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Section 2.8 

2.53 CIClllling processcs involvc thc usc of 

soaps and dc1ergcn1S 10 allcr surfacc tcnsion 
so !hal diny surfaccs arc brought inlo con1ac1 
with waler, the univcr.;al solvent Do you 

think soaps incrcasc or dccrcase the surfacc 

1ension? Why? 

2.54 An air bubble in glycerin hasa diam­
e1cr of 2000 µ.m. Wha1 is the prcssurc dilTcr­
cncc across the surface of this bubble duc 10 

surfacc 1cnsion? 

2.55 Calcula1e the heigh1 of capillary risc 
for wa1cr in a glass tubc with D = 0.5 mm. 

2.56. When a glass tubc is insened in10 
liquid mcrcury. the depression is fouod 10 be 
4 cm. Estimatc lhe diameter of lhc rubc. 

2.57 What is the risc of watcr in a vcnical 
cmck fonned by two glass plales 20 µm 

apan? 

2.58 Calculatc the capillary rise of wa1er 
in a pair of the glass platcs scparated by 2 mm 

if thc plates are inclincd at 75° from lhc 

vcnical. 

Section 2.9 

2.59 Watcr ftows from a pipc al 6 nl/~. 

Whal is lhc kine1ic energy per uni1 ma~s of 

thc watcr? What is thc kinetic cnergy per unu 
volume of water? 

2.60 A windmill cxtrac!S energy from air 

moving al 40 km/h. What is thc total kinc1ic 
energy per unit volume of moving air? 

2.61 A hydroclcctric plant will cmploy a 
total elevation changc of 350 ft. Wha1 i~ thc 
gravitational potenlial cncrgy change per unu 
volumc of water? 

2.62 What is thc pressurc potential cncrg) 
slored in 75 L of watcr at 20 MPa? 
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3 CASE STUDIES IN FLUID MECHANICS 

3.1 Introduction 

3.2 Common Dimcnsionless Groups in Fluid Mechanics 
3.3 Case Studies 

3.3.1 Flow in a Round Pipe 
3.3.2 Flow Through Area Change 
3.3.3 Pump and Fan Laws 
3.3.4 Flat Platc Boundary Layer 
3.3.5 Drag on Cylinders and Spheres 
3.3.6 Lift and Dragon Airfoils 

3.4 Summary 

Problems 

3.1 INTRODUCTION 

In Chapter 2 you leamed how 10 cornbine your under~tanding of fluid and flow proper­

lies anda force balancc based on New1on·~ second law to solve simple fluid mechanics 

problems. Here we focus our a11en1ion on ~ome of the rcsuhs 1ha1 have been ob1ained by 

.:ngineers for more complex fluid mechanic, problem~. We have selectcd some of 1hcse 

rcsults to form the basis of a numbcr of imeresting case studies. ln each case study. you 

will lind a brief descrip1ion of thc flow field of imerc\t. and one or more design fom1u­

las that can be used 10 calcula1e importalll quan1i1ies of cnginecring and design imerest. 

Thcse formulas rely primarily on resuhs ob1ained by using e.~pcrimental methods. and 

in particular on the dimcnsional analysis and modcling tool\ 10 be prescmed in Chap­

ter 9. In some cases. the formulas can be developed or otherwise explained by means of 

the rnore sophis1icated analysis 1001s you will al~o leam abou1 in later chaptcrs. ln any 

case. the amount of information given in a ca~e study is not unlike what you might lind 

in an engineering handbook. and applying the material should not be difficull. 
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104 3 CASE STUDIES IN FLU ID MECHANICS 

f 

A twofold goal of this chaptcr is 10 cxposc you 10 intcrcsting now ficlds carly in thc 

text and 10 allow you 10 calculatc s0111c cnginccring characteristics of thcsc llows at an 

early stage in the leaming process. As wc revisit thesc case studies in later chapters. our 

hope is that you wi ll progress from a cautious lirst application of thc casc study rcsult~ 

10 a fullcr undcrstanding of the underlying now ficlds. Furthermorc, thcsc results may 

help you bcller comprchend your laboratory course work. 

CD/Video Library/Laminar and Turbulent Flow on a Flat Plate 

Al this point you might be wondering: Why do wc necd lo rely on experimental 

results in fluid mechanics? Why not just use a bcuer analytical mode) or a bigger co,n. 

puter 10 solve a llow problem? An answer 10 these questions lies in recognizing the dif. 

ference between laminar and turbulent fluid now. As the name implies. laminar now 

involves the movement of fluid in ··1ayers.'' As shown by the dye in the top of Figurc 3.1, 

the motion of a fluid in laminar flow is orderly, often slow and steady. and gcnerally 

amenable 10 observation, measurement, and prediction. Analytical and computational 

solutions 10 laminar flow problems are both feasible and common, and the nccd for ex­

periments is often minimal. However. laminar flows are relatively rare both in natur.: 

and in engineering practice. This is bccause a laminar flow undergoes a transition (mid­

dle of Figure 3. 1) and eventually bccomes turbulent as flow speeds increase. Turbulent 

flow. as illustrated at the bouom of Figure 3.1. is encountered in almost all flows in na­

ture and engineering practice. This type of flow consists of a chaotic, disordered, and un­

steady motion of fluid that is generally difficult to visualize. measure, and predict. Thcrc 

are no analytical solutions for turbulent flow, and computational models of turbulencc 

are limited in their applicability. Thus experimental results are necessary for engincer­

ing designs involving turbulent flows. 
Although the future of fluid mechanics will undoubtedly be marked by an increa,­

ing dependence on computational solutions for both laminar and turbulent llows, mod­

els of turbulence and other physical processes of interest in fluid mechanics wi ll 

continue to require calibration and verification by well chosen experime111s. 

ln the case studies that follow, you will lind frequent references to dimen; ionlc;; 

groups. Examples of these groups include the Reynolds and Mach numbers. Simply pul, 

a dimension less group is an algebraic combination of the parameters descri bing a panic­

ular flow that proves to be both dimension less as a whole and significant in tem1s of un­

derstanding the flow field. In fluid mechanics, the 1110s1 important dimensionles, group i; 

called the Reynolds numbcr. The Reynolds number of a now, written as Re = p V l j /L. 

is the product of density p , a lluid velocity scale V. and a length scale L, all divided b) 

Figure 3.1 Dye injected into a pipe flow 
indicates laminar flow (top). transiLional 
flow (middle). and turbulent flow (bot· 
tom). 

3.2 

-3.2 COMM ON DIM 
ENSIONLEss GROUPs IN F 

LUID MECHANICS I 
vis_c~sity, , , . In a given unit s . 105 
wntmg thc dimensions of e ystcm Re ts dimcnsionlcss . 

ach quan111y in the Reynolds' whrch we can dcmon,1ra1e by 

( Re} == JE_}( v )(~ ((MI L 1 number to obtain 
(1, } == - )(L / 1)(~ - M 1, -1 , -1 

Fl · M I Lr - -- - 1 
ows w11h I arge Reynold ML 11 1 -

d . s oombersa 
un erstandtng how a flow wi ll b h rc usually turbulent. an im . 

c avc. portant con;rdcration in 

COMMON DIMENSIONLESS GROUPS 
IN FLUID MECHANICS 

[I] As you leam morc about A .d . 
uUt mechan,cs · 

groups occur repeatedly in analyscs of flu ixou w1II discover that somc dimcnsionlc;s 
groups have bcen given namcs . h . mechanrcs problems MosL d. . . 
· h 111 onorofthc· d. · rmcnsronless 
111 I e_ study of fluid mcchanics. It is im n rr iscovers orOLher prominent individua.l, 

me~s10nlcss groups to cnsure that you pr: an~ to becomc farniliar wi1h the common dr~ 

eng111eers expcct. Also, thc numerical valui;~~te result, ~~youranalysb in thc form other 

used 111 the class1fica1ion of a panicular fl .d hese trad111onal d11nc11;ionless groups are 
cient I · h · ur mechanic, probl · ' 

so u11on tec 111ques and 10 co . . cm. 111 thc selection of cfti. 
• .1 fl ' mpare rcsults 1111h tho , b • . 

s11111 ar ows. Let us take a look at son • 1· h , . se o tarncd by mvc;tigations of 
fl "d h . • le o t c morc import· r . 

u1 mec arncs and leam about th • 
1 

• . . ant c rmen~ronlcss groups in 
crr rc atronsh1p to vanous physical phcnornena. 

