thus 

provided with a minimum of heat transfer. Of 

course, a protective and/or ablating shield prevents 

most of the heat still remaining, from penetrating 

into the space craft. Another reason for the “conical” 

shape of satellite capsules, are their aerodynamic 

stability characteristics. In comparison to a cylin¬ 

drical body, say of the same length/diameter ratio, 

the capsules as in figure 44, develop only a fraction 

of the normal force when at an angle of attack. As 

a consequence, and since the axial force (drag) is 

large (when flying blunt-base-first) the lift-curve 

slope of a “conical” capsule is negative. Longitud¬ 

inal stability may also be increased by giving the 
base of the cone a somewhat curved shape. 
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Figure 45. Pressure distribution and drag coefficient of the 1/9 
scale model (60,b,c) of the Mercury satellite capsule, both in base- 
first and in "cone”-first flight direction. 

(57) Family of short bodies at ot = 0 to 180°: 
a) Shaw, At M = 1.6 to 2.1, NASA TN D-1781 (1963). 
b) Keyes, At M = 3.5 to 6.0, NASA TN D-2201 (1964). 
c) Compton, At M= 15, NASA TM X-507 (1961). 
d) Peterson, Retrorocket Body, NASA TN D-1300 (1962). 
e) Wehrend, Stability Transonic, NASA TN D-1202. 
f) Brooks, Transonic Results, NASA TN D-1926 (1963). 

(60) Characteristics of satellite capsules: 
a) Ried, Basic Body, NASA TN D-1085 (1963). 

b) Shaw, Reentry Capsule, NASA TM X-233 (1959). 
c) Newlander, Mercury Capsule, NASA TM X-336 (I960). 
d) Johnston, Spacecraft, NASA TN D-1379 (1962). 

(61) Grimwood, Mercury Satellite Program, NASA SP-4001. 
(70) General information on extreme temperatures: 

b) Dorrance, Aerothermodynamics, A.Eng.Rev. Jan. 1957. 

c) Donaldson, Proc.U.S.Congr. Appl.Mech.1951 p.757. 

d) Kurzweg, Hyperballistics, A.Eng.Rev. Dec. 1956. 

e) Bond, Aerophysics, Aero Digest June 1956 p.21. 

f) A review on high-temperature phenomena in shock 

tubes, including a large bibliography is given by Hertzberg 

in Appl.Mechanics Rev. December 1956. 

k) Various aspects of aerodynamic heating in aircraft are 

presented in the July 1955 issue of Trans. ASME. 

(71) Facts and consequences of dissociation: 

a) Romig, Normal Shocks, J.Aeron.Sci.1956 p.185. 

b) Kuo, "Viscous" Dissociation, J.A.Sci.1957 p.345. 

c) Moore, BL in Dissociation, J.A.Sci.1952 p.505. 

d) Wood, Dissociation, NACA T.Note 3634 (1956). 

e) Dommett, Air Properties, RAE T.Note GW 429(1956). 

f) Lighthill, Thermodynamics, J.Fluid Mech.1957 p.l. 
(72) Examples of high temperatures: 

in chemistry, below 103 "K 

in plasma jet above 10^ “K 

surface of average star 10* °K 

meteors in the order of 10* °K 

thermonuclear reactions 10s °K 

(74) Influence of temperature on skin friction: 
a) VonKarman, Heat and Friction, Trans ASME 1939, 705. 
b) Wilson, Real Laminar Friction, J Aeron Sci 1962 p 640. 
d) Rumsey, On 10° Cone, NASA TN D-745 (1961). 

e) Centolanzi, Conical Bodies, NASA TN D-1975 (1963). 

Pressure Distribution. Typical drag coefficients are 

listed in figure 44, for ot = zero (flying blunt-base- 
first) and for ot = 180° (as during launching). The 

pressure distributions shown in figure 45, help to 

understand the origin of drag or axial forces as well 

as their magnitude. In the base-first attitude, almost 

all of the drag is due to the pressure at the blunt 

face. Whatever negative pressure there is along the 

afterbody, reduces in comparison to the face pres¬ 

sure as the Mach number is increased. — In the re¬ 

versed direction, at ot = 180°, there is some positive 

pressure along the conical portion of the capsule. 

Using equation (19) this pressure can be predicted 

or explained. There is some negative base pressure 

to be expected. As presented on page 16-4, the cor¬ 

responding drag coefficient is bound to be small at 
hypersonic Mach numbers. 

Short Nose Shape. A series of bodies with a length/ 

diameter ratio of 1, was tested (56,c) at M = 3.55, 
and in (56,d) at M = 24.5 in helium. Their shape 

is given by the function x ~ r”, where r = radius. 

For n = 1, a cone is obtained, and for n = 2 a para¬ 

bolic contour. For higher values of n (up to 10) the 

exponential shape results in a flat portion around 

the center of the bodies thus making them blunt- 

nosed. Balance-tested forebody-drag coefficients are 

plotted in figure 46 as a function of the shape ex¬ 

ponent “n”. It is not always desirable to have a high 

drag coefficient, such as in a re-entering vehicle to 

be recovered before hitting the ground. For ex¬ 

ample, in ballistic missiles, lesser drag coefficients 

might be preferable. The plot, as in figure 46, per¬ 

mits to determine a nose shape possibly having the 

least drag, for a given fineness ratio. For //d — 1, 

that shape corresponds to an exponent in the vicinity 

of 1.5, both at M = 3.55 and at 24.5. For Jl/d = 0.5, 

the exponent giving minimum drag, is in the order 

of 2.5. 
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(F) TEMPERATURE AND HEAT TRANSFER 

High Temperatures. It is pointed out in Chapter 

XVII that the temperature in the stagnation point 

and in the boundary layer increases significantly as 

a function of Mach number (see equation 6 in that 

Chapter). We have plotted in figure 48 the tempera¬ 

tures thus to be expected to prevail within the bound¬ 

ary layer developing along the surface of an insulated 

(non-heat-conducting) solid body. To indicate the 

severeness of the practical engineering consequences 

of such heating, facts should be noted as follows: 

Limit of human comfort 40 °C (0.9) 

Water boils at sea level 100 °C (1.4) 

Plastics melting at some 150 °C (1.7) 
Light alloys lose strength 200 °C (1.9) 

Titanium loses strength 550 °C (3.2) 

Aluminum melts at some 660 °C (3.5) 

Iron melting at some 1540 °C (5.3) 

Ceramics may be melting at 3000 °C (7.0) 

The values added in parentheses, indicate approxi¬ 

mate Mach numbers (based on Tatnb = 273 °K 

(I C; where the temperatures as listed, are possibly 

obtained in steady-state flight (without heat transfer 

of any type). It is then realized that continuous flight 

of manned aircraft within the denser layers of the 

atmosphere, can already become critical at M = 1. 

Radiation. At M between 3 and 4, the theoretical 

stagnation temperatures may be such that artillery 

shell and/or missiles carrying a warhead, might ex¬ 

plode. The fact that these devices can be pushed to 

Mach numbers in the order of 5 through tropospheric 

densities, without heat damage, can partly be ex¬ 

plained on the basis of cooling, through heat transfer 

onto the vehicle’s mass of metal. However, the heat 

balance on the surface of a flying solid is also a func¬ 

tion of radiation, away from the hot body. For ex¬ 

ample, at z = 40 km, heat transfer onto a vehicle 

flying at M = 4, is reduced to the order of 1% of 

that at sea level; see (75,c). Radiation is also of im¬ 

portance near the ground, where the theoretically 

possible high temperatures (as in figure 48) do not 

actually come true. 

Heat in Hypersonic Tests. High temperatures and 

corresponding heat damage on wind-tunnel models 

tested at hypersonic speeds, are avoided by operation 

at very low temperatures (as for example at —200 

°C) obtained by expansion of the working gas to very 

low static pressures (for example at the level of 0.01 

at). Reference (76) proves, however, that metal can 

be melted in a wind tunnel when using higher pres¬ 

sures and higher ambient temperatures. 

Figure 48 Temperature at a stagnation point and within 
the boundary layer, indicated by the values T—AT, cal¬ 
culated for TQm = 400 °R. Estimates for the two altitudes 
are shown, accounting for the heat consumed by dissociation 
of air molecules as a consequence of high temperature. 

Heat Transfer (75). Considering a rocket vehicle fly¬ 

ing through the higher layers of the atmosphere, pos¬ 

sibly at a Mach number of 10, very high temperatures 

(corresponding to T/Tam~ 0.2 M2= 20) might be 

expected to arise in the fluid flow surrounding the 

object. There are sound reasons, however, why such 

temperatures are not necessarily found in the solid 

skin of such a vehicle. Disregarding dissociation 

(which may reduce the stagnation temperature to 
1/2 or even to 1/4) the volume of heat (in distinc¬ 

tion to temperature) originating in a stream of 

rarefied gas, can be very small (74). Whatever 

amount of heat is produced (75,c) may be readily 

absorbed by the obstacle’s or vehicle’s mass of metal. 

From there it may then be discharged through radia¬ 

tion into space. The temperature on and within the 

skin of a vehicle, moving through the upper layers 

of the atmosphere, is thus the result of two “equally” 

strong or “equally” weak types of heat transfer. When 

proceeding into higher and higher altitudes, radiation 

is soon bound to predominate. This result is also 

illustrated by the fact (75,a) that the temperature of 

a body, at rest in highly rarefied gas, is expected to be 

considerably below the "kinetic” temperature of the 

surrounding medium. Finally, when traveling through 

the “exosphere”, the temperature in a solid body is 

completely determined by radiation, from the sun 

onto the body and from the body into space. Under¬ 

standing of these physical reactions, it seems, requires 

“unlearning” of certain effects to which we are accus¬ 

tomed in our daily sea-level type of atmosphere. 
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Molecular Chatiges. The large and sudden increase 

of pressure and temperature in some volume of gas 

when going through a strong shock, affects the equi¬ 

librium between the various forms of energy stored 

in the molecules. Molecular “vibration” (between 

the atoms making up a molecule) begins at tempera¬ 

tures in the order of 600 °K. Dissociation (break¬ 

down of a molecule into atoms or into smaller groups 

of atoms) of oxygen begins roughly at temperatures 

of the order of 2000 °K, and that of nitrogen at some 

4000 °K. Electronic excitation of the atoms (lumi¬ 

nescence) is finally encountered at temperatures above 

5000 °K. 

Dissociation. At certain temperatures (the levels of 

which are a function of static pressure) the molecules 

of oxygen, and later those of nitrogen, making up the 

mixture that we call “air” — begin to break up. This 

process of changing from the molecular form of (Oj) 

or (N2) into the atomic forms of O and N, is called 
dissociation. Thermodynamic properties of dissocia¬ 

ted air are somehow different from those of ordinary 

air. The consequences of dissociation (and of cer¬ 

tain other physical, chemical and electronic changes) 

have, therefore, been studied; see references under 

(71). Figure 4-8 presents, as one of the results of those 

studies, the temperature in the stagnation point, in 

the boundary layer, and possibly in the skin of a 

solid body exposed to this type of hypersonic flow. 

Dissociation consumes heat; the stagnation tempera¬ 

ture is reduced, accordingly. It is suggested in the 

graph that after completion of dissociation (first of 

the oxygen molecules involved) the temperature may 

continue to rise along a line which is less than half 

the original function, as for a “perfect” gas. A second 

“transition” then takes place, on account of nitrogen 

dissociation; and it is suggested that another, still 

lower function of T (M) is finally obtained. 

(75) Information on heat transfer, theoretical and experimental: 
a) Stalder, Heat Transfer, NACA T.Rpt 944 (1949). 
b) Schaaf, Chapter IX of "Heat Transfer”, Univ.Mich. 
Press 1953; also experimental in Chapter X. 
c) Adams, Radiation, Trans ASME 1955 p 735. 
d) van Driest, Aerodynamic Heating, J.Aero Sci 1956 p 26. 
e) Centolanzi, Short Bodies, NASA TN D-1975 (1963). 
f) Conti, Cone to cx = 90°, NASA TN D-962 (1961). 
g) Burbank, Flat-Face Cylinder, NASA TM X-19 (1959). 
h) See also references (42,e) and (56,b). 

(76) McLellan, Aerodynamic Melting, Trans ASME 1955 p.727. 
(77) A gas very suitable for experimentation at high Mach num¬ 

bers, and not too high Reynolds numbers, is helium. See 
"Analysis of Helium Flow”, NACA T.Note 4063 (1957). 

(78) Meteors consisting of iron (rather than "rock”) also burn. 

(80) NASA, United States Manned Orbital Flights, Special Re¬ 
port 1962; also Rpt SP-6 (1962) and SP-45 (1963). 

(82) General information on meteorites: 
a) Whipple, Data, Rev Mod Phys 1943 p 256; also 
"Theory” in Proc Nat Acad Sci Washington 1950 p 687 
and 1951 p 19; also "Rockets and Meteors” in Am Meteor- 
ologSocBull 1952 p 13; "Meteorites”, Univ N.M. Press 1952. 
b) Grimminger, Data, J Appl Phys 1948 p 947. 
c) Hansen, Review (Erosion), NACA TN 3962 (1957). 
d) Singer, Particles, Jet Prop 1956 p 1071. 

(83) Cosmic Dust, see NASA D-488 and D-1174. 

The Stagnation Pressure in air is given by equation 

(4) in the “transonic” chapter. Since the gas behind 
a shock wave at Mach numbers, say above 10, is no 

longer ordinary atmospheric air, certain properties 

are different (70,c). In particular, the ratio of the 

specific heats is no longer k = 1.4, but lower than 

that. As a consequence, the maximum possible stag¬ 

nation pressure (at M approaching infinity) is as 

follows; 

k=1.66 such as in helium “q” =1.76 

k=1.40 in atmospheric air “q” =1.84 

k=1.20 possibly at M = 20 “q” =1.90 

k=1.00 limiting condition “q” =2.00 

Pressure drag coefficients of blunt bodies must be 

expected to vary accordingly. Reference (71,c) also 

concludes that after dissociation, the viscosity “jj” is 

increased almost to 1.5 times the original value (at 

the same temperature). 

Hypersonic Vehicle. When launching one of the 

Mercury satellites (80) by means of an Atlas rocket 

(as in figure 24, Chapter XVII) acceleration reaches 

a maximum of 6 or 7 “g”. The maximum dynamic 

pressure encountered is almost 1000 lb/ft2 . The 

maximum speed obtained is in the order of 26,000 

ft/sec or 7.8 km/sec, at a cut-off altitude around 

500,000 ft, or 160 km. The Mach number in this 

condition is in the order of 10. The time required 

for the exit maneuver is about 5 minutes. The maxi¬ 

mum temperature on the shingles protecting the 

conical portion of the capsule was found to be be¬ 

tween 400 and 700° C. 

Stanton Number. Heat transfer into a flying body 

is a function of material and insulation. What we 

are considering here, is transfer through the bound¬ 

ary layer. Along the surface of slender bodies, heat 

corresponds to skin friction. The transfer of this 

heat (Q) through the boundary layer, is propor¬ 

tional to the differential (/IT) = (Tr — Tw) where 

Tr = recovery temperature 0.9 (stagnation tem¬ 

perature). Transfer is also proportional to surface 
S (ft2) and time “t” (sec). The result is “h” = 

Q/ (AT S “t”). This parameter can be made non- 

dimensional by converting it into the so-called Stan¬ 

ton number: 

“S” = “h”/(g g V cp) (60) 

where cp = specific heat of the air. In turbulent 

boundary layer this number is approximately 

“S” = 0.6 Cf (61) 

where as in figure 3 (Chapter XVII). Transfer 

through a laminar boundary layer is less than that 

through a turbulent layer. Very roughly, at Rx be¬ 

tween 106 and 107, the Stanton number is: 

“S” = 0.0003 for laminar condition 

“S” = 0.0015 in turbulent B’layer 
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Blunt Bodies. In and around the stagnation point, 

heat is the consequence of compression (and not of 

friction). Heat transfer data can be expressed in 

form of the Stanton number, using speed and air 

properties as in the undisturbed ambient flow. The 
resulting numbers for blunt bodies are a function of 

Mach and Reynolds number. To give an indication 

of the order of magnitude of heat transfer, rough 

values are listed in figure 49 for conditions as noted. 

a) Slender bodies such as cones have roughly the 

same coefficients as stated above for skin friction. 

b) At the stagnation point of hemispherical noses, 

heat transfer is higher than that due to friction. 

c) In the center of a flat face, transfer is about half 

of that as in the stagnation point of a sphere. 

d) In separated spaces (such as behind a cylinder 

in cross flow) transfer is low by comparison. 

Re-Entry of the Mercury satellite “into” the atmos¬ 

phere takes place with the blunt end first. Decelera¬ 

tion is provided by the face drag corresponding to 

1.5 (as in the “blunt-body” section of this 

chapter). Maximum dynamic pressure is reported 

(80) to have been 470 lb/ft2. On the basis of a 

frontal area S. = 30 ft2 and a re-entering weight of 

2500 lb, a maximum deceleration above 7 “g” is 

obtained. The time between the firing of the retro- 

rockets and the deployment of the recovery para¬ 

chute was about 6 minutes. During this period, the 

air temperature across the frontal shock wave as¬ 

sumes values between 4000 and 5000° C. However, 

the temperature within the ablating heat shield pro¬ 

tecting the blunt end, was found to be only 1600° C, 

while that on the conical afterbody is reported to 

have been about 500° C. For comparison, afterbody 

temperatures during orbital flight were roughly be¬ 

tween 0 and 100° C (in daylight). 

Meteorites (82). Typical specimens are believed to 

travel through space at a speed in the order of 20 

km/sec, while the earth is moving along at some 30 

km/sec, around the sun. Depending upon the direc¬ 

tion of the meteorites, they therefore enter into the 

atmosphere of the earth with initial relative speeds 

possibly between 20 and 60 km/sec. Because of the 

mechanism of heat transfer (explained above) the 

temperature actually produced within the solid mass 

of a meteor, is at first very small. This is evidenced 

by the fact that meteors do not light up before reach¬ 

ing altitudes of some 100 km. However, encounter¬ 
ing denser layers of the atmosphere, meteorites ex¬ 

perience decelerations up to the order of 1 km/sec2, 

corresponding to some 100 “g” units. The heat en¬ 

ergy absorbed during this period melts and vaporizes 

the usually stony material. As a consequence, the 

original mass reduces to “nothing” upon reaching 

altitudes, say around 50 km. As a matter of interest, 

an estimated number of 100 million meteorites enter 
into our atmosphere per day, with only a very few 

of these reaching the ground of the earth in what 

is left of their “solid” state. 

0.0004 

Figure 49. Stanton number values roughly indicating heat 
transfer (75) at Reynolds numbers above 
Rj = 106 and at Mach numbers between 3 and 6. 

Drag of a Meteorite. We will consider, as an ex¬ 

ample, a “stony” meteor, with an assumed diameter 

of 1 mm, with a volume in the order of 1mm3, and 

a mass of 3/10 grams which is 3/106 kg, or equal to 

W/g ~ 3/107 kp-sec2/m). We will assume that this 

meteorite moves at 30 km/sec through the atmos¬ 

phere, at the time it begins to be visible. At an alti¬ 

tude of 80 km where this “experiment” may take 

place, the atmospheric density g can be assumed to 

be approximately 10 kg/mi3 (Chapter XIX) or in the 

order of 1/106 kp-sec2/m3. The dynamic pressure 

under the conditions assumed is then 

q = 0.5 <r V2 = 0.5 (30)2 1 06 /106 « 450 (kp/m2) 

On the basis of a drag coefficient CD. = 2 (as in 

Chap XIX) the aerodynamic drag of the meteor may 

then be estimated to be 

D = CD. q s.= 2 (450)/106 = 9/10* (kp) 

where S. = 1/10 is the frontal area in m2. The de¬ 
celeration corresponds to 

dV/dt = -9(10)7/3(10f = -3000 (m/set?) «= -300“g” 

where 3/107 = mass as above. The Reynolds num¬ 

ber of the meteor considered is tentatively 

Rj=v 6 ^/yu = 30(10)3107/(1063(10)3) = 100 

where ju = absolute viscosity, estimated to be 3/107 

(kp-sec/m2) as in Chapter I. The Mach number is 
in the order of 

m = 30(io;y 300 = 100 

The analysis above, demonstrates that the motion of 

a meteor can be correlated with its aerodynamic drag. 

A "kp” is a kilopond, equal to the force of a kilogram. A "kg” 

is a likogram (mass), which can be expressed in (kp-sec2/m). 
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CHAPTER XIX — DRAG AT HIGH SPEEDS AS AFFECTED 

BY VISCOSITY AND RAREFACTION 

The flight of rocket-propelled, vehicles (tnissiles and 

satellites) leads into the upper layers of the earth’s 

atmosphere. To shoot such devices into extreme al¬ 

titudes (and possibly to keep them there), compara¬ 

tively high speeds are required. Such combination of 

speed and rarefaction leads into conditions where 

theoretical laws and empirical functions of ordinary 

gas dynamics do no longer give correct information. 

The deviations from supersonic and inviscid hyper¬ 

sonic characteristics (as presented in the “supersonic” 

chapter) grow in particular with the degree of rare¬ 

faction. However, certain of the effects encountered 

at altitude, can basically (and at least theoretically) 

also be produced by the combination of high speeds 

with high viscosity. This then is the reason for treat¬ 

ing the influence of “viscosity” and that of the at¬ 

mospheric properties at higher altitudes together in 

this chapter. In more conventional terms, the chap¬ 

ter deals (a) with the influence of viscosity and heat 

at super-hypersonic Mach numbers, (b) with the aero- 

physical properties of, and the gas-dynamic charac¬ 

teristics in the upper layers of the earth’s atmosphere. 

Research, both theoretical and experimental, has only 

broached so far on certain of the phenomena to be 

expected at extreme speeds and in particular in rare¬ 

fied fluid flow. By combining available results on 

both of these effects, an effort is made to give a con¬ 

spectus of the aerodynamic characteristics encount¬ 

ered (for example) by a missile or a satellite, when 

going from subsonic and supersonic speeds through 

various phases into the field of rarefied and free mole¬ 

cule flow. 

(1) The term "hypersonic”, indicates flow conditions at higher 
supersonic Mach numbers. The type of flow is usually within 
the continuum phase of ordinary gas dynamics. 

(2) Mechanics of rarefied fluid flow: 
a) Zahm, "Superaerodynamics”, J.Frank!.Inst.1934 p.l 53- 
b) Tsien, "Superaerodynamics”, J.Aeron.Sci.1946 p.652. 
c) Ashley, Free Molecule Theory, J.Aeron.Sci.1949 p.95. 
d) Patterson, Molecular Flow, Wiley 1956; see also General 
Survey in Aeron.Engg.Review 1955 (February). 
e) Principles of kinetic gas theory and earlier work in this 
field are reviewed in (a) and (c). 

(A) REALMS OF FLUID DYNAMICS 

Aerodynamic characteristics of a satellite or any sim¬ 

ilar vehicle, when travelling at extreme altitudes, are 

radically different from those during the take-off per¬ 

iod (when traversing atmospheric layers having den¬ 

sities of the same order as at sea level). The transition 

from one extreme to the other is continuous, how¬ 

ever; and there are physical quantities by which the 

location between the two extremes can be defined 

and measured. 

Mean-Free Path. To understand the mechanics of 

rarefied fluid flow, one has to consider motion and 

time history of the gas molecules involved. In air at 

sea-level pressure, the number of atoms per unit vol¬ 

ume is extremely high, the mean-average velocity of 

their “oscillating” thermal motions is also high, but 

the (average or effective) length “A.” of the so-called 

mean-free path that each molecule travels, statistic¬ 

ally, before colliding with another one is very short. 

To give an illustration, that dimension in sea-level 

air is of the order of 1/10 mm (which is approxi¬ 

mately the microscopic particle size of tobacco smoke). 

No distinction has to be made, accordingly, between 

the individual molecules; and the fluid is considered 
to be a continuum. The path length grows, however, 

as a function of absolute “kinetic” temperature, and 

it increases in proportion to 1/p; thus roughly: 

- 12 
A ~ T /p (1) 

Since T increases appreciably (at really high alti¬ 

tudes) while p reduces extremely rapidly as a function 

of altitude, the mean-free path increases at a pro¬ 

gressive rate. For example, at an altitude of 100 km 

(where meteors can be observed, and where p/pQ « 
10'1 2 * * * 6) the mean-free path measures approximately 

100 mm. At 200 km of altitude (which may be the 

minimum altitude required for an earth satellite) 

the path length approaches 1 km. 
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Reynolds number R' 

• CONVENTIONAL AIRPLANES 
□ MISSILES AT SEA-LEVEL 
4 V-2 AT BALLISTIC PEAK 

-i- V-2 IN VERTICAL PROGRAM 
x METEORS (LIGHTING-UP) 
A INTERCONTINENTAL ROCKET 
* "SPUTNIK" SATELLITE 
o Various SATELLITES 

Figure 1. Realms of fluid dynamics, from continuum- 
type to free-molecule conditions of flow. 

