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3 CASE STUDIES IN FLUID MECHANICS

A twofold goal of this chapter is to expose you Lo inlcresli‘ng‘ ﬁowﬁelds early in (e
text and to allow you to calculate some engineering characteristics of these flows ay g,
carly stage in the learning process. As we revisit these case :_iludles in later chapters, oy,
hope is that you will progress from a cautious first application of the case study resy|yg
1o 2 fuller understanding of the underlying flow fields. Furthermore, these results may
help you better comprehend your laboratory course work.

CD/Video Library/Laminar and Turbulent Flow on a Flat Plate

At this point you might be wondering: Why do we need to rely on experimenta|
results in fluid mechanics? Why not just use a better analytical model or a bigger com-
puter to solve a flow problem? An answer to these questions lies in recognizing the dif-
ference between laminar and turbulent fluid flow. As the name implies, laminar flow
involves the movement of fluid in “layers.” As shown by the dye in the top of Figure 3.1,
the motion of a fluid in laminar flow is orderly, often slow and steady, and generally
amenable to observation, measurement, and prediction. Analytical and computational
solutions to laminar flow problems are both feasible and common, and the need for cx-
periments is often minimal. However, laminar flows are relatively rare both in nature
and in engineering practice. This is because a laminar flow undergoes a transition (mid-
dle of Figure 3.1) and eventually becomes turbulent as flow speeds increase. Turbulent
flow. as illustrated at the bottom of Figure 3.1, is encountered in almost all flows in na-
ture and engineering practice. This type of flow consists of a chaotic, disordered, and un-
steady motion of Auid that is generally difficult to visualize, measure, and predict. There
are no analytical solutions for turbulent flow, and computational models of turbulence
are limited in their applicability. Thus experimental results are necessary for engineer-
ing designs involving turbulent flows.

Although the future of fluid mechanics will undoubtedly be marked by an increas-
ing dependence on computational solutions for both laminar and turbulent flows, mod-
els of turbulence and other physical processes of interest in fluid mechanics will
continue to require calibration and verification by well chosen experiments.

In the case studies that follow, you will find frequent references to dimensionless
groups. Examples of these groups include the Reynolds and Mach numbers. Simply put,
a dimensionless group is an algebraic combination of the parameters describing a partic-
ular flow that proves to be both dimensionless as a whole and significant in terms of un-
derstanding the flow field. In fluid mechanics, the most important dimensionless group I8
called the Reynolds number. The Reynolds number of a flow, written as Re = pV L/t
is the product of density p, a fluid velocity scale V, and a length scale L, all divided by

Figure 3.1 Dye injected into a pipe flow
indicates laminar flow (top). transitional
flow (middle), and turbulent flow (bot-
tom).

3.2 COMMON DIMEN
SIONLESS GRoyps |y FLUID ME
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32 COMMON DIMENSIONLESS GRoyp

-

{Re} = ——____) _ MLy
[.ll] - __\—‘—/L—:IM —

ually turbyle

ML=
. T mri o =1
Flows with large Re ML

ynolds
understanding how ersare us

a flow will behave, ML an important consideratjon in

S IN FLUID MECHANICS

groups have been given names in hony of cs problems. Most dimensionless

. : their discovers ;
in the study of fluid mechanics. It is impo 1seovers or ather prominent individuals

it Enilns SrUps s you pmw[;l[r;;]lo bcalum:. familiar with the common di-
s € results of your analysis i {
youranalysis in the form other

engineers expect. Also, the ical v; f
W i Ofnau;g:sﬁi »a:fuc.fjot these traditional dimensionless groups are
: . . 2 ar fuid mechanics problem. tic f
: s er o ¢elee F eff7
c.1en.i soéutlon techniques, and 1o compare results with 1hupse obtm e e e
simi el us take ¢  the
i ar ;ws: Let us take a look at some of the more importan
wid mechanics and learn about their relationship to v

ained by investigations of
. tdimensionless groups in
arious physical phenomena.

Reynolds Number: As dis i
t As discussed earlie o
dimensionless, groug in flufd ‘Ld tfﬁfllgr. lhn? Reynolds number, the most important
S p uid mechanics, is defined to be
WL
Fos 210
It
whlere pis [he ﬂu1q de:lmily. Viis a fluid velocity scale, L is a length scale. and {t 1s the
ﬁund”wstco’:lty. This dpncnslonlc.\\ group is named in honor of Osborne Revnolds
(1842-1 )l-),.a noted pioneer in the study of pipe flow and turbulence. The velocity and
lc.ngth scales involved in its definition are illustrated for internal and external flows in
Figure 3.2.

3.1

Free stream velocity V
ina fluid of density p
and viscosity p

s — =

VO

Average fluid velocity V | E—

in a fluid of density p == I —

and viscosity  —

>

T -

(A) | (B)

Figure 3.2 Velocity and length scales used in defining Re for examples of (A) internal flow
and (B) external flow.
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CD/History/Osborne Reynolds

It is important for you to have an understanding of the physical significance of the
Reynolds number. One way to interpret Re is to think of it as a ratio of inertial to viscoug
forces in a fluid flow. An inertial force can be written using Newton’s second law gy
F = Ma. If we recognize that mass is equal to the product of density and volume and
write the equation in terms of dimensions we find:

(F)] = (M}{a) = (pL*WVi~") = (pL?Vi™') = (pV>L?) (3.2)

where we have made use of the fact that the dimensions for velocity are (L1}, To gen-
erate a similar expression for the viscous force, we begin with Newton’s law of viscos-
ity, t = u(du/dy), in dimensional form:

{r} = {(vL™"} (3.3)

But we require an expression for the viscous force, which is equal to the shear stress
multiplied by the area over which that stress acts. Thus,

(Fy} = {tA} = (uH{VL'"HL?) = (nVL} (3.4)
If we divide Eq. 3.2 by Eq. 3.4 we obtain:

L A {pVL}
{Fvl ~ (uVL) "

Since the right-hand side of this equation is equivalent to the Reynolds number, we are
justified in interpreting Re as a ratio of inertial to viscous forces.

Except within a thin boundary layer near solid surfaces, high Re flows are domi-
nated by inertial forces and are usually turbulent. Low Re flows, or creeping flows, are
highly viscous in character and laminar. Flows at intermediate Re are often laminar, with

inertial and viscous forces both playing significant roles in determining flow structure
throughout the flow field.

3.5)

- | CD/Video Library/Flow Past a Cylinder

The effect of Re on flow structure for flow over a cylinder is illustrated in Figure 3.3
At very low values, Re = 0.038 (Figure 3.3A), the inertia is so small that fluid particles
easily flow around the cylinder while remaining in their laminar layers. At Re = 19
(Figure 3.3B) the inertia has increased to the point that some fluid particles cannot “make
the turn,” like Formula 1 racecar drivers who spin out going too fast through a curve.
This phenomenon is called flow separation. As Re increases to 55 (Figure 3.3C), the sep-
aration bubble is pushed downstream. Thus Re indicates the presence of structural
changes in the flow field. In Chapters 12 and 14 we will discuss in greater detail the flow
over a cylinder and the interesting results that occur at higher Reynolds numbers.