Reynolds Number: As discussed earlicr the R 
dimensionless group in fluid mechan:c, . 'd 

1
. cynolds numbcr. thc 1110s1 imponant 

1 s. rs c 111ed 10 be 

p\lL 
Re == --

11 (3.1 l 

whcre p is the fluid densit)' v is n ·d .,1 . 
• . . . . · . a ur ,c OCII) ,calc. L 1s a lcngth ,calc. and 11 " lhe 

nu1d v1scos11y. Th1s d~mensronlc,~ group i; n;uned in honor of O,bornc Rn nold, 

( 1842- 1912i,, _a notcd p~or'.cer 111_1he_ , 1udy of pipc tlow and turbulcncc. The I cloc;t) and 

l~ngth scales involvcd 111 11s delin111011 arc illu;trated for i1ttcmal and c, temal floi1s in 
Frgure 3.2. · 

(i\) 

Avcrngc flu id vcloc11y V 
in a fluid of dcnsity p -

and visco,11) µ 
l 

18 ) 

Free 1,,treJm ,duut\ \ ' 
m J fluiJ of dcn,11; p 

,1n(J \hl.'.0,11~ µ. 

0 
Figure 3.2 Velocity and leng1h scab u,ed 111 defimng Re tore~amplc, ol <A) intcmal flo" 

and (B) externa! flow. 
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\ ( • \ CD/History/Osborne Reynolds 

It is important for you to have an understanding of the physical significance of the 

Reynolds number. One way to interpret Re is lo think of it as a ralio of inertial to viscous 

forces in a fluid flow. An inertial force can be wrillen using Newton's second law as 

F = Ma. lf we recognize that mass is equal lo lhe product of density and volume and 

write the equation in tenns of dimensions we find : 

(3.2) 

where we have made use of the fäet that the dimensions for velocity are { Lt - 1
) . To gen­

era te a similar expression for the viscous force. we begin with Newton·s law of viscos­

ity, r = µ(du/dy). in dimensional fonn: 

{r) = {µ){VC 1
) (3.3) 

But we require an expression for the viscous force, which is equal to the shear stress 

multiplied by the area over which that stress acts. Thus. 

{Fv) = {rA) = {µ){VC 1}{L1
) = {µVL) 

lf we di vide Eq. 3.2 by Eq. 3.4 we obtain: 

{F,J {pV
2

L
2 j = { pVµL} 

{Fv) = {µV LI 

(3.4) 

(3.5) 

Since lhe right-hand side of this equation is equivalent to the Reynolds number, we are 

justified in interpreting Re as a ratio of inertial to viscous forces . 

Except within a thin boundary layer near solid surfaces. high Re flows :ire domi­

nated by inertial forces and are usually turbulent. Low Re flows, or creeping 0ows, arc 

highly viscous in character and larninar. Flows at intennediate Re are often lami11ar, with 

inertial and viscous forces both playing significant roles in delermining fl ow structure 

throughout the flow field. 

('• • CDMdeo Library/Flow Past a Cylinder _,., 
The effect of Re on flow structure for flow over a cylinder is illustrated in Figurc 3.3. 

At very low values. R e = 0.038 (Figure 3.3A}, the inertia is so small thal fluid particlc, 

easily flow around the cylinder while remaining in their laminar layers. At Re = I 9 

(Figure 3.38) the inertia has increased to the point that some fluid particles cannot ··make 

the tum," like Fonnula I racecar drivers who spin out going too fast through a curve. 

This phenomenon is called flow separation. As Re increases to 55 (Figure 3 .3C), the sep­

aration bubble is pushed downstream. Thus Re indicates the presence of struc wral 

changes in the flow field. In Chapters 12 and 14 we will discuss in greater detail the llow 

over a cylinder and the interesting results that occur at higber Reynolds numbers. 

Before we continue with an example, Jet us sound a note of caution concerning the 

interpretation of Re. lt would be a gross simplification to consider Re to be only the ratio 

3.2 COMMON DIMENS IONLEss 
GRoups IN FLu10 / 
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(A ) 

(B) CC) 

Figure 3.3 Flow tielJ over a cylinder at (A) Re = 0.038. (B) Re = 19. and (C) Re = 55_ 

( CD/Dynamics/Reynolds Number: lnertia and Viscosity 

of inertial to viscous forces. For example. Re = I should not be intcrpretcd a" inertial 

and viscous forces being equal. The choicc of length and vclocity scalcs uscd in Re havc 

most often been chosen for convenicncc. not physical significance. Tlrns Re should be 

compared and interpreted fora singlc llow ficld only. not between now field,. Consider 

the critica l Rec,, where the transi tion of a larninar flow IO wrbulent now i, an importam 

application of the Reynolds number: Re« can diffcr by scvcral order, of magnitudc be­

tween an interna! flow and an externa! flow. Thus the physical meaning cannot be 

precisely the same. 

Mach Number: The Mach number, muned in honor of Ernst Mach ( 1838:-1916). a 

pioneer in the study of high speed flow. was in troduced in Scction 2.6.1 and 1s defincd 

10 
be the ratio of fluid velocity v 10 c. the speed of sound in the fluid. Thus the Mach 

number is given by 
V 

M= ­
c 

(3.6) 
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CASE STUDIES IN FLUID MECHANICS 

EXAMPLE 3.1 d' · 
. reach 190 km/h. If the iameter of 

A oood serve from a professional tennis pl~ye~ n;\ nolds number for the flow over the 
a t;nnis ball is approximately 6.5 cm, what IS t e e 

SOLUTION 

ball? 

. . f dusino Eq 3 1: Re pVL/µ,. Thechar-
The ~e~nolds ~um_ber f~ a ten~i~~ l~:d :~

1
will u:e th~ diameter of t~e tennis ball as 

actensllc velocuy IS V - 190 kn h, L - 6 5 cm. The density and v1scos1ty of air at 
the charactensuc length s_cale so t at - . •o J and = l.82 x 10-s (N-s)/m2. 
STP are found in Appendix A to be p = 1.204 kg/m µ, . t ·1 
Substituting these values into the expression for Re and using the appropna e um eon-
version factors found in Appendix C yields: 

pVL 
Re=-­

µ 

l.204 kg/m3 [ ( t90km/h) (¾s) (~)] [(6.5 cm) ( ~)] 

= [ I (kg-m)/s
2

] 
1.82 x 10-5[(N-s)/m2

] 
1 

N 

Re = 2.27 x I05 

This isa high value of Re (we will define "high value'' later in the context of spccific 
types of flows); thus for the movement of the tennis ball through the air, inertial forces 
are significant and viscous forces will be important only in the boundary layer. 

The Mach number provides a measure of the effects of compressibility on a fl ow. An in­
compressible fluid, i.e., a liquid, has M ~ 0 because the sound speed is very !arge in 
comparison toa typical liquid flow speed. Gases tend to flow much faster than liquids rel­
ative to their sound speeds, hence Mach number is of great interest in classifying the llow 
of agas such as air. When air Hows with a small Mach number, nominally M < 0.3, the 
air behaves like an incompressible ftuid. Thus a flow with M < 0.3 is called an incom­
pressible How. A How with a Mach number greater than this is termed a compressihlc 
flow, since variations in the density of the air must be accounted for. We further classil'y 
compressible ftows according to Mach number as subsonic if M < l and supersonic 
if M > I. Flows near the sonic velocity have unique characteristics such 1ha1 
0. 9 < M < 1.2 Hows are classified as transonic. Flows at very high velocity, M > 5, are 
termed hypersonic. 

( , I CD/Video Library/Shock Waves 

3 .2 

( 
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Figure 3.4 A ship's wake, photograph 
from lhe spacc shunle. The wake 1rail~ 
severa) miles behind 1hc ship. 

Froude Number: The Froude number is clcli ned to be the ratio 

V 
Fr=--

jg[ (3.7) 

where V isa fluid velocity scale. L is a leng1h scale. and g is 1he accc:lcration of gravity. 
This dimension less group is named in honor of Will iam Froucle ( 18 I 0- 1879). who used 
models to perform pioneering studies of 1hc dragon ships due to wavc making (Figure 3A). 