Knudsen Number. Assuming now some vehicle as¬ 

cending through the atmosphere, the mean free path 

“A” of the molecules will first grow to a magnitude 

equal to the dimension “jf” of the vehicle. It can 

then be assumed that the fluid stream is no longer 

continuous, and that the gas molecules will strike 

against the moving solid as * individuals! At still 

higher altitudes, there will be so few (33) molecules 

(atoms or ions) left in a certain volume of space, that 

they do no longer interfere with each other, when 

and after striking the solid body. This then is the 

phase of “free-molecule flow”. The ratio (A/)?) can 

now be used as a measure, indicating the degree of 

interference between molecules; and this ratio is 

called the Knudsen number (51). Since A.v/’a’, 

that number can conveniently be expressed by the 

more familiar Mach and Reynolds numbers: 

BL Thickness. With regard to skin friction and or¬ 

dinary consequences of viscosity, within the denser 

layers of the atmosphere, the boundary layer thick¬ 

ness (rather than length or diameter of the solid 

body involved) must be considered to be the signifi¬ 

cant dimension to be used in equation 2. Since (in 

laminar B’layer flow) the thickness 8 varies as 1//Rj, 

the parameter (M/l/Rj) is thus obtained (in place 

of M/Rj). Making similar substitutions as above, we 

then find that the square of this “number” is approx¬ 

imately . 
(M2/Rj) — V/ (JL 9) (3) 

Speed “V” is thus part of this parameter; and con¬ 
sequences of rarefaction must be expected to grow 

as a function of speed or Mach number. The same 

phenomena can also be obtained, however, by reduc¬ 

ing and/or “9”, which then means reducing the 

Reynolds number. In view of the interactions taking 

place in supersonic flow (see later) it is suggested to 

call (M//Ej^) or (M2/R^) the “viscous interaction 

parameter”. 

K =X/K = 1.26 /r-v/(‘a’-;) =« 1.5 M/R^ (2) 

The realm of continuum-type fluid dynamics is thus 

found to be in the range of smaller M’numbers and 

larger R’numbers. Vice versa, the other extreme (of 

free molecule flow) is obtained at larger M’numbers 

and smaller R’numbers. 

Rarefaction. Since the speed “V” is part of both the 

R’number and the M’number, the parameter as per 

equation 2, is basically independent of speed. Dis¬ 

regarding a smaller influence of temperature, that 

equation can also approximately be written as K’num- 

ber ~ l/(p-J(). It is then realized that the Knudsen 

number is a function of the atmospheric pressure 

“p” and the size of “l” of some vehicle traversing 

the atmosphere. Considering, however, a solid body 

of given size, (M/R) can primarily be considered as 

a measure indicating the degree of rarefaction. This 

parameter is properly to be used under conditions 

where the boundary layer is absent, or where the 

B’layer does not interfere with the flow pattern. 

Phases of Fluid Dynamics. To indicate quantita¬ 

tively, whether a certain combination of Mach and 

Reynolds number produces an ordinary continuum- 

type flow pattern, or Newtonian conditions of fluid 

flow, or any other phase in the wide field between 

those extremes — certain educated estimates have 

been made (2). Based on the Knudsen number (equa¬ 
tion 2) or the rarefaction parameter (equation 3) 

free molecule flow is expected to prevail at M/R >■ 10 

or =~ 1. For the border line of continuum flow, on 

the other hand, a value of the “interaction” para¬ 
meter as per equation 3 is assumed in the order 

of M/nARjL = 0.01 (or of \/R^/M = 100). Figure 
1 presents the corresponding two limiting lines. 1 he 

results of other, specific estimates have also been in¬ 

cluded in that graph showing, for example, that man¬ 

carrying airplanes (including the most advanced types) 

are completely in the region of continuum flow, that 

high-altitude rockets may range across the entire space 

between the two extremes, and that “applications,” 

really within the phase of free-molecule flow, are 

meteors (see XVIIl), man-made satellites (as we can 
say after October 1957) and intercontinental rockets. 
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“Interaction”. As pointed out later (see figure 24) 

boundary layer characteristics in free-molecule flow, 

are completely different from those in continuum flow. 

Since this and possibly other effects of so-called slip 

flow were expected to be of primary significance for 

flow pattern and forces within the whole field of R’ 

and M’numbers in between the extremes (see figure 

1) this field was named the regime of slip flow (3). 

It appears, however, that phenomena attributable to 

“slip”, are of importance primarily at subsonic Mach 
numbers and/or upon closely approaching the regime 

of free-molecule flow. At supersonic speeds and in 

the rest of the field between the extremes, other 

boundary-layer effects, such as thermal displacement 

and shock interaction, have a much more important 

influence upon flow pattern and resultant pressures 

and forces. It is, therefore, suggested to consider, and 

to name, at least an appropriate part of that field, 

that of “viscous interaction”. Aerodynamic studies 

in this phase are thus concerned with increased 

boundary layer thickness (at lower R’numbers) with 

higher temperatures (at higher Mach numbers) and 

as a consequence of both of these parameters, with 

severe boundary-layer shock-wave interactions. The 

term “interaction” might also be understood to in¬ 

dicate the mutual interference between gas molecules 

in this phase, in distinction to conditions in free-mole¬ 

cule flow. The term of “slip flow”, on the other hand, 

seems to be appropriate to indicate the transition 

between the “interaction” and “free-molecule” phases, 

as marked in figure 1. 

(3) Comment on slip phenomenon: Some investigations have 
originally been carried out on slip as such; see references 
under (2). It was later realized, however, that "most present 
developments are not based on slip and temperature jump 
(Schaaf, Review in Appl.Mech.Rev.1956 p.413)- Indeed, 
viscous phenomena, in combination with Mach-number effects, 
appear to be the essence of real fluid flow at high speeds and 

in higher altitudes. 
(4) We may assume that airplanes of the "conventional” type 

would be able, within the foreseeable future, to travel at 
M = 3 (i.e. at a speed in the order of 2000 mph) at a 
service altitude, let us say of 80,000 ft. For a wing chord 
of possibly 15 ft, their Reynolds number will then be of the 
order of 107, and the parameter VRj/M will roughly be in 
the vicinity of 103. Figure 1 readily indicates that a craft 
under such conditions is still very well within the region 

of ordinary gas dynamics. 
(5) The various phases of gas-dynamics are demonstrated by 

Ivey in "Mechanical Analogy", J.Aeron.Sci.1950 p.519. 
(8) Impact pressure in compressible fluid flow: 

a) See "Barker Effect" in Chapter III. 
b) Homann, Forschung 1936 No. 1 & 3, NACA TM 1334. 
c) Macmillan, Pitot Tube, J.R.Aeron.Soc.1954 p.570. 
d) Kane, Interpretation, NACA T.Note 2210 (1950). 
e) Sherman, Impact Probe, NACA T.Note 2995 (1953)- 

Figure 2. Variation of the pressure indicated in the open¬ 
ing of impact-pressure probes, as a function of R number. 

(B) VISCOUS EFFECTS AT HIGH SPEEDS 

Bluff bodies are treated in Chapters XVI and XVIII 

without specific reference to viscosity. Pressure forces 

on such bodies behind a detached, normal-shock-type 

wave front, are usually so high that skin friction 

and/or boundary-layer effects are comparatively small 

and of negligible magnitude. Some experiments car¬ 

ried out on bluff bodies, at very small Reynolds num¬ 

bers (and at higher Mach numbers) thus reaching 

into the “interaction” field as in figure 1, are pre¬ 

sented as follows. 

(1) BLUFF BODIES IN SUPERSONIC FLOW 

Stagnation Pressure. The magnitude of the pressure 

experienced in the open end of a Pitot tube usually 

corresponds to (parob + q) in uncompressed fluid flow 

and to (pQmb + “q”) in compressible and/or in super¬ 
sonic streams of air or gas (see Chapter XVI for the 

definition of “q”). At smaller, or very small Reynolds 

numbers (see Chapter III) that pressure is larger, 

however, than corresponding to the stagnation pres¬ 

sure — because of viscous interference from the out¬ 

side surface surrounding the opening of the Pitot 

probe. This so-called Barker effect can be approxi¬ 

mated by 
ACp = o/Rd (5) 

where Rj = R’number based on the diameter of the 

tube; and where o a;6 for open tubes. In super¬ 

sonic flow, conditions are complicated, of course, by 

the presence of an essentially normal shock ahead of 

such an opening. Figure 2 shows, however, that the 

ROUND SHAPES: 
X SOURCE SHAPE M = .35 (8,e) 
A DITTO AT-- - M- 2.5 (8,e) 
O SPHERE AT---M — 0 (8,b) 

PITOT-TYPE TUBES 
+ AT M'NUMBER - =.35 (8,e) 
• AT M'NUMBER ZERO (8,b) 
n BARKER AT - M^-0 (8,o) 
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0.1 TO 0 V $ 

Figure 3. Correlation of the viscous increment of the pressure 
indicated by stagnation- or impact-pressure probes 
(8,e) against the Mach number parameter (1/M). 

same type of pressure rise takes place at Mach num¬ 

bers between 2 and 4 in the opening of a “source¬ 

shaped” pressure probe. For the M’number as stated, 

and for Rj between 50 and 100, we find that the R 

and M combination of the probes as tested, is about 

in the middle of the two boundary lines in figure 1. 

There is no method available, to this date, of correla¬ 

ting stagnation-pressure results within the “interac¬ 

tion” phase. Inasmuch as skin friction eventually re¬ 

duces to zero within the free-molecule phase, we ex¬ 

pect, however, that the magnitude of 4Cp, decreases as 

M/Rj is increased. Assuming that equation 5 really 

holds for all Mach numbers, values of o = (Acp.Rd) 
are then plotted in figure 3, as a function of (I/M). 

The lines drawn through the very few experimental 

points, are heuristic, of course. They give a qualitative 

indication, however, of the manner in which the vis¬ 

cous-type pressure increment in the vicinity of a stag¬ 

nation point may vary at high M’numbers and/or at 

low R’numbers, as a function of these numbers. 

Spheres as a Function of R’numher. The drag co¬ 

efficient of spheres as a function of Mach number is 

presented in Chapters XV (figure 6) and XVI (figure 

20). It is stated there that at Reynolds numbers above 

10^, the magnitude of the coefficient does not notice¬ 

ably vary with that number. Experimental results 

from various sources, obtained over a wide range of 

the Reynolds number, are plotted in figure 4. Con¬ 

clusions are as follows: 
3 

(a) Variations are not significant between Rj == 10 

and 10 , although there is a slight and flat dip in the 

middle of this range. 

(b) A discontinuity seems to exist between 102 and 

103 . Since this result is found in two different in¬ 

vestigations, the step in the drag function may very 

well be genuine; and it may then have something to 

do with the wake generation past the sphere’s base. 

For comparison, an experimental function obtained 

at M 0, has also been plotted in the graph. 

At Very Low R’Numbers. Most of the experimental 

points in figure 4 are in the field of continuum flow; 

some of them are in the “interaction” phase, how¬ 

ever. Viscosity must be expected to have a twofold 

influence upon supersonic drag; first, simply through 

friction, and second because of boundary layer dis¬ 

placement. Within the “laminar” phase of the Rey¬ 

nolds number (at Rj between 102and 10f) both of 

these effects may approximately be proportional to 

1//Rj. Thus plotting (12) the sphere drag coeffi¬ 

cients (tested at Mach numbers between 2 and 3) as 

in figure 5, a general (if qualitative) picture is ob¬ 

tained of bluff body characteristics at low Reynolds 

numbers. Such bodies show first an incremental drag 

coefficient ACD~ 1//Rj"; and the total coefficient of 

the sphere may approximately be: 

CD.= °’95 + <*V*> (12) 
Stokes’ solution (12,a) for uncompressed fluid flow 

(corresponding to M = 0) is also shown in figure 4. 

Figure 4. Supersonic drag coefficients of 
spheres, tested at Reynolds 
numbers berwen to'and 106. 

x Univ Colif. M = 2.3 (12,e) 
+ Ditto at - - M = 3.2 (I2,e) 
A NAVORD - M 1.6 (12,k) 
O May + Witt * to 3.3 (l2,g) 
O Others — quoted • in - (I2,g) 
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The fact that the experimental function, found for 

M between 2 and 3, approaches Stokes’ line, indicates 

that viscous forces take over more and more. Even¬ 

tually, the drag coefficient can be expected to cross 

the viscous function, however, because of the slip 

phenomenon; and it may finally be expected to end 

up at the level corresponding to free-molecule flow. 

Cylinder. The Knudsen number (as in equation 2) 

has been used to correlate experimental results on 

spheres and other bodies obtained between the con¬ 

tinuum and the free-molecule phases of flow. Drag 

coefficients at different Mach numbers do not col¬ 

lapse, however, when using the Knudsen number. We 

have, therefore, plotted in figure 6, results on circular 

cylinders in the same manner as those of spheres (in 

figure 5) as a function of the Reynolds number pa¬ 
rameter 1 A/ Rd. At M = 4, the cylinder’s drag co¬ 

efficient seems to vary as 

CD> = 1.2 + 3//R7 (13) 

At a Reynolds number in the order of unity, the co- 

efficent assumes the value as in free-molecule flow. 

Figure 6. Drag coefficient (60,f) of a circular cylinder (in cross 
flow) at M = 4, as a function of the Reynolds number. 

(11) Spheres at higher Reynolds numbers: 
a) Hodges, High-Speed Firings, J.A.Sci.1957 p.755. 
b) Clark-Harris, Ballistic Tests, J.A.Sci.1952 p.385. 

(12) Drag of spheres as a function of R'number: 
a) Stokes, Viscous Theory, see Chapter III. 
c) Characteristics in free molecule flow, see (58). 
d) Charters and Thomas, J.Aeron.Sciences 1945 p.468. 
e) Kane (Berkeley), Experiments, J.Aeron.Sci.1951 p.259; 
also continuation in J.Aeron.Sci.1951 p.566. 
g) May-Witt, Free Flight, J.Aeron.Sci.1953 p.635. 
i) May, in Free Flight, NAVORD Rpt 4392 (1956); 
see also Journal Applied Physics 1957 p.910. 

j) Kinslow and Potter, At M = 10.6, Arnold Center AEDC 
TD Rpt 1962-205; see also AIAA J. 1963 p 2467. 
k) Wegener, At M = 4, Jet Prop Lab Rpt 34-160 (I960). 
l) Aroesty, Density, U.Cal Berkeley HE-150-192 (1962). 

(14) Base pressure results in rarefied fluid flow: 
a) Kavanau, Rarefied Supersonic, J.A.Sci.1956 p.193. 
b) Lehnert, On Spheres, NAVORD Rpt 2774 (1953). 
c) The correlation in figure 7 against M/VRjds empirical. 

d) Ferri, On Bluff Bodies, USAF WADC T.Note 1956-294. 
e) Linnell, Cone Analysis, J.Aeron.Sci.1957 p.390. 
f) Penland, Hypersonic Cylinders, NACA RM L54A14. 

• WITH LATERAL SUPPORT <12,e) 
o IN TUNNEL, ON STING (I2,e) 
A NAVORD FREE FIRINGS <12,i) 

Figure 5. Drag coefficient of spheres, tested at Mach num¬ 
bers between 2 and 3, as a function of Reynolds number. 

Base Pressure. Part of the total drag of spheres (as 

shown in figure 4) corresponds to a pressure deficiency 

at their rear side. The corresponding base drag com¬ 

ponent is investigated in (14,b) at M’numbers be¬ 

tween 1.6 and 5.0, and at R’numbers (on sphere di¬ 

ameter) between llAand 106. Results are as follows: 

(a) The dip in the total drag coefficient (at Rj » 10S 

in figure 4) corresponds to a variation of the base 

drag coefficient, 

(b) The base pressure variation is of the same type 

as that of the ratio presented in figure 7 of Chapter 

XVI, between R^= 105and 106. 

Zero Base Drag. Figures 6 and 12 in Chapter XVI 

suggest that the base-drag coefficient behind projec¬ 

tiles and similar body shapes approaches the maxi¬ 

mum possible ratio, as M increases to hypersonic 

values. Since the maximum pressure differential (cor¬ 

responding to vacuum) approaches zero at the same 

time, base drag seems to approach zero as M —► oo. 
However, tunnel tests on a circular cylinder (in cross 

flow) as reported in (14,f) display positive values at 

the rear (base) side, corresponding to CPB = 0.02 (or 

to more) at M = 6.9. It is also concluded in (14,d) 

that the pressure on the afterbody of a bluff double 

wedge can be positive because of “shoulder pressure” 

produced by the rise of entropy across the shock front. 

Analysis of the flow past a cone (14,e) finally pro¬ 

duces quantitative results in similarity form. It can 

thus be concluded that the base pressure differential 

behind a cone-cylinder configuration turns positive 

upon exceeding the value ‘H’ = M sine = 3 or 4. 

Extrapolation to 1/‘H’ = 0, leads to a negative base- 

drag coefficient (on dynamic pressure) between 0.04 

and 0.05, at M —»- oo for cone-cylinder-combinations 

in axial flow. 
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At Low Reynolds Numbers. Figure 7 in Chapter 

XVI demonstrates several phases through which the 

base pressure ratio (pB/pan>b) passes, when reducing 
the Reynolds number. In the vicinity of Rj= 10s, the 

pressure reaches a maximum (at M’numbers of 2.5 

and 2.8, for which experimental results are shown). 

Base pressure reduces (and base drag increases) again, 

however, when decreasing the R’number below 10s. 

Experimental results (14,a) obtained at Mach num¬ 

bers between 2 and 4, and at R’numbers between 

10 and 10^, clearly show that in this phase (to be 

checked in figure 1) base pressure approaches zero, 

and base drag approaches the maximum possible level 

(corresponding to vacuum). The experimental re¬ 

sults can be correlated (14,c) with each other in the 

form as plotted in figure 7 thus presenting the base 

drag of the configuration tested (and probably that 

of similar “slender” solids) across the whole range 

of the R- and M-number parameter as used in plot¬ 

ting the graph. Another, more qualitative result of 

the investigation (14,a) is the fact that the base pres¬ 

sure is no longer uniform across the base area. 

Figure 7. Correlation of base-drag ratio, behind a cylin¬ 
drical body, in supersonic (at M =- 2) and viscous flow 
(below Rji= 10*) against the parameter (M2//R) ). 

(2) VISCOUS EFFECTS IN SLENDER SHAPES 

Chop.XVIll 

Skin Friction. It should be noted that equation 26 is 

governed by the “interaction” parameter (as in equa¬ 

tion 3). The same dependence is also evident in 

figure 8, where tested laminar skin-friction coeffi¬ 

cients, in the form of (CpM) are plotted against 

(M/VRjj). Included in that graph (in identical term¬ 

inology) are also the Blasius functions for laminar 

skin friction in uncompressed fluid flow (see figures 

5 and 6 in Chapter II). Very good correlation is thus 

found between subsonic and supersonic results. Also 

shown in the graph (figure 8) is the skin-friction func¬ 

tion for free-molecule flow — which in the termin¬ 

ology used, appears as a constant upper limit. We 

have thus in this illustration, the “complete” story 

of plane laminar skin friction (of the Blasius type, 

see page 2-4) from "uncompressed" and/or subsonic 

to hypersonic speeds and reaching into the field of 

free-molecule flow, all presented in one graph. In re¬ 

gard to laminar skin friction, the results suggest that 

simple gas dynamics are applicable to M/v/Rji <10 

We have then a shock-affected phase between lO’and 

10 (which we can consider to represent the “inter¬ 

action” phase in figure 1) and a transitional (or slip- 

flow) phase between 10~* and 10+l, above which free 

molecular flow is finally established. This classifica¬ 

tion is compatible with that in figure 1. 



XIX - VISCOSITY AND RAREFACTION 19-7 

Turbulent Boundary Layer. Considerable informa¬ 

tion is available on turbulent flow at supersonic speeds 
(see Chapter XVII). We have evaluated certain of 

those results and plotted them (17) in figure 8, in the 

form of rarefied fluid-flow parameters. Interpretation 

is as follows. As a function of Mach number, the 

turbulent skin friction coefficient reduces at first con¬ 

siderably (see figure 3, Chapter XVII) while that 

corresponding to laminar boundary layer flow essen¬ 

tially remains constant (as stated in Chapters XV and 

XVII). Naturally, turbulent friction should not be 

expected to reduce below the level as found for lami¬ 

nar BL flow. The experimental results as plotted in 

figure 8 suggest that the laminar function represents 

the limiting condition for the turbulent function. It 

is thus proposed that at higher Mach numbers and/or 

at lower R’numbers (that is, above M //Rj ~ 10 2) 

the distinction between laminar and turbulent BL 

flow becomes lost (17,b). 

(15) Laminar skin friction in rarefied fluid flow: 
a) Schaaf, Plates Tested, J.Aeron.Sci.1954 p.85. 

b) Kulthau, Local Friction on Drum, J.Appl.Phys. 1949 
p.217 and Proc. 3rd Mid-West.Conf.Minneapolis 1953. 
c) Bradfield (Minnesota), J.Aeron.Sci.1953 p-373. 
d) NACA, Theories, T.Notes 2244,-^2423, 2818. 
e) Coles, At M = 2.6, J.Aeron.Sci.1952 p.717. 

f) Review by Kaye (MIT) in J.A.Sci.1954 p. 117. 
g) Hill, Hypersonic Friction, J.A.Sci.1956 p.4l. 
h) Lin-Schaaf, Slip Effect, NACA T.Note 2568 (1952). 
i) For friction at low M’numbers see (2) in Chap.II. 

1) Klunker, Theory for M = l to 10, NACA T.Note 2499. 
n) Dhawan, Local Friction, NACA T.Note 2567 (1951). 
o) Mirels, Slip Effect. NACA T.Note 2609 (1952). 

(17) Notes on skin-friction in compressible fluid flow: 

a) Note that the reduction of laminar skin friction due to 
compressibility (temperature) as indicated in figure 2 of 
Chapter XVII, is comparatively small -— so that it can 
hardly be noticed in the points plotted in figure 8. 
b) This interpretation of turbulent friction results, as in 

figure 8, is heuristic. It is also suggeted that vorticity orig¬ 

inating across a boundary-layer induced shock wave — is 

turbulence, thus possibly rendering a "laminar" layer effec¬ 

tively turbulent. 

(18) The intensity of the trailing rhock-wave system reduces gen¬ 

erally, as the Mach number is increased — until we ulti¬ 

mately arrive at a "one-wave" flow pattern. Within such a 

pattern, it is then possible for the positive pressure aft 

of the oblique shock "sheet” to extend into the base space. 

(19) Cones at high speeds and/or low R'numbers: 

a) Ipsen, Cones in Rarefied Flow, Jet Prop.1956 p.1076; 

see also Schaaf, Jet Prop.1956 p.247. 

b) Talbot, Cone Probes, NACA T.Note 3219 (1954). 

d) Munson, Tests at M = 18, GALCIT Memo 35 (1956). 

(20) Notes concerning drag and flow pattern of cones: 

a) Additional tests, at M = 4, on the same cone as in 

figure 9, show higher "viscous” increments. 

b) Cone flow is an example where the physical meaning 

of the interaction parameter (equation 3) becomes evident. 

Pressure in and narrowness of the space between shock 

front and solid surface are increased by Mach number 

(reduced shock angle) as well as by reduction of the R'num- 

ber (resulting in larger B'layer displacement). 

Cone Drag. Figure 9 presents the drag coefficient of 

a small cone, tested at various Reynolds numbers. 

Comparison of the conditions with the R and M plan 

(figure 1) shows that, at the lowest R’number tested, 

we are roughly 1/3 up in the "interaction” field. 

Through extrapolation to \/\J R| = 0 (representing 

zero viscosity, corresponding to Rj> —► oo) a coeffi¬ 

cient is obtained as indicated by inviscid hypersonic 

theory (CD> = f(sin2e), see Chapter XVI). The graph 

demonstrates that the “viscous” component of the 

drag coefficient increases approximately in propor¬ 

tion to l/v'Rj. That component is made up of two 

parts, a frictional value (similar to the function in 

figure 8) and a shock pressure differential (the local 

magnitude of which may be as in equation (26) p. 18 
-8. Both of these parts can be expected to increase 

in proportion to 1 //Rj. In contrast to the skin fric¬ 

tion coefficient, the shock-pressure component also 
increases in proportion to M (see footnote 20). 
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(C) AERO-PHYSICAL CONDITIONS 

IN THE UPPER ATMOSPHERE 

The variation of the physical properties of atmos¬ 

pheric air, as a function of altitude, is presented in 

Chapter I, including the lower part of the “strato¬ 

sphere”, up to some 70,000 ft or ~ 20 km of altitude. 