Before we continue with an example, let us sound a note of caution concerning the
interpretation of Re. It would be a gross simplification to consider Re to be only the ratio

(B)

(A)

(<)

Figure 3.3 Flow field over a cylinder at (A) Re = 0.038, (B) Re = 19, and (C) Re = 55

CD/Dynamics/Reynolds Number: Inertia and Viscosity

of inertial to viscous forces. For example. Re = 1 should not be interpreted as inertial
and viscous forces being equal. The choice of length and velocity scales used in Re have
most often been chosen for convenience, not physical significance. Thus Re should be
compared and interpreted for a single flow field only. not between flow fields. Consider
the critical Re,r, where the transition of a laminar flow to turbulent flow is an important
application of the Reynolds number: Re., can differ by several orders of magnitude be-
tween an internal flow and an external flow. Thus the physical meaning cannot be
precisely the same.

Mach Number: The Mach number, named in honor of Emst_ Mach (I83S.-]‘)l(_y'). a
pioneer in the study of high speed flow, was introduced in $cctmn 2:6. ], and is dt,l\ffllntﬁ
to be the ratio of fluid velocity V to ¢ the speed of sound in the fluid. Thus the Mac
number is given by

v 3.6
M=— 3.6)
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EXAMPLE 3.1

A good serve from a professional tenni
a tennis ball is approximately 6.5 cm, W

ball?

reach 190 km/h. If the diameter of

layer ma;
L : 1ds number for the flow over the

hat is the Reyno

SOLUTION

a tennis ball is found using Eq. 3.1: Re = pVL/u. The char-
190 km/h. and we will use the diameter of the lgnms ball as
— 6.5 cm. The density and viscosity of air at
04 kg/m® and p = 1.82 X 1q-5 (N-‘s)/m2_
for Re and using the appropriate unit con-

The Reynolds number for
acteristic velocity is V =
the characteristic length scale so that L
STP are found in Appendix A to be p = 1.2
Substituting these values into the expression
version factors found in Appendix C yields:

pVL

Re = ——
i
3 lh 1000 m (650m)( 1m )]
1.204 kg/m [(190 km/h) (m = ; e
= LT 1 (kg-m)/s®
1.82 x 10’5[(N-s)/m‘][—-+(ﬂ)—s]
IN

Re =227 x 10°

This is a high value of Re (we will define “high value” later in the context of specific
types of flows); thus for the movement of the tennis ball through the air, inertial fcrces
are significant and viscous forces will be important only in the boundary layer.

The Mach number provides a measure of the effects of compressibility on a flow. An in-
compressible fluid, i.e., a liquid, has M ~ 0 because the sound speed is very large in
comparison to a typical liquid flow speed. Gases tend to flow much faster than liquids rel-
ative to their sound speeds, hence Mach number is of great interest in classifying the flow
of a gas such as air. When air flows with a small Mach number, nominally A < 0.3, the
air be-haves like an incompressible fluid. Thus a flow with M < 0.3 is called an incom-
presmb.le ﬁow..A flow with a Mach number greater than this is termed a compressible
flow, since variations in the density of the air must be accounted for. We further classily
f:ompresmble flows according to Mach number as subsonic if M < | and supersonic
g 9Ai ;1 L. ]l-'lg\.f\;s near the .sonic velocity have unique characteristics such that

; < L.z flows are classified as transonic. Flows at very high velocity, M > 5, are

termed hypersonic.

CD/ideo Library/Shock Waves

3.2 COMMON
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rlgure 34 A ship's wake, photograph
rom the Space shuttle. The wake trails
several miles behind the ship.

Froude Number: The Froude number is defined to be the ratio

‘.J

Fr= B (3.7)

wh‘ere .V is a fluid velocity scale, L is a length scale, and g is the acceleration of gravity.

This dimensionless group is named in honor of William Froude (1810-1879), w};o use'd

models to perform pioneering studies of the drag on ships due to wave making (Figure 3.4).

The Froude number can be interpreted as the ratio of inertial forces u;amvitutional

forces. From Eq. 3.2 we know that the dimensions for the inertial force can E)e written as

{Fi} = {MHa} = {pL HVi~'} = (pL*Vi~'} = (pV>L2). Similarly, the dimensions
for the gravitational force are: ’

(F} = (M}{g} = {pL }{g) (3.8)
Taking the ratio of the inertial force to the gravitational force yields:

{F;} _ lPV:L:} _{K} (3.9)

{Fg} {DL'}}{] gL .

Since this ratio is clearly dimensionless (units of force in the numerator and denomina-
tor), the square root of the ratio is also dimensionless, and we see that the Froude num-
ber can in fact be interpreted as a ratio of inertial to gravitational forces.

The Froude number is important in ship hydrodynamics, in the study of water
waves, and in the classification of free surface flows, which do not involve a moving
body. In such cases the length scale is often taken to be the liquid depth. Free surface
flows are of interest to civil engineers involved in large-scale projects such as canals,
weirs, spillways, and waterways of all kinds.

C CD/Video Library/River Flow
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o Ty +V
EXAMPLE 3.2
. | The flow in a wide tidal chann
0.75 m/s. If the tidal channe] js
1 for the flow?
(B) TSt e T s e

SOLUTION

The Reynolds and Froude ny
mbers for this f

Re=pVL/wand Fr=V/ /od — > oW are found using Egs. 3.1 4 :
and the depth of the lida:/éhaii l— V/os. The characteristic velocit?‘ is v :l(()I 7:1“(:2
L =d =6 m. We assume co, d'et serves as the characteristic length scale s'u;;h‘ 1hu;
p=998kg/m*and pu = 1 x .'Z)-‘E'?f\'? f)!; 2 f; for water and use Appendix A to find:
; = 1 X AU (N-s)/m*, Also note that g = 9.8] mys? A
these values into the expressions for Re and ¥ and using pig dcﬁni!ior:’z; a fiiffi‘".‘o’ff".'"g
« /1 as a

og—V

¥ d
l — unit conversion factor, we have:
. . VL co/m>

Figure 3.5 Infinitesimal wave moves (A) to the right on stationary fluid (B) to the right on fluid moving to the right Re= P72 _ _ (998kg/m’)(0.75 m/s)(6 m) f

and (C) to the left on fluid moving to the right. To an observer moving with the fluid, the wave speed is gy in both cases. I x 10-3 , [1 (kg-m)/s?
For an observer on the shore, the wave speed is os for (A), as + V for (B), and o5 — V for (C). X [(N-s)/m?] TJ "

i
=4.49 x 10° [
|4 0.75 m/s

ved /981 m/sH)(6 m) /

Free surface flows with Fr < 1 are said to be subcritical; those with Fr > 1 are su-
percritical, and a flow at Fr = 1 is said to be critical. An understanding of the physical
phenomenon behind the use of the adjective critical in free surface flows can be gained
by noting that the wave propagation speed of an infinitesimal wave in stationary water