The Froude number can be intcrpre1ed as 1he ratio of inertial forces to gravitational 
forces. From Eq. 3.2 we know that the dimensions for the incrtial force can be written a, 
{F,} = {M){a) = (pL3

}{ vr- 1
} = (p L·1 vr-1) = (p V2 L 2}. Similarly. the dimension, 

for the gravitational forcc are: 

(3.8) 

Taking the ratio of 1he inertial force 10 1hc gravi1a1ional force yields: 

(Fil /pV"L2l {yl} 
!Fel= /pL"id = g l 

(3.9) 

Since this ratio is clearly dimensionlcss (units or forcc in the numera1or and denomina­
tor). 1he square roo1 of the ra1io is also dimensionless. and we sec 1ha1 the Froude num­
ber can in fact be interpreted as a ratio of inertial 10 gravitalional forcc,. 

The Froude number is importanl in ship hydrodynamics. in thc s1udy or water 
waves. and in the classification of free surfacc flows. which do not involve a moving 
body. In such cases the leng1h scale is often taken 10 be 1he liquid_ deplh. Free surfoce 
flows are of interest to civil engineers involvcd in largc-scalc proJcc1s such as canals. 
weirs, spillways. and waterways of all kinds. 

CD/Video Library/River Flow 
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V = O d 
- v d 

(A ) ( B) 

- \I cl 

j 
(C) 

Figure 3 .5 Infinites imal wave moves (A) to thc right on stationary fluid (B ) lo thc right on fluid moving lo thc right 

and (C) 10 the lc ft on fluid moving 10 the right. To an observer mo ving with the fluid. the wavc spced is as in bo th cascs. 

For an observer on the shore. the wavc specd is as for (Al. as + V for (B). and as - V for (C). 

Free surface flows with Fr < I are said to be subcritical; those wi th Fr > I are su­

percritical, and a flow at Fr = I is said to be critical. An unders ta nding of thc physical 

phenomenon behind the use of the adjec tive critica l in free surface flows can bt: gained 

by noting that the wave propagation speed of an infinitesima l wave in statio n:iry watcr 

of depth di s 

(3. IOa) 

Here as is the speed at which the wave moves relative lO the water (see Fig urc 3.5A ). 

The Froude numbcr in a problem involving wave propagatio n in water moving at spcec.J 

V is 

V V 
Fr = -- = -

.jgd as 
(3. J0h) 

lf the water is moving al a velocity V lo the right. then, as ~hown in Fig ure 3 .58, a wavc.: 

moving to thc rig ht (in thc flow directio n) travels at a ve locity a s + V , and to 1hc le fl at 

a velocity as - V (Figure 3.5C). lf the water is m oving at a velocity V = as , 1hc n a 

wave cannot propagate upstream. This is the critical water speed fora free s uri'ace flow 

of depth d. and Eq. 3. 10b shows that this speed corresponds to Fr = I . In a subc ritical 

tlow. Fr < I and V < as , so waves may trave ! in bo th directions. In a supe rcritical flow. 

Fr > I and V > as, so waves can trave ) downstream only. 

Weber Number: The Weber number is an important dimension less group in flow prob­

lems involving surface tension. It is namcd after Moritz Weber ( 187 1- 195 1). who 

r 3 . 2 COMMON DIMENSIONLESS 
GROUPS IN FLUIO 

MECHANICS / 111 

EXAMPLE 3 . 2 

SOLUTION 

The flow in a wide tidal chann 1 
0 75 ml rf . e separatrno a b k b 

• s . the lldal channel is 6 d O ac ay from thc ocean 
for the flow? m cep, wha1 are the Rcynold d F may approach 

s an roudc numbcr, 

The Reynolds and Froude numbe rs ,0 h' Il 
R " r t 1s ow are fi d · 

e=pVL/ µandFr =V! ./id=V/ Th ' ou_n _usrng Eqs.3. l and3. JOb: 

and the depth of the tidal channel se as . ehcharnctenst1c velocity is V = o. 75 mls 
rves as t e cha 1 • . 

L = d = 6 m. We assume conditions at 200C fi rac ensuc lcngrh scale such thai 

p = 998 kgtm3 a nd µ = I x I 0 -J fN-s)/ 2 Al or water and use Appendix A ro lind: 

these values into the expressions t·or Re a 
11
d
1 

:C.. sodnotc 1h31 g = 9.8 J m/s2
. Subs riruling 

· n n an usrno tl , d fi · · f 
unit conversion factor. we have: 0 le c nwon o a ncw1on as a 

Re = P V L = (998 kg/1113)(0. 75 mls)(6 m) 

µ I x J0- 3f(N-s)/m2) [ J (k: : )!s
11 

= 4.49 X )06 

c- V 0.75 m/s 
rr = - - = ,=-= = === = 0 098 

./ia /(9.8 J m/s2) (6 m) · 

A Reynolds number of this magnitude would result in turbulent tlow in thc channcl. and 

~1 ncc rhe Froude number is less than onc. we can concludc that lite now is subcritica l. 

worked on problems involving capillary cffects. Jn a problem involving a moving Jiquid. 

thc Weber number is delined by 

pV1l 
We=--

a 
(3. 1 la) 

where a is rhe s urfacc tension. and V and l arc vclocity and length scales. re.spectively. 

The Weber number in a moving Jiquid can be thought of as the ratio of incnial force ID 

surface tens ion (or equivalently a ratio of kinetic energy to surfacc cnergy). ln _a problem 

involving Jiquid a1 res t in a gravitation lield g. thc imponance of surface tcnsron can be 

characterized by defi ning 1hc Weber numbcr as 

IVe = pgl1 (3. ll b) 
a 

. . f oravi talion.i l force~ to !,Urface tcn:-.ion (or 
In this case We may be v,ewed "5. rhe ra1to O O 

1 .... energy) Surfocc rension cffects 
. I I . . I po tentl'll cnergy ID sur ac~ . r I 

equ,va enl y, grav11a11ona ' . h ffccts or surface ten,iort can be sa ,e y 
are only important when We « l · Othcrw,se I c e · 
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u
ld

 th
e diam

eter o
f the tu

b
e need to

 b
e

 for yo
u to 

predict that cap
illary rise w

o
u

ld
 be ne

gl ig
ib

le
~

 

E
uler N

um
ber: 

T
he E

uler num
ber is defined to

 b
e 

p
-

P
o 

E
u

=
 -

-
-

½
pV

2 
(3

. 12a) 

w
here p -

/Jo is the difference betw
een a lo

ca
l va

lu
e o

f pre
ssure and th

at al so
m

e re
fe

r­

ence lo
cation

. Leonhard E
u

ler ( 1707-
178

3
) w

as a great m
athem

atician w
h

o first d
eri ved 

m
any fundam

entals o
f flu

id
 m

echanics. T
h

e E
u

le
r n

u
m

b
e

r can be in
te

rp
re

tcd
 as a m

ea­

su
re o

f the ra
tio

 o
f pressure fo

rce lo
 in

e
rtial fo

rce
. A

 n
u

m
b

e
r o

f va
riatio

n
s o

n lh
e E

u
le

r 

num
ber appear in flu

id
 m

echanics. In
 aerod

yn
a

m
ics, the pressure d

iffe
re

nce in
 th

c E
u

le
r 

num
ber re

f ers to
 the u

pstre
am

 static pressure p
0

0
, and the E

u
ler n

u
m

bcr then beco
m

es 

the pressure co
e

ffic
ient 

p -
/loo 

C
1,=

---i--v2 
2P

 
('.\. I 2

b
) 