This is as high as “conventional” type of airplanes 

(using air to feed their engines) may be designed to 

operate. Characteristics of the upper atmosphere, ex¬ 

tending to tenfold and more of that altitude, are pre¬ 

sented as follows. 

Dimensions of the Earth (30). The nominal circum¬ 

ference of the earth (at the equator) is 40,000 km 

(32). Each quadrant thus contributes 10,000 km 

(which is the basis for the definition of the “meter”). 

The diameter of the earth is 12,740 km, and the radius 

is 6,370 km. In fractions of that radius, altitudes are 

as follows: 

height of Mount Everest is above 0.1% 

troposphere is extending to some 0.2% 

meteors lighting up around 1.0% 

reached by one-stage rockets 3% 

satellites orbiting between 2% 

and a maximum corresponding to 25% 

intercontinental ballistic rockets 10% 

These percentages are intended to give a certain scale 
to the altitudes considered later. For comparison, the 

moon has a diameter of almost 3500 km (little more 

than % of that of the earth). Its average distance 

from the earth is 380,000 km (equal to «s: 30 

diameters of the earth). Also, to give a general idea 

(30) Dealing with the extremely large range of dimensions en¬ 

countered in the atmosphere (from those of dust to the 

circumference of the earth) only a metric system seems to 

be adequate. Dimensions are thus given, in this chapter, 

primarily in millimeters and kilometers, 

(31) Determination of dust in space and atmosphere: 
a) Gazley, "Exosphere ", J Aeron Sci 1959 p 770. 
b) Lagow, Proc 1st Internat Space Sci Symp, Nice I960. 
c) Whipple, Dust Cloud, "Nature” 1961 p 127. 
d) McCracken, Dust From Satellite, NASA TN D-1174. 

(32) The nautical, geographical sea- or British Admiralty mile 

(equal to 6080 ft or to « 1.15 statute miles) corresponds 

to one minute (= 1/60 of a degree) on the earth’s cir¬ 

cumference. That circumference is then equal to 60 • 360 

= 21600 nautical miles; and the radius of the earth is 

0.5/tr times the circumference. One "kilometer” is equal 

to 5/8 of a statute mile (which, in turn, is 5280 ft). 

(33) The terms "empty” and "a few molecules” are relative. 

Stalder, Heat Transfer, NACA T.Rpt 944 (1949). 

of the altitudes actually encountered within the dif¬ 

ferent realms as in figure 1, the following example 

is quoted from (36,b). Assuming a vehicle with a 

length of 100 ft, traveling at speeds corresponding 

to M = 10, the limit of conventional gas dynamics 

is reached at an altitude of the order of 130 km; 

beyond this point, the region of “interaction” is ob¬ 

tained; and at approximately 270 km of altitude, the 

field of free molecule flow is finally entered into. 

The Reynolds number at this point is Ro = 1, at 

M — 10 and for/. = 100 ft. 

Atmospheric Layers. Not only pressure (and temper¬ 

ature) change as a function of altitude. The chemical 

and electrical properties of the atmosphere vary also 

very much. In reference to these properties, certain 

more or less concentric “layers” have been estab¬ 

lished, or they are postulated and assumed to exist. 

They are briefly as follows: 

(a) The troposphere, extending to some 8 km at the 

earth’s poles, and to some 16 km at the equator, 

roughly consists of 79% molecular nitrogen and 20% 

molecular oxygen. Temperature reduces steadily 

within this layer (see Chapter I). 

(b) The stratosphere extends to some 50 km of alti¬ 

tude. Temperature in this layer is at first compara¬ 

tively constant (on a level below “freezing” 220°K, 

standardized at — 16°C in the temperate zones of 

the earth). 

(c) Because of ultraviolet radiation from the sun, 

temperature increases considerably (by some 100°C) 

between 30 and 50 km of altitude. The formation of 

ozone (03) coincides with the rise in temperature; 

thus the “ozone layer”. 

(d) In the mesosphere, between 55 and 85 km, tem¬ 

perature decreases rapidly with altitude to a level 

of <=» 150°K. 

The Thermosphere. In aerodynamic respect, all the 

regions listed so far, contain one and the same type 

of gas (molecular nitrogen and oxygen) id est with¬ 

out chemical changes (except for the formation of 

ozone). Under the influence of radiation from the 

sun, the chemical constitution of the atmosphere be¬ 

gins to "disintegrate” above » 90 km of altitude. 

As a consequence, the temperature increases rapidly 

in what is called the thermosphere (36,k,l) eventu¬ 

ally rising to extremely high values. Generally, it 

can be said regarding temperature in higher altitudes, 

that it is not as important as density (for example) 

and that measured values are comparatively uncer¬ 

tain. Some information is presented in figure 14a. 
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Number Density. One way of measuring the density 

of the atmosphere, is to indicate the number “n” of 

particles per unit of space. If counting the basic 

particles (of nitrogen and oxygen) the density of air 

at standard sea level, corresponds to n = 8*(10)2° pro¬ 

tons and/or neutrons per cm3. Since more than 99% 

of the atmospheric weight is concentrated in the 

combined tropo- and stratospheres, the “layers” listed 

as follows might be considered to be comparatively 

“empty” spaces containing “some” gaseous particles. 

However, the terms “empty” and “a few particles” 

are relative. It is said in ( 33 ) that “a large mean 

free path should not be construed as an indication 

that the number of molecules per unit volume is 

small”. For example at 400 km of altitude (which 

is higher up in the ionosphere), the mean-free path 

approaches “ A.” = 10 km, in comparison to «=T0-4 

mm at sea level. The ratio of these two quantities 

is 10“. However, the number “n” of particles (not 

counting electrons) in one cubic centimeter is still 

in the order of 1010. 

Upper Layers. Another important difference between 

the upper and lower layers lies in their chemical and 

electrical constitution. Both because of these changes 

and of rarefaction, fluid-dynamic thinking must be 

adjusted to principles and standards different from 

those in conventional gas dynamics. 

(e) The ionosphere begins, possibly between 80 and 

100 km of altitude, with dissociation. This process 

starts first with the oxygen molecules (02) breaking 

them down into atoms (0). The ionosphere consists 

of approximately 69% nitrogen (N2) and 31% oxy¬ 

gen (0). 

(f) Ionization is a process whereby, under the influ¬ 

ence of ultraviolet (and other) solar radiation, one 

or more electrons are split off from a molecule or 

an atom. An “ion” can thus be understood to be a 

positively charged atom or molecule. Ionization first 

of atomic oxygen and later of nitrogen, follows or 

takes place at the same time as dissociation, thus giv¬ 

ing this region its name. Corresponding to the con¬ 

centration of ions and electrons, the ionosphere con¬ 

tains several layers (particularly the “E” and “F” 

layers). These layers are of great importance for 

radio transmission . 

(g) Dissociation of nitrogen follows at an altitude in 

the order of 350 km (where the F2 layer is known 

to be). Only atomic forms, thus exist above this al¬ 

titude. Temperature is believed to be in the order 

of 1000°K, at the F“ledge” (at » 400 km). 

(h) According to recent evaluations (36,h,i) of satel¬ 

lite performance, the temperature may reach a fairly 

constant plateau (at or somewhat below 2000° K) 

roughly at 400 km of altitude. Whether such a pause 

(starting an “exosphere”) is true or not, the tem¬ 

perature is concluded (36,k,l) to continue (or to re¬ 

sume) “mounting” across the thermosphere. 

(i) Because of their very light weight, the elements 

of hydrogen (and of helium) accumulate on top of 

the nitrogen and oxygen layers listed above. Such 

accumulation, in form of protons et cetera, is be¬ 

lieved to be completed at some 1000 km of altitude. 

Radiation Belts. In the vicinity of 3000 km, there 

is an inner so-called vanAllen belt, concentrated in 

latitudes near the earth’s equator, consisting of 

charged particles (primarily protons). Another belt, 

consisting of electrons and other particles (gas from 

the sun) is found between 13, and 20,000 km. This 

belt comes down to lesser altitudes near the magnetic 

poles of the earth. 

Interplanetary Space. For fluid-dynamic purposes, we 

may think of the higher reaches of the thermosphere 

as of a “vacuum”, with a “few” hydrogen atoms, ions, 

neutrons, protons, and some “more” electrons, scat¬ 

tered within. Such a description also holds for the 

outer space, say at the orbit of the moon (380,000 km 

from the earth). The “atmosphere”, therefore, does 

not really have a limit. It is suggested (36,k,l) that 

it “blends” into that of the interplanetary space at 

an “altitude” of « 100,000 km (equal to some 8 

earth diameters. The properties in that space, say at 

a distance from the sun corresponding to the orbit 

of the earth, is speculated to be as follows: 

temperature, at least (35,k,l) 

number of H protons (35,1) 

number of electrons, order of 

mass density of gas, possibly 

dust content, possibly 

50,000 °K 

100 /cm3 

1000 /cm3 

10-19 kg/m3 

10-1’ kg/m3 

For comparison, the number density in interstellar 

space may correspond to one proton or to 1000 elec¬ 

trons per cm3 of volume, so that the gas density 

would be in the order of 10-21 kg/m3. Some 1850 

electrons have the mass of 1 proton. One H proton 

sar 1.7/1024 gram or 1.7/1027 kg mass. The reader 

must be cautioned as to the accuracy of the values 

listed; their estimate is in continuing flux at this 

time. 
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T roposphere 
Ho 

10,332 kp/m2 = 1.033 kp/cm2 = 2,116 lb/ft2 

1.225 kg/m3 = 1.225/g0 = 0.1249 kp-sec2/m4 

• PRESSURE V-2 SOUNDINGS (38) 
° DENSITY SOUNDINGS (38,b) 
A DENSITY, SPHERE METHOD (35,n) 

Figure 13. Reduction of pressure, 

and mass density of 
the atmosphere as a 
function of altitude. 

Stratospheric Pressure is shown in figure 13, as a 

function of altitude, with both quantities indicated 

by linear scales. It is possible, in this manner, to 

visualize how rapidly the ambient static pressure re¬ 

duces. Even after plotting the pressure and density 

ratios in tenfold, hundredfold and in thousandfold 

scales, each time pressure levels are soon obtained 

which can no longer be distinguished from’zero". Up 

to some 60 km of altitude, mass density across the 

stratosphere can be approximated by the function 

z (km) = 17 log (l/<3) (34) 

where<3= 9/90- A number of experimental points 
(38) confirm the density function. 

(34) Gravity. The acceleration due to the earth's gravity is at sea 
level g0= 32.17 (ft/sec2) = 9.81 (m/sec2). This 
quantity varies in proportion to (r + z")2 where (r + z) 
= distance from the earth's center of gravity. As a conse¬ 
quence, acceleration reduces, as a function of the altitude 
"z”, as follows: 

g2/g0= rZ/(r + zf = (1 + (z/r)) 

For example at z = 0.1 r (corresponding to z = 637 km) 
gravity acceleration is thus 17 or 18% less than at sea level. 
Escape velocity from earth in horizontal’direction is V = 

92gr , where r = distance from the earth's center. At sea 
level that speed is in the order of 11 km/sec (M = 33). 
See Malina "Escape by Rocket”, J.Aeron.Sci. 1947 p.471. 
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There are temperatures available, measured 

at higher altitudes. Their scatter is very 

large (such as plus/mlnos 500 °K). Reasons 

for the scatter are a) experimental diffi¬ 

culties - b) natural variations, day/night 

summer & winter, latitude, solar activity. 
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Figure 14a. This graph presents average kinetic temperatures, for 
altitudes higher up than those in figure 14. It is understood that 
measuring temperature is very difficult. It is also explained in 
(36,m) that the quantity T/"M” is obtained from high altitude 
soundings, where "M” = molecular weight of the air. Roughly at 
an altitude of 900 km, the molecular weight is only half of that 
at sea level. Consequently, the so called molecular-scale temperature 
is twice as high, at that altitude, as the kinetic temperature. Infor¬ 
mation for altitudes above 700 km is very uncertain. We know, 
however, that the kinetic temperature (whatever meaning it may 
have, in comparison to radiation) eventually rises to extreme 
values (such as 10,000 and 50,000 °K). 
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Figure 15. Atmospheric mass density (in kg mass per cubic 
meter) as a function of geometric altitude (in km). Values 
up to some 200 km are derived from rocket soundings 
(38). Results between 100 and 700 km are derived from 
satellite observations (37). 

Temperature. When calculating Reynolds numbers, 

the viscosity yu — y'lj is required. The quantity jx is 

(for practical purposes) only a function of tempera¬ 

ture. The normalized variation of temperature (36,c) 

is presented in figure 14, in form of a ratio, to some 

100 km of altitude. Temperature also determines 

the speed of sound. The Mach number at a certain 

speed “V” changes, accordingly, in comparison to 

that at sea level, as indicated in the graph. As men¬ 

tioned before, and as indicated in figure 14 by the 

heavy arrow, the temperature rises considerably at 

altitudes above 100 km, reaching a level in the order 

of 2000 °K. Atoms, protons, ions, neutrons as such, 

do not have a “temperature”. The heat which they 

produce when impinging upon the wall of a con¬ 

tainer, or the surface of a vehicle, corresponds to 

their kinetic energy. A so-called “kinetic” tempera¬ 

ture of 2000 “K (for example) thus indicates that 

the particles have a certain mean-average velocity. 

Because of the unbelievably small gas density, a body 

traveling through outer space, would never “feel” 

the extreme temperatures quoted above. Rather, it 

will be exposed to the heat radiation of the sun, 

id est on one side; and it will give off heat on the 

other side. Its equilibrium temperature will thus 

be similar to that on the surface of the earth, say 

270 or 280 “K. 

Figure 14. Normalized variation (36) of temperature and M!num¬ 

ber in the stratosphere, presented in form of ratios. 

Atmospheric Density has been determined by rocket 

soundings (38) up to altitudes of 220 km. Since 

we are nowadays interested in conditions much higher 

up, extrapolation by theoretical and statistical means 

is desirable. Such extrapolation has greatly been im¬ 

proved through evaluation of the drag of the many 

satellites (37) circling the earth since 1957. We have 

plotted in figure 15, the logarithm of (c> in kg/m3) 

where kg indicates the mass in the metric system 

(in contradistinction to kilopond “kp”, equal to the 

“old” engineering kilogram which means weight or 

force). Because of the variations in temperature, 

composition and atomic qualities within the upper 

atmosphere, the density function is complex; no ex¬ 

plicit formulation is available. The experimental 

points coincide at first with the stratospheric function 

(equation 34). Theoretical guidance is available in 

form of various “models” presented in (36). Statis¬ 

tically we can say that the experimental results in 

the graph vary as 

(D~l/zn (35) 

where n = 11 between 70 and 150 km, 

= 8 between 150 and 800 km. 

For example, at z = 637 km (where a satellite might 

orbit) the density is in the order of ^ = 10-13 kg/m3. 

Since at sea level ya = 1.23 kg/m3, the number also 

indicates that the density at 637 km, which is 10% 

of the earth's radius, is (j k=^o/1013. Using the inter¬ 

planetary and interstellar values mentioned above, 

together with the dust content, there might be an 

ultimate limit to which the density can reduce, pos¬ 

sibly at the level of 10-20 as indicated in the graph. 
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“Molecular” Speed. Since in so-called free-molecule 

aerodynamics the average or “most-probable” particle 

speed “v” replaces the speed of sound, we will no 

longer consider temperature within the thermosphere 

and in interplanetary space. The arithmetic average 

of the gas-particle velocities as derived and/or esti¬ 

mated by Minzner (36,m) is presented in figure 16. 

This speed more than doubles between 100 and 200 

km of altitude. At 500 km, where a satellite may 

orbit, the average velocity is in the order of v = 1.4 

km/sec. For a satellite speed V = 7.5 km/sec, the 

ratio “s” = V/v is then approximately 7.5/1.4 = 5.4. 

The variation of the particle speed is much less spec¬ 

tacular than that of pressure and density. The aver¬ 

age velocity may, nevertheless, reach and exceed the 

level of 7 km/sec upon approaching the interplan¬ 

etary space 

(35) Variations of density (method and/or latitude): 
a) Bartman-Jones-Peterson, Densities From 17 Inch Falling 
Spheres, Univ Mich Engg Res Inst Rpts 1954, 1956, 1959. 
b) Otterman, From 12 ft Sphere, Willow Run Labs Rpt 
1960 (Astia AD-242, 757). 
c) La Gow, Satellites/Rockets, Phys Fluids 1958 p 478. 
d) Jastrow, Radiation Belt, Astronautics July 1959 p 20. 
e) Comparison Fort Churchill/New Mexico, see (37,d). 
f) Peterson, Falling Sphere, NASA CR-29 (1964). 

(36) Physical properties of the atmosphere (analysis): 

a) "Standard” Atmosphere to 70,000 ft, see Chapter I. 

b) Roberts, Atmosphere, Aeron.Engg.Review Oct. 1948. 

c) NACA, Tentative Upper Atmosphere, T.Note 1200. 
d) Grimminger, Analysis, RAND Rpt R-105 (1948). 

e) Supersonic Handbook, NAVORD Rpt 1488 (1950). 

f) ICAO Standard Atmosphere NACA T.Rpt 1235(1954). 

g) Johnson and Others, Thermal Characteristics at High 

Speeds (mean free path computed to altitudes of 150 miles) 

in AMC Wright Field Tech.Rpt 5632 (1957). 

h) Paetzold, Russian Satellites, Planet Space Sci 1959 p 115. 
i) Mather (New Delhi), To 1000 km, J Sci Industr Res 
1960 p 311. 
j) Gazley, Exposphere, J Aero Space Sci 1959 p 770. 
k) Chapman, High Atmosphere, Proc IRE Feb 1959. 
l) Ratcliffe, "Physics Upper Atmosphere”, Academic Press. 
m) Minzner, US Standard Atmosphere 1962, Superintend¬ 
ent of Documents, U. S. Government Printing Office. 

(37) Densities as derived from satellite drag: 
a) Sterne, Orbital Evaluation, Smithsonian Contrib Astro- 
phys 1958 p 207. 
b) Miklinevich, Soviet Satellite, J Am Rock Soc Russian 
Suppl 30, I960 p 407. 

c) Smithsonian Astrophys Observatory Spec Rpts No. 3,7. 
12 (1957/58). 
d) Science Comm Inc (Washington, DC) Rpt Nonr 3071 
1960), ASTIA AD-243886. 
e) Groves, Method and Data, Roy Soc (London) Proc Soc 
A 1959 p 28. 
f) Harris, Method and Sputnik I, Science 1958 p 471. 
g) Schilling, Smithso Spec Rpt 18 (1958), and Planet 
Space Sci 1959 p 136. 
h) Champion, Planetary & Space Sciences 1959 p 259. 
i) Cornford (RAE), From Orbits, IAS Paper 1959-141 
(Nature 1959 p 1224). 

(38) Rocket soundings are reported as follows: 

a) Havens, 160 Kilometers, J.Geophys.Res. March 1952. 

b) Newell, Altitude Rocket Research, New York; also Up¬ 

per Air Rockets, in J.Am.Rocket Society 1953 p.7. 

c) Horowitz, Viking, J Geophys Res 1957 p 57; 1958 
p 757; 1959 p 1627 & 2331. 

(39) For example, the speed of light is « 300,000 km/sec. 

Figure 16. Variation of the arithmetic average of the kinetic 
gas particle velocity (36/n), as a function of geometric 
altitude above sea level. 

Mean-Free Path. The significance of the length" A.” 

is explained in the first section of this chapter. The 

best information on the quantity of “A”, available 

at this time, is presented in figure 17. Since (An) 

= constant, where n == number density of particles 

(protons et cetera), it might be expected that the 

mean free path grows to the order of 10s or 107 km 

in the interplanetary, and to 109 or 1010 km in the 

interstellar space. 

Figure 17. Variation of the mean free path length "A” as 
a function of altitude. 
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(D) DRAG IN FREE MOLECULE FLOW 

Figure 8 indicates that, above a certain value of the 

parameter M/v/Rj, the skin friction drag coefficient 

C-does no longer vary as a function of the Reynolds 

number. Figure 5 suggests, in a similar manner, that 

the drag coefficient of the sphere may reach a con¬ 

stant terminal level at a certain value of the para¬ 

meter (1/i/Rj). The gas-dynamic phase thus entered 

into, is that of “free molecule flow” as defined in the 

first section of this chapter. Some theoretical and a 

very few experimental results, indicating drag in this 

type of flow, are presented as follows. 

(1) PRINCIPLES OF FREE MOLECULE FLOW 

Molecular Speed Ratio. The transmission of sound 

(equivalent to pressure variations) gradually loses its 

significance, as altitude is increased and as density is 

reduced, accordingly. The speed of sound is related, 

however, to the “most probable” thermal velocity (54) 

of the gas molecules 

v = /2'R' T g (40) 

where'R' = gas constant and T = absolute tempera¬ 

ture. This function differs from that for the speed of 

sound only in regard to the constant, which is k — 1.4 

(in air) instead of “2” as in the equation. As a con¬ 

sequence, we find the molecular speed ratio 

“s” «= V/v = \fW2 M 0.84 M (41) 

Using this ratio, in place of the Mach number “M”, 

thus eliminates the specific heat ratio "k”. The phys¬ 

ical significance of “s” can be visualized by consider¬ 

ing, for example, a disk in a stream of gas molecules 

normal to its surface. As long as “s” is smaller than 

unity, molecules will then strike, not only against the 

forward face of the disk, but also to some degree 

against the rear face, by virtue of their own oscillating 

thermal velocities indicated by the statistical average 

“v”. However, at V > v, the molecules can only 

strike the forward face of the disk, and “vacuum” is 

then obtained on the rear surface. The molecular 

speed thus has a meaning similar to that of the sonic 

speed; and the ratio (V/v) is applied, accordingly, to 

classify characteristics such as the drag coefficient, in 

free molecular flow. 

Newton’s Theory. Under extreme conditions we may 

have a not too large solid body, moving through “gas” 

which is rarefied to such a degree that only a “few” 

particles (molecules, atoms, protons) may strike against 

Figure 19. Theoretical pressure coefficient on a surface 
element in Newtonian flow (i.e. in free molecule flow at 
"s”—* oo, and for fully elastic "specular” reflection). 

it during the time the body travels a distance equal 

to its length. Assuming now a uniform stream of dis¬ 

crete particles, flying through a space which is other¬ 

wise “empty” (vacuum), Newton developed a theory 

(52) for the dynamic forces originating on an obsta¬ 

cle placed in that stream. The particles striking a 

surface element “S” of the solid, at the angle ‘Ot’ or 

re-bound (possibly similar to balls), without inter¬ 

fering in any noticeable manner with each other. The 

average pressure originating on the element equals 

the mass flow of the particles times the change of 

their normal velocity component. This change is V 

sinc< if assuming an inelastic reflection, and it is equal 

to 2 V sinct,assuming elastic reflection. Consequently: 

Cp = Ap/q = (2 or 4) sin2o(. (44) 

which is Newton’s “sine-square” law, as illustrated in 

figure 19. The aerodynamic components of the pres¬ 

sure are 

CD = (2 or 4) sin^ct 

and CL == (2 or 4) sin2o(cosa (45) 

Drag Bodies. The pressure originating on the rear 

surface of all solid bodies in a Newtonian type of 

flow is zero (corresponding to vacuum). A plate placed 

normal to the stream of particles has consequently a 

drag coefficient between 2 (inelastic) and 4 (specular); 

the sphere has theoretically such a coefficient between 

1 and 2. The drag coefficient of cones, pyramids, or 

wedges, pointing upstream, corresponds to their half 

apex angle £; a circular cylinder in transversal flow 

has CD. = 8/3 = 2.67, if assuming elastic reflection. 

A surface in tangential flow does not experience any 

force (which we could consider to be skin friction) in 

this theoretical type of flow. 
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Newtonian-Type Flow. Newton’s drag function (with 

a constant of “2”) was erroneously applied to wind 

forces on buildings and structures, and thus used by 

engineers for two centuries (52,b). It has recently 

been established, however, that equation 44 happens 

to apply to non-viscous hypersonic fluid flow past 

cones (52,c) with the constant “2” being correct for 

k = 1; see Chapter XVIIt. 

Reflection from an obstacle might really be elastic or 

specular for a very smooth surface and at small angles 

“6” or “ot”. Newton had already speculated, how¬ 

ever, that the reflection may very well not be elastic. 