A Reynolds number of this magnitude would result in turbulent flow in the channel, and
since the Froude number is less than one, we can conclude that the flow is subcritical. /

of depth d is
os = /gd (3.10a)
Here o is the speed at which the wave moves relative to the water (see Figure 3.5A). worked on problems involving capillary effects. In a problem involving a moving liquid
The Froude number in a problem involving wave propagation in water moving at speed the Weber number is defined by
Vis
V3L
14 v We=12"" (3.11a)
Fr=—==— (3.10b) o
o . .
8 ’ where o is the surface tension, and V and L are velocity and length scales, rvxpcf;nvel_\:
The Weber number in a moving liquid can be thought of as the ratio of inertial force to
ic energy to surface energy). In a problem

surface tension (or equivalently a ratio of kinet ! i
ation field g. the importance of surface tension can be

involving liquid at rest in a gravit

If the water is moving at a velocity V to the right, then, as shown in Figure 3.5B, a wave
characterized by defining the Weber number as

moving to the right (in the flow direction) travels at a velocity o5 + V, and to the left at
a velocity os — V (Figure 3.5C). If the water is moving at a velocity V = o, then &

wave cannot propagate upstream. This is the critical water speed for a free surface flow
of depth d, and Eq. 3.10b shows that this speed corresponds to Fr = 1. In a subcritical 12
We = pEL (3.11b)
a
. to surface tension (or

flow, Fr < 1 and V < a5, so waves may travel in both directions. In a supercritical flow,
In this case We may be viewed as the ratio of gmvf(minnul lm;xgumw b

) e ial el , to surface energy). SUurtd 5
lently, gravitational potential energy tension can be safely

Fr> 1and V > ag, so waves can travel downstream only.
ant when We < 1. Otherwise the effects of surface

Weber Number: The Weber number is an important dimensionless group in flow prob- equiva
lems involving surface tension. It is named after Moritz Weber (1871-1951), who are only import
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EXAMPLE 3.3

SOLUTION

Water flows from a 1 mm diameter orifice at 4 m/s. Is it likely that surface tension effects
will be important in this application?

S

The Weber number for this flow is found by using Eq. 3.11a: We = pV>L/o. The char-
acteristic velocity is V = 4 mfs, and the diameter of the orifice serves as the character-
istic length scale so that L = 1 mm = 0.001 m. Assuming conditions at 20°C for water,
we use Appendix A to find p = 998 kg/m’ and o = 0.073 N/m. Note that we rmﬁw used
the surface tension for a water—air interface because we are assuming that water exits the
orifice into air. Substituting the appropriate values into the expressions for We and using

the definition of a Newton as a unit conversion factor yields:
2 3 2 1
We = pV-L _ (998 kg/mr’)(4 m/s) (0.00 J_E — 219
o 1 (kg-m)/s”
(0.073 N/m) TN

Since We > 1, we can safely neglect surface tension effects in this application.

The Bond number B = [g(p1 — po)DP)/o is
used to characterize problems involving
fluid droplets or bubbles of density py im-
mersed in another fluid of density pp. It can
be thought of as a measure of the ratio of
buoyancy force to surface tension force.

ignored. Can you confirm that the Weber number for
the capillary rise of water (¢ = 0.073 N/m) in a round
glass tube 1 mm in diameter is We = 0.134? How large
would the diameter of the tube need to be for you to
predict that capillary rise would be negligible?

Euler Number: The Euler number is defined to be

Eu=" Po (3.12a)
2pV?

where p — po is the difference between a local value of pressure and that at some refer-

ence location. Leonhard Euler (1707-1783) was a great mathematician who first derived

many fundamentals of fluid mechanics. The Euler number can be interpreted as a mea-

sure of the ratio of pressure force to inertial force. A number of variations on the Euler

number appear in fluid mechanics. In aerodynamics, the pressure difference in the Euler

number refers to the upstream static pressure p , and the Euler number then becomes
the pressure coefficient

_ P~ Px
ﬁ.: = lwﬂam.wl AM_NUV

2

The Euler number does not have the great physical significance of the Mach or Froude

:1:&2! however, as with all dimensionless groups, it allows for the compact commu-
nication of data.

|

8.2

glender structures such as suspended
power transmissions lines, struts on small
airplanes, and smokestacks are known to
have natural vibration frequencies that can
be calculated by using techniques from
structural mechanics. When the natural vi-
pbrational frequency of a structure coincides
with the frequency of the flow-induced
Karman vortices, a condition known as res-
onance develops. During resonance, the
amplitude of the structural vibrations can
increase significantly. The Karman vortices
are implicated in the wind-induced failure
of the Tacoma Narrows suspension bridge
in 1940 (Figure 3.7); however, there is still
disagreement about the precise cause of
the disaster.

Figure 3.7 The Tacoma Narrows
Bridge shortly before its collapse in
1940. The sidewalk to the right is over
28 ft above the one 1o the left.

002_ J
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Figure 3.6 T
-6 The Karman ;
the wake of 3 cylinder. B o

m:.o::m_z . ,
defiied g umber: The Strouhal number. which is

wlL
St=— (3.13)

Is important in problems involving flow oscillations in
am:_c: the frequency of the oscillations is @. The
w,:.sc:u_ number can be interpreted as the ratio of vibra-
tional velocity to translational velocity. Many flows
over bluff bodies develop oscillations. The most well
known is the generation of Karman vortices that are
shed periodically from the wake of a cylinder (see Fig-
ure 3.6). In this case it is known that over a range M;,
Reynolds numbers 10> < Re < 107, the Strouhal w::f
ber is approximately 0.21 if the frequency of vortex
shedding is measured in radians per second. Thus St
can be used to predict the expected frequency of vortex
shedding. Vincenz Strouhal (1850-1922) did pioneering
work on the vibration or “singing” of wires due to this
ettect.

¢ CD/Video Library/Tacoma Narrows Bridge
Disaster

Prandtl Number: Fluid mechanics is integrally related
to the field of convective heat transfer, which is the
study of heat transport processes in fluid flows. In fact,
an important dimensionless number used in ng:«.nn:,.,o
heat transfer is the Prandtl number, named after Ludwig

Prandtl (1875-1953), one of the giants of twentieth-century fluid mechanics. The

Prandtl number

.
P s (3.14)
o
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original context, your a is wi ;
; g kL ¥ : nalysis will provide answers to desi i ithi
of normal engineering accuracy. g pestionsaithinhs range

The empirical results presented h i
. s ere give the impression of simplici
involve only global characteristics of i P
EXAMPLE 3.4 i - giameter. The natural vibrational frequency for e T aoﬁm:woowﬂﬂwws mﬂa. A s o i
A smokestack at a power plant is 9 Aw Em_wﬂaz_ua. the wind velocity that would induce ow
- 7 radfs.
this structure is known t0 be

: . eld. Actually, all these flow fi
. quite complex. Our purpose in designating th Y ese flow o.Em e
. pirmih melysad cemrSER the Belfhaod of an early introduction to the design m%nnmw omww problems as case studies is to give you
Karman vortex shedding at a Treq