T
h

e E
u

le
r n

u
m

b
e

r does n
o

t have the great p
hysica

l sig
n

ificance o
f th

e M
ach o

r F
roude 

num
bers; h

o
w

e
ver, as w

ith
 a

ll dim
ensio

n
less g

ro
u

p
s, it allo

w
s for the co

m
p

act co
m

m
u

­

nica
tion o

f data. 
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Figure 3
.6 T

he K
arm

an vortex s1ree1 in 
the w

ake of a cylinder. 
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S
le

n
d

e
r 

stru
c
tu

re
s 

su
ch 

a
s 

su
sp

e
n

d
e

d 

p
o

w
e

r t ra
n

s
m

iss
io

n
s lin

e
s, s

tru
ts o

n
 sm

a
ll 

airp
la

n
e

s, a
n

d
 s

m
o

k
e

s
ta

c
k
s
 a

re
 k

n
o

w
n

 to 

I have n
a

tu
ra

l vib
ratio

n fre
q

u
e

n
c

ie
s th

a
t ca

n 

be 
ca

lcu
la

te
d

 
b

y 
u

sin
g

 
te

c
h

n
iq

u
e

s 
fro

m
 

stru
ct u

ra
l m

e
ch

a
n

ics. W
h

e
n

 th
e

 n
a

tu
ra

l vi ­

b
rat io

n
a

l fre
q

u
e

n
cy o

f a s
tru

ctu
re

 co
in

cid
e

s 

w
ith

 
th

e
 

fre
q

u
e

n
cy 

o
f 

th
e 

flo
w

- in
d

u
ce

d
 

K
a

rm
a

n
 vo

rt ic
e

s, a co
n

d
itio

n
 k

n
o

w
n as res

­

o
n

a
n

ce 
d

e
ve

lo
p

s. 
D

u
rin

g
 

re
so

n
a

n
ce

, th
e 

l a
m

p
litu

d
e

 o
f th

e
 st ru

ctu
ra

l vib
ra

tio
n

s ca
n 

in
cre

a
se

 s
ig

n
if ica

n
tly. T

h
e

 K
a

rm
a

n
 vo

rtice
s 

are im
p

lic
a

te
d

 in
 th

e
 w

in
d

- in
d

u
ce

d fa
il u

re
 

o
f th

e
 Tac

o
m

a N
a

rro
w

s s
u

s
p

e
n

sio
n b

rid
g

e
 

in 1
9

4
0

 (F
ig

u
re

 3.7); h
o

w
e

ver, th
e

re
 is s

till 

d
isa

g
re

e
m

e
n

t a
b

o
u

t th
e 

p
re

ci se
 c

a
u

se o
f 

th
e

 d
isa

ste
r. 

Figu
re 3.7 

T
he 

T
acom

a 
N

arrow
s 

B
ridge shortly before its collapse in 

1940. T
h

e sidew
alk to

 thc righ
t is o

ver 

28 fl above the o
ne to the let"t. 

S
trouhal 

N
u

m
ber: T

he 
S

trouhal 
num

ber. w
hich 

is 
defined as 

S
t

=
 

(V
L

 

V
 

(3.13) 

is im
portant in problem

s in
vo

lving flo
w

 oscillations in 

w
hich 

the 
fre

quency 
o

f the 
oscillations 

is 
w

. 
T

he 

S
trouh

al num
bcr can be interpreted as the ratio o

f vibra­

tional 
velocity 

10 translational 
vclocity. 

M
any flow

s 

over b
lu

ff bodies develop oscillatio
ns. T

he m
ost w

ell 

know
n is the generation o

f K
arm

an vortices that are 

shed periodically from
 the w

ake o
f a cyl inder (see F

ig­

ure 3.6). In
 this case i t is know

n that over a range o
f 

R
eynolds num

bers I 0
2 :s R

e :s I 0
7

• the S
trouhal nurn­

ber is approx
im

ately 0
.21 

if the frequency of vortex 

sheddin
g is m

easurcd in radians per sccond. T
hus St 

ca
n be used to predict the expectcd frequency o

f vortex 

shedd
ing. V

incenz S
trouhal ( 1850-1922) did pioneering 

w
o

rk o
n the vibration o

r "sin
ging" o

f w
ires due to this 

e!Tect. 

( 
C

D
M

d
e

o
 Lib

rary/Tacom
a N

arrow
s B

ridge 

D
isaster 

P
rn

n
d

tl 
( 187

5-
19

5
3

). 

P
rn

n
d

tl n
u

m
b

e
r 

Prandtl N
u

m
ber: 

F
lu

id
 m

c,hanics i, integrally related 

to the field o
f convective heat transfer. w

h
ich is the 

slud
y o

r heat transport proce
sscs in flu

id tlow
s. In

 fact. 

an im
portanl dim

ension less nurnber m
,ed in con

vective 

heat transfer is the P
randl l nurnbcr. nam

ed after L
ud

w
ig

 

o
ne o

f lhe 
giants o

f tw
entieth-ccntury 

flu
id 

m
echanics. T

he 

V
 

P
r =

 -ct 

(3
.14

) 

. . . I 
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E
X

A
M

P
L

E
 3

.4 
_

_ . 
,,_ -•-· 

..... , .,;h,~
tional frequency for 

A
 sm

okestack at a pow
er plant is 9 Il tn

 01am
i,u;;1. 

I ne na,---· 
this strocture is know

n 10 be 7 rad/s. C
alculate the w

ind velocity that w
o

u
ld

 in
d

uce 

S
O

L
U

T
IO

N
 

K
arm

an vortex shedding at a frequency o
f 7 rad/s and com

m
ent on the lik

elih
o

o
d

 o
f 

w
ind-induced resonance leading to stroctural failure. 

T
he Strouhal num

ber for this flow
 is found by using E

q. 3.13: St =
 w

L
IV

. R
eso

n
an

ce 
occurs w

hen the w
ind-induced vortex shedding frequency calculated in this w

ay
 co

rre­
sponds to the natura! frequency o

f the strocture. T
hus, w

e m
ust determ

ine the w
in

d
 v

c­
locity at w

hich the vortex shedding frequency is w
 =

 7 rad/s. T
h

e d
iam

eter o
f th

e 
sm

okestack serves as the characteristic length scale, so that is L
 =

 9 ft. A
ssu

m
in

g
 th

at 
the critical S

trouhal num
ber is 0.21 and substituting the appropriate valu

es into E
q. 3

.7
 

after sol ving for V
 yields: 

V
 =

 w
L

 =
 

(7 rad
/s)(9 ft) =

 300 ft/s 
St 

0.21 

( 
I m

ph 
) 

V
 =

 (300 ft/s) 
-
-
-
'-

-
=

 204 m
ph 

1.467 ft/s 

S
ince it is unlikely that the sm

okestack w
ill experience w

ind speeds in ex
ccs, o

f 
200 m

ph, one need not be concem
ed abou

t vortex shedding leading to structural failm
e. 

is the ratio of kinem
atic viscosity v to therm

al diffusivity a
. H

eat transfer h..-tw
een

 a 
solid surface an

d
a fluid that is in m

otion due to externa\ m
eans (e.g., a fan

o
r p

u
m

p) i, 
called forced convection. In cases o

f forced convection the heat transfer rate Llcp..:nds o
n 

the Prandtl and R
eyno

lds num
bers. 

O
th

er D
im

ensionless G
rou

ps: T
here are m

any m
ore nam

ed dim
en

sionless gro
ups in 

fluid m
echanics as w

ell as sam
e that are sim

ply physically d
escriptive and no

t n
am

cd 
after a particular historical figure. F

or exam
ple, the dim

ensionless group k
n

o
w

n
 as th

c 
relative roughness e/ D

 occurs in pipe flow
. T

his group is defined as th
e ratio o

f thc 
average height of the pipe w

all roughness e lo inside diam
eter o

f the pipe D
. 

3.3 
C

A
S

E
 S

T
U

D
IE

S
 

T
he follow

ing case studies represent a varied selection o
f the type o

f inform
atio

n
 avail­

able to engineers. 
O

ur em
phasis in selecting these particular stud

ies is 
their broad 

applicability in engineering design
. E

ngineers use results like these to 
su

ccessfully 
practice design after a single course in fluid m

echanics. E
ach o

f these flo
w

 problem
s has 

been investigated theoretically, but the m
ajority o

f useful results h
av

e b
een o

b
tained 

em
pirically. If you are careful to apply the form

u
las developed in a case study in th

e 

~
 

~
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original co
n

tex
t, y

o
u

r analysis w
ill provide answ

ers to design questio
ns w

ithin the range 
o

f n
o

rm
al engineering accuracy. 

T
h

e em
pirical results presented here give the im

pression of sim
plicity because they 

in
v

o
lv

e o
nly global characteristics o

f the flow
 field

. N
otice that nothing is said in any o

f 
the case stu

d
ies about local details of the flow

 field. A
ctually, all these flo

w
 fields are 

q
u

ite co
m

p
lex

. O
u

r purpose in designating these problem
s as case studies is to give you 

an early
 introductio

n to the design aspects o
f engineering fluid m

echanics and to em
­

p
h

asize th
e relev

an
ce o

f th
e subsequent theoretical chapters to d

evelo
ping a better un­

d
erstanding o

f the fluid m
echanics of engineering problem

s. W
e do this by revisiting 

th
ese sam

e flow
 problem

s in later chapters and using the new
 tools w

e have develo
ped 

to
 b

etter u
n

d
erstand the sou

rces o
f the case study form

ulas. 