He then assumed that, after striking against the solid 

surface, the molecules would continue in a direction 

parallel to the surface, thus obtaining the lesser con¬ 

stant (of “2”) as in equation 44. However, in dis¬ 

tinction to Newton’s tacit assumption, molecules are 

not at rest in relation to the undisturbed gas space; 

they have their own thermal movement, “oscillating” 

with velocities which are varying in magnitude as well 

as direction. Although this fact does not make any 

difference in case of specular reflection (at very high 

“s” ratios), it does affect forces resulting from inelas¬ 

tic reflection. On the basis of modern kinetic gas 

theory, reflection can be “diffuse”, meaning that the 

molecules are “adsorbed” for a short time into the 

“pores” of the surface and subsequently “re-emitted” 

from that surface, without any reference to their orig¬ 

inal direction of mass movement. This type of re¬ 

emission then takes place in so-called Maxwellian vel¬ 

ocity distribution (see sketch in figure 20) with the 

direction of the emission controlled by “Knudsen’s 

cosine law” (51). Diffuse reflection is expected to 

prevail in round and/or in bluff body shapes, i.e. at 

higher values of “c<”, and from rough surfaces (at all 

angles). Only this manner of reflection is assumed, 

accordingly, for the bluff-type body shapes discussed 

later. In fact, results in figure 8 suggest that “reflec¬ 

tion” is diffuse, even at zero surface angle. 

(50) Theoretical information on free molecule flow: 
a) Heineman, Comm. Pure & Appl.Math.1948 p.259. 
b) Ashley, Free Molecule Flow, J.A.Sci.1949 p.95. 
c) Stalder, Complete Theory, NACA T.Note 2423 (1951). 
d) Stalder and Others, Theory and Experiment, NACA 
Tech.Rpt 1032 (1950) (= T.Note 2244, 1950). 
e) Sugiura, Disk Rarefied, J.Phys.Soc.Japan 1954 p.244. 

(51) Knudsen, Annalen der Physik 1909 p.75; 1911 p.593; 
also "Kinetic Energy of Gases”, London 1934. 

(52) Newtonian theory of fluid flow: 
a) Newton, Professor of Mathematics, Queens College, 
Cambridge-England, 1642-1727; "Principia Mathematica”. 
b) VonKa'rman, Newton and Aerodynamics, a historical 
evaluation in Journal Aeron. Sciences 1942 p.521. 
c) Cole, Ffypersonic Application, J.A.Sci.1957 p.448. 
d) Carter, Optimum Shapes, J.Aeron.Sci.1957 p.527. 

(53) Sanger, High-Speed Gas Dynamics, ZWB FB 972 (1938). 
(54) The "most probable” speed must not be confused with the 

"mean average” velocity v" = l/8 p/ir q = v'8/it k' 'a’. 
(55) The temperature difference (heat transfer) between body and 

gas has a certain bearing upon the forces due to diffuse 
re-emission. To simplify analysis, no heat transfer is often 
assumed for this type of flow. 

Impinging Momentum. For speeds corresponding to 

“s” » 1 and for larger angles “c<”, results of theo¬ 

retical analysis (50,c) can be presented in simple 

terms. Based upon the area SQ of a flat plate the drag 

originating in that plate, through diffuse reflection, is 
then indicated by 

0^ = 2 sinck + ('/irsin2CX/‘s’) (51) 

The first term, plotted in figure 20, represents the 

momentum of the impinging molecules. These mol¬ 

ecules are, so to speak, shot into the surface (where 

they remain for a certain time). The reaction is not 

a pressure, accordingly, in a direction normal to the 

surface. Rather, momentum is transferred in the 

direction of mass motion. The result is thus purely 

a drag force, even though the surface element con¬ 

sidered may be at an angle against the oncoming flow. 

As a consequence, there is also no lift component re¬ 

sulting from the impinging momentum of the gas 

molecules. The drag coefficient based upon pro¬ 

jected frontal area of the plate (at angle cx) is simply 

CD> = 2 sincx/sincx= 2. This result is independ¬ 

ent of the angle “of”; and all not too slender body 

shapes are expected to have this coefficient at “s” or 

M’numbers approaching infinity. 
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Figure 20. — Drag coefficient on a surface element in free 
molecule flow (at "s'—»-oo) expected on the 
basis of diffuse re-emission of the gas molecules. 

Re Emission (55). The second term in equation 51 

represents the normal or pressure force originating 

through re-emission of the “trapped” gas molecules 

from the solid surface. The corresponding coefficient 

of a flat plate is 

Cpr= CNd = \fW sin2cX/s (53) 

As a “pressure') this force thus has a drag and a lift 

component. For example, the total drag coefficient of 

a flat plate (of any shape) at of = 90° to the stream, is 

approximately 

CD.= 2T (V5T/V) (54) 
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(2) DRAG OF VARIOUS BODY SHAPES 

Bluff Cone, Forces on the forward face of cones (at 

zero angle of attack) correspond to their half vertex 

angle For higher “s” numbers and for larger 

cone angles, their drag coefficient (on projected fron¬ 

tal area) as derived from the complete functions in 

(50,c) is approximately 

C0.= 2 + (1/vf + ( V*7V) (56) 

The first two terms of this equation represent the im¬ 

pinging momentum of the gas molecules, while the 

third (and further terms) indicate the pressure origi¬ 

nating through re-emission. A physical explanation 

for the existence of the second term is found when 

considering the momentum corresponding to the 

thermal motions of the molecules. In comparison to 

the momentum representing translatory mass motion, 

the component due to thermal motions reduces to 

zero, as V or “s” —> oo; and it increases vice versa, 

upon reducing the “s” number, as indicated in the 

equation. Figure 21 presents the drag coefficient of 

a disk (equal to a cone having £ = 90°). The excess 

of the complete theoretical function over equation 

56 reflects primarily the influence of the cone angle, 

which does not appear in our simplified formula. 

M > I 
Rd< ' 

Figure 21. Drag coefficient of flat plate in free mole¬ 

cule flow, calculated for diffuse reflection/re-emission 

through the use of the theoretical functions in (50,c). 

The Sphere has been investigated (58) theoretically 

and experimentally in free-molecule flow, at small 

subsonic Mach numbers. The result is the straight 

line as in figure 22 corresponding to 

CD> = 4.2/“s” = 5.0/M (58) 

Characteristics at supersonic Mach numbers are as in¬ 

Figure 22. Drag coefficient of the sphere in free molecule flow; 

(a) for small "s” ratios (58,a,b) ; and (b) for "s”—r- oo (50,c). 

dicated in the graph. At high “s” numbers, the co¬ 

efficient of the sphere in free molecule flow (62) 

with diffuse reflection (and re-emission) as described 
above, is 

CD. = 2 + (1.4/V) (59) 

The upper one of the two experimental points (58,c) 

produced in figure 22, was tested at M = 2.2 and 

at Rcj= 14. A check in figure 1 indicates that this 

point corresponds to a location still within the field 

of interaction and/or slip flow, but near the border 

line of free-molecule flow. 

Figure 23. Drag coefficient of circular cylinders in free molecule 

flow; (a) as indicated by theory (50,c) for diffuse 

reflection; (b) as tested (60) without heat transfer. 
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Circular Cylinder. Upon integrating the complete 

drag function (50,c) over the surface of a cylinder in 

cross flow, its drag coefficient is obtained in the form 

as plotted in figure 23. At “s” « 1, the coefficient 

is expected to end up in the form of Cp. •—' l/“s”. 

For “s” numbers above unity (i.e for l/“s” as in the 

graph, below unity) the coefficient is approximately 

(3.1 ? 

CD.= 2 + (2.3/Y) (60) 

Wind-tunnel tests (60) confirm the theoretical pre¬ 

diction fairly well (62). The existing discrepancies 

(particularly at l/“s” ~ 0.8) are explained by the 

difficulties of the experiment. The points below J/Y 

= 1 do somehow agree with theory assuming spec¬ 

ular reflection. Whether this is fortuitous or not, 

is not known to this time. 

Slip Flow. The fact that in the continuum type of 

fluid flow, the velocity directly at a solid surface is 

zero, is explained by kinetic theory (2,d) by tempo¬ 

rary “adsorption” of the gas molecules into the solid 

surface. The degree of adsorption (or the number of 

molecules adsorbed) gradually reduces when changing 

the fluid-dynamic conditions from those of continuum 

to free molecule flow. A finite mean-average velocity 

can and does exist, accordingly, adjacent to solid walls 

at higher values of the viscous interaction parameter 

MA/R*. The gas molecules (or at least part of those 

striking against a solid) are then slipping over and 

(58) Spheres investigated in free-molecule flow: 
a) Millikan, Reflection, Phys.Review 1923 p.l & 217. 
b) Epstein, Spheres, Physical Review 1924 p.710. 
c) Kane and Sherman, J.Aeron.Sci.1951 p.259 and 566. 
d) Szymanski, Analysis, Arch.Mech.Stosowanej ( Polish Peri¬ 
odical, Warsaw) 1956 p.449 and 1957 p.35. 

(60) Drag characteristics of circular cylinders: 

a) Stalder, Experiments, NACA T.Rpt 1032 (1950). 
b) Stalder, Heat Transfer; NACA T.Rpt 1093 (1951). 
d) To do the experimenters in (a & b) justice, it should 
be realized under what conditions the results in figure 23 
were obtained. Tested was a wire, 3/1000 of an inch in 
diameter at H’ betwen 4 and 185 and at R<j between 0.005 
and 0.9. Forces measured were between 1 and 20 milligrams. 
e) Talbot (Journal Aeron.Sciences 1957 p.458) gives the 
forces originating on a circular cylinder (such as the body 
of a rocket) when inclined at an angle 
f) Maslach, Transition, U.Cal Berkeley Rpt AS-1963-3. 

(61) Note that here as in Chapter XVDI, the speed in "H” is the 
component normal to the solid surface (V sing-). 

(62) The second terms in equations 59 and 60 reflect the influ¬ 
ence of the thermal motions (represented by "v”) in rela¬ 
tion to the bulk speed ’V’. The constants in those terms 
also correspond somehow with the "wetted” area. 

(64) Sanger-Bredt, Long-Range Ballistic Bomber (in minimum 
altitude of 50 km), German Doct. ZWB UM 3538 (1944) ; 
discussed by Ley in Aeron.Engg.Review Feb.1951 p.20. 

along the surface. The resultant wall-velocity ratio 

w/V is presented, in figure 24, as a function of the 

“viscous” interaction parameter. The range above 

M//R^ = 10, where the wall velocity is at and above 

90% of the free stream speed, indicates conditions in 

free-molecule flow where the slip effect eventually 

becomes complete. The boundary layer then ceases 

to exist; and the influence of the Reynolds number 

reduces to zero. 

\JW/r\ 

Figure 24. Slip flow velocity (15,o) at solid surface (w/V); 

starting from continuum-type fluid flow, in the left-hand part 

of the graph; and in free-molecule flow, in the right hand part. 

Shear Force. Specular reflection does not produce any 

shear forces at all. Molecules impinging “onto” a 

solid surface (as in the diffuse type of reflection) do 

produce tangential forces, however. At higher Mach 

or “s” numbers, and at small angles of attack, the shear 

force originating along a plane surface in tangential 
flow (at ot = 0) then corresponds to 

Qf = D/qS = CT=T/q 

= l/(VF‘s’) = 0.57/Y « 0.67/M 

This coefficient is included in figure 8 in the form of 

(CpM) = 0.67. A flat plate, for example, wetted on 
both sides may have a coefficient of ss 2/y^F‘s’. At M 

or “s” between 1 and 2, this expression yields a section 

drag coefficient in the order of CDs = 1. This value 

is some 100, or even 200 times as high as that due to 

skin-friction drag in the region of conventional aero¬ 

dynamics. The nature of this drag must be understood 

on the basis of the mechanics of diffuse reflection, as 
presented above. 

Slender Cones. Tangential forces (or skin friction) 

can also be derived from free-molecular cone theory 

(50,c). For larger “s” numbers, the drag coefficient 

of slender cones (on projected frontal area) is 

CD>== 1/(\[¥eH H)+ 1 + erf(H) + (fiT/s) (64) 

where “erf” = error function (see mathematical ta- 



XIX - VISCOSITY AND RAREFACTION 19 - 17 

bles) and where H = (‘s’ sin £) is seen to be essen¬ 

tially equal to the hypersonic similarity parameter 

(as in Chap. XVIH); see also (61). Considering now 

that the ratio between frontal and wetted area of a 

cone is 

S./Swet= sine (65) 

the cone’s drag can be indicated by the coefficient (on 

wetted forebody area) 

Cp= CD>sin& — 1/ (\/i'eHs) + sin& + erf (H)sin£ 

+ (sin£ \/ir/s) (66) 

For = 0 (as in a surface in tangential flow) this 

function reduces to that of the shear force (above). 

The drag of a slender cone, for diffuse reflection at 

higher “s” numbers can be approximated by (70): 

CD>— 1 + (Jtr/V) and Cf = l/(tfr‘s’) (67) 

The influence of the angle can best be realized 

by considering the combined coefficient on wetted 

area: 

CDwet= 1/(Vt‘s’) + sin£ + (V? sin6/‘s’) (68) 

Optimum Shapes. Under conditions where the re¬ 

flection of the molecules is specular, shape has an 

appreciable influence on drag in free-molecule flow. 

Analysis (52,d) indicates in this case, as optimum 

forebody of a cylindrical solid, a shape between coni¬ 

cal and ogival. This type of flow may not be very 

likely to occur, however. In case of diffuse reflection, 

it is obvious, from equation 51, that at “s” —► oo, 

the drag coefficient (on frontal area) of any solid 

body is CD#= 2. If looking for an ‘optimum” shape 

under such conditions, the only type that can be 

suggested, is a form minimizing drag for a given 

volume. That shape would be a long prismatic or 

cylindrical body with only a small forward face di¬ 

rected against the oncoming gas molecules. Within 

the range of finite “s” numbers, the drag of such a 

cylinder in axial flow, may be approximated by 

Cd>=2, and Cf = 0.56/V (70) 

Optimum length-diameter ratios can then be deter¬ 

mined. Differentiation leads to 

a/d)opt= (7i) 

Approximating the drag of a slender cone by CD. — 1, 

and by the same Qp function as above, the optimum 

length ratio is found to be the same as that of the 

circular cylinder. For example, for “s” — 5, that 

ratio is in the order of Jt/d = 9. 

Magnitude of Lift. The theoretical solution (50,c) 

can also be applied in the prediction of lift produced 

in a “flat plate” set at an angle of attack against a 

stream of atoms. On the basis of “diffuse” reflection, 

lift is only obtained by way of re-emission; thus ap¬ 

proximately: 

C^= sinot cos <X /‘s’ (74) 

When evaluating this equation, it is found that lift 

produced in the free-molecule region of the atmos¬ 

phere is usually negligibly small, in comparison to 

the weight of any man-made vehicle suitable to be 

sent up. This conclusion is illustrated by the be¬ 

havior of upper-atmosphere rockets which may help¬ 

lessly tumble through space without sufficient aero¬ 

dynamic stabilization originating in their fins. 

Drag Due to Lift. Drag of the plate considered corre¬ 

sponds to 

CD«^ 2 since + 1.13/V (75) 

The drag of a wedge section (or that of any similar 

shape) is indicated by (70): 

CD (t/c) + (1.13/V) (76) 

As long as oC < (t/c) of a double wedge, or as long 

as eg < 0.5 (t/c) in a single wedge, the projected 

frontal area is then not increased over the original 

area corresponding to thickness. Below this “critical” 

angle, drag (in “diffuse”-reflection flow) therefore 

corresponds to the last equation, while above that 

angle, equation 75 must be applied. 

(69) Magnitude of "electric" drag of satellites: 
a) Jastrow, Theory, J.Geophys Res 1957 p 413. 
b) Knechtel, Experimental, AIAA J. 1964 p 1148. 

(70) If considering erf(H) in equation 64 to be zero. 
that is for small values of £ or <s. 

(73) A satellite "falls around the earth”, traveling at a 
speed corresponding to (V2r) = constant. The speed re¬ 
quired to keep it flying, is V = \Jg r . At sea level, that 
speed is * 8 km/sec. 

(74) Exchange of energy at high speeds: 
a) Roberts, Gas and Solid, Proc Roy Soc (London) A, Vol 
129 (1930) No.809, and Vol 135 (1932) No.826. 
b) Jastrow, "Electric”, Scientific American, Aug 1959. 
c) Bryant, Solar Radiation, NASA TN D-1063. 
d) King-Hele, Proc Intemat SS Symp I960 p 24. 
e) Jacchia, Perturbations, Nature 1959 p 183 & 1662. 
f) Shapiro, "Solar Pressure”, Science I960 p 1484. 

(75) Evaluation of satellite performance: 
a) King-Hele (RAE), Nature 1959 p 183,527,881; also 
Anglo-Am Aeron Conf NY City, Oct 1959; also (74,d). 
b) Jastrow (NASA), Nature 1959 p 526 & 1662. 

(76) Characteristics of NASA "Echo I” satellite: 
a) Bryant, Radiation Pressure, NASA TN D-1124 (1961). 
b) Westrick, Orbit, NASA TN D-1366 (1962). 
c) Mark, Radiation Press, Aerospace Engg, Apr 1961. 
d) Science I960 p 1484, 1487; J Geophys Res I960 p 3512. 
e) Zadunaisky, Smithsonian Astrophys Rpt 61 (1961). 

(78) Earth and atmosphere are rotating together, at a speed of 
0.5 km/sec. Therefore, the ballistic and the aerodynamic 
speed can differ in a satellite, by plus/minus 5%. 
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Decay of Satellites. Drag usually means deceleration. 

The most convenient satellite to be considered, is 

NASA’s balloon type ’’Echo I” (76). Its inflated di¬ 

ameter is 100 ft (S. ~ 700 nr) while its mass is or 

was only » 75/g ~ 7.6 kp-sec2/m. We will as¬ 

sume that this satellite would move in a perfectly 

circular orbit (near its actual perigee) corresponding 

to z = 1000 km, at a speed approaching 8 km/sec. 

On the basis of CD< = 2, and = 1/1014 kg/m3 
« 1/1015 kp-secz/m4 (see figure 15), its drag (78) 

will then be in the order of 

D = 2 (0.5) 75002 (700)/10IS = 4/105 (kp) 

Deceleration might thus be expected to be 

dV/dt = -D/‘M’ = —4/7.6 (10)5«—5/106(m/sec2) 

Tentatively, the loss of speed in one revolution (with 

a period ‘T’ =100 minutes = 6000 seconds) is then 

AV = ‘T’ (dV/dt) = —6000 (5)/IO^«-0.03 (m/sec) 

It will be seen, however, that the speed actually in¬ 
creases. 

Consideration of Energy. To get a satellite up, energy 

has to be “pumped” into it: 

(a) potential energy to lift its weight W to the alti¬ 

tude z, at the orbital radius ig + z (where rQ 

= 6370 km = radius of earth); correspond’g to: 

dEp = ‘M’g dz (m-kp) 

where g - - 7.3 m/sec2, at z = 1000 km. 

(b) kinetic energy to accelerate its mass ‘M’ = W/g to 

the required equilibrium speed V; thus: 

ER = ‘M’ V72 = W V2/2 g (m-kp) 

where roughly g = 9.81 » 10 m/sec2 = acceler¬ 

ation, W = weight at the ground = 75 kp. 

Satellite Speed. To keep a satellite in its orbit, an 

equilibrium speed is required: 

V = \J(gr2) / r ; where (gr2) = constant (82) 

When changing the altitude, either by increasing the 

energy (through rocket thrust) or by reducing it 

(through drag) therefore: 

(V\fr) or (V2r) = constant (83) 

Drag Energy. During one revolution of the satellite, 

kinetic energy is taken away because of drag: 

AE = - D V‘T’ (m-kp) (84) 

where ‘T’ = period, and ‘T’V = circumferential 

length of the orbit. In the case of “Echo I” as assumed 

above, the energy “lost” during one revolution is 

AE = -V D‘T’ = -0.32 (6)103^ -1800 (m-kp) 

where ‘T’ ~ 100 min = 6000 seconds. For small dif¬ 

ferentials, and assuming that the speed might remain 

constant, the equation under (a) results in a loss of 

altitude during one orbit, in the order of 33 meters. 

Reduction of Period. Considering equation (83), it 

can be seen that when changing total energy and 

altitude: 

(AV/V) has to be = -0.5 (Az/r) (86) 

As the necessary difference between the new and the 

original orbit, we thus obtain per revolution: 

AV = -0.5 V (Az/r) 

= 0.5(7500)33/7.37(10)* = + 1.6/100 (m/sec) 

which is extremely small in comparison to V = 7500 

m/sec; AV/V * 2/10°. The orbital period reduces 

in proportion to 1/V, and in proportion to the re¬ 

duced radius and/or the circumference of the orbit. 

Corresponding to the increased speed, the kinetic en¬ 

ergy (as under (b) above) is increased. As a conse¬ 

quence, the potential energy has to be reduced further; 

and the loss of altitude must be expected to be more 

than the 33 meters tentatively found above.—Actually, 

orbit of “Echo I” is (or was) not circular; the eccen¬ 

tricity varies between 1 and 8%. The altitude changes 

between 900 and 2000 km. In an elliptical orbit of 

this type, the satellite dips into denser altitudes once 

every time around, while for most of its orbit, drag 

can be considered to be zero by comparison. As re¬ 

ported in (76,a,b) the average loss of altitude of 

“Echo I”, was 14 m per orbit; the average reduction 

of the period was A‘T’ = — 0.04 seconds per orbit. 

A "kp” is a kilopond, equal to the force of a kilogram. A "kg” 
is a likogram (mass), which can be expressed in (kp-secVm). 
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CHAPTER XX - VARIOUS PRACTICAL RESULTS 

When preparing the 1965 edition of “Fluid-Dy¬ 

namic Drag”, a considerable number of “new” re¬ 

sults was available. Since this book has widely been 

accepted among engineers engaged in the practical 

application of aerodynamics and hydrodynamics, it 

was decided to add the following chapter. As far as 

possible, reference is made in each case reported, to 

the place in the preceding 19 chapters where related 

and/or theoretical information on the same subject 

can be found. 

5 —J. 

CDo = 0.6 

°D. ’ '*5 & = 0.4 

* 

A. EXAMPLES OF PRESSURE DRAG Figure 2. Drag coefficients of two simple lattice beams, tested 
(l,a) between walls. 

Interesting examples of pressure drag in uncom¬ 

pressed flow, or at subsonic speeds, are presented 

in this section. 

Flat Plates, varying in shape, but all exposed to flow 

normal to their surface, are shown in figure 1. Based 

upon their projected solid frontal area, their drag 

coefficient is only slightly larger (CD> = 1.2) than 

that of the basic square (or round) plate (with Cq. 

= 1.17, as in Chapter III). The second shape (with 

a solidity ratio <T = 0.4) approaches two-dimen¬ 

sional conditions of flow. Its coefficient is somewhat 

higher, accordingly. 

DRAG 

C3. = 

- 1.40 

« 1.20 

□ 
3CLIDITT 

Figure 1. Drag coefficients of thin plates (l,a) varying in shape 
(with cut-outs) in air flow normal to their surface. 

Lattice Beams. A considerable volume of informa¬ 

tion is available in (l,a) regarding the drag (wind 

resistance) of many types of steel structures, thus 

supplementing what is presented in Chapter IV. As 

an example, figure 2 presents the drag of two simple 

lattice beams as tested in cross flow. While it should 

be remembered that the drag in two-dimensional 

flow, id est the drag of long and slender flat plates, 

corresponds to CQ =1.96 (see page 3-16) the ele¬ 

ments of the beams in figure 2, have only values of 

1.5 and 1.6, respectively. It is shown in figure 5, 

how the drag coefficients vary with the solidity ratio 

of such beams. As a practical value, CQ> =1.5 seems 

to be good enough for many or most lattice beams 

(with solidity ratios between 0.3 and 0.8). At both 

ends of the graph, the coefficient ends up at the level 

of CQ = 1.96, as for plates in 2-dimensional flow. 

Figure 3. The drag of various lattice beams (such as in figure 2) 
in two-dimensional flow (l,a) as a function of their 
geometrical solidity ratio. 
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Figure 4. Afterbody drag (l,b) as a function of the length of a 
tail, when added to the cylindrical shape as shown. 

Afterbody. One of the subjects treated in Chapter 

III, is base drag. The well-known method of elim¬ 

inating this type of drag, is “streamlining” the after¬ 

body, id est reducing its diameter more or less 

slowly, ending in a point. There can be practical 

reasons, however, why such shaping cannot be done. 

In fact, it might be desirable to keep the main body 

cylindrical. In this case, base drag can be reduced 

by boat-tailing, or by some other type of “gently” 

reducing the diameter, or by adding a tail, shaped 

as in figure 4. Of course, when adding something to 

which the flow is intended to keep attached, a cer¬ 

tain increment of skin friction must be expected. 

We see in the graph, how the afterbody drag drops 

considerably, when adding a tail piece with a length 

equal to one body diameter. The minimum of the 

drag is obtained with about x = 2 d. When increas¬ 
ing the tail length further, skin friction causes the 

combined drag to grow again. — One other interest¬ 

ing result in figure 4, is the fact that a rounded 

tail shape is more favorable than a pointed one, 
considering equal length. 