. ngineering fluid mechanics and to em-
) phasize the relevance of the subse i :

. y of 7l : . S quent theoretical chapt i

e eading to St derstanding of the fluid mechanics of enginee i

" ring problems. We do this by revisiti
Hrnwn same woé problems in later chapters and using the new tools we :m<m< aoﬁwﬂum”m
soLuror o i found by using Eq, 3.13: St = @L/V . Resonance to better understand the sources of the case study formulas.
The Strouhal number for this flow 15 el lculated in this way corre- ;
Y hedding frequency calcu : . 3.3.1 Flow i
onnEM i:m_” EMFH_._MWMMM”MMMWMA HM wm.,EnEnm. Thus, we must determine the wind ve- LIRSl Pipe
s to the n . .
MWM_W at which the vortex shedding frequency 15 @ = 7 rad/s. The diameter of the

smokestack serves as the characteristic length mn&m. so that is h. =9 J. >mm:~:=mm“ :wmqﬁ
the critical Strouhal number is 0.21 and substituting the appropriate values into Eq. 3.
after solving for V yields:

_u;B,uE.m a fluid H.E.o:m: a w._wa or duct is a common, and arguably the most important,
application on,. fluid mechanics. Society could not function without the water, steam, air,
natural gas, oil, and other hydrocarbons transported via piping systems. Our homes and

workplaces depend on central heating, ventilation, and air conditioning. Indeed, social
oL (Trad/s)(9ft)

_ — 300 ft/s historians in the United States have commented that the migration of people to the
V= < 021 mop.:.:n_.: states m?.ﬂ.. <<min_ ¢<.E II would not have occurred without the universal avail-
- ability of air oo:aios_zm. Virtually all a:mw:mm require delivery of fuel, lubricant, and
V = (300 ft/s) = 204 mph coolant through a pipe or hose. Can you think of other important technical applications
1.467 ft/s ’ of these systems? Does pipe flow also occur in biological systems?
Since it is unlikely that the smokestack will experience wind speeds in excess of

In this first case study we consider steady, fully developed incompressible flow in a
straight, horizontal, round pipe as shown in Figure 3.8. The adjective “steady” implies
that the flow is unchanging in time, and “fully developed™ implies that the flow is the
same at every location along the pipe. “Incompressible™ here implies that the fluid den-
sity is constant. This type of flow commonly occurs in the movement of liquid through
is the ratio of kinematic viscosity v to thermal diffusivity o. Heat transfer between a relatively long pipes subjected to a continuous pumping action. In later chapters we
solid surface and a fluid that is in motion due to external means (e.g., a fan or pump) is show how to handle a rectangular, square, or other shape for the pipe or duct, as well as
called forced convection. In cases of forced convection the heat transfer rate depends on

200 mph, one need not be concerned about vortex shedding leading to structural failure. .
- J

flows that are not steady or fully developed. Low speed gas flow occurs at constant
the Prandtl and Reynolds numbers. density, so the techniques developed in this case study may also be used to analyze flow
of air in heating, ventilating, and air-conditioning systems.
Other Dimensionless Groups: There are many more named dimensionless groups in
fluid mechanics as well as some that are simply physically descriptive and not named Length, L
after a particular historical figure. For example, the dimensionless group known as the R

relative roughness e/ D occurs in pipe flow. This group is defined as the ratio of the

. 55|
| | o ,,
average height of the pipe wall roughness e to inside diameter of the pipe D. | _,
perage flow Fluid with O R !
o = viscosity i iameter,
3.3 CASE STUDIES et T

The mo__oéim case studies represent a varied selection of the type of information avail-
wz_o.ﬁo engineers. Our emphasis in selecting these particular studies is their proad
applicability in engineering design. Engineers use results like these to successfully
practice amm._ms aftera m:..mﬂn course in fluid mechanics. Each of these flow c._.cc_m_:v 1as
cmmz. _.u<_n_w:mman theoretically, but the majority of useful results have been obtained
empirically. If you are careful to apply the formulas developed in a case study in the

Pressure drop. &p = P2~ P ,
3

Figure 3.8 Variables for fully developed tlow in a horizontal pipe.



118 [ 3 CASE STUDIES IN FLUID MECHANICS

Note that this is a transcendental equation and will require iteration to determine the fric.
tion factor for known values of relative roughness and Reynolds number. We may alg

determine the friction factor by means of the Chen equation, another empirically baseq
relationship:

l.v
m\cm.oﬁm @\bv___ogu.mmoo ,
f= _Iw.o_om T.Sa ke 2\ 28257 " RO®W (3.19b)
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EXAMPLE 3.6

Gasoline flows with g : =

L = 100 ft with an _MMM me:ioeq Of V = 4 /s in 2 horigg, 1 ,

18 b piip et e gas e mﬁq D = 1in. The pipe nossos_uw: steel pipe of lengih

ume flowrate, pressure dug wmaw,”: 5%&:3 3.10. Determine asnn?w%x m,m e
3 | N m . 10N fact =

roughness of the pipe is e/D = o.oo__U .W_Mwnuosn_. Tequired for this flow if EM M_,u,“wn

m=1.96 x 10~ Ib_(ft.s). =42.45 1b_/ft’ and

EXAMPLE 3.5

Normal saline solution flows with an average velocity of V = 0.5 EB.\w m: a2 m length
of polymer tubing before entering a patient’s arm intravenously. If the inside diameter of
tubing is D = 2 mm, determine the friction factor, volume flowrate, and pressure drop

in the tubing. Assume that the saline solution has the same properties as water, and that
the IV line is horizontal.

Gas pump

SOLUTION

We are asked to determine f, O, and Ap for a flow of saline through a horizontal tube with
L =2 mand D =2 mm. This problem can be solved without the aid of a sketch. We are
given V = 0.5 mm/s and assume conditions at 20°C for water. From Appendix A we find
o = 998 kg/m® and u = 1 x 10~ (N-s)/m>. The problem is solved by using Eq. 3.15
[Ap = pf(L/D)(V?/2)] to find Ap and Eq. 3.16 to find Q. We begin, however, by
returning to Eq. 3.1 (Re = pV L/u1) to determine Re and then using either Eq. 3.18 or
3.19 to determine the appropriate friction factor for the calculated value of Re.
Substituting the foregoing values into the expression for Re yields:

e pPVD (998 kg/m*)(0.5 x 103 m/s)(2 x 1073 m) _

Figure 3.10 Schematic of gas station for Example 3.6. f

.
SOLUTION

We are asked to determine f, Q, Ap, and P required for a flow of gasoline through a hor- ;
tzontal pipe with L = 100 ftand D = 1 in. Figure 3.10 is an adequate sketch of the flow |
ition. We are given V =4 ft/s, p = 42.45 Ib /ft’, and 11 = 1.96 x 10~* b, /(ft-s).