3.3.1 F
lo

w
 in

 a R
o

u
n

d
 P

ip
e

 

P
u

m
p

in
g

 a fluid through a pipe or duct is
a com

m
on, and arguably the m

ost im
po

rtant, 
ap

plication o
f fluid m

echan
ics. S

ociety could not function w
ithout the w

ater. steam
. air. 

natu
ra! gas, o

il, and o
ther hydrocarbons transpo

rted via piping system
s. O

u
r hom

es and 
w

o
rk

p
laces d

epend o
n central heating

, ventilatio
n. and air conditioning. Indeed, social 

historians in the U
nited S

tates have com
m

ented
 that the m

igration o
f people to the 

sou
th

em
 states after W

o
rld W

ar Il w
ould not have occurred w

ithout the universal avail­
ability o

f air conditio
nin

g. Y
irtually all engines require delivery o

f fuel, lubricant. and 
co

o
lant through a pipe o

r hose. C
an yo

u think o
f other im

po
rtant technical applicatio

ns 
o

f th
ese system

s? D
o

es pipe flow
 also occur in biological system

s~ 
In

 this first case study w
e consider steady, fully developed incom

pressible flo
w

 in a 
straig

ht, horizon
tal, round pipe as show

n in Figure 3.8. T
he adjective "steady" im

plies 
th

at the flow
 is unchanging in tim

e, an
d ·'fully developed

" im
plies th

at the flow
 is the 

sam
e at ev

ery
 locatio

n alo
ng the pipe. ''lncom

pressible" here im
plies that the fluid den­

sity is co
nstant. T

h
is ty

pe o
f flow

 com
m

only occurs in the m
ovem

ent o
f liquid throu

gh 
relatively long pipes subjected

 to a continu
o

us pum
ping actio

n. In later chapters w
e 

sh
o

w
 h

o
w

 to
 handle a rectangular, square. or other shape for the pipe or duct, as w

ell as 
flow

s th
at are no

t steady or fully develo
ped. L

ow
 speed gas flo

w
 occurs at constant 

d
en

sity, so
 the techniques dev

eloped in this case study m
ay also be used to analyze flow

 
o

f air in
 h

eatin
g, v

entilating. and air-conditioning system
s. 

Length. L 
-1 

: .-. -... ··.,;~·:-: ·:, 

----
.....___ '\ 

Fluid w
i1h 

\ A
verage O

ow
 

viscosity µ 
D

iam
eter. D

 
\ 

' 
I velocity. V

 
and density p 

\ 
·; 

{ 
R

oughncss. e ~ 
;, 

.
/
 

.. :;::•;,~:. ·=--~---~ s ;:·-~ 
·-·-·:-·-:--.·:•· 

L. 
Prcssurc drop . .).p ~

 P1 -
P1 

L 
F

ig
u

re 3
.8 V

ariables for fully developed flow
 in a horizontal pipe. 
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N
o

te that this is
a transcendental equation an

d
 w

ill require iteration lo
 d

eterm
in

e the fric­
tion factor for know

n values o
f relative roughness and R

eynolds num
ber. W

e m
ay

 al 
determ

ine the friction factor by m
eans o

f the C
hen equalton

. an
o

th
er em

p
irically b

as s~ 

relationship
: 

c 

{ 
[ 

e
/D

 
5

.0
4

5
2

 
((e

/ D
)1.1

09s 
5

.8
5

0
6

 )
]
}

-
2 

f 
=

 
-2

.0
 log 

3
.7065 -
~
 lo

g
 

2
.8257 

+
 R

e0
.89

8
1 

(3
.1 %

) 

E
X

A
M

P
L

E
 3

.5 

S
O

L
U

T
IO

N
 

N
orm

al saline solution flow
s w

ith an average velocity o
f V

 =
 

0
.5

 m
m

/s
in a 2 m

 len
gth 

o
fp

o
ly

m
er tubing before enlering a patient's arm

 intravenou
sly. lfth

e inside d
iam

eter o
f 

tu
b

in
g

 is D
 =

 
2 m

m
, determ

ine the friction factor, volum
e flow

rate, an
d

 p
ressu

re d
ro

p 
in th

e tu
b

in
g. A

ssu
m

e thal the saline solution has the sam
e properties as w

ater, an
d

 that 
the IV

 line is horizontal. 

W
e are ask

ed
 to d

eterm
in

ef, Q
, an

d
 t!.p fo

ra flow
 o

f saline through a h
o

rizo
n

tal tu
be w

ith 
L =

 
2 m

 an
d

 D
 =

 2 m
m

. T
h

is problem
 can

 be solved w
ithout the aid

 o
f a sk

etch. W
e are 

g
iv

en
 V

 =
 

0
.5

 m
m

/s
and assu

m
e conditions at 2

0°C
 for w

ater. F
ro

m
 A

p
p

en
d

ix
 A

 w
e fi n

d
 

p =
 

9
9

8
 k

g
/m

3 a
n

d
µ

.=
 I x 

10
-

3 (N
-s)/m

2. T
h

e problem
 is solv

ed
 b

y
 using E

q. J
.15 

[t:.p =
 

p
f(L

/ D
)(\/ 2 /2

)) 10 find /:.p an
d

 E
q. 3.16 lo find Q

. W
e begin

, h
o

w
ever, b

y 
retu

rn
in

g
 lo E

q
. 3

.1 (R
e =

 
p V

 L
/ µ. ) to determ

ine R
e and then u

sin
g

 eith
er E

q
. 3. 18 o

r 
3

. 19 to
 d

eterm
in

e th
e appropriate friction factor for the calculated v

alu
e o

f R
e. 

S
u

bstituting th
e foregoing v

alues into the ex
p

ression fo
r R

e y
ields: 

p VD
 

(9
9

8
 k

g
/m

3
) (0

.5
 X

 
I 0

-
3 m

/s) (2
 X

 
I o-

3 m
) 

R
e =

 
-
-

=
 
_

_
 ....::._ _

_
_

_
_

_
_

_
_

_
 __

;_
 =

 
I 

µ. 
[ I x 10-3 (N

-s)/m
2] [ I (k

~
-~

)/s2
] 

S
in

ce R
e <

 
2

3
0

0
, th

e flow
 is lam

inar, and w
e can

 use E
q. 3. 18 to

 find th
e frict1o

n
 fac­

to
r: f 

=
 
6

4
/ R

e =
 
~
 =

 
6

4
. N

ex
t, use E

q
. 3

.15 to
 sol v

e for lhe pressu
re drop: 

t:.p =
 
p

f i :
2 =

 
(9

9
8

 k
g

/m
3)(6

4
) ( O.~; m

) [ (0.5 x 
1~-

3 m
/s)2

] 

=
 

7
.9

8
 N

/m
2 =

 
7

.9
8

 P
a 

F
in

ally
 w

e u
se E

q. 3
.16 to

 find the v
o

lu
m

e flow
rate: 

-
-

rr D
2 

[rr(2
 x 10-

3 m
)

2
] 

Q
 =

V
A

=
 V

-4
-

=
 

(0
.5 x 10-

3 m
/s) 

4 
=

 
1

.5
7

 x 10-
9 m

3/s 

A
 v

ery
 sm

all v
o

lu
m

e flow
rate lik

e this can
 also b

e ex
p

ressed
 in

 m
illilite

rs per m
in

u
te: 

_
9 

3 
( 

10
2 c

m
)

3 ( 
I m

L
) ( 

6
0

 s 
) 

. 
Q

 =
 

(1
.5

7
 x 

10 
m

 /s) 
-
-

-
-

-
-

-. 
=

 0
.0

9
 m

U
m

m
 

m
 

I cm
3 

I m
m
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S
O

L
U

T
IO

N
 G

asolin
e flow

s w
ith an ave 

- . -rage vclociiy of V
 =

 4 flis in a horizontal steel pipe of length 
L

 =
 

I 0
0

 ft w
ith an inside diam

eter D
 =

 
I in. T

he pipe connects the bulk storage tank 
1

0
 th

e p
u

m
p

 al a
g

as station as show
n in F

igure 3.10. D
eterm

ine the friction factor, vol­
u

m
e flow

rate, pressure drop, and pum
p horsepow

er required for this llow
 if the relative 

ro
u

g
h

n
ess o

f the pipe is e ID
 =

 0.001
. T

he fluid propenies are p =
 42.45 lbm

/ft3 and 
µ. =

 
1.96 x 10-

4 lbm/(ft-s). 