H ^ 0.8 

Figure 5. Drag coefficient of boat-tailed afterbodies (l,c). 

Boat-Tailing is well known at supersonic speeds. 

Figure 5 shows that at M = 0.8 (which can be 

considered in this case, to be completely subsonic) 

a boat tail shape can reduce the pressure or base 

drag considerably. In fact, the pressure at the re¬ 

maining small base, is easily reduced to zero. When 

comparing the drag coefficients listed in the illus¬ 

tration with those in figure 4, it must be considered 

that no tail length is added when boat-tailing the 

cylinder tested. No skin-friction component is added, 

ccordingly, although some friction (along the cyl¬ 

inder extending forward into the wind-tunnel noz¬ 

zle) is included in figure 5. 

Figure 6. Drag of a parabolic antenna reflector model 
(2) as a function of its porosity ratio. 

Radar Antennas are comparatively large structures, 

designed to emit and to receive radio waves. Their 

surface is usually a “screen” rather than solid metal. 
In the investigation of a systematic series of circular 

reflectors (2) in a wind tunnel, the porosity of such 

screens was imitated by drilling many comparatively 

small holes into sheet metal. Figure 6 demonstrates 

how the aerodynamic drag reduces, as the porosity 

ratio is increased from zero to a maximum of 50%. 

The result is similar to that of parachutes and other 

devices shown in figure 57 on page 13-24, that is 

when prohibiting their oscillation. As a matter of 

interest, we have also plotted the drag coefficient as 

measured when blowing against the reflector from 

the convex side (marked “B”). Corresponding to 

shape, the drag (wind resistance) is then appreciably 

lower, particularly in the range of small porosity 

ratios. This difference evidently disappears at ratios 

above 50%. 
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Figure 7. Aerodynamic drag of a I960 Chevrolet trailer truck, 
tunnel-tested (3) on a Vs scale model. 

Trailer Truck. Total and aerodynamic drag of a 

truck are reported in figure 12, in Chapter XII. 

Results of a wind-tunnel investigation (3) are pre¬ 

sented in figure 7. The comparatively smooth model 

has a coefficient (on projected full-scale frontal 

area of 95 ft1 2 3 4 5) of CQ> = 0.72 in the condition as 

shown. Two-thirds of this drag originate in the big 

and box-like trailer. When changing the forward 

edges of that trailer (which are 45° chamfered as 

in the illustration) the following drag variations are 
obtained: 

area of the smooth fuselage body S., is «* 0.4%. The 

result, in form of a coefficient based upon projected 
frontal opening area, corresponds to: 

CQa =1.70 for natural boundary-layer transition 
C0o = 0.35 in turbulent boundary layer 

C0n = 0.25 with fairing attached, as shown 

The high value of 1.7, evidently includes some inter¬ 

ference with the still laminar boundary layer along 

the smooth 14 scale fuselage model. This interference 

is eliminated when fixing transition ahead of the 
openings. 

+ 19% when making the edges square 

— 24% when rounding the edges (1 ft radius) 

General Motors also tried a radical variation, placing 

the cab over the engine. The resulting drag coef¬ 

ficient was CD> = 0.70. A considerable reduction 

was obtained when closing the gap between cab and 

trailer; CD<i = 0.46. — As a matter of interest, the 

engine power required to overcome the aerodynamic 

drag (corresponding to CD> — 0.7) at a speed of 

60 mph, is in the order of 100 HP. About the same 

power is required to cover the mechanical resistance, 

on the basis of a vehicle weight in the order of 
55,000 lb. 

Gun Openings. The drag caused by openings in the 

fuselage of an airplane, to permit installation and the 

use of guns, is presented in figure 11, on page 13-3. 

Figure 8 shows the results of another wind-tunnel in¬ 

vestigation (4,a) regarding such openings, suitable 

for 50 caliber machine guns or 20 mm cannons. The 

ratio of the projected opening area SQ to the frontal 

(1) Information on pressure drag: 
a) Flachsbart and Winter, Wind Loading on Lattice Struc¬ 
tures, "Der Stahlbau” 1934 p 65 & 73, 1936 p 65; Transla¬ 
tion by Sandia Corp (Albuquerque, NM) 1955. 
b) Peterson, Flygtek Forsokanstalt Stockholm Rpt 75 
(1957); quoted in "Hansa” 1959 p 19. 
c) Salmi, Afterbodies and jets, NACA RM E54I13. 

(2) Fox, Wind Loads on Reflector Antennas, Jet Prop Lab (CIT) 
Memo CP-3 (1962); also Pressures, in Memo CP-4. 

(3) Flynn and Kyropoulos, Truck Aerodynamics, Paper SAE In- 
ternat Congr 1961; see SAE Transactions. 

(4) Drag of airplane component parts: 
a) Fedziuk, Gun Openings, NACA W Rpt L-502 (1942). 
b) Nelson, Cooling Duct, NACA W Rpt L-115 (1944). 
c) Neely, Bomber Modifications, NACA W Rpt L-114. 

(5) Wind Forces Structures, A Soc Civ Engrs Trans 1961, 1124. 

Figure 8. Openings for guns or cannons tested for drag (4,a) in 
a 14 scale model of a fuselage, having a full-scale frontal 
area of 12 ft2. 

A Cooling Duct is shown in figure 9, installed at the 

lower side of a smooth fuselage body. The internal 

velocity w, and the drag coefficients are defined for 

the total frontal area SD of the cooler core. The ex¬ 

ternal drag (of and caused by the duct on the out¬ 
side) corresponds to 

C0n = 0.033 for Sc = 1.5 ft2, which is 0.9% of S 

= 0.040 for Sa = 2.5 ft2, which is 1.5% of S 

where S = wing area of the airplane for which fuse¬ 

lage and cooler are intended to be used. The external 

values listed, are small in comparison to those found 

in figure 7 on page 9-6. The internal drag (loss of 

Figure 9. Internal drag (corresponding to the loss of momentum) 
of a cooling duct, investigated (4,b) in two sizes. 
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momentum of the flow through the duct) approxi¬ 

mately corresponds to the coefficient (explained on 

page 9-5): . 

CDa = WV) $ 0) 

where £ = pressure-loss coefficient of the core in¬ 

stalled in the duct. In the tests reported in figure 9, 

the core coefficient varies between 1.7 and 11. Since 

the internal drag is expected to grow in proportion 

to the loss coefficient, we have plotted the ratio 
(CDa/$). It is seen that this ratio begins increasing 

in proportion to (w/V). In the same manner as found 

on page 9-4 (in a radiator installation) the internal 

coefficent increases over and above the values in¬ 

dicated by equation (1) at flow ratios w/V exceeding 

about 0.2. 

A Nacelle of the underslung type as it is often used in 

twin- or multiple-engine airplanes, is illustrated in 

figure 10. Aerodynamic characteristics of such nacelles 

are found on page 13-6. The beneficial effect of a 

trailing-edge flap is described in connection with 

figure 16 in that chapter. Such a flap tends to restore 

the lift defect caused by the presence of an underslung 

body; and it thus eliminates the induced-drag com¬ 

ponent corresponding to the dent in the lift distribu¬ 

tion. The modification shown in part (b) of figure 

10, is not really a trailing-edge “flap”. It is an exten¬ 

sion of the wing chord, however; and it evidently has 

the effect of a flap. As tested at CL in the order of 

0.2, the modification has the following effects, ex¬ 

pressed in form of coefficients based upon the frontal 

area of the nacelle; 

lift increased; ACL> = -f- 0.40 

drag increased; A(^= — 0.01 

The configurations were also tested with the engine 

cowl flaps 10° opened. In this condition, the influ¬ 

ence of the nacelle modification is somewhat in¬ 

creased, both in regard to the lift- and the drag dif¬ 

ferential. 

Figure 10. Plan-form shape of an "original” and a "modified” en¬ 
gine nacelle, wind-tunnel tested (4,c) as part of a bomber. 

Figure 11. Pressure-drag coefficients of thin base-vented strut sec¬ 
tions, at zero cavitation number. 

B. HYDRODYNAMIC INFORMATION 

Considerable progress has been made during the last 

years in the field of hydrofoils. A subject particularly 

important at higher speeds, is ventilation, thereby 
prohibiting or postponing cavitation. 

Base-Vented Hydrofoils have been investigated both 

by the NASA and at the Naval Ordnance Test Station 

in California. At zero lift, the pressure drag of thin 

strut sections with a base or cavity pressure pt = pa 
(so that the cavitation or ventilation number is zero) 

is indicated by the coefficient (on projected frontal 

or base area) 

CDo = k (l/c) (2) 

It is shown in figure 11, how the “constant” k de¬ 

pends upon shape. Theoretically, there are sections 

possible, with maximum thickness somewhat ahead 

of the base. Their pressure drag can be zero, but 

these sections would start cavitating at a certain criti¬ 

cal speed. A most promising shape is the parabolic 

one, which will never cavitate. Reliable experimental 

results of straight sections of this type do not seem to 

be available. We have plotted the pressure drag co¬ 
efficient of wedge sections in figure 12, as a function 

of their thickness ratio. For practical purposes, it is 

seen that “k” in the last equation is really a constant, 

if considering thickness ratios below 20%. We will 

assume that the same linearity applies to parabolic 

sections. 
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Figure 12. Pressure-drag coefficient of base-vented wedge sections 
(at zero cavitation number) as a function of their 
thickness ratio. 

The Cavitation Number (as in equation 2, on page 

10-5) is not always zero, as assumed in this section, 

so far. It is shown on page 10-8, how the drag of more 
or less blunt and sharp-edged bodies increases as a 

function of the cavitation number, id est in the lin¬ 

ear fashion 

CD. =COo(1+0) <4> 

We have plotted experimental results of thin wedges 

in two-dimensional flow, in figure 13. These wedges 

have a half-apex angle £ = 5°, so that their thickness 

ratio is 

t/c = 2 tan£ =0.174= 17.4% 

It seems that at cavitation numbers below 0.1, the 

drag follows equation (4). However, at numbers 

above 0.2, drag tends to correspond to CQ> = O'. This 

would mean that all drag is “base” drag. In fact, “6” 

is a base-drag coefficient, by definition (see equation 

(2) on page 10-5). Actually, pressure along the fore¬ 

body reduces somewhat, as the cavitation number is 

increased. As explained in (9,b) drag of thin wedges 

is reduced, accordingly, corresponding to 

ACd. = - °-45 (l/c) (5) 

After subtracting this differential, an asymptotic line 

is obtained. When comparing the experimental points 

with the two theoretical limits, some skin friction 

must be taken into account. Using methods as in 

Chapter II, a differential ACD> in the order of 0.02 

can be estimated (see the next equation). The agree¬ 

ment then obtained in figure 13 is very satisfactory. 

(6) Testing of base-vented strut sections: 
a) Cox & Clayden, Wedges, J.Fluid Mech 1958 p 615. 
b) Waid, Cal Tech Hydro Lab Rpt E-73.6 (1957). 
c) Parkin, "Flat Plate ’, Caltech Hydro Lab Rpt 47-6 (1956). 
d) Drag of a surface-piercing (base-vented) strut is pre¬ 
sented in figure 29, on page 10-16. 

(7) Lifting base-vented hydrofoils experimental: 
a) Johnson, Parabolic Foil, NASA TN D-l 19 (1959). 
b) Christopher, Straight Foil, NASA TN D-728 (1961). 
c) Lang, Nav Ord Test Sta NAVWEPS Rpt 7584 (I960). 
d) Lang, A =- 1, NOTS NAVEWS Rpt 7920 (1962). 

Parabolic Sections can also be used as lifting hydro¬ 

foils. Their characteristics as such, are reported in 
(7). All we know at this time regarding the drag at 

zero lift, of the parabolic type of “strut” sections as 

in figure 11, is the pressure coefficient at zero cavita¬ 

tion number. To obtain real drag values, it is first 

necessary to add skin friction. 

Cd. = 2 Cf(cA) (6) 

where Cf ~ 0.003 for turbulent boundary-layer flow. 

For small cavitation- or ventilation numbers, a pres¬ 

sure drag component can then be determined, using 

the constant as in figure 11, amplified corresponding 

to equation (4). At higher cavitation numbers, the 

same method might be applied as explained above 

for wedges. 

Figure 13. The pressure-drag coefficient of a thin base-vented 
wedge section, as a function of the cavitation number. 

An Optimum Strut section can be found, considering 

only drag. We have plotted in figure 14, the skin fric¬ 

tion component as per equation (6); and we have 

added the pressure drag, for zero cavitation number, 

as listed in figure 8. While the minimum total drag 

of the wedge shape is found in a thickness ratio 

around 10%, the optimum parabolic strut is 12 or 

13% thick. Of course, these thickness ratios reduce, 

as ventilation number and pressure drag increase. 

Figure 14. Optimization of strut sections, on the basis of skin- 
friction plus pressure drag. 
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as those of parabolic halfbodies (as in the last equa¬ 

tion). The drag of slender cones can be approxi¬ 
mated by 

CDo=0.33 (d/f) (10) 

The experimental results in figure 15, are all some¬ 

what above this function. 

Short Bodies. Drag coefficients extrapolated to zero 

cavity pressure, are listed in figure 16, for a few bodies 

with length ratios l/d between 0.5 and 1.0. For cavi¬ 

tation or ventilation numbers different from zero, 

their coefficient is expected, or it was tested, to vary 

as indicated by equation (4). The most favorable 

shape is the parabolic one. The type with the highest 
drag coefficients, is the conical. 

Figure 15. Pressure drag coefficients of base-vented bodies of 
revolution, at zero cavitation number. 

Parabolic Bodies of revolution of the type as in fig¬ 

ure 15, can also be driven through water without any 

cavitation, when ventilating their bases. Theory (10,a) 

predicts for slender shapes, vented so that the “cavita¬ 

tion” number is zero, the pressure drag coefficient 

C0o= ((d/j)2/16)ln(16(*/df) (8) 

This equation is good enough for diameter ratios d/X 
below 20%. For higher ratios, a more complete for¬ 

mulation is available, plotted in the graph. Theory 

is confirmed by the pressure-drag coefficients evalu¬ 

ated from testing two bodies, at tank speeds between 

135 and 165 ft/sec. Friction drag of the slender body 

shown in the illustration, corresponds to CQ = 0.017, 

so that its total drag coefficient is 0.025 -(- 0.017 = 

0.042. 

_*/X = t 
NASA (10,«) 

G_d/J =1 .11 

Iowa (10,b) 

a- 

So * °*15 

•lllptloal 

Crw, = 0.16 

-Callbar OgiT« 

Convalr (10,b) C,^ = 0.20 

1/2 apharloal 

Chapter X Cp© - 0.29 

I 1/d = 1 cone 

Chap * (17,b) 

-4 
% - 

2 tlM. 45° Con. 

AMS (10,1) GEq . 0.51 

Approximation. The formulation as in equation (8) 

is not very simple. And the complete function as in 

(10,a) is extremely complex. For practical purposes 

(where other drag components are to be considered, 

such as skin friction for example) an approximation 

to the theoretical solution is desirable. We have found 

that the pressure drag of slender parabolic bodies (of 

the type as in figure 15) at zero cavitation number, 

reasonably corresponds to 

CD„ =0H Wtf <9> 

For slender cones (in the same type of flow as the 

parabolic bodies above) a theoretical solution is 

quoted in (10,a) taken from a British source (10,c). 

This solution predicts drag values about twice as high 

Figure 16. Drag coefficients, extrapolated to zero cavitation num¬ 
ber, of several more or less blunt bodies of revolution. 
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C. RESULTS AT TRANSONIC SPEEDS 

The transonic phase of aerodynamics (say between 

M = 0.9 and 1.2) has suffered in the early days of 

testing from experimental difficulties, particularly in 

wind tunnels. After perfecting transonic facilities and 

techniques, reliable results are now readily available. 

Some of them are presented as follows. 

Figure 17. Drag characteristics of a wedge section (12) from sub¬ 
sonic to supersonic speeds. 

(9) Theoretical Analysis of base-vented sections: 
a) Tulin, Strut Sections, DTMB Rpt 834 (1953). 
b) Fabula, Cut-Off Edges, NOTS NAVWEPS Rpt 7571. 
c) Wu, Free Streamline, J.Fluid Mech 1963 p 65. 
d) Brown, Supercavitation, Davidson Lab Rpt 971. 
e) Lang, Discussion, NOTS NAVORD Rpt 6606 (1959). 

(10) Characteristics of base-vented bodies: 
a) Johnson, Parabolic Bodies, NASA R-86 (1961). 
b) Macagno, Inst Hydraul Res Univ of Iowa (1963)- 
c) Armstrong, Theory, Brit.Arm RD Estab Rpt 21/54. 

(12) Johnston, Drag from Subsonic to Supersonic Speeds of a 
Wedge Section, NASA Memo 4-30-59L. 

(13) Ejection seats at transonic speeds: 
a) Byrne, Transonic, MIT Nav Sup’so Lab Rpt 69 (1954). 
b) Visconti, Vs Scale Model, NACA RM L51H08. 
c) Summers, Pilot-Seat Models, NACA RM A58E02. 

(14) Johnson, Drag Ribbon Parachutes,NASA TM X-448 (I960). 

Single Wedge. The drag components of a 20% thick 

wedge (tested between tunnel walls) are presented in 

figure 17. Results have been amplified by estimates 

for small Mach numbers, of skin friction as well as 

of base drag (see figure 39 on page 6-20). Pressure 

drag along the forebody, at first negligibly small in 

the section considered, grows considerably when ap¬ 

proaching and crossing M = 1. The base drag shows 

a dip, slightly above M = 0.8. This dip (not found 

in the “transonic” chapter) might be assumed to be 

of the same nature as those found in bluff bodies at 

higher subsonic speeds; see page 15-6. A description 

of the mechanism is given on page 15-7, under “up- 

down-up”. After passing M = 1, the base pressure 

coefficient decreases, in the manner as in figure 11 

on page 16-11. 

An Ejection Seat, investigated in (13,a) is shown in 

figure 18. Comparatively small models of such seats, 

complete with pilot, are tested in (13,c) at transonic 

speeds. Drag of a particular configuration is a func¬ 

tion of angle of attack and Mach number. Based upon 

projected frontal area, and at zero angle of attack 

(measured against the horizontal through the seat) 

drag coefficients are roughly as follows: 

CD = 0.8 at M = 0.7 

Cp = 1.0 at M = 1.0 

Ca* = 1.2 at M — 1.3 

The values can greatly be changed, however, by the 

trimming and stabilizing devices (flaps) which are 

likely to be needed in the successful use of such seats. 

Lift (also tested in the references listed) will have a 

considerable influence upon the trajectory (see page 

13-22) obtained after ejection. 

Parachutes are used, not only to enable personnel to 

jump safely from their airplanes, but also as a device 

suitable to decelerate airplanes when landing, or mis¬ 

siles when returning to the ground. In the latter ap¬ 

plication, speeds are likely to be supersonic; forces 

are bound to be comparatively high. For this reason, 

and to eliminate oscillations (see page 13-26) ribbon- 

type parachutes (sewed together from strong ribbons, 

Figure 18. Example of a pilot-ejection seat (13,a) investigated 
in a high-speed wind tunnel. 
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Figure 19. Drag coefficients at transonic speeds of several ribbon- 
type parachutes (14). 

in crosswise fashion) are most suitable. Drag results 

of full-scale drop tests (15,a) from altitudes between 

50, and 70,000 ft, are presented in figure 19. The 

nominal diameter of the parachutes investigated is 

6 ft. The dynamic pressure during deployment at 

supersonic speeds at high altitude, was between 80 

and 200 lb/ft2. The weight of the “test vehicle” (that 

is, the weight carried) was between 1000 and 1500 lb, 
while maximum load in the parachute was consider¬ 

ably higher. The drag coefficients plotted, vary with 

the porosity of the canopy, in the manner as described 

on page 13-23. The coefficients are based upon the 
“projected” area of the canopy, for which the para¬ 

chutes are constructed (corresponding to a diameter 

of 6 ft). The fact that the “conical” design with a 

porosity of 28%, has drag coefficients approximately 

of the same magnitude as the “flat” parachute with 

only 17.5% porosity, must be explained by a differ¬ 

ence in the real inflated diameter (which was not 

measured during the tests reported). As a function of 
Mach number, the coefficients increase, for example 

from = 0.6 at subsonic, to 0.8 at supersonic 

speeds. 

Figure 20. Flight-tested (15,a) drag coefficients (on projected 
frontal area of the added body) of several canopy shapes, of the 
type as in figure 21, as a function of Mach number. 

Windshield. Results of a basic investigation of a can¬ 

opy, attached to a cylindrical body, are presented in 

figures 20 and £l. The drag due to the canopy, in 

form of a drag coefficient based on projected frontal 

area of the added body, is least for a smooth “para¬ 

bolic” shape. When providing a flat, but inclined 

(sloping) windshield, the drag coefficient increases 

as a function of the inclination angle. There are also 

“V” shaped windshields tested in (15,a) that is can¬ 

opies with a ridge line sloping at an angle £s as in 

figure 21, and with a plan form, “V” shaped corres¬ 

ponding to an half-apex angle Sp. The resultant 

angle of each side of this type, measured against the 

direction of the undisturbed flow, corresponds to 

cotE = cotes + cot&p (13) 

Maximum transonic drag coefficients (at M 1) of 

the canopies tested, are plotted as a function of 6, in 

figure 21. 

Figure 21. Maximum drag coefficient (at M = 1) of the type 
of canopy shown (15,a) as a function of the slope 
angle of the windshield. 

A Blunt Canopy, with £ = 90° is included in figure 

20. Drag at all speeds is, of course, very high for such 

a bluff windshield. It should be noticed, however, 

that the drag function is not similar in character to 

that of a blunt cylinder in axial flow (as on page 

16-13). In fact, the drag coefficient reduces as the 

Mach number is increased above unity. It is suggested 

that the flow separates ahead of the blunt face of the 

90° canopy. The mechanism of this separation seems 

to be the same as that due to a spike (see pages 16-40 

and 20-10). In other words, the surface of the cylin¬ 
drical body to which the canopy is attached, has the 

same effect as a spike; and the flow pattern ahead of 

the windshield is more or less conical. Using equation 

(19) in Chapter XVIII, the half-apex angle of a cone 

producing approximately the same drag (at super¬ 

sonic speeds) as the blunt face of the 90° canopy, is 

found to be £ = 31°. For example at M = 2, the 

drag coefficients are: 

= 0.11 for the parabolic afterbody 

Cq = 0.79 for the blunt windshield 

Cp = 0.90 for the complete canopy 



XX - PRACTICAL RESULTS 20-9 
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Figure 22. Drag of and due to canopies attached to the nose of a 
fuselage body (15,b), at M = 1.1. Results obtained 
at M = 0.8, are listed in parentheses. 

On Fuselage. Results of tunnel tests at M = 1.1 (and 

at M = 0.8) on several smooth shapes (no gaps or 

other surface imperfections) are presented in figure 

22. Based upon maximum added area (normal to 

main-body axis) drag coefficients at M = 1.1, are 

roughly between 0.3 and 0.5. The magnitude of this 

coefficient depends not only on canopy shape, but 

also upon location in relation to the fuselage. Corres¬ 

ponding to the transonic area rule (page 16-34) drag 

increments are low when and if the cross-section dis¬ 

tribution of fuselage plus added body is “smooth”. 

By arranging the canopy volume near the nose of the 

main body (where the area distribution is “hollow”) 

it might even be possible that the combined wave 

drag be lower than that of the fuselage alone. At any 

rate, a drag coefficient in the order of C0a> — 0.3, is 

only half of that reported in figure 52 (in Chapter 

XVI) for a canopy similar in shape, but located near 

the cylindrical part of the fuselage body. — Addition 

of a “V” shaped windshield increases the coefficient 

in figure 22, to C^& = 0.52. — As a matter of interest, 

drag coefficients are also listed (in parentheses) as 

found for the subsonic Mach number of 0.8. The 

level of the combined drag coefficient CDm# is between 

0.04 and 0.06, at this M’number. The drag of and 

due to the canopies corresponds to C^ between 0.06 

and 0.12, which is considerably smaller than at tran¬ 

sonic Mach numbers. The drag-divergence Mach 

number is about 0.91. 