12 problem is solved by using Eq. 3.15[Ap = pf (L/D)(V*2)] to find Ap, Eq. 3.16
= VA) to find Q, and Eq. 3.17 (P = QAp) to find P. We begin of course by using |
3.1 (Re = pV L/uw) to determine Re and then use either Eq. 3.18 or 3.19 to deter- ,,
n:ine the friction factor.

,
Substituting appropriate values into the expression for Re yields:

1 (kg-m)/s?
K [1 x 103 Az-mv\:._w_ E
IN
Since Re < 2300, the flow is laminar, and we can use Eq. 3.18 to find the friction fac-
tor: f = 64/Re = % = 64. Next, use Eq. 3.15 to solve for the pressure drop:
V2 2m (0.5 x 1073 m/s)?
— = (998 kg/m*) (64 :
7 = OBKIMIEN| 5oz m 2
= 7.98 N/m”> = 7.98 Pa

L
Ap = —
P n\b

Re

_ PVD _ (4245 by/f)@ fUs) (Lin) (L1210 _ o
oo 1.96 % 10~ log/(ft-s)
Since Re > 2300, the flow is turbulent and we must use Eq. 3.19a or 3.19b to find the |

: . —722
friction factor. Choosing Eq. 3.19a and substituting ¢/D = 0.001 and Re =72.200
gives:

Finally we use Eq. 3.16 to find the volume flowrate:

2
& = P = 2

9 1 —3 2
= (05 x 107 mjs) (2% M M7 157 % 10-° m¥s

1 Ly, 348X E‘J
ﬂ = —2.0 log Amq x 107" + 77

i1l time-consuming), Or &
Using repeated hand calculations (painful), 2 mwamgmsomoﬁ %gu: time-consumin
symbolic manipulator program (good idea) we find f = 0.02>-

A very small volume flowrate like this can also be expressed in milliliters per minute:

~ 10*cm\’ /1mLY\ / 60
0 = (1.57 x 10~ m¥s) ® ) = 0.09 mL/min
m 1cm3 1 min
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the pressure drop-

Next, use Eq- 3.15 to solve for 08 4 fi/s)?
—o ——
o pf L = (245 o002 | T a7z L2
P=F"p 2
— 9373 Ib/(fts")

i n m_.m.—OD actor:
i n nits use the n_nm_.:ZO—.— H%\ S a Y f;
i (o) i
To obtain D.B mn mmo! 1 we us O a unit COl

11b-s2 ) _ 291 Ib/ft®

-

Ap = 9373 Lo/ (ft-57) 32.2 Iby-ft
1ft .

2f -
Ap = 29116/ ( 5

=20 m_w_

Next we use Eq. 3.16 t0 find the volume flowrate:

2 i A2
_xD? x(1in)°(1 ft/12in.)" | _ 10-2 f¥s
QH__N»H_\W%\N?:Q& e 2.18 x S

7 4

1 gal mom .
263 8 ) —)= 9.8 gal/min
0= x 10719 (G368 ) \1 min

Finally, use Eq. 3.17 to find the pump horscpower:

lh
P = 0Ap = (2.18 x 107 PR)Q91 ) | serapoe m.wg | =001hp
The volume flowrate of ~10 gal/min seems reasonable for a gasoline pump at a ser ice
station. The power required to operate the pump is small because we are considering
only the pressure drop needed to overcome friction. In most cases the pump must d/s0
produce enough pressure to overcome the hydrostatic pressure variation due to cicva-
tion change as well as losses due to valves and other fittings in the pipe network.
We will discuss these additional aspects of piping system design in Chapter 13. This

problem can also be solved by using the Chen equation, Eq. 3.19b, to estimaic the
friction factor.

3.3.2 Flow Through Area Change

“MWH wwawﬁmaow wﬂoﬂ duct system in a building, it is evident that changes in the cross-
often abrupt owing to s mvmmmw%m are quite common (Figure 3.11). The area change is
In this section sam m ce limitations, and turbulent flow is the norm in these systems-

provide a method for using a loss coefficient to estimate the frictional

pressure drop in steady incompressi
ess| pressible tu
Frictional pressure drops also occur when mn e i e

valves, entr; : ow passes through nozzl i nds,
oy Enmmmam_hwmw Mﬁw H:w: other features of a pipe or duct wmwwﬁ:”.m %Mﬁmwm%wﬁwvﬂﬁca
gh these elements will also be described later (see Chapter 13)-
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In examining .:,o flow through an area change it is critical to realize that even in
the absence of frictional effects, there is always a pressure change due to the change in the
mmmna of the flow as it passes through the area change. (This is the change in pressure pre-
dicted by the Bernoulli equation as discussed in Chapter 2.) The total change in pressure
as a flow passes through an area change may therefore be thought of as the sum of a pres-
sure change m.mmoommaa with the change in average flow velocity (which may be either pos-
itive or negative depending on whether the flow slows down or speeds up) and a frictional
pressure drop (a negative pressure change). We model this effect in turbulent flow as

p2—p1=[3p(VE = V)] - Bpe (3.20)

Did you recognize that if the frictional where ps is the downstream pressure, p; is the up-
ure drop is set to zero in Eqg. 3.20, stream pressure, and Apy is the frictional pressure loss.
becomes identical to The velocities V; and V5 in this formula are the average

Bernoulli's equation (Eq. 2.1 1) for a flow
along a horizontal path? Notice also how
the empirical model here (Eq. 3.20) builds
on an earlier ideal result by adding a term
to account for friction.

velocities in the upstream and downstream sections.
We can calculate Apr by using empirical results. Note
from Eq. 3.16 that since the same volume flowrate
passes through each section the average velocities
are related by

«l\_\»_ “an\w\u.u (3.21)

Now consider what happens in the idealized case of a frictionless flow through an
area decrease. Since the frictional pressure loss App is assumed to be zero, Egs. 3.20 and
3.21 show that the value of the pressure downstream is less than that upstream because
the area decrease causes the flow to speed up. Conversely, for an increase in area the
value of the pressure downstream is greater than that upstream because the flow slows
down in the larger area downstream. Equation 3.20 shows that the effect of friction is to
cause a lower pressure downstream than the ideal result irrespective of the area change.

The four basic types of cross-sectional area change are shown in Figure 3.12. As
noted earlier, flows in systems of engineering interest usually have high Reynolds num-
bers and are turbulent. Because the section of a pipe or duct in which area change occurs
is often relatively short, the portion of the frictional pressure loss due to viscous etfects
at the walls is negligible in comparison to the loss caused by turbulence. Thus, fluid
viscosity is not an important parameter in these flows. Observation suggests that for

Figure 3.11 Ductwork system with
several area changes.
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Expansi
o pansion
Fluid flow direction — m 3 e &
,_, Fluid flow direction — m m os ﬁmuf
Zt ,
| ‘\\\/\l\ m..m e =
| (B) : ,
~ ) 3 02
7 \ AR = A, /A,
|
_ 0 0.2 0.4 0.6 0.8 1.0
| Area ratio, AR
I — Figure 3.13 Loss ¢ ients
o e 3 oefficients for flow through a sudden

\\Ju\\l\ D)
©

and outlet areas are equal, there is no fri
Fi 3.12 Schematics of area changes: (A) enlargement, (B) gradual contraction, (C) sudden must be zero. If the ratio of the outlet are
‘i/ igure 3. d o
4 expansion, and (D) sudden contraction.

ctional pressure loss, and the loss coefficient
should approach unity because all the ki

a10 inlet area is very large, the loss coefficient
netic energy in the incoming flow is dissipated.
gradual enlargements or contractions, the pressure Emm in turbulent noé isa ?_.Jo: .o: of
the inlet and outlet areas, fluid density, average velocity through the section, and an ,m_d_m_m
defining the geometry of the area change. For a sudden area change, however, there is no

pressure change across this enlargement?