G
as pum

p 

T
ank 

L =
 100ft 

F
igure 3

.1
0

 Schem
atic of gas station for Exam

ple 3.6. 

W
i: are asked lo determ

ine f
, Q

, !:!,.p , and P
 required fora flow

 of gasoline through a hor­
;n

m
tal p

ipe w
ith L

 =
 

l 0
9

 h
and D

 =
 

I in. Figure 3.10 is an adequate sketch of the llow
 

,it~•ation
. W

e are given V
 =

 4 flis, p =
 42

.45 lb,/ft 3• and
~

=
 1.96 x I0-

4 lb
J(ft-s). 

' :,~ !Jroblem
 is solv

ed by using E
q

. 3.15 [!:!,.p =
 p

f (L
/ D

)(V
2/2) 1 to lind l:!,.p , Eq. 3.16 

, ·:, 
=

 
V

A
) to find Q

. and E
q. 3

.17 (P
 =

 Q
!:!,.p) to find P

. W
e begin of course by using 

· .. , 3
. I (R

e =
 

p
\l L

/ µ.) to determ
ine R

e and then use cither E
q. 3.18 or 3.19 to deter­

:'.:,,,e the frictio
n factor. 

S
u

b
stituting appropriate values into the expression for Re yields: 

p
\lD

 
(4

2
.45 lb

111 /ft 3)(4 flis)( \ in.) ( I ft/ 12 in.) =
 7

_22 x 10 4 

R
e =

 µ 
=

 
1.96 x 10-

4 lbm
/(ft-s) 

S
ince R

e >
 

2
3

0
0

 
the flow

 is turbulent and w
e m

ust use E
q. 3. 1090a or 3d. l9Rb to fi7.n2d2tl001c 

' 
· 

· 
/D

 -
O

 
l an 

e =
 

• 
fric tio

n 
factor. C

hoo
sing E

q
. 3

.19
a and subsututm

g e 
-

· 
gives: 

( 

4 
3.48 X

 10-S) 
_

I_
=

 
-

2
.0 lo

g
 

2.7 x 10-
+

 
J"1 

...f! 
. 

) 
. 

. 
a s readsheet (still tim

e-consunu
ng . or a 

U
sin

g
 rep

eated h
an

d
 calculattons (pam

ful), 
fip d f _ o 023. 

( o 
d idea) w

e 
11 

-
• 

sy
m

b
o

lic m
an

ip
u

lato
r program

 0°
0 

~
 



120 1, 
C

A
S

E
 s

ru
o

lE
S

 IN
 F

L
U

IO
 M

E
C

H
A

N
IC

S
 

~ 
the pressure drop. 

N
exr, use Eq. 3.15 ro sofve 

or 
JO

0 ft 
] [ (4 ft/s)2] 

L
 V

2 _ 
(4 2 45 Jb /ftl)(0.023) [

"
 ;" \(

I ft / I 2 in.) 
2 

t>
p =

 p
f 75 T

 -
. 

m
 

-
9373 lbm

/(ft-S
2) 

. 
· 

f 
-

. . 
f g 

as a unrt conversron 
actor: 

. 
the defim

tron o 
c 

To obtain 6.p in com
m

on units, w
e use 2 ( 

I lbr-s 2 
) 

-
?91 lbr/ft 2 

t,p
 =

 9373 lbm
/(ft-s ) 

32.2 lbm
•ft 

-
-

( 
I ft 

)
2 

O
 

· 
29

1 lb /ft2 
-
-

=
 2. 

psr 
6.p =

 
r 

12 in. 

N
ext w

e use Eq. 3.16 to lind the volum
e flow

rate: 

-
-,r D

2 
[,r( I in.)2( I ft/ 12 in.)2] =

 2. 18 x 10-2 ftl/s 
Q

=
V

A
=

V
4

=
(4

ft/s
) 

4 

-2
 

J 
( 

1 gal 
) 

( 
60 s ) =

 9.8 gal/m
in 

Q
 =

 (2. 18 x 10 
ft Is) 

0. 13368 ftJ 
I m

in 

Finally, use Eq. 3. I 7 to lind the pum
p horsepow

er: 

[ 
I hp 

] 
P

 =
 Q

t!.p =
 (2. 18 x 10-2 ftJ/s)(29

1 Ibr/ft2) 
550 (ft-lbr)/s 

=
 0

.0
1 hp 

The volum
e flow

rate of ~
 I O

 gal/m
in seem

s reasonable for a gasoline pum
p at a sen ice 

station. The pow
er required to operate the pum

p is sm
all because w

e are conside•·111g 

only the pressure drop needed to overcom
e friction. In m

ost cases the pum
p m

u~t al so 

produce enough pressure to overcom
e the hydrostatic pressure variation due to c'c·1a-

1ion change as w
ell as losses due to valves and other fittings in the pipe ner IV,>rk. 

W
e w

ill discuss !hese additional aspects of piping system
 design in C

hapter 13. ·:·his 

problem
 can aJso be solved by using the C

hen equation, E
q. 3.19b, to estim

aic· rhe 

friction factor. 

3.3.2 Flow
 Through A

rea C
hange 

If you exam
ine a pipe or duct system

 in a building, it is evident that changes in the cross­

sectionaJ area of a flow
 passage are quite com

m
on (Figure 3.11 ). T

he area ch
ange 15 

often abrupt ow
ing to space !im

itations, and turbulent llow
 is the no

rm
 in these system

s. 

In this section w
e provide a m

ethod for using a loss coefficient to estim
ate the frictiona l 

pressure drop in steady incom
pressible turbulent llow

 through a sudden
 area change. 

FrictionaJ pressure drops aJso occur w
hen llow

 passes through nozzles, diffusers, bends, 

vaJves, entrances, exils, and other features of a pipe or duct system
. M

ethods to com
pu

te 

the pressure drop through these elem
ents w

ill also be described later (see C
hap

ter I 3). ,. 
3
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In exam
ining the flow

 through an area change it is critical to realize that even in 

the absence of frictional effects, there is alw
ays a pressure change due to the change in the 

speed o
f the flow

 as it passes through the area change. (T
his is the change in pressure pre­

dicted by the B
ernoulli equation as discussed in C

hapter 2.) T
he total change in pressure 

as a flow
 passes through an area change m

ay therefore be thought of as the sum
 of a pres­

sure change associated w
ith thechange in average flow

 velocity (w
hich m

ay be eitherpos­

itive or negative depending on w
hether the flow

 slow
s dow

n or speeds up) anda frictional 

pressure drop (a negati ve pressure change). W
e m

ode) this effect in turbulent flow
 as 

O
id 

yo
u 

recogn
ize 

that 
if 

th
e 

frictio
n

al 

pressu
re drop is se

t to zero in 
E

q. 3
.2

0
, 

this 
equation 

b
ecom

es 
id

en
tical 

to 

B
ernou

lli's eq
u

ation (E
q. 2.11) for a flow

 

alo
ng a horizontal path? N

otice a lso
 how

 

th
e em

p
irical m

ode
l here (E

q. 3
.2

0
) bu

ilds 

on an
 earlier ideal result by adding a te rm

 

to
 acco

u
n

t fo
r friction. 

/J2 -
/J

I =
 [½p(V? -

iin
] -

1',.p
F

 
(3

.2
0) 

w
here 

/J2 
is the dow

nstream
 pressure, 

p I 
is the up­

stream
 pressure, and /',.p F

 is the frict ional pressure loss. 

T
he velocities ii1 and \/2 in rhis form

ula are the average 

velocities in the upstream
 and dow

nstream
 sections. 