Location. Drag at transonic speeds, of the wing-body 

configuration shown in figure 23, is reported in (15,c). 
The maximum drag coefficient (at M « 1.1) for 

= 0.2, is as follows: 

CD = 0.033 plain, without a canopy 

CQ = 0.033 with canopy in forward location 

CQ = 0.031 with canopy in position as shown 

The size of the canopy corresponds to the frontal area 

ratio (in comparison to that of the fuselage) SQ> /Sm> 

= 10%. “Forward” means that the canopy was moved 

1/12 of the wing span. The fact that the addition of 

the canopy volume does not increase the drag, may be 

explained on the basis of the transonic area rule 

(described on page 16-34). However, in rear location, 

the canopy reduces somewhat the drag of the swept- 

wing configuration (at constant lift coefficient). When 

expressing the reduction in form of a coefficient 

based on canopy frontal area, a value — 0.3 is 

found. As explained in the report (15,c) lift at con¬ 
stant angle of attack, is increased when adding the 

canopy, by AC. = 0.03. The angle of attack required 

to obtain CL = 0.2, is reduced by Aot = — 0.5°. It 

thus seems that the efficiency (lift distribution) of the 
wing is improved when adding the canopy. On the 

basis of an increased lift-curve slope, a reduction of 

the induced drag can be estimated. Based on canopy 

area, the resultant differential is in the order of ACD> 

= —0.1. This is only a third of the amount stated 

above. The predominant mechanism responsible for 

the drag reduction, therefore, seems to be that corres¬ 

ponding to the area rule. 

Figure 23. Canopy added to a swept-wing configuration tested 
(15,c) at transonic speeds. 

Drag of canopies and windshields: 
a) Kell, Canopies Tested in Free Flight at Transonic Speeds, 
ARC RM 3024 (1957). 
b) Cornette, Canopy on Body, NACA RM L55G08. 
c) Robinson, Influence of Canopy Location, NACA RM 
L54E11. 
d) Robins, As (b) at M = 1.4 and 2.0, NACA L55H23. 
e) Cornette, Pressure Distribution, NACA RM L56H22. 
f) Kouyoumjian, Canopies in Free Flight, NACA TN 4405. 

(20) Gapcynski, Various Forebody Shapes, NACA RM L53I23a. 

(22) Retrorockets on the face of blunt bodies: 
a) Charczenko, Thin Retro-Jet, NASA TN D-751 (1961). 
b) Wasko, From a Sphere, NASA T’Note TN D-1535. 
c) Peterson, 4 Retrorockets, NASA T'Note TN D-1300. 

(23) Influence of spikes on the drag of blunt bodies: 
a) Referenced in various places. 
b) Crawford, Spiked Nose, NASA TN D-118 (1959). 
c) Champney, Drag Devices, WADC Rpt 59-324 (1961). 
d) Spooner, Artillery Shell, NACA RM SL56D27. 
e) Wagner, Heat Pressure M = 19, NASA TN D-891. 
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D. NOSE DRAG AT SUPERSONIC SPEEDS 

Nose Shape. Forebody drag coefficients are listed in 

figure 24 for a circular cylinder (in axial flow). Drag 

is small for a long and pointed nose; it is compara¬ 

tively high for a hemispherical shape (see figure 20 

in Chapter XVI and figure 24 in Chapter XVIII); 

and drag is maximum for the flat face shown (see 

figure 22 in Chapter XVIII). 

€~"~---. o.„.j- 

Figure 24. Drag of a forebody varying in shape between blunt 
and pointed (20). Included is the influence of a spike 
upon the drag of a hemispherical head. 

Spike. A hemispherical head reduces the drag of a 

flat-faced nose almost to half. The coefficient of 

either a flat or a round shape can be further reduced 

when using a so - called spike. The mechanism 

through which such spikes may affect the drag of 

blunt body shapes, is described on page 16-40, in 

figure 57. Two more examples, investigated at 

M = 7 and 8, are presented in figure 25. The drag 

coefficients plotted (particularly at or near zero 

spike length) evidently include more than the pres¬ 

sure on the forward face of the blunt bodies shown. 

The reduction, down to coefficients in the order of 

CD> = 0.2, is very considerable. Of course, to obtain 

such results, it is necessary to carry (or to extend 

during flight, when needed) a spike with a length 

equal to at least 2 body diameters. In comparison to 

a long pointed shape having the same drag coeffi¬ 

cient, structural advantages (dimensions, weight, 

cost) of a spiked nose can be considered, provided 

that the space in the slender body is not needed 
or useful. 

Figure 25. Two spiked bodies, tested (23) at Mach numbers in 
the order of 7 and 8. 

Blunt “Probe". Experimental results concerning 
spikes are numerous. For example, there is an in¬ 

vestigation (23,e) at M = 19, showing a reduction of 

the wave-drag coefficient of a hemispherical nose 

from 0.9 to below 0.1, for spike length ratios J^/d 

above 3 or 4. As far as transonic conditions are con¬ 

cerned, the example of a flat-faced fin-stabilized shell 

is shown in figure 26. The addition of a blunt 

“probe” reduces the drag. Surprisingly, the interfer¬ 

ence effect is also found at subsonic speeds; at M = 

0.8, the drag coefficient is reduced from 1.0 to 0.3. At 

supersonic Mach numbers, the drag coefficient of the 

flat-faced body continues rising (as in figures 22 and 

38, in Chapter XVIII) while that of the spiked shell 

starts reducing in a manner similar to that of cones 
(see for example figure 23 in Chapter XVI). 

.04 o-6 o-8 i.o 1.2 1.4 1.6 1.8 

Figure 26. Drag (reduced to zero base contribution) of a blunt 
artillery shell (23,d) with and without a "probe”. 
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Figure 27. Influence of a thin retro-rocket jet (22,a) issuing from 
the blunt face of a reentry-type capsule model. 

Retro-Rockets are used as a means suitable to de¬ 

celerate a vehicle. Figure 48 shows the arrangement 

of a comparatively small jet issuing forward, from 

the face of a blunt body. At a Mach number of 2, 

the drag coefficient of this body is CQ# = 1.6. As 

shown in the graph (at zero jet thrust) a coefficient 

of 1.34 represents the pressure at the face of the 

body. As a function of jet thrust, the pressure (wave) 

drag of the body reduces very considerably. A min¬ 

imum coefficient CD> = 0.55 is obtained with a 

thrust coefficient (on body frontal area) in the 

order of 0.15. The retro-jet evidently has the same 

effect as a spike, described above. Spike or jet can 

cause the flow to separate from the blunt face of the 

body. The resultant flow pattern is similar to that 

around a conical nose. It thus appears that the 

thin jet described, is a very effective device suitable 

to reduce pressure (wave) drag at supersonic speeds. 

It should be remembered, however, that the satel¬ 

lites used in the United States in the “Mercury” 

program (61) did have retro rockets. Evidently, 

these rockets were fired at the beginning of re-entry 

into the atmosphere, before air density and aero¬ 

dynamic drag assumed any magnitude. 

(27) Drag of stores or engines mounted on a fuselage body: 
a) Madden, Body plus Engines, NACA RM E51E29. 
b) Kremzier, Evaluation of (a), NACA RM E52B21. 
c) Friedman, Body Wave Drag, NACA RM A51I20. 
d) Hoffman, Longitudinal Position, NACA RM L54E26. 
e) Dobson, "Fairey Delta”, RAE T’Note Aero-2844 (1962). 

(28) Stores or engine nacelles suspended below the wing: 
a) Hasel, Swept Wing at M = 1.6, NACA RM L51K14a. 
b) Driver, Same Tanks at M = 2, NACA RM L52F03. 
c) Jacobsen, Series of Stores Under Straight, Delta and 
Swept Wings at M = 1.4 & 2.0, RM L52-F13, -H29, -J27. 
d) Foster, Swept-Wing Fighter Model, NACA L56F15a. 
e) Pepper, Free-Flight Tests, NACA RM L50G17a. 

E. NACELLES, LOADS, EXTERNAL STORES 

Many airplanes carry more or less “streamline” bodies 

to house engines, to store extra fuel or as special 

equipment such as bombs, for example. All these 

bodies have the fact in common that they are exposed 

to the air stream, thus increasing the drag of the air¬ 

craft. Characteristics of a number of these appendages 

are presented in the following, as tested at transonic 

and supersonic speeds. Principle variations are loca¬ 

tion as well as type of suspension. 

Jet Engines are basically ducted bodies. Their drag 

can be lower than that of a solid body having the same 

outside diameter. Figure 28 shows the combination 

of a slender body with a pair of engines, as it might 

be used in a missile (or possibly in a supersonic air¬ 

plane). We are prepared for the fact that the drag of 

two or more bodies when attached to each other, will 

be larger than the sum of their component values 

tested separately. However, this is not so in the con¬ 

figuration considered. At a number M = 2, drag co¬ 

efficients based on fuselage cross-sectional area (cor¬ 

responding to a diameter of 6 inches) are as follows: 

CD = 0.113 
= 0.070 

CD = 0.017 
C ‘ : 0.200 

cl* = o.i5i 
D* 

for fuselage tested alone 

for two isolated engines 

estimated, struts with t/c = 6% 

sum of the individual parts 

for configuration, as tested 

According to this account, the complete configuration 

has only 75% of the drag obtained when summing up 

the component parts. As explained in (27,b,c,d) the 

reduction is due to a favorable interference of the 

pressure fields around the bodies, with each other. 

This type of interference is called buoyancy. In the 

present case, it may be assumed that the fuselage re¬ 

duces the pressure along the forebody of the engines. 

To account for the differential found above, a pres¬ 

sure reduction corresponding to ACp= — 0.08 would 

be sufficient. The buoyancy effect can also be dem¬ 

onstrated in terms of the drag of and due to the 

PUSUA8S BOOT IZWTH Jt = 73.9 inch** 

PA IB Op K HQ UBS HAS C 0KB USD CROSS-SB OTIC* AREA EQUAL TO THAT OP PU38LA0I 

Figure 28. A pair of jet engines attached to an RM-10 fuselage 
body, tested (27,a,b) At M = 2. 
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engines, as follows. Based upon the sum of their cross- 

section areas, the drag coefficient of the engines is 

CD> = 0.035 when tested separately 

CDi = 0.038 when attached to fuselage 

CQ> = 0.021 after subtracting strut drag 

Chordwise Position. Drag of and due to a store (or 

engine nacelle) also depends upon its longitudinal 

position in relation to the wing. Typical results of a 

systematic investigation of mutual interference (29) 

are presented in figure 31. It should first be noticed 

that no pylon is present in these tests; wing and store 

are supported separately in the wind tunnel. Differ¬ 

ential drag forces induced by the store upon the wing 

are at least of the same magnitude as those in the 

other direction. Mutual interference results in a varia¬ 

tion of the drag coefficient (on store frontal area) 

roughly between 0.1 and 0.4, while the isolated store 
has a CL — 0.255. 

Figure 29. A 1/24 scale model of the Fairey Delta-2 airplane, 
tested (27,e) with and without a fuel tank under the fuselage, at 
M’numbers between 1.4 and 2.0 . 

A Fuel Tank is shown in figure 29, attached to the 

lower side of the fuselage. The maximum height (or 

thickness) of this tank is 1.4 ft, full scale, while the 

width is 2 ft. The drag caused by the tank, at Mach 

numbers between 1.6 and 1.7, corresponds to a co¬ 

efficient based on the added frontal area, in the order 

of C. = 0.32. 

Pylon Suspension. In airplane configuration* jet en¬ 

gines are very often suspended below the wing. Since 

the contribution to drag, of the “strut” supporting the 

nacelle or store, is included in the coefficient based 

on frontal area of the added body, the coefficients can 

be expected to increase with the distance below the 

wing. On the other hand, close to the wing there is an 

interference effect, increasing the drag appreciably. 

As a consequence, drag of wing-pylon-store configura¬ 
tions does not change very much at vertical distances 

z/d between 1 and 2. A comparison with other types 

of suspension is presented in figure 30. As shown in 

part (a) of the illustration, the underslung type has 

some 10% less drag (eliminating the pylon). It is also 

shown in part (b) that a nacelle placed around the 

wing section, has a lower drag coefficient than in un¬ 
derslung position. 

0.42 0.50 

(a) WIND-TUNNEL TESTS (28,a) (b) FREE-FLIGHT TESTS (28,e) 

i - 14 inches: Rj - 5(10)6 i > 2 ft? * 2(1C)7 

Figure 30. Drag coefficients (on frontal area of body) of and due 
to stores, tanks or nacelles, at selected supersonic speeds. Compari¬ 
son between isolated body, placed around swept-wing section, un¬ 
derslung and pylon-supported configurations. 

wnro 45° i = i ft, i . 4 
__65A-006, at y/s - 0.4ff 

Figure 31. Mutual interference drag between a store body and 
a swept wing, tested (29) at M = 1.6. 

Buoyancy. The drag variations in figure 31, can quali¬ 

tatively be explained (29,a) on the basis of buoyancy; 

id est, from the consideration of the pressure fields 

around wing and store body. In particular, pressure 

is increased along the forebody; while an expansion 

takes place along the boat-tailed end of the store. 

These regions of positive, neutral or negative pres¬ 

sure, extend outward between limiting lines corres¬ 

ponding to the Mach angle. This angle is defined on 
page 17-1; its cotangent is 

fi — cot^i— \J M2— 1 (16) 

(a) Considering now in figure 31, the influence of 

the store upon the wing, it can be said that at x/c = 

— 0.9, the nose of the wing is within the negative 

pressure field around the tail of the store. Between 

x/c = — 0.1 and 4- 0.8, the rear end of the wing sec¬ 

tion is in the same negative field. Finally, at and be¬ 

yond x/c = + 1.2, the positive pressure field around 

the forebody of the store, induces some negative drag 

on the rear of the wing section. 

(b) As far as the fuselage (not shown in the illustra¬ 

tion) is concerned, the positive pressure produced by 

its nose, evidently meets the forebody of the store, 

at x/c around — 1.4. The fuselage also helps to reduce 

the drag of the store, at x/c above + 1.2. 
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(c) Considering the pressure field around the wing 

section, it must be realized that for 45° sweep, at M 
= 1.6, conditions are not yet “supersonic”. As a con¬ 

sequence, there is a positive pressure field ahead of 

the leading edge. This field evidently acts upon the 

boat tail of the store, in positions around x/c = — 0.8. 

Between x/c = — 0.2 and + 0.7, the negative pres¬ 

sure along the rear end of the section, make the pres¬ 

sure on the tail of the store more negative. The same 

pressure field evidently meets the nose of the body, 

at and beyond x/c = -)- 1.2. 

- 2(10>‘ 

FULL-3C4LE LBRGTH a 10 ft 

VOLUME OF STORE 100 gallon* 

PTL0H THICKNESS, t/c - 7.6* 

Figure 32. Drag coefficient of anddiKtto an external store carried 
below the swept wing of the Douglas D-558-II research airplane, 
tested on a 1/16 scale model by the NACA (30). 

F. SURFACE IMPERFECTIONS 

Drag due to roughness elements at subsonic speeds, 

is presented in Chapter V. Results obtained at tran¬ 

sonic and supersonic Mach numbers, are as follows. 

Body with Rings. Figure 33 presents the drag coef¬ 

ficient of a Sears-Haack body without and with a 

blunt ring attached. The average drag increment due 

to the ring corresponds to the pressure coefficients 

at its faces. The results prove that a downstream fair¬ 

ing is hardly of any use. However, a 10° ramp added 

to the upstream face, reduces the transonic drag ap¬ 

preciably. If considering the ring to be a surface ir¬ 

regularity, it should be realized that its thickness 

(height) is comparatively large, while the boundary- 

layer must be estimated to be comparatively thin 

(considering an R’number of the body as high as 
3(10)7). 

-- 1 
~~3-i 

5.5(10)* 

_1 

I' = 09 Inch**-- d = 9 Inches 

Transonic Drag. In addition to what is presented on 

pages 16-36 and -37, drag characteristics are shown 

in figure 32, of fin-stabilized stores as a function of 

the Mach number. At M = 1.6, the coefficient of 

these stores is higher (CD> = 0.65) than that of the 

pylon-suspended body in figure 30, for two reasons. 

First, the fins represent additional drag. Included in 

figure 32, is the coefficient of a free-flying fin-stabil¬ 

ized body, with 0.3. There is an interference 

effect evident, increasing the drag of and due to the 

added body by more than 100%. The second reason 

for the high store-drag coefficients, therefore, is the 

fact that they are located in an unfavorable position 

in relation to the wing chord; see figure 31. Speaking 

now about transonic Mach numbers, the coefficient of 
the stores in figure 32, reaches a maximum of CD 

1.0, at M = 1.1. The interference between store, 

pylon, wing and fuselage, is evidently very severe 

around that Mach number. Transonic area-rule con¬ 

siderations can explain the magnitude of the drag in¬ 

crease. It should also be taken into account that all 

drag increments have been concentrated upon the 

store bodies, in the evaluation as presented in this 
section. 

♦ 0.57 ] I - 0.55 1 

— — — —1.0 inch 

+ 0.60 
.. 

1.20 - 0.55 

= 1.5 inch _mmm 
Cp * ♦ 0.68 I CD. - 1-30 “ 0.55 - Cp 

-•—6 Inches—»- 

h = 1 inch i.< .'tt. . . i..... =1.2 

Figure 33. Drag due to a blunt ring tested (35,a) on a slender 
body of revolution, at transonic speeds, corresponding 
to M between 1.0 and 1.1. 
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Figure 34. Drag caused by steps representing sheet-metal joints, 
investigated (35,b) at supersonic speeds, using a 
slender ogive-cylinder body combination. 

Surface Steps. Surface imperfections including steps, 

are presented in Chapter V, for subsonic conditions. 

Results at Mach numbers between 1.6 and 2.0, are 

found in (35,b). Ahead of and behind the steps (re¬ 

spectively) shown in figure 34, the flow (and/or the 

boundary layer) separates. The static pressures in the 

separated spaces and on the faces of the steps, repre¬ 

sent drag. Typical values are listed in the illustration. 

The average thickness of the boundary layer develop¬ 

ing along the ogive-cylinder body used as a carrier 

for the surface irregularities investigated, is estimated 

to be more than 0.2 inches. The height of the steps 

is thus less than 10% of the BL thickness. The com¬ 

paratively small magnitude of the pressure differ¬ 

entials reported, seems to reflect these conditions. — 

The body surface between the steps is sloping at the 

rate of plus or minus (respectively) 0.02/2 = 0.01. 

Using 2-dimensional theory (see page 17-14) the re¬ 

sultant pressure coefficient is ±2 (0.01)//M2— 1 ~ 

±0.01, for M = 2 as in figure 34. The value of 0.01 

represents the drag coefficient of one of the sloping 

surfaces, based on the frontal area of one step. 

Figure 35. Drag caused by surface steps representing sheetmetal 
lap joints, tested (35,a) in free flight, at supersonic 
speeds, using the vehicle as shown. 

Lap Joints. Results of a free-flight investigation (35,a) 

at Mach numbers between 1 and 2, are presented in 

figure 35. The height of the steps, simulating sheet¬ 

metal lap joints, is 0.064 inches, in comparison to a 

body diameter of 5 inches. The differentials tested 

(at an average M’number of 1.5) can be reduced to 

drag coefficients based upon the sum of the step faces 

used. The result is: 

C0> = 0.45 for the back-facing joints 

= 0.75 for the forward-facing steps 

Rivet Heads. A number of 32 “round” rivet heads, 

each with a height of 3/64 inches and roughly inch 

diameter, were also tested (35,a) using the vehicle as 

in figure 35. Based on the sum of the head areas, drag 

coefficients derived are as follows: 

CQ> — 2.00 based on frontal area 

C[)n= 0.26 on square of head diameter 

Applying the equation for the drag of a biconvex 

airfoil section (as in figure 15 on page 17-14) a value in 

the order of =1.8 can be estimated. Considering 

the presence of a boundary layer on the surface of 

the test vehicle, the value of 2.0 as listed above, thus 

appears to be high. 

Figure 36. Basic surface irregularities tested (35,c) in free flight, 
on the cone-cylinder type of projectile shown. 

Projectile. Figure 36 shows a simple cone-cylinder 

type of projectile. In the results derived from firings 

at M = 1.7, listed as follows, dimensions are given as 

fractions of the caliber (the diameter of the cylin¬ 

drical part). 

a) Grooves cut into the conical nose, with a depth up 

to 0.04 calibers, do not noticeably increase the drag. 

b) Blunt rings placed around the nose, with a maxi¬ 

mum height (thickness) of 0.02 calibers, have drag 

coefficients (based upon their projected face area) 

in the order of C- = 0.8. 
L/* 
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G. CHARACTERISTICS OF BASE DRAG 

Base drag in uncompressed fluid flow is discussed in 

Chapter III; and at supersonic speeds in Chapter 

XVI. Additional information on the subject, primar¬ 

ily at transonic and supersonic Mach numbers, is pre¬ 

sented as follows. 

Length of Body. Figure 37 presents the pressure co¬ 

efficient as found at the base of a cone-cylinder body, 

the length of which was varied between 2 and 5 units. 

It is explained on pages 3-19, and on 16-5 and -6, how 

base drag reduces as body length and boundary layer 

thickness are increased. The same variation can also 

be obtained when reducing the Reynolds number 

(thereby increasing frictional drag coefficient and 

boundary-layer thickness). However, the variation as 

in figure 37, seems to be comparatively large. The ex¬ 
planation presented in the source (42,c) relies com¬ 

pletely upon the local conditions of flow directly 

ahead of the base. While at afterbody length ratios, say 

above 5, pressure and Mach number approaching the 

base of a cylindrical body, are for practical purposes 

equal to those in the undisturbed flow, the M’number 

is locally increased at and for some distance behind 

the rim of the conical nose of the body. At any rate, 
base drag increases as the length of the afterbody is 

reduced. 

(29) Smith (NACA) systematic investigation of store interfer¬ 
ence on swept-wing configuration, at M = 1.6: 
a) Mutual and Lift Drag Interference, RM L55A13a. 
b) Lateral Forces and Pitching Moments, RM L55E26a. 
c) Size and Shape of Store, RM L55H01 and L55L08. 
d) Store on Delta Wing Configuration, RM L55I27a. 
e) Swept Wing Configuration at M = 2, RM L55K15. 

(30) Investigation by the NACA of external stores on a model 
of the Douglas D-558-II research airplane: 
a) Smith, Characteristics at M = 2, RM L54F02. 
b) Silvers, At High Subsonic Speeds, RM L55D11. 
c) Kelly, At Transonic Speeds, RM L55I07. 

(32) Fin-stabilized bodies, tested alone, by NACA: 
a) Ward, Bombs at Subsonic Speeds, SL57J15a. 
b) Hart, Various Bodies in Flight, RM L9I30. 

(35) Surface imperfections at supersonic speeds: 
a) Holdaway, Body with Steps, NACA RM A57E24. 
b) Czarnecki, Irregularities, NASA TND-835 (1961). 
c) Dickinson, Aberdeen Ball Res Lab Rpt 1284 (I960). 
d) Hopko, In Free Flight, NACA RM L54I21. 

(42) Base drag experiments at supersonic speeds: 
a) Scott, Base With Jets, NASA Memo 3-10-59L. 
b) Spahr, Tail Surfaces, NACA TN 2360 (1951). 
c) Love, Body Length, NACA TN 3819 (1957). 
d) Reller, Various Bodies, NACA TN 3393 (1955). 
Also Blaylock, Reflector Antenna, JPL Rpt CP-6 (1964). 

Figure 37. Pressure coefficient at M as 2, behind the base of a 
cone-cylinder combination (42,c) the length of which 
was varied as shown. 

Tail Surfaces. Figure 38 shows how the presence of 

tail surfaces affects the base pressure (or drag) co¬ 

efficient. At a Mach number of 2, the coefficient is 

about doubled (from CpB = — 0.2 to — 0.4) when 

adding the surfaces as shown. A qualitative explana¬ 

tion is as follows. Behind the tail section, the static 

pressure is reduced (corresponding to an expansion 

of the flow along the rear half of the foil section, 

tapering to a sharp trailing edge). According to the 

principles stated in Chapter XVII (pages 17-13 and 

14) the 10% thick biconvex section used, produces 

(at least theoretically) negative pressures down to 

Cp = — 0.23, at M = 2. By simple superposition of 

the negative pressure field upon the boundary of 

the wake behind the base, the level of the pressure 

in that area is evidently reduced. Theory also sug¬ 

gests that the tail-surface pressure varies in propor¬ 
tion 1 /{M2 — 1. 

lo 1-5 2.o 2.5 3.o 3.S 

Figure 38. Influence at supersonic speeds of tail surfaces (42,b) 
upon the base pressure of an ogive-cylinder body. 



20-16 FLUID-DYNAMIC DRAG 

Figure 39. Base pressure (measured between body rim and jet or 
jets) as affected (42,a) by presence and strength of 
one or more jets issuing from the base. 

Rocket Nozzles are usually protruding from the blunt 

base of the “vehicle” which they are intended to 

propel. As long as their diameter (or the sum of their 

outlet areas) is small in comparison to the dimensions 

of the base, the exiting high-speed jet flow is likely 

to make the base pressure more negative, by way of 

mixing and suction. As shown in figure 39, a single 

jet can thus increase the magnitude of the base pres¬ 

sure from CpB = — 0.2 to — 0.4. The same increment 

occurs in a multiple arrangement. The magnitude of 

base drag, as distinct from pressure, reduces, however, 

possibly to zero, as the outlet-area ratio (correspond¬ 

ing to diameter as well as number of nozzles used) 

is increased. In other words, vehicle efficiency is in¬ 

creased, when filling the space behind the base with 

jet flow. When this is not possible by any reason, it 

might be advisable to give the body a suitable boat- 

tail shape. 