B

angle to consider, hence the pressure change depends only upon the remaining variables. EXAMPLE 3.7
What is the frictional pressure drop in air flowing in a round duct due to a sudden change /
CD/Video Library/Flow Past a Back Step in diameter from 0.4 m to 0.6 m? The flowrate in the duct is 0.5 m®/s. What is the total ’

Sudden Expansion SOLUTION

Suppose we analyze the case of an abrupt enlargement of a round pipe as shown in o are asked to find the frictional pressure drop and total pressure change across a sud-
Figure 3.12C. We assume that in a turbulent flow through a sudden area chunge the dcn enlargement in a pipe. Figure 3.13 will serve as a sketch of the geometry of the en-
frictional pressure loss Apfr is described by a functional relationship of tiie form largement. The first part of this problem is solved by using Eq. 3.22 (Apy = mebﬂuv. ,
Apr = f(Ay, Aa, p, V1), where A, is the inlet area, A, is the outlet area, o is the fluid e area ratio is found to be

density, and V; is the average inlet velocity. Note that we do not have to include V5 in

our analysis since Eq. 3.16 makes its inclusion redundant. By using dimensional analy- Ay _ mDy/4 [Ul_v _ (04 Bv — 0.444
sis, we can write the frictional pressure drop as

|
Ay T D34 \Dy 0.6 m ,,
- T ) e
Apr = mebSN (3.22) By using Figure 3. _u,.im find a #omm aonm,n_n.:.ﬂ of K¢ ~ 0.3. Next we awﬁ.m:isw rﬂ:wo _
stream average velocity, Vi, using the definition of volume flowrate given in Eq. 3. _’
where conventional engineering practice introduces a dimensionless loss coefficient K ¢ (O = VA). Solving this expression for V; and substituting known values gives
for the enlargement. Note that we can think omw o <_N asrepresenting the kinetic energy per g 55 il
unit volume in the upstream flow. Thus, the result suggests that the frictional pressure drop v, Q " —3.98 m/s
may be represented as some fraction of the upstream kinetic energy content of the fluid.

TA T wDi4 T m0AmP/4

m:.:: the available experimental data we can also deduce that K £ is a function of the area
nmzo of the aiE.maEmE. The problem reduces to finding the enlargement loss coefficient,
since when K ¢ is known, the frictional pressure drop can be calculated from Eq. 3.22.
The enlargement loss coefficient for high Reynolds number turbulent flow is shown

in Fi Apr = KgLpV? =03 (4)(1.204 kg/m?)(3.98 m/s)* = 2.86 Pa
in Figure 3.13. Note that the enlargement loss coefficient is always positive. If the inlet 2

0 : Aol
Next use Eq. 3.22, along with the density of air at 20°C (Appendix A) p = 1.204 kg/m’,
to find the frictional pressure loss:

I —
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V> usi olume flowrate:
Next find V2 using the _o_m_:s ) 05 -
Vo= 7D/ = Z06m)?*/4 ~
: “ 5 largement.
Eq.3.20to find the total pressure change across the enlarg
Finally, use Eq. 2 dthe
e mls. ] S: . 2 m/ m: —2.86 Pa
={301.204 kg/m")[(3.98 /)"~ (1.77 m/s .
p-p= .\..& pa—286Pa= 4,79 Pa.

CD/Video Library/Forward Facing Step

Sudden Contraction
A similar analysis of the turbulent flow in a sud
leads to the introduction of the contraction loss co
mula for calculating the pressure drop

Apr = K3 Vs
Note carefully that the contraction loss coefficient is defined in terms of the ¥inetic en-
ergy in the higher speed outlet flow. The value of the contraction loss coefficient can be
found in Figure 3.14. If the inlet and outlet areas are equal, there is no pressur. loss, and
the contraction loss coefficient must be zero. For very small ratios of outlet a¢a to inlet
area, the loss coefficient has been found to approach 0.5.

den contraction as shown in Figure 3.14
efficient K¢ and the following for-

(3.23)

3.3.3 Pump and Fan Laws

dﬁ.n&%&:m case studies have dealt with calculating the frictional pressure drop in d
section of a pipe orin a sudden area change. We now consider the problem of choosing
wcwa_._wm ““FM_“_ with ﬁm.._w un:,.aam%n needed to move fluid through a system once the
e ma atthe desired flowrate has been determined. It is beyond the scope of

10n to address the question of what type of pump or fan should be selected. For

Figure 3.14 Loss coefficients for flow through a

sudden contraction, Contraction
1.0
2o
£.8
ZE 04
s
5% 0
oo
0204 05 03 10

Area ratio, AR

?
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example, in air-handling applications one can choose a centrifugal or vane-axial fan
(Figure 3.15A). Similar choices exist for pumps (Figure 3.15B). When a certain type of
device F_m _um.un: chosen, and the manufacturer selected, it is necessary to pick the
appropriate size machine from the manufacturer’s family of geometrically similar
equipment. In fact, the overall process of choosing a pump or fan is called sizing. The
pump and fan laws developed next will allow you to use information provided by the
manufacturer to predict the characteristics of geometrically similar, differently sized
devices. They will also give you the ability to predict the performance of a specific
device under different operating conditions.

In our earlier analysis of flow in a pipe or duct system the focus was on the frictional
pressure drop. There are other contributions to the total pressure drop in a system, for ex-
ample, a change in elevation. It is customary to use a parameter called total head, H, in
the design of pipe and duct systems. This total head, with dimensions of energy per unit
mass (or equivalently { L%t ~2}), is a measure of the total load seen by a pump or fan mov-
ing fluid through the system. The power, P, required by the pump or fan is also an impor-
tant parameter in the design of these systems. Thus, in analyzing the performance of a
pump or fan, both the head and power are considered to be important dependent variables.