W
e can calculate 1',.p

F
 by using em

pirical results. N
ote 

from
 

Eq. 
3.16 that since the sam

e volum
e flow

rate 

passes 
through 

each 
seclion 

the 
average 

veloci1ies 

are related by 

V
1A

1 =
 V

2A
2 

(3.2
1) 

N
ow

 consider w
hat happens in the idealized case of a frictionless flow

 through an 

area decrease. Since the frictional pressu
re loss /',.p

F
 is assum

ed 10 be zero, E
qs. 3.20 and 

3.2
1 show

 that the value of the pressure dow
nstream

 is less than 1ha1 upstream
 because 

lhe area decrease causes the flow
 10 speed up. C

onversely. for an increase in area the 

value o
f the pressure dow

nstream
 is greater than that upstream

 because the flow
 slow

s 

dow
n in the larger area dow

nstream
. E

quation 3.20 show
s that the effect o

f friction is lo 

cause a low
er pressure dow

nslream
 than the ideal result irrespective o

f the area change. 

T
he four basic 1ypes o

f cross-sectional area change are show
n in F

igure 3.12. A
s 

noted earlier, flow
s in system

s of engineering im
eresl usually have high R

eynold
s num

­

bers and are turbulent. B
ecause lhe section of a pipe or duct in w

hich area change occurs 

is often relatively short, the portion o
f the frictional pressure loss due to viscous effects 

at the w
alls is negligible in com

parison to the loss caused by turbulence. T
hus, H

uid 

viscosity is no
t an im

portant param
eter in these flow

s. O
bservation suggests Lhat for 

Figu
re 

3.11 D
uctw

ork 
system

 
w

ith 
several area changes. 

" 
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F
luid flo

w
 direction 

♦
 

F
luid flow

 direction 

-
(B

) 
(A

) 

Fluid flow
 direction 

.. 
F

luid flo
w

 direction 
♦
 

(D
) 

(C
l 

Figure 3.12 Schem
atics of area changes: (A

) enlargem
enl, (B

) gradual contraction. (C
) sudden 

expansion. and (D
) sudden contraction. 

:,; gradual enlargem
ents or contractions, the pressure loss in turbulent flow

 isa
 functio

n o
f 

the inlel and outlet areas. fluid density, average velocity through the section. an
d

 an ang
le 

defining the geom
etry o

f the area change. F
o

ra sudden area change. h
o

w
eve

r, th
ere is no 

angle to consider, hence the pressure change depends only upon the rem
ainin

g variables. 

C
D

/V
ideo L

ibrary/Flow
 P

ast a B
ack S

tep 

S
u

d
d

e
n

 E
xp

an
sio

n
 

S
uppose w

e analyze the case o
f an abrupt enlargem

ent o
f a round p

ip
e as ,h

o
w

n in 
F

igure 3.12C
. W

e assum
e that in a turbulent flow

 through a sudden area cb::nge th
e 

frictional pressure loss 
t.p

 F
 is described by a functional 

relatio
nship o

f tne 
form

 
t.p

F
 =

 f
(A

1 , A
2, p

, 111 )
, w

here A
1 is the inlet area, A

2 is the outlet area, p is :h
e fluid 

density, and 1/1 is the average inlet velocity. N
ote that w

e d
o

 not h
av

e to inclu
d

e \/2 in 
our analysis since E

q. 3.16 m
akes its inclusion redundant. B

y usin
g d

im
ensio

n
al analy­

sis. w
e can w

rite the frictional pressure drop as I 
• 2 

t.p
F

 =
 K

q
p

V
1 

(3
.22) 

w
here conventional engineering practice introduces a dim

ension less loss co
effic

ien
t K

 E
 

forthe enlargem
ent. N

ote that w
e can think o

f ¼
 p iif as representin

g the kinetic e
nerg

y
 per 

unit volum
e in the upstream

 flow
. T

hus, the result suggests that the frictional p
ressu

re drop 
m

ay be represented as som
e fraction o

f the upstream
 kinetic en

erg
y co

n
ten

t o
f the fluid

. 
F

rom
 the available experim

ental data w
e can also deduce that K

 E
 is

a function o
f th

e area 
ratio ofthe enlargem

ent. T
he problem

 reduces to finding the enlargem
ent loss coefficient. 

since w
hen K

 E
 is know

n, the frictional pressure drop can be calculated from
 E

q
. 3

.22
. 

T
he enlargem

ent loss coefficient for high R
eynolds num

ber turbulent flow
 is sho

w
n 

in Figure 3.13
. N

ote that the enlargem
ent loss coefficient is alw

ays positive. lf th
e inlel ... ---
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1.0 
E

xpansion 

~i:\~
 

=
IF

=
 

'V
) ·G 

A
I --+

-
A

2 
a
E

 
0.4 

~
 

$ 8 0.: 
_

J
 

A
R

=
 A

1 /A, 
0 

0
.2 

0.4 
0

,6 
0.8 

1.0 
A

rea ratio
, A

R
 

F
igu

re 
3

.13 Loss 
coefficients 

for 
flow

 
through 

a 
sudden 

ex
pansion. 

and outlet areas are equal, there is no frictional p
ressure loss, and the loss coefficient 

m
ust be zero. lf the ratio o

f the outlet area to inlet area is very \arge, the loss coefficient 
sho

u
ld

 approach unity because all the kinetic energy in the incom
ing flo

w
 is d

issipated. 

E
X

A
M

P
L

E
 3

. 7 

S
O

LU
T

IO
N

 

W
h

at is the frictio
na

l pressure d
ro

p in air flow
ing in a round duct due 10 a sudden change 

in d
iam

ete
r fro

m
 0

.4
 m

 to 0
.6 m

? T
he flow

rate in the du
ct is 0.5 m

3/s. W
hat is the total 

p
ressu

re chang
e across this enlargem

ent? 

W
e are ask

ed
 to lin

d
 the frictional pressure drop and total pressure chang

e across a sud­
,k

n
 en

larg
em

en
t in a p

ipe. F
igure 3.13 w

ill serve as a sketch of lhe geo
m

etry o
f the en­

la
rgem

ent. T
h

e first part o
f this problem

 is solved b
y using E

q
. 3.22 (!',.p

F
 =

 K
 E

 ¼
 p V(). 

T
h

e area ratio is found to be 
-

~
 =

 rr D
!/4 =

 (~)2 = (
0.4 m)2 = 0

.444 
A

2 
rr D

2 /4 
D

2 
0

.6 m
 

B
y using F

igu
re 3.13

, w
e find a loss coefficient o

f K
 E

 "'0.3. N
ext w

e determ
ine the up­

stream
 av

erage velo
city, 1/1

• using the definition o
f volum

e flow
rate given in E

q
. 3.16 

(Q
 =

 1/A
). S

o
lvin

g th
is exp

ressio
n

 for \/1 and substituting know
n values g

ives 

V
 -

_Q_ -
_

Q_ 
=

 
0

.5 m
l/s 

=
 3.98 m

/s 
1 -

A
1 -

rrD
;/4 

rr(0
.4

m
)2/4 

N
e

x
t use E

q
. 3

.22
, alon

g w
ith the d

ensity o
f air at 20°C

 (A
ppendix A

) P
 =

 1.204 kg/m
'. 

to lind the frictio
nal pressure loss: 

t:,p
F

 =
 K

d
p

ii?
 =

 0
.3 (½)(1.204 kgim

3)(3.98 m
fs)2 =

 2
.86 Pa 
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[IJ N
ext find \/2 using the volum

e flow
rate: 

_ 
Q

 
Q

 
0.5 m

3 /s 
_ 

. 
V, =

 -
=

 -
=

 ~
 -

1.77 m
/s 

. 
A1 

rr Dif4 
rr(0.6 111) /4 

Finally, use Eq. 3.20 to find 1he total pressure change across the enlargem
ent. 

[
I 

(
-

, 
-?)] 

Pl -
PI ;::: 

2P v, -
Vi 

-
t:,.pr 

=
 /t(l .204kg/nr 1)[(3.98 m

/s)2
-

(I.77 m
/s) 2J) -

2.86 P
a 

P
i -

PI =
 7.65 Pa -

2.86 Pa =
 4.79 Pa. 

C
D

M
deo Library/Forw

ard Facing Step 

Sudden C
ontraction 

A
 sim

ilar analysis of the turbulent flow
 in a sudden contraction as show

n in Figure 3.14 
leads to the introduction of 1he contraction loss coeffictent K

c and the follow
tng for­

m
ula for calculating the pressure drop 

tipr =
 K

dpV
l 

(3.23) 

N
ote carefully 1ha1 the contraction loss coefficient is defined in term

s o
f the l inetic en­

ergy in the higher speed outlet flow. The value of the contraction loss coefficient can be 
found in Figure 3.14. lf the inlet and outlet areas are equal, there is no pressur..: loss. and 
the contraction loss coefficienl m

ust be zero. For very sm
all ratios of outlet a,ea to inlet 

area, the loss coefficienl has been found 10 approach 0.5. 