Bc = 2.5(10)6 

(- 0.6) 

(- 0.3) 

(- 0.5) 

STEP h/x - 5 jt 

(- 0.2) 

//////////'/ //,,//'///// '//,///#'// r. 

Figure 40. Pressure coefficient behind the blunt trailing edge of a 
two-dimensional section, tested (44) at M — 1.0. The values in 
parentheses are for the subsonic number M = 0.4. 

Trailing Edge. Pressure was measured in the middle 

of the blunt trailing edge of a two-dimensional sec¬ 

tion (having a sharp leading edge). As listed in figure 

40, at subsonic speeds (at M = 0.4) the magnitude 

of the base pressure coefficient is considerably re¬ 
duced when rounding the edge. However, at tran¬ 

sonic speeds, such rounding produces very high pres¬ 

sure values; Cpmin = — 1.1. The formation of a vor¬ 

tex street is evidently favored by the round edge. On 
the other hand, when making the trailing edge “hol¬ 

low”, the strength of the vortex street seems to be 

reduced; the minimum pressure (at 1.0) cor¬ 

responds to Cp_ = —0.7. There is also shown in 
figure 40, a backward-facing step. The value of the 

base pressure is low; the surface of the plate on which 

the step is placed, evidently makes the lateral motions 

of a vortex street impossible. 

Figure 41. Pressure behind a step in the surface of the body 
shown, tested (4-6) in the presence of turbulent boundary layer. 

Step Pressure. In supersonic wind-tunnel tests, the 

boundary layer can be laminar almost up to R* = 

107. Many investigations, therefore, apply to condi¬ 

tions which may not always be correct in full scale. 

Backward-facing steps in the surface of a cone-cylinder 

body were tested (46) at M = 2.3. It can now be 

speculated that the pressure behind a step be a func¬ 

tion of (h/6). It can also be assumed that the turbu¬ 

lent boundary layer thickness h be proportional to 

(x/ <s) where x — length of the surface to the 

step. We have plotted in figure 41, the absolute 

base-pressure ratio as tested, against the parameter 

(x/hR1^). The result is a tentatively straight-line 

function. The minimum pressure is j^= 0.09 fk where 

pa = ambient pressure as in equation (10) on page 

16-3. The minimum can be expected when no vis¬ 

cosity is involved. As x increases, or as RK decreases, 

the boundary layer grows, thus reducing mixing and 

suction past the base of the step. 
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o 10 20 30 

-0.2 4 

Figure 42. Pressure coefficient at the base of a flared body (43) 
as a function of the "skirt” angle. 

Boattail. The drag characteristics of a family of boat- 

tailed bodies are reported in (45). An evaluation of 

this source is presented in figure 32 (on page 16-23). 

As far as base pressure (rather than drag contribu¬ 

tion) is concerned, figure 43 shows how the coefficient 

varies with the boattail angle. Since base diameter and 

area vary with the flare angle, two explanations are 
possible: 

a) We can say that early recompression (behind the 

base) is favored as the boat-tail angle is increased. 

b) When reducing the base diameter, the thickness of 

the boundary layer arriving at the rim of the base, 

is considerably increased. According to the prin¬ 

ciples shown in figure 37 (on page 3-19) and fig¬ 

ure 13 (on page 16-12) the magnitude of the nega¬ 
tive base pressure can be expected to reduce. 

We may assume that those two mechanisms combine 

with each other, thus affecting the base pressure as 

shown in figure 43. In fact, at S / S. = 0.1, the pres¬ 

sure coefficient evidently crosses the zero axis. Posi¬ 

tive pressure can thus be predicted for the end of a 

pointed afterbody (when the base area is zero). 

Flared Base. The pressure behind the base of a body 

also depends upon the angle at which the forebody 

ends. A flared body is shown in figure 42. Pressure 

coefficients are listed in the illustration for a Mach 

number between 1.0 and 1.1, where base drag is 

maximum. Base pressure grows more negative as the 
flare angle is increased. In fact, we might speculate 

that at 6 = 90°, the pressure is similar to that behind 

a flat disk (see figure 18, in Chapter XVI). However, 

between & = 20 and 30 degrees, the flow separates 

ahead of the conical “skirt”. The effective angle and 

the magnitude of the base pressure coefficient are 
reduced, accordingly. 

(A) AS A FUNCTION_10 

OP TBS BOATTAIL ANGLE 

= (-till lnml n«r) 

-0.2 

Figure 43. Pressure coefficient at the base of a family of boat- 
tailed bodies (45) at M = 1.9, as a function of tail 
angle and base-area ratio. 

(43) Wakefield, Flared Bodies, NASA TM X-106 (1959). 
(44) Nash, 2-Dimensional Base Flow,NPL AeroRpt 1070 (1963). 
(45) Brown and Goodwin (NACA), Family of Boat-Tail Bodies: 

a) Pressure at M between 1.6 and 2.4, TNote 3054 (1953). 
b) All Drag Components, Tech Note 3708 (1956). 

(46) Rom, Step in BL, Israel Inst of Tech TAE Rpt 31 (1963). 

0 l o. 

rr 
1 0.9- 0.4 6.g lo 1.2 

-0.1 

-0.2 

O 

\ 
(B) AS A FUNCTIOH op THE BASE-AREA RATIO Sg/s^ 
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A Pointed Tail can be considered to be the extreme 

of a boat-tailed body; but it is a shape about which 

theoretical as well as experimental information at 

supersonic speeds, is not readily available. Results of 

a wind-tunnel investigation are reproduced, however, 

in figure 44. Directly behind the shoulder, an expan¬ 

sion takes place, indicated by a drop of the pressure 

coefficient, almost to Cp = —0.16. On the basis of 

simple 2-dimensional theory (page 17-14) one might 

expect: _ 

Cp = 2 (sine)//m2 — 1 _ (20) 

With sine = — 0.174, and for /M2 — 1 = 1.65, this 

equation indicates a Cp — — 0.21, which is a value 

somewhat more negative than the minimum stated 

above. The boundary layer at the end of the cylindri¬ 

cal forebody (the length of which is not reported) 

can be made responsible for the difference. — Shortly 

behind the shoulder, a recompression begins. In fact, 

the pressure rises so much, that at the pointed end of 

the tail, a positive pressure corresponding to Cp = 

-f- 0.06 is obtained. This compression is evidently a 

consequence of the 3-dimensional flow pattern. The 

integrated drag coefficient of the tail in figure 44, 

is CD> = 0.094. This value is less than the base drag 

of the blunt cylinder (without the tail). It seems, 

however, that the efficiency of the long tail (consider¬ 

ing weight, cost and space required) is not very good; 

and that is evidently the practical reason why such 

tails are “never” used in supersonic applications. 

Figure 44. Pressure distribution, showing recompression taking 
place along a pointed tail cone (42,c). 

NOTE: 

In writing this book, two dimensionless coefficients 
have extensively been used: 

cd. = D/ (q s.) 
A 

where q = 0.5 y V , and S#= projected frontal area, 

as listed under ‘symbols” on page 1-2. 

Cp = Ap/ (q S) 

where Ap = (p — q,) and pa = ambient pressure (in 

the undisturbed flow). 
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Area rules (in compressible fluid flow): 

principle of fuselage contouring.15-38 

canopy location on fuselage 15-30 

transonic area rule .16-34 

Armament components: 

gun turret (interference effect) . 8-9 

gun openings (portholes) . 13-3 

tail turret on fuselage 13-3 

Aspect ratio characteristics: 

effective aspect ratio of wings 7-3 

small and zero aspect ratios . 7-17 

of hydrofoils (in water) 10-12 and 11-31 

of planing plates in water .11-20 

slender wings at transonic speeds .16-33 

relaxation at transonic speeds 15-41 and 17-11 

influence at supersonic speeds .17-17 

Atmospheric properties (pressure, density): 

in the troposphere (standardized values) 1-11 

in the upper layers (aerophysic properties) 19-10 

Automobiles, specific characteristics: 

lift and induced drag of automobiles 12-3 

racing cars (example) .12-16 

Barker effect (viscosity) . 3-1 and 19-3 

Base-drag characteristics: 

base drag at subsonic speeds . 3-18 

airfoils with trailing edges. 3-21 and 17-16 

base drag of railroad trains .12-13 

at transonic and supersonic speeds . 16-4 

base pressure in rarefied fluid flow. 19-5 

Biconvex foil sections 17-10 and 17-14 

Biplane Characteristics: 

in uncompressed fluid flow (lifting) 7-12 

biplane at supersonic Mach numbers 16-35 

Birds, lift and drag characteristics 7-22 

Bluff-body shape characteristics: 

in uncompressed fluid flow 3-9 and 4-2 

influence of rounding radius . 3-13 

in compressible fluid flow (subsonic) 15-3 

at transonic and supersonic speeds 16-14 

bluff bodies in hypersonic fluid flow .18-17 

body shapes in free molecule flow 19-15 

Blunt rear ends (of 3-dimensional bodies): 

as applied in automobiles . 12-4 

on boat-tailed bodies .16-22 

Blunt shapes, drag characteristics of: 

blunt leading edges (figure 22) . 3-12 

cylinder in axial flow (figure 23) . 3-13 

cylinders at transonic speeds (figure 14) .16-13 

blunt L’edges at hypersonic speeds.18-15 

Blunt trailing edges: 

in uncompressed fluid flow . 3-21 

in compressible fluid flow . 15-7 and 15-16 

at supersonic speeds .17-15 

Boat-tail characteristics (3-dimensional bodies): 

in uncompressed fluid flow . 3-20 

at supersonic speeds .16-22 

Boats (smaller craft in water): 

performance of motorboats .11-16 

drag of submarines .11-17 

planing characteristics .11-24 

characteristics of racing boats .11-25 

principles of hydrofoil boats .11-30 
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Bodies (three-dimensional) characteristics of: 

drag of streamline bodies 6-16 and 15-25 

parabolic body shapes 16-24 and 18-18 

simple bodies in free molecule flow 19-15 

see also '‘bluff bodies” and “streamline bodies” 
Bombs (as external loads): 

drag and interference at subsonic speeds 13-18 

drag in compressible fluid flow .15-31 

characteristics at transonic speeds .16 -26 

Boundary layer characteristics: 

various thickness definitions of B’layer .... 2-2 

presence of laminar sublayer . 2-3 

stability & transition of B’layer 2-8 and 17-4 

laminarization. 2-11, 6-6, 15-10 and 17-5 

boundary layer on laminar foil sections .... 2-14 

B’layer originating along the ground . 4-2 

dynamic pressure in boundary layer 5-6 and 8-3 

stability, f (compressibility) . 15-9 and 17-4 

transition on cones at supersonic speeds 17-5 

boundary-layer shock-wave interaction 18-7 

slip effect in rarefied fluid flow .19-16 

Boundary-layer control: 

B’layer suction on rear of sphere 3-27 

B’layer control through slots and slats 6-14 

B’layer bleed-off in radiators . 9-4 

Cables (stranded wires) . 4-5 and 13-20 

Canopies on fuselages, drag of and due to: 

drag in uncompressed fluid flow 13-2 

drag in compressible fluid flow 15-8 

interference drag (location) .15-30 

application of transonic area rule 16-36 

Caps and Cups, drag of . 3-17 
Cavitation (in water flow): 

general principles of cavitation . 10-4 

drag of cavitating conical shapes 10-7 

Centrifugal effect at hypersonic speeds .18-14 
Circular cylinders, characteristics of: 

pressure distribution around cylinders .... 3-3 

drag in uncompressed fluid flow (figure 12) 3-9 

cylinders with surface roughness 3-10 

cylinders in axial flow 3-12, 15-4, 16-13 and 19-17 
rotating pair of cylinders . 3-25 

cylinder with B’layer suction control 3-27 

rotating cylinders (lifting) . 7-11 

cylinders in water (with guide vanes) .... 10-3 

fairings around cylinders. 10-3 and 13-19 

drag in compressible fluid flow 15-6 

at transonic and supersonic speeds .16-16 

cylinders in free molecule flow .18-18 

Circulation (lift) around sections . 7-2 and 7-11 

Cockpits, open type on fuselages . 13-1 

Configurations (wing plus body): 

in uncompressed fluid flow (interference) 8-15 

complete airplane configurations 14-8 and 15-33 

in compressible fluid flow (interference) 15-28 
transonic area rule applied to 16-34 

Cone characteristics: 

cones in uncompressed fluid flow 3-17 

cones in water (cavitating) 10-7 

in transonic/supersonic flow (figure 23) 16-18 

cones in hypersonic flow .18-10 and 19-7 

bluff cones at hypersonic speeds .18-17 

cone drag in free molecule flow .19-16 

Control surfaces . 5-14 and 13-13 
Cowlings, around engines: 

cowlings around radiators . 9-6 

around radial engines . 13-7 

in compressible flow (critical M ’number) 15-32 

supersonic-type cowlings (additive drag) 16-38 

Cosine principle, see under “cross flow” 

Creeping motion, at low R’number 2-1 and 3-1 

Critical Mach numbers: 

of airfoil sections (drag divergence) .15-15 

of swept wings (leading edge) 15-22 and 16-30 

of cones and wedges (shock attachment)_16-19 
Critical Reynolds number: 

of the boundary layer (transition) . 2-8 

of rivet heads (drag coefficient) . 5-9 

of airfoil sections (transition) . 6-2 

of round shapes in water (figure 1) . 10-1 

critical number of sphere 3-7, 10-1 and 15-9 

in supersonic fluid flow (temperature) 17-4 

Critical roughness grain size 5-2 

Critical speed (in regard to cavitation) 10-5 

Cross-flow (cosine) principle: 

circular cylinder in uncompressed flow 3-11 

application in zero-aspect ratio wings .... 7-18 

inclined shaft (in water) .10-16 

application in swept wings .15-20 

inclined cylinder at hypersonic speed 18-16 
Cylindrical elements: 

round smoke stacks (vortex street) . 4-4 

cables (stranded wires) . 4-5 

surface-piercing cylinder (in water) .10-15 

inclined cylinder (crossflow) ... 10-16 and 18-16 
fairings around cylinders .13-19 

supersonic fairings around cylinders 16-17 

see also under “circular cylinder” 

Deceleration tests on vehicles: 

on automobiles (on road) . 12-1 

on airships (full scale) . 14-2 

Delta wing characteristics: 

definition of delta wings .16-31 

drag at transonic speeds .16-30 

Density of air and water . 1-10 

Density in upper atmosphere .19-11 

Diffuser efficiency .9-4, 9-17 and 16-38 

Dihedral of wings, influence of: 

in airplane wings (at low speeds) . 7-9 

in hydrofoils (surface-piercing) .11-29 

Dirt and mud on wing surface . 5-12 
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Disks, drag characteristics of: 

at very small Reynolds numbers 3-1 
as a function of Reynolds number 3-15 

used in interference method 8-4 

disks in water (sea anchors) 10-3 

drag when cavitating in water . 10-6 

in free molecule flow (theoretical) 19-15 

Dissociation of air molecules 18-25 

Dive-brake flaps, aerodynamic characteristics: 

in uncompressed fluid flow 3-18, 13-11 andl3-28 

brakes in compressible fluid flow 15-32 

Double-arc airfoil sections 17-10 and 17-14 

Double spinner (air inlet) . 9-18 

Double-wedge sections, characteristics of: 

double wedges in transonic fluid flow 17-9 

D’wedges in supersonic fluid flow 17-14 and 18-2 

in free molecule flow (drag and lift) 19-17 

Downwash behind wings: 

induced drag as a consequence of 7-2 

drag of horizontal tail in downwash . 7-15 

Drag area (definition of) . 1-8 

Drag coefficient (definition) 1-9 

Drag divergence (as a function of Mach number): 

in airfoil sections (Mach number) .15-17 

swept wings (“cosine” & “cross flow”) .15-22 

drag above drag divergence (drag rise) 15-38 

see also “critical M’number” and “transonic” 

Drop-test technique: 

parachutes tested by 13-24 

on wing-body configurations 16-2 

applied to bombs 16-26 

Ducted systems (internal flow): 

mechanics of radiator systems 9-3 

mechanics of ventilation systems 9-14 

internal flow at supersonic speeds 16-38 

Dust, drag and sinking speed 3-2 

Dynamic pressure: 

definition of dynamic pressure 1-10 

viscous interference on . 3-1 and 19-3 

stagnation pressure 15-2, 16-3 and 17-2 

Earth, some characteristics of . 19-8 

Edges, shape and interference of: 

viscous effect of longitudinal edges 2-8 

drag due to sheet-metal edges . 5-10 

lateral wing edges (flow pattern) 6-4 

Effective characteristics: 

dynamic pressure (in boundary layer) . 5-6 

effective aspect ratio of wings . 7-5 

effective thickness in cavitating flow 10-6 

thickness ratio (in compressive flow) 15-15 

Efficiency in transportation: 

of automobiles (rolling resistance) 12-7 

of railroad trains (including traction) 12-14 

of airplanes (against viscous drag) . 14-9 

Ejection seats (catapulted) 13-22 

Elevator (horizontal tail) drag due to 13-12 

Ellipsoids (as bluff shapes) 3-12 

Elliptical cylinders in cross flow 3-11 

“E” method (performance) 7-5 and 14-12 

End plates, attached to wings: 

on airplane wings (at subsonic speeds) 7-9 

on hydrofoils (in water) .11-27 

in supersonic fluid flow (footnote) 17-17 

Engine installations, aerodynamics of: 

engine cowlings (shape of) . 9-7 and 13-8 

drag of jet engine installations 9-9 

imperfections due to installation of 14-5 

cowlings in compressible fluid flow 15-32 

inlets at transonic/supersonic speeds 16-38 

Entropy (as a part of gas dynamics) 17-2 

Expansion (from supersonic speeds): 

boundary-layer re-attachment due to . 15-7 

expansion around airfoil-section noses 15-18 

Prandtl-Meyer expansion theory 17-2 

laminarization due to expansion 17-2 and 17-5 
External loads (on airplanes): 

drag of wing-tip tanks 7-7 and 13-17 

drag of external stores (tanks) 8-8 and 13-16 

drag of bombs attached to airplanes .13-17 

Fabrics, aerodynamic characteristics of: 

principles of porosity and permeability 3-23 

drag of flags (fluttering in wind) . 3-25 

in parachutes and tow targets 13 -24 and 13-27 

Fairings placed around bluff bodies: 

basic drag coefficients of fairings . 6-9 

blisters (optimum shape) on wall 8-4 

around circular cylinders 10-3 and 13-19 

fairings around airplane wheels .13-14 

movable gun-barrel fairings 13-20 

fairings in compressible fluid flow 15-12 

3-dimensional at supersonic speeds 16-17 

optimum at sonic/supersonic speeds 17-10 8c 15 

Fillets along strut and wing junctions . 8-12 

Fish (swimming in water) drag of 10-1 

Flags (fluttering in wind) drag of . 3-25 

Flaps (landing flaps on wings): 

drag due to lift of flapped wings . 6-14 

induced drag, due to flaps . 7-8 

Flettner rotor (lifting) . 7-12 

Floats on water-based airplanes: 

aerodynamic drag of floats . 13-9 

planing characteristics of floats 11-25 

Flow pattern (specific types of): 

wing tips (vortex pattern) . 7-5 

pair of disks (interference) . 8-1 

fuselage with obstacle attached . 8-4 

horizontal tail at end of fuselage . 8-14 

automobiles (over ground) . 12-1 

D’wedge section at transonic speed 17-8 

Flying boat hulls . 11-24 and 13-9 

Foil sections, see “airfoils” and “hydrofoils” 

Forebody (negative drag) 3-12 
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Formation flying (induced drag) 7-15 
Friction (on wetted surface area): 

of airship hulls . 6-16 and 14-1 

as found on boats and ships . 11-3 

Froude number: 

similarity law (water surface) . 1-10 

applied to boats and ships 11-2 and 11-12 

Full-Scale experimental results: 

of airships, resistance . 14-1 

analysis of Me-109 fighter . 14-7 

performance of sailplanes .14-13 

fighter airplanes at higher speeds 15-34 

Fuselages, characteristics of: 

induced drag of fuselages 8-18 

engine-air intakes in fuselage . 9-18 

with canopies and windshields 13-2 

full-scale analysis (Me-109) 14-5 

Gaps in surface, drag due to: 

in plane surfaces (walls) . 5-7 

sheet-metal discontinuities . 5-10 

in control surfaces 5-13 

Gas-dynamic functions (basic) 17-2 

Glide-path control of wing 8-15 

Grains, see under “roughness” and “sand” 

Grids (screens) characteristics of . 3-23 

Ground effect (interference): 

on buildings (boundary layer) 4-2 

on wings (induced drag) 7-13 

automobiles over road 12-1 

Guide vanes (influence of): 

bluff body with guide vanes 3-26 

attached to cylinders (in water) 10-3 

Guns (armament) drag due to: 

gun turrets on fuselage 8-9 and 13-3 

portholes for guns in fuselage 13-3 

gun-barrel fairings (movable) 13-20 

Half-body characteristics: 

in axial flow (heads) 3-12 and 16-14 

bodies attached to walls 8-3 

Heat, affecting aerodynamics, see “temperature” 

Hemispherical head or nose shapes: 

in uncompressed fluid flow 3-12 

at hypersonic speeds .18-20 

Holes in wetted surface, drag of 5-10 

Horizontal tail (interference) .13-14 

Houses (buildings) wind loads 4-2 

Human body (drag and lift) 3-13 

Hydrofoil boats 11-26 and 11-30 

Hydrofoils (operating in water): 

characteristics in cavitating flow . 10-9 

induced and wave drag of hydrofoils 11-26 

Hypersonic drag characteristics: 

hypersonic similarity principles 18-1 

bluff body shapes in hypersonic flow .18-13 

Ice formation on wings 5-12 

Image method (testing vehicles) . 12-1 

Impact pressure (stagnation) . 15-2 and 16-3 

Inclined circular cylinders (oblique flow): 

in uncompressed fluid flow . 3-11 

in hypersonic fluid flow .18-16 

Induced drag characteristics: 

due to wing flaps (lift distribution) . 7-8 

induced drag of swept wings 7-8 

drag due to wing twist 7-7 and 15-33 

in biplane configurations . 7-12 

ground effect on induced drag 7-13 

due to body interference 8-13 and 8-18 

in a sailboat (water-wave drag) .11-18 

of hydrofoils (in water) 11-26 

of automobiles (lifting) . 12-3 

in compressible fluid flow 15-33 

at supersonic speeds .17-17 

Inlet openings, aerodynamic characteristics: 

intakes for radiators and engines 9-4 and 9-9 

scoops for reciprocating engines 9-13 

intakes for ventilation air . 9-14 

marine-type inlets (for condenser water) 9-16 

for engines in compressive flow 15-32 

inlets at supersonic speeds 16-38 

Interference drag, characteristics of: 

pairs of cylinders and struts 8-1 

on streamline bodies (fuselages) 8-6 

on struts, when attached to “walls” 8-10 

on tail assembly (in corners) . 8-12 

on wing sections due to protuberances 8-13 

induced interference drag 8-14 and 8-18 

in wing-body configurations 8-15 

interference method (plates) . 8-19 

interference on motor vehicles 12-15 

compressibility effect (general) .15-29 

Internal drag (momentum loss in ducts): 

principles of internal drag . 9-2 

internal drag in radiator systems . 9-3 

in engine installations . 9-8 

momentum loss at transonic speeds 16-38 

Internal pressure: 

in buildings (due to wind) . 4-3 

in radiators (due to stagnation) 9-3 

Ionization of atmospheric air 19-9 

Irregularities of and in wetted surfaces: 

drag of sheet-metal joints 5-7 

rivet heads, protruding from surface 5-8 

gaps and holes (in sheet metal surface) .... 5-10 

Junctions- between various elements: 

between strut and wall. 8-10 

between pairs of struts . 8-13 

between wing and fuselage . 8-16 

Knudsen number (in rarefied gases) 19-2 
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Laminar-flow foil sections: 

principles (pressure gradient) 2-10 
influence of surface roughness 2-10, 2-13 and 6-7 

laminarization through suction 2-14 

dirt and mud on wings 5-12 

thickness location (gradient) 6-6 

in compressible fluid flow 15-13 

Laminarization through pressure gradient: 

in uncompressed fluid flow . 2-10 and 6-6 

on streamline bodies . 6-18 and 15-10 

in compressive flow . 15-7, 15-10 and 15-14 

on spheres through compressibility 15-9 

at supersonic speeds . 17-4 

Landing flaps, parasitic drag due to 6-13 

Landing gears (of airplanes) 13-14 

Leaks, drag due to 9-5 and 13-5 

Lift, special types of drag due to: 

parasitic drag of foil sections 6-11 

due to lift of flat plates 7-3 

of lifting rotating cylinders . 7-11 

of streamline bodies (vortex pattern) 7-20 

interference effects on induced drag 8-17 

originating in ducted systems 9-10 

of automobiles (over ground) 12-3 

in supersonic fluid flow .17-17 

of wings at hypersonic speeds 18-10 

see also under “induced drag” 