We begin our analysis with the observation that for geometrically similar machines
of a given type, only one length scale is required to specify the machine geometry. This
length scale is conveniently taken to be the diameter D of the impeller or other rotat-
ing element. We assume that the head and power of a fan or pump depends on w, the
angular speed of the impeller, the volume flowrate, and the density and viscosity of the
fluid. Thus, we postulate that the head and power are functions of these variables:

H=f (D, Q v p, K and P=f (D, Q. w p, 1)
A dimensional analysis (to be performed in Chapter 9) would show that the dimension-
less head can be expressed as follows
H 0 pDw
20t 8 \ept T et

Rotor blade

Stationary guide vane

Airflow Volite
(A) Centrifugal Fan Axial Fan

Figure 3.15 Schematics of common designs of (A) fans and (B) pumps. The three-lobe, gear,

and sliding-vane devices are all rotary pumps.
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W,
=~
F QOutlet
U
OQutlet Inlet
Inlet
Ay
‘ Gear Pump

Three-Lobe Pump

Oznnﬁ%n

Sliding-Vane Pump Centrifugal Pump

Outlet fipeiler Outlet
‘v Inlet
=\
A v& Inlet
<G Impeller Fixed-vane Volute
vanes diffuser
(B) Single Volute Pump Fixed-Vane Diffuser Pump

Figure 3.15 Continued.
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while the dimensionless power may be written as

P — Q pD
ros =%\ opv (3.24b)
[n pump and fan engineering, the dependent dimensionless groups H /w*D? and

35
% mﬁﬂmhs_“m xﬁﬂd: as the :wmn._ and power coefficients, respectively. The independent
5 group .Q\SD is known as the flow coefficient, while the group
pDw/i can be oo.._m_n_ﬂma to be a form of the Reynolds number because the product
Duw has the dimensions of velocity.

. ._.: considering the scaling of two geometrically similar systems, the principle of
similitude, (also discussed in Chapter 9) tells us that all independent dimensionless
groups B:E.vn the same for each system. However, in dealing with pumps and fans of
reasonable size, it is found that the performance is independent of Re as defined earlier.
Thus the appropriate scaling law for comparing two pumps or fans in the same family is

Qi Q>

= 2
w) Dw wn Dw (3.252)

If the flow coefficient of two machines are equal, then the head and power coefficients
are also equal:

\.\_ mm Nu_ P>

77 = Az ad i
wiD]  w3D; pawy Dy

— 3.25b)
pwy D3 :
These equations are known as the pump laws or fan laws. Not only do they relate the
performance of two differently sized machines in the same family, but they also allow us
to determine how a given machine will operate under a new set of operating conditions.

EXAMPL

E 3.8

SOLUTION

7o upgrade a ventilation system it is required that the flowrate be increased from
5000 ft3/min to 8000 ft’/min. This is to be accomplished by increasing the angular ve-
iocity of the ventilation fan. If the current system operates at a fan rpm of 1000, what fan
rpm is required for the upgrade? What will be the power increase for the upgrade?

Use the fan law, Eq. 3.25a, to determine the new angular velocity (noting that the fan is
the same so the characteristic dimension D is constant).

0 (0
Uunc upgrade Dw existing
1000 rpm
N = t}/mi = 1600 rpm
Oupgrase = Qupgrate | g = (8000 f/min) | S50 e omin,

Q existing
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ower (with fluid density constant).

25b to find the increase in p

| Now use Eq. 3
| P _ (P
,,_ w3D%p upgrade @3 D P / existing
: (1600 pm)” _ 4 096

Pupgrade Wyporage _ UV E
W (1000 rpm)?

P, existing E;;a.:m

rpm of 60% results in a power increase of over 300%.

Thus, the increase in

CD/Boundary Layers

3.3.4 Flat Plate Boundary Layer

The case studies thus far have involved internal flow. A flow is classified as internal if
the fluid moves within an interior space defined by a number of bounding walls. Pipe
flow is obviously of this type, as is the flow in a pump. Engineers also deal with many
important external flows, i.e., flows in which a fluid moves around an object. An exter-
nal flow also occurs whenever a body such as a vehicle moves through a fluid. The next
three case studies deal with external flows.

Consider what happens when flow occurs over a flat plate. As shown n Figure
3.16, the fluid at the plate surface does not move relative to the plate. A shori distance
away from the plate, however, the fluid is moving at the free stream velocity. The
effect of viscosity is to create a boundary layer near the plate in which the velocity
changes smoothly and continuously from zero on the plate to the free stream value.'
”E_m boundary layer thickness increases downstream of the leading edge, and the flow
m.mMMmNomﬁw&m_wvﬂw Muw%mcm»ww_%w:mnm w..oa laminar to turbulent (see Figurc 3.17).
shearssiesy n theglite i Hozmﬂn_ y m_.ﬂ ient at the plate surface, the fluid oxn:u. a
cosity relates the shear stress to Enm<=w i _ﬁoﬂo ARS: 52. Zmioz.m law of vis-

elocity gradient via the fluid viscosity).

€ || CD/History/Ludwig Prandil

A i ; ;
g If we _w“ww:ww“ﬁ m..HME _M__Ms.nz in the flat plate boundary layer is the wall shear stress:
wall shear stress varies along the plate, we can calculate the

. . .
Given that the fluid velocity and viscous effects are likely

less group do you expect to see play a major role in the 588 be important, which dimension-

el for the flat plate boundary layer’

Freestream
velocity, V

Boundary layer
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thickness, §(x)

\
| Boundary

layer

1 Velocity
profile

R s e R e R |

Flat plate

Figure 3.16 Development of the boundary layer on a flat plate.

Freestream
velocity, V

Yy

]

Laminar Transition Turbulent

Figure %.17 Laminar-to-turbulent transition of the boundary layer on a flat plate.

The concept of a boundary layer was con-
ceived by Ludwig Prandtl, who reasoned
that in a high Reynolds number flow over a
body, viscous effects would be significant
only within the boundary layer. His bound-
ary layer theory was one of the most im-
portant contributions to fluid mechanics in
the twentieth century.

tance from the lea

cosity. Thus we propose a rel

Dimensional analysis reveals that this rela

frictional force applied by the fluid to the plate. The flat
plate boundary layer may be used to model flow over
relatively flat surfaces such as ship hulls and the walls
of various structures, and as a crude approximation to
the more complex boundary layers on airplane wings,
fuselages, and similar surfaces.

Observations suggest that in an incompressible
flow at high Re the shear stress Ty on the wall in a flat
plate boundary layer (Figure 3.18) depends on the dis-

ding edge x, the freestream velocity V, and the fluid density and vis-
ationship between these variables of the form:

w=fl V.00
tionship can be expressed as

W py= (3.26)

=g|—

pV? Iz

1
2
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Figure 3.18 Shear stress due

to flow over aflat plate.
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It is customary in boundary layer analysis to define the skin friction coefficient Cy as

w 3.7
Cr=1 1 (3.27)
2PV*
and to define a Reynolds number based on the distance x from the leading edge as
= m|<|>. (3.28)

Re, =
I

From the dimensional analysis we can also conclude that there is a relationship between

the skin friction coefficient and the Reynolds number of the form
Cr= Cy(Rey)

ide of a plate of width w and length L

) shear stress along the length

w direction), is given by

(3.29)

The force exerted by the shear stress on one s
shown in Figure 3.18 is found by integrating the (variable
of the plate. This frictional force, or drag (since it acts in the flo
L
Fp=w w(x)dx
0

and can also be written in terms of the skin friction coefficient as
L
Fp=w lbiﬁlﬁlh
b 2
We can calculate the drag on a flat plate due to a laminar or turbulent boundary layer
by using Eq. 3.30, provided we have an expression for the appropriate skin friction
coefficient.