Locomotives, aerodynamic drag 12-11 

Loss coefficient (momentum): 

of screens (pervious sheets) 3-23 

in ducted systems (also in diffusers) . 9-1 

Mach number and Mach angle 15-1 and 17-1 

Magnus effect (on circular cylinders) 7-11 

Maximum speed results: 

of airplanes at subsonic speeds 14-8 

at higher Mach numbers .15-38 

Maximum transonic D’coefficients 16-32 & 17-12 

Me-109 and Me-262 performance 14-3 and 14-9 

Mean free path (in gases) 19-1 

Meteors, characteristics (vaporizing) 18-26 

Momentum (concept and application): 

basic consideration (exchange of) 1-7 

momentum in boundary layer 2-3 

Motor vehicles (see “automobiles”) 12-8 

Motorboats, hydrodynamics, of 11-16 

Motorcycles, aerodynamic drag 12-9 

Nacelles (housing engines), drag due to: 

interference drag 8-15, 13-6 and 15-30 

induced drag, caused by 8-18 and 13-6 

nacelles with radial engines 13-7 

in compressible fluid flow. 15-29 and 16-36 

Newton and Newtonian type of flow: 

hypersonic cone flow . 18-4 

inclined circular cylinder .18-16 

Newton’s drag theory 19-13 

Notation, general . 1-2 

Oblique flow, characteristics in: 
inclined circular cylinders . 3-11 and 18-16 

swept wings (cross-flow principle) .15-20 

see “Newtonian flow”, “cross flow principle” 

Openings in surface, see “inlets”, “outlets”, "holes” 

Optimum dimensions and shapes: 

section-thickness ratio 6-5, 15-13, 17-10 & 17-15 

optimum lift coefficient of wings 6-11 

optimum fineness ratio of bodies . 6-18 

optimum radius of fillets . 8-12 
optimum speed of autos and trains 12-8 8c 12-14 

optimum shape of nacelles . 13-5 

optimum bodies in free molecule flow 19-17 

Outlets (for air) characteristics: 

drag due to outlet openings 9-2 

in ventilation systems . 9-16 

Paint, grain sizes (roughness) .5-3 and 10-2 

Parabolic body shapes (pressure distribution): 

at transonic speeds .16-23 

at hypersonic speeds .18-18 

Parachutes, aerodynamic characteristics: 

porosity and permeability . 3-24 and 13-23 

gliding and oscillating parachutes 13-24 

aeroelasticity effects in canopies 13-26 

Performance of airplanes: 

take-off (flap deflection) 7-8 

formation flying of airplanes 7-15 

range of airplanes (drop tanks) 13-17 

“e” method, drag due to lift 14-12 

climb performance 14-14 

Permeability and porosity: 

of screens and grids . 3-24 

in parachute canopies 13-23 

Permissible roughness grain size: 

in air f (speed) (figure 3) . 5-2 

in water f (speed) (figure 3) 10-2 

Planing along surface of water: 

planing principles .11-19 

planing-type boats and seaplanes 11-23 

Plates in fluid flow normal to surface: 

influence of “aspect ratio” 3-15 

drag of perforated disk . 3-16 

rear-side pressure .3-16 and 16-15 

interference between 2 plates . 8-1 

in compressible fluid flow . 15-3 

in free molecule flow (theory) .19-13 

Porosity (permeability) . 3-24 and 13-23 

Prandtl, theoretical information: 

lifting-line wing theory . 7-2 

compressibility rule (Prandtl factor) . 15-2 

Prandtl-Meyer expansion 17-2 

Pressure, various types (definitions) 1-4 

Pressure drag (from distribution): 

at low Reynolds numbers (viscosity) 3-1 

of the sphere (rear-side pressure) 3-10 

in cavitating water flow . 10-7 
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Pressure distribution: 
laminar profiles (pressure gradient) . 2-11 
of circular cylinder (figure 2) . 3-3 
distribution around sphere (figure 9) .... 3-7 
peaked pressure distributions 10-7 and 15-18 
distribution around automobiles (lift) 12-3 
biconvex section at M — 1 17-10 
of double wedge at supersonic speeds _17-13 

Pressure gradient (along surface): 
interference mechanism (B’layer) . 8-6 
Prandtl-Meyer supersonic expansion 17-5 
see “laminarization” “interference” “separation" 

Profile drag, see “airfoil section drag” 
Projectiles (at transonic speeds) 16-22 
Propellers, influence on drag: 

double spinner (air inlet) . 9-18 
due to asymmetric engine power 13-13 
drag of stopped propellers.13-21 
lift and induced drag due to thrust 14-14 

Protuberances on wetted surface: 
drag due to (general) . 5-7 
concentration and slope of C^(R) 5-4 and 11-4 
protuberances on automobiles 12-16 

Pylon-suspended stores or nacelles 13-16 

Radial engines, drag due to: 
cowlings for radial engines 9-7 
engine in nose of fuselage . 13-4 

Radiators, drag caused by: 
built into airplane wing or fuselage . 9-6 
lift due to, and induced drag 9-10 
influence of heating and compressibility 9-11 
radiator flow in automobiles . 12-6 

Radius of fillets, optimum . 8-12 
Railroad vehicles, aerodynamic drag: 

drag of locomotives .12-11 
drag of railroad trains .12-12 

Re-attachment of boundary layer: 
at subsonic speeds . 15-7 and 15-18 
see also “expansion” and “pressure gradient” 

Recompression in transonic fluid flow: 
without shock (local flow field) .15-17 
through normal shock . 16-2 
in air inlets (intake openings) .16-38 

Rectangular wing characteristics: 
in uncompressed fluid flow . 7-6 
at supersonic speeds (theory) .17-16 

Resistance (synonymous with drag): 
of displacement vessels (in water) . 11-3 
rolling resistance of automobiles . 12-7 
traction resistance of RR vehicles 12-14 

Reversal theorem of pointed wings.16-31 
Reynolds number, at low values of: 

bluff bodies at low R’numbers . 3-1 
drag of elliptical sections . 3-11 
drag of airfoil sections . 6-4 
drag as a function of lift . 6-10 
streamline-body characteristics 6-16 

Reynolds number, influence of: 
critical Reynolds number of sphere . 3-7 
R’number in airfoil sections . 6-3 
influence of R’number on base drag 16-7 
on sphere at supersonic speeds 19-4 

Ring-shaped wings, lift and drag: 
in uncompressed fluid flow . 7-13 
theory at supersonic speeds . 17-18 

Rivet heads on sheet-metal skin . 5-8 
Rocket vehicles (V-2) . 18-2 
Rolling resistance of automobiles . 12-7 
Rotating (axial) bodies (figure 24) . 3-13 
Rotating circular cylinders: 

pair of cylinders (B’layer control) . 3-25 
Flettner rotor (lifting) . 7-11 

Rotor (lifting blades) . 7-22 
Roughness of wetted surface, drag due to: 

permissible grain size. 5-1 and 10-2 
concentration and Cf(R) slope 5-4 and 11-10 
influence in water (general) . 10-2 
due to fouling (ships in water) . 11-5 
in compressible fluid flow 15-10 
on streamline bodies (figure 36) .15-27 
at supersonic Mach numbers 17-6 

Round airfoil noses: 
at transonic Mach numbers 17-11 
at supersonic/hypersonic speeds 17-14 

Round bodies, characteristics of: 
pressure distribution. 3-3 and 3-7 
critical Reynolds number of 3-7 and 3-10 
drag of round head shapes 3-12 and 18-20 
drag of bodies at supersonic speeds 16-16 
bodies at hypersonic speeds 18-18 
see also “circular”, “cylinders” and “spheres” 

Rounded body shapes, drag of: 
influence of rounding radius (figure 23) . 3-13 
spheroidal head shapes .16-17 
rounded leading edges . 16-17 and 18-15 

Sail boats, hydrodynamics of .11-18 
Sailplane (glider) characteristics .14-13 
Sand-type surface roughness . 5-4 and 10-2 
Satellites (general conditions) .19-18 
Scoop intakes (air or water) . 9-14 
Seaplane characteristics: 

planing (in water) on floats .11-24 
aerodynamic drag of seaplanes 13-9 

Separation of flow (boundary layer): 
basic mechanism of separation 3-3 
vortex system behind bluff bodies 3-5 
separation from boat tails .16-23 

Sharp leading edges, flow around: 
in uncompressed fluid flow . 6-13 
at supersonic speeds .17-13 

Sheet-metal surface characteristics: 
drag caused by sheet-metal joints 5-7 and 17-7 
holes and gaps in surface. 5-10 
structural imperfections . 14-4 
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Ship resistance in water: 
Schoenherr line (skin friction) 2-5 and 11-10 

drag of barges (bluff shapes) 11-5 

wind resistance of ships 11-8 

influence of surface roughness 11-9 
full-scale-model correlation 11-9 

resistance in sea waves. 11-11 and 11-14 

general resistance statistics 11-16 

Shoulder pressure (hypersonic) 18-14 

Similarity, various rules: 
subsonic (Prandtl) similarity 15-2 

transonic similarity functions 16-20 and 17-8 

transonic area rule 16-34 

similarity rules in general 1-9 

hypersonic similarity . 18-1 

Ski runner, wind resistance of 3-14 

Skis, drag and lift characteristics: 

hydrodynamic characteristics 11-25 and 11-32 

aerodynamic characteristics of skis 13-16 

Skin-friction characteristics: 
laminar and turbulent skin friction 2-4 

Schoenherr line (turbulent) .2-5 and 11-10 

local friction or shear-drag coefficient 2-6 

friction in compressible fluid flow 15-9 

at supersonic M’numbers (figure 3) 17-4 

in rarefied fluid flow (slipping) 19-6 

see “laminarization”, “B'layer”, “transition” 

Slip flow characteristics 19-3 and 19-6 

Slotted devices (slots, slats): 

wing leading edge slots and/or slats 6-14 

slotted flaps at trailing edge 6-14 

Smoke stacks (vortex street) 4-4 

Speed of sound . 1-11, 15-1 and 19-11 

Sphere, pressure on and drag of: 

pressure distribution (figure 9) 3-7 

rear-side pressure . 3-10 and 16-16 

drag with boundary-layer suction 3-26 

spherical structure in wind 4-7 

drag and lift of rotating sphere (ball) 7-20 

critical Reynolds number in water 10-8 

drag in compressible fluid flow . 15-6 

spheres in supersonic fluid flow .16-16 

spheres at hypersonic speeds . 18-20 

influence of low Reynolds number 19-4 

drag in free molecule flow .19-15 

Split flaps (attached to wings) . 6-14 

Splitter plate (vortex street) 3-7 

Spoiler (lateral control) drag of 13-12 

Spray (in water) . 10-13 and 11-25 

Stagnation pressure . 15-2 and 19-3 

Stagnation temperature . 15-3 and 18-24 

Steps on floats 8c flying-boat hulls 11-24 and 13-9 

Stimulation of turbulence . 6-16 and 11-2 

Stokes analysis of viscous drag . 3-1 

Stores (tanks) externally mounted .13-16 

Streamline bodies, drag of: 

interference drag on bodies .13-16 

in compressible fluid flow .15-31 

drag at transonic speeds .16-24 

Streamline bodies, specific characteristics: 

drag as a function of Reynolds number 6-16 

lift of streamline bodies 7-19 

pressure distribution of bodies 15-24 

bodies with surface roughness 15-27 

Streetcar (land-borne vehicle) .12-10 

Strouhal number (vortex frequency) 3-5 

Structures (exposed to wind): 

buildings and houses 4-3 

smoke stacks (vortex street) . 4-4 

bridges and masts . 4-6 

Strut-section characteristics: 

in uncompressed fluid flow 6-10 

interference in junctions . 8-11 

in water (surface-piercing) .10-14 

in compressible fluid flow . 15-7 and 15-12 

inclined struts (analysis) .15-21 

Submarines (in water) .11-17 

Surface-piercing effects (in water): 

in struts (ventilation) .10-16 

in hydrofoil systems (lift and drag) .11-28 

Surface-roughness characteristics: 

paint and grain sizes . 5-3 and 10-2 

fouling (on ships in water) . 11-4 

roughness at supersonic speeds . 17-6 

see also “roughness” and “protuberances” 

Swept wings, characteristics of: 

induced drag of swept wings 7-8 

cosine or cross-flow principle 15-20 

definition of sweep .15-20 

drag divergence of swept wings .15-22 

in compressible fluid flow 15-23 

“sheared” and “yawed” wings 15-24 

swept-wing configurations .15-38 

transonic drag of swept wings 15-42 

Tail surfaces (on airplanes) 7-14 and 13-13 

Tail wheels (at end of fuselage) 13-15 

Tandem-wing arrangements . 7-14 

Tanks (external), characteristics of: 

wing-tip tanks . 7-7 and 16-37 

interference effects of tanks 8-8 

underslung-type tanks .13-16 

Taper ratio of straight wings 7-6 

Temperature, values and influence of: 

in the atmosphere . 1-11 and 19-11 

stagnation temperature . 15-3 and 18-24 

influence on skin friction . 15-9 and 17-3 

dissociation due to temperature .18-25 

Thickness ratio of airfoil sections: 

influence on section drag. 6-5 

optimum thickness ratios 6-5, 17-10 and 17-15 

Thrust, influence on lift and drag .14-14 

Tip tanks (on wings).7-7, 13-17 and 16-37 

Tip vortex, flow pattern of . 7-5 

Torpedo, running in water . 10-4 

Tow targets, drag of .13-27 
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Townend ring (engine cowling) . 3-26 

Trailing edge, influence on drag: 

base drag, blunt edges 6-20, 16-11 and 17-16 

optimum width (in 3-dimensional body) 8-5 

Transition of boundary layer flow: 

as a function of pressure gradient 2-11 and 17-5 

as a function of surface roughness . 5-1 

Transonic drag characteristics: 

wing characteristics above D’divergence 15-39 

airplanes at transonic speeds 15-39 and 16-34 

base drag at transonic speeds . 16-5 

transonic testing techniques . 16-2 

drag of cones at transonic speeds .16-19 

triangular (delta) wings .16-30 

drag of streamline bodies .16-24 

transonic area rule .16-34 

flow pattern around airfoil section 17-8 

transonic wing similarity . 17-8 and 17-12 

Triangular (delta) wings, transonic .16-30 

Turbulence, influence of: 

stimulation of turbulence 2-16, 6-16, 19 and 11-2 

B’layer turbulence on sphere 3-7 and 15-9 

wind-tunnel turbulence factors . 6-2 

Ventilation (in water, similar to cavitation): 

ventilation and cavitation (distinction) _10-14 

along surface-piercing solids 11-29 and 11-31 
Ventilation (in air), drag due to: 

inlet openings (scoops) for ventilation. 9-14 

outlet openings for air. 9-16 

ventilation devices for RR vehicles 12-12 

Viscosity properties of air and water 1-11 

Viscosity and its influence upon: 

stagnation pressure . 3-1 and 19-3 

base pressure . 16-7 and 19-6 

supersonic wedge pressures . 18-3 

spheres at supersonic speeds . 19-5 

pressure and drag of slender cones . 19-7 

lift-curve slope at hypersonic speeds . 18-9 

“V” shape (dihedral), influence of: 

in airplane wings . 7-9 

in hydrofoils (surface-piercing) .11-29 

Vortex generation and vortex characteristics: 

vorticity (and “rotation”) . 1-6 

vortices originating at wing tips . 7-4 

vortex core cavitation (in water) . 10-6 

Vortex street (double-row vortex trail): 

vortex frequency in street . 3-6 

oscillations due to vortex street . 4-5 

alternating lift due to . 3-5 

Wake characteristics: 

viscous wake behind fuselage .8-14 

see also “vortex street” (and “interference”) 

Water, fluid flow characteristics in: 

turbulence in water (general) 10-1 

surface-piercing solids .10-15 

see also “wave resistance” and “cavitation” 

Wave drag in compressible fluid flow: 

wings at transonic speeds . 17-7 

flow pattern past D wedge 17-8 and 17-13 

wave drag due to lift.17-20 

Wave resistance (in water): 

wave and spray drag.10-13 

resistance of ship hulls 11-11 and 11-18 

of submerged bodies (submarines) .11-18 

of hydrofoils near surface 11-26 

Waviness of wetted surface . 5-8 

Wedge-section characteristics: 

bluff wedges in uncompressed flow 3-18 

characteristics of single wedge in water. 10-7 

in compressible fluid flow 15-4 

at transonic speeds . 17-8 

at hypersonic speeds (figure 1 ) . 18-2 

wedges in free molecule flow 19-17 

Wetted-area utilization: 

coefficients on wetted area 6-16 and 14-10 

compressible interference analysis 15-36 

aerodynamic efficiency of airplanes 14-7 
Wheels as part of vehicles: 

on land-borne vehicles 12-7 and 12-14 

as part of aircraft landing gears 13-14 

Wind characteristics near ground 4-2 

Wind socks (made of fabric) .13-27 

Windshields, see “canopies” and “fuselages” 

Wing-tip characteristics: 

parasite drag originating at tips .... 6-4 and 7-21 

flow pattern around wing tips 6-20 and 7-5 

fuel tanks at wing tips .... 7-7, 13-17 and 16-37 
Wings (drag of, non-lifting): 

ring-shaped wings . 7-13 and 17-18 

wings at transonic speeds . 15-41 and 17-18 

straight wings at supersonic speeds .17-13 

triangular and delta wings .16-30 

swept-wing characteristics .16-28 

Wings (lifting) characteristics of: 

influence of flaps on drag. 6-14 and 7-8 

influence of planform on induced drag .... 7-4 

influence of wing twist on induced drag .... 7-7 

influence of angle of sweep on drag . 7-8 

biplane characteristics . 7-12 

influence of dihedral on lift and drag .... 7-9 

ground effect on induced angle . 7-13 

wings in tandem arrangement . 7-14 

glide-path control (induced drag) . 8-15 

triangular and delta wings .16-33 

lifting wings at supersonic speeds .17-17 

lift in free molecule flow .19-17 

Wires, see “circular cylinders” and “cables” 

“W” wings (type of sweep, also “M” shape) 15-24 



FLUID-DYNAMIC DRAG NOTES 

When proofreading the 1965 edition, the following notes were added. 

Pressure can be absolute (measured against vacuum) or a differential measured from 
the atmospheric or ambient level. Dynamic pressure q = 0.5 ^ V2, represents such a 
differential, while "total” or Pitot pressure is the absolute pressure at a stagnation point. 
Stagnation or impact pressure can be meant to be absolute or to be the increment against 
the ambient pressure. We have the coefficient of the incremental stagnation pressure 
in compressible fluid flow, and particularly in supersonic flow, denoted by "q” in 
equation (4) on page 16-3. The same pressure is also used in Chapter XVIII (for 
example on page 18-14) where it is represented by Cp#. 

Fieseler "Stork”. For those who doubt that this airplane was the first operational STOL 
(page 0-6) it is mentioned that some 1500 airplanes of this type were built and used 
during World War II. Imitations have appeared after that war, both in the United 
States, and by Dornier. 

Vortex Street (page 3-6). The Cp in equations (14) and (17) is meant to indicate 
the pressure at the rear side (base) of the bodies considered. 

Cones. The "new” experimental data in figure 34 (on page 3-18) indicated by (►) 
were evaluated from reference (50,f) in Chapter XVIII. 

Streamline Bodies (p 6-16, also 3-1). Finned ellipsoidal bodies have been tested down 
to Reynolds numbers below 103 by Robertson (Illinois), J.ASpace Sci 1962 p 842. 
Results confirm the estimated function as in figure 22 (on page 6-16). 

The Wing Tip shape No. 5, discussed on page 7-5, has been adopted by some designers. 
It is referred to as the "Hoerner Wing Tip”; and it is commercially available (without 
any monetary advantage to the author) as an accessory for Cessna airplanes. 

The Critical Reynolds Number of spheres as discussed on page 10-1, has a comparison 
in the fact that the transition R’number of the boundary layer at supersonic speeds varies 
with the so-called unit R'number ("R” = V/v; in ft'or any other linear dimension). 
See in this respect: Potter and Whitfield, Arnold AEDC TN-1958-77 (J. Aerospace 
Sci 1959 p 186) and TR-1960-5; also J. Fluid Mech 1962 p 501. 

Elastic Surface. When properly designed and "tuned”, an elastic coating can dampen 
boundary-layer oscillations, and postpone transition from laminar to turbulent flow, to 
higher speeds (such as possibly in fish, page 10-1 and reference 1). Investigations by 
Kramer; see J.ASpace Sci 1957 No. 6; A Soc Naval Eng J. I960 p 25, 1961 p 103, 
1962 p 341. 

Hydrofoil Boats, as mentioned on page 11-30. The most advanced type is "Patrol Craft 
Hyrofoil” (PCH) built in 1963 by Boeing for the U.S. Navy. Designed after the ex¬ 
perimental 5 l’ton boat "Sea Legs” (by Gibbs & Cox, 1957) the PCH has fully sub¬ 
merged, automatically controlled foils. 

displacement weight A = 108 1’tons 
hull length, overall £ = 116 ft 
design speed V = 45 kts 
2 gas turbines, continuous P = 6200 HP 

See Lacey (BuShips) in "Hovering Craft and Hydrofoil”, April 1964. 

Radial Engines. On p 9-11, "liquid” is meant to indicate the cylinder temperature. 

Automobiles. The world speed record (see page 12-16) is now held by Breedlove, on 
a jet-engine powered car sponsored by Shell and Goodyear, designed by aircraft engineers, 
at around 400 mph. A new attempt is being undertaken at the time of printing this text. 

The Area Rule as presented on page 16-34 (see reference 77) has subsonic equivalents; 
such as the underslung fuel tank on page 8-8, or many examples of interference (in 
Chapter VIII). At supersonic Mach numbers, area considerations (explained by "longi¬ 
tudinal buoyancy) are found in Chapter XX in connection with external stores. 



NOTES FLUID-DYNAMIC DRAG 

Skin Friction. At the time where this edition is being printed, the author is preparing 
a report for NASA on "Skin Friction From Subsonic to Supersonic Speeds”. The infor¬ 
mation on pages 17-3 and -4, will thus be amplified. The report might be available 
from the Defense Documentation Center in 1965 (Contract Number NAS1-3181). 

Spikes are mentioned in various places; see page 16-27 (reference 53,b,f), pages 18-7 and 
-11 reference (17,c); page 16-40 (evaluated from ARC,RM 3007, 1952/57); and in 
Chapter XX (figures 25 and 26). A movable inlet cone as on page 16-39 produces the 
same mechanism as a spike. Also, any blunt obstacle placed on a wall (such as "imper¬ 
fections” in Chapter XX, or the blunt windshield in figures 20 and 21 in that chapter) 
causes separation similar to that around a spike. The same effect should be involved at 
subsonic speeds, such as in figure 8 on page 8-4, for example. Also the tow line in figure 
34 on page 18-19 (plus towing body) has a spike effect. 

Meteorites. On page 18-26 the drag coefficient is assumed to be CD# = 2. During 
deceleration, not only mass and frontal area reduce, but drag coefficient and shape also 
change (disregarding the influence of extreme temperatures and their consequences in 
terms of gas properties). 

—2o 
Interplanetary Gas Properties. On page 19-11 density in the order of ^ = 10 kg mass 
per m® is suggested as a lower "limit”. There are other estimates such as y between 10“'® 
and 10-'9 proposed by Koelle, and quoted by KD Wood in "Aerospace Vehicle Design, 
Volume I Aircraft Design”, published 1963. 

Rarefied Fluid Flow. In addition to the experimental results in Chapter XIX, the follow¬ 
ing references were found: 
a) Maslach, Cylinder Drag, UCal Berkeley Rpt AS-1963-3; DDC AD-414,998; also 
Physics of Fluids 1963 p 315. 
b) Bloxsom, Bodies in Hypersonic Flow, Journal Aero-Space Sciences 1962 p 1429. 
c) Kinslow, Spheres in Hypervelocity, AIAA Journal 1963 p 2467. 
d) Shien-Pu Tang, Cylinder, UCal Berkeley Rpt AS-1964-3, DDC AD-431,774. 

Reference. On page 16-11, in (24,b) it should read: Sept 1956 p 59- 

Index. Subjects in Chapter XX are noc included in the Index. 

A French Edition of "Fluid-Dynamic Drag” will be published by Gauthier-Villars in 
Paris. English-language readers are notified herewith that the present edition is much 
more enlarged than the French edition. 