(3.30)

CD/Special Features/Blasius Boundary Layer Growth

“Mﬁ%:ww“:mw&rhmﬁn.m. Blasius, a student of Prandl’s, developed an approXi-
g or the laminar flat plate boundary layer that gave the following

aminar boundary layer usually transi-
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Al i

fona to turbulence very close to the lead- expression for the skin friction coefficient:

ing edge of a plate, so QOmm that in calcy- 0.664

lating the drag, the laminar portion of the Cr =~ (3.31)
JRe, ’

poundary layer can often be ignored and
the whole boundary layer treated as if it
were turbulent from the leading edge.

WB_.: empirical observation we know that the transition
0 E&&nznm occurs at about Re, =35 x 10°, so
Eq. 3.31 is limited to Re, < 5 x 10°.

Turbulent - i

Turby MMEWM“:MMNMJWV. x.w”%wnaﬁsma.ao%_ of the velocity distribution in tur-

puen -1/) Y1elds an expression for the skin friction coefficient of the
0.0594

(Re,)1/5 (3.32)

Q«‘."

—

EXAMPLE 3.9

SOLUTION

A cruise missile 5 m long and 1 m in diameter is cruising at 200 m/s at an altitude of
.moo m. If the boundary layer on the missile skin is modeled as that over a flat plate, what
is the drag force on the missile due to skin friction?

From ?uta:mi A we find for air at 500m, p=1.17kg/m® and p = 1.77 x
1073 (N-s)/m”. First we use the critical Reynolds number of 5 x 105 to locate the tran-

sition to turbulence:

=0.04m

|M i u
o = Reg 1 = 5 x (o3 [L77 X 107° (N-s)/m]
pv (1.17 kg/m?) (200 m/s)

The laminar region is small enough to be neglected. We will use Eq. 3.32 for the skin
t1i~tion coefficient and calculate the drag force on the wetted surface by using Eq. 3.30.
1 1 L 0.0594 1, [t 00594
% ———dx
0

L
Fp=w=pV? | Crdx=wzpV? | ——zdx=w; :
DAY L T = o (Re)'’ v (pVx/u)'/3

1 0.0595 . I, 00595 (x|
Fp=uw=pV? xPdx=w=pV’ ——

p=WP \vimB ) o 2" [eviw B I\ 4751,
In this case the “width” is the circumference of the missile, 7 D. Substituting appropri-

ate numerical values yields:

0.0594 (5m)*s

1
Fp = 1 — 3 2 /
p=n( va:.: kg/m)(200 m/s) 5200 mS) N 15 " 4/5

(1.17 kg/m
1.77 x 10-5 (N-s)/m? ] | 1 (kg-m)/s?
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3 CASE STUDIES IN

FLUID MECHANICS

Figure 3.19 Free body diagram

of a nonaccelerating coﬂ< show-
i the drag and thrust are
___mh_:a e & Fluid with

— properties p
and p

A

335 Drag on Cylinders and Spheres

blems in fluid mechanics is

One of the most important pro
s the component of the total ret

body immersed in a moving fluid. Drag i
ing on the body in the direction of the oncoming s
can be due to unbalanced pressures on the fore and aft surfa
skin friction in the form of shear stres
ond law to the body shown in Figure 3.19 shows
on a nonaccelerating body are equal and op
needed to move a body through a stationary
ing the drag. The power required to move the bod
magnitude of the thrust (or drag) and the speed of the body.

The ability to calculate dra
ern modes of transportation. Historically, pro

EXAMPLE 3.10

SOLUTION

,SEH. is the power required to fly the cruise missile in Example 3.97 Assume that the
drag is primarily due to skin friction.

The power Ea:rnma is the product of the thrust and the flight speed. Since the missile is
at constant velocity the thrust is equal to the drag 720 N and the flight speed is 200 m/s
the power required is ,
_ 1] 1w
P=(T20N)200m/s) [ —— |{ — | =
N\ TR = 144,000 W = 144 kW
MMHMMMM NnMMoﬂr Mo E_.m problem would be to find a drag coefficient that includes both
skin friction and the pressure distribution as discussed shortly.

to determine the drag on a
arding force act-
tream. A bit of thought shows that drag
ces of a body as well as to
s on the wetted surface. Applying Newton’s sec-
that the thrust and drag forces acting
posite. Thus, estimating the force (thrust)
fluid at constant velocity requires estimat-
y through the fluid is the product of the

g is a critical element in the design of virtually all mod-
blems of this type have been investigated
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experimentally by using a
results presented in termg

estimate the drag force in

of aitipities] semnlls. s _ﬂﬂ m MMN?,{ cases, but generally engineers rely on a |

for two very simple mnoamioho: we discuss the drag in steady, incom ammﬂm_n ﬂo&

simplicity, the flow approachin .m_.: 5@:8? g rlireyinder Ea_uu : :Qw ms

of the cylinder, and neith ey o witis equirita e perpeaticul e oq
ther the cylinder nor the sphere is SS_EmG ulirto the s

win i
d tunnel to provide a flow over a

of the dra 4 scale model, with
c p , with the
g coefficients, Analytical results are available to

CD/Video Library/Flow Past a Cylinder

Cylinder

The ci i i
o:msa_mnw:mwﬁmmwﬁqaﬂ 1s a common structural shape. Examples include bridge cables
o H%n Em_A_MNMM.M”:M“M mmm_um_nm. Although the geometry of a n:.nc_mw Q::amq.
\ 4 1 can be quite complex (see Fi

5 . igure 3.3).
- o:oms““ om:waﬂ. HﬂS.u.. steady flow over a cylinder. We are interested in the drag force
BWEo vaEM :Mmo a_mﬂﬁmﬁ D M:a length L. The drag will depend on these two geo-

as well as on the velocity, density and viscosity of the flui 4

. ason . dens d. We sum-
:..m:N_m En_ E..onomoa relationship mathematically as Fp = .Ibv\ L <mh:wc DM%WB:
sional analysis (details to be provided in Chapter 9 : I i ety
s brse st pter 9) then shows that the relationship

Fp L
IWE\NS =g |Re, = (3.33)

D
‘.E:m_.n H.:m Re is based on the cylinder diameter. The standard way to present this result
1S to write:

Fp=CpipV?DL (3.34)

where the drag coefficient for a cylinder is defined as

Cp = ul (3.35)
spV-DL
Note that from Eq. 3.33 the drag coefficient is Cp = g(Re. L/ D), or simply
Cp=Cp|Re, L (3.36)
D

lindrical body depends on the Reynolds
ngth of the cylindrical body ap-
ng its length must become in-
the drag coefficient for a

From Eg. 3.36 we conclude that the drag onacy
number and on the aspect ratio of the cylinder. As the le
proaches infinity, the flow over the cylinder anywhere alor
dependent of position. In this limiting case of long cylinders,

cylinder is only a function of Re:
Cp= Cp(Re) (3.37)
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