3.3.3 Pum
p and Fan Law

s 

The preceding case studies have dealt w
ith calculating the frictional pressure drop in a 

section of a pipe or in a sudden area change. W
e now

 consider the problem
 o

f choosing 
a pum

p or fan w
ith the perform

ance needed to m
ove fluid through a system

 once the_ 
total pressure drop al the desired flow

rate has been determ
ined. It is beyond the scope 01 

this section to address the question of w
hat type of pum

por fan should be selected. For 

Figure 3.14 Loss coefficients for Row
 through a 

sudden contraction. 
C

ontraction 

.. 
t't:_6t 

i,,.., 
C

o
\

;f 
"· 

1.0 
~
 

~
 ~V
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~
 

A
1

-
A
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~
 

A
R
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A
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exam
ple, in air-handling applications one can choose a centrifugal or vane-ax

ial fan 
(Figure 3. 15A

). Sim
ilar choices exist for pum

ps (Figu
re 3. 158). W

hen a certain type o
f 

device has been chosen, and the m
anufacturer selected

, it is necessary to pick the 
appropriate size 

m
achine from

 
the m

anufacturer's fam
ily 

of geom
etrically sim

ilar 
eq

uipm
ent. In fact, Lhe overall process of choosing a pum

por fan is called sizing. T
he 

pum
p and fan law

s developed next w
ill allow

 you to use inform
ation provided by the 

m
anufacturer to predict Lhe characteristics of geom

etrically sim
ilar, differently sized 

devices. T
hey w

ill also give you the ability to predict the perform
ance o

f a specific 
device under different operating conditions. 

In our earl i er analysis of flow
 in a pipe or duct system

 the focus w
as on the frictional 

pressure drop. T
here are other contributions to the total pressure drop in a system

, for ex­
am

ple, a change in elevation. It is custom
ary to use a param

eter called total head, H
, in 

the design of pipe and duct system
s. T

his total head, w
ith dim

ensions o
f energy per unit 

m
ass (or equivalently (L 2r-

2
}), isa m

easure o
f the total load seen by a pum

por fan m
ov­

ing fluid through the system
. T

he pow
er, P

, req
uired by the pum

por fan is also an im
por­

tant param
eter in lhe design o

f these system
s. T

hus, in analyzing the perform
ance o

f a 
pum

por fan, both the head and pow
er are considered to be im

portant dependenl variables. 
W

e begin our analysis w
ith the observation that for geom

etrically sim
ilar m

achines 
o

f a given type, only one length scale is required to specify lhe m
achine geom

etry. T
his 

leng
th scale is conveniently taken to be the diam

eter D
 o

f the im
peller or other rotat­

ing elem
ent. W

e assum
e that the head and pow

er o
f a fan or pum

p depends on w
, lhe 

angular speed of lhe im
peller. the volum

e flow
rate, and the density and viscosity o

f the 
fluid

. T
hus, w

e postulate that the head and pow
er are functions o

f these variables: 

H
 =

 J
1 (D

, Q
, w

, p
, µ,) 

and 
P

 =
 h (D

, Q
. w

. p
. µ, ) 

A
 dim

ensional analysis (to be perfom
1ed in C

hapter 9) w
ould show

 that the dim
ension­

less head can be expressed as follow
s 

H
 

( 
Q

 
p

D
2w) 

w
2 0

2 =
 g, 

w
D

3
, -

µ
-

(3.24a) 

(A
) 

C
entrifugal Fan 

A
xial Fan 

Figu
re 3.15 Schem

atics of com
m

on designs of (A
) fans and (8

) pum
ps. T

he three-lobe, gcar, 

and sliding-vane devices are all rotary pum
ps . 

~
 

~
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0
udel 

Jnlet 

Inlet 

Three-Lobe Pum
p 

Sliding-V
ane Pum

p 

lnlel 

(B
) 

Single Volute Pum
p 

Figure 3.15 Continued. 

G
ear Pum

p 

C
entrifugal Pum

p 

Fixed-V
ane D

iffuser Pum
p 

O
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w
hile the dim

ensionless pow
er m

ay be w
ritten as 

-
-

-
g2 

-
-

-
-
-

P
 

( 
Q

 
p

D
2w) 

pw
3 D

5 -
w

D
3' 

µ, 
(3.24

b) 

In pum
p

 an
d

 fan engineering, the dependent dim
ensionless groups H

 /w
2 D

2 and 

P
 / p

w
3 D

5 are k
now

n as the head and pow
er coefficients, respectively. T

he independent 

dim
ensio

nless grou
p 

Q
/w

D
3 is 

know
n 

as 
the 

flow
 

coefficient, 
w

hile 
the 

group 

p
D

2w
/ µ, can be considered to be a form

 o
f the R

eynolds num
ber b

ecause the product 

D
w

 has the dim
ensions o

f velocity. 

In co
nsidering the scaling o

f tw
o geom

etrically sim
ilar system

s, the principle of 

sim
ilitu

de, (also
 discussed in C

hapter 9) tells us that all independent dim
ensionless 

g
ro

u
ps m

u
st b

e the sam
e for each system

. H
ow

ever, in dealing w
ith pum

ps and fans o
f 

reasonable s ize, it is found that the perform
ance is independent of R

eas defined earlier. 

T
hus the appropriate scaling law

 for com
paring tw

o pum
ps o

r fan
s in the sam

e fam
ily is 

Q
1 

Q
2 

w1 D
f == w2D

? 
(3.25a) 

If the flow
 coefficient o

f tw
o m

achines are equal, then the head and po
w

er coefficients 

are a lso equal: 

H
1 

H
2 

w
2D

2 == w
2D

2 
I 

I 
2 

2 

and 
P

i 
P

2 

p
w

f Dr == pw
~ D

~
 

(3.25b) 

T
h

ese eq
uations are know

n as the pum
p law

s or fan law
s. N

ot o
nly do they relate the 

perform
ance o

f tw
o d

ifferently sized m
ach

ines in the sam
e fam

ily, but they also allow
 us 

to d
eterm

ine how
 a given m

achine w
ill operate under a new

 set of operating co
nditions. 
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T
o

 upgrade a 
ventilation system

 it is requ
ired that the fl ow

rate 
be increased

 fro
m

 

.:i00O
 ft 3/m

in to 8
0

0
0

 ft 3/m
in. T

his is to be accom
plished by increasing the angu

lar ve­

locity o
f the v

entilation fan
. lf the current system

 o
perates at a fan rpm

 o
f I 000, w

hat fan 

1 p
m

 is req
uired

 fo
r the upgrade? W

hat w
ill be the pow

er increase for the upgrade? 

U
se the fan law

, E
q. 3

.2
5

a, to detem
1ine the new

 angular velocity (notin
g

 that the fan is 

the sam
e so

 th
e characteristic dim

ension D
 is constalll). 

( Dt) upgrade == ( Dt ) e,istin
g

 

_ 
( w

 ) 
_ 

. 3 
. 

( 
I 0

0
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p
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N
ow

 use E
q. 3.25b to find the increase in pow

er (w
ith fluid density constant). 

( w
3 ~

5 P) upgrade == ( W
3 ;

5 P) existing 
P

upgrude == W
~pgrade == ( I 600 rpm

): =
 4

_ 096 

P
existing 

W
exisring 

( I 000 rpm
)· 

Thus, the increa,e in rpm
 of 60%

 results in a pow
er increase o

f over 300%
. 

-
C

 ; ] 
C

D
/B

oundary Layers 

[I] 
3.3.4 Flat P

late B
oundary Layer 

T
he case studies thus far have involved interna) flow

. A
 flow

 is classified as interna) if 
the fluid m

oves w
ithin an interior space defined by a num

ber o
f bounding w

alls. Pipe 
flow

 is obviously of this type, as is the flow
 in a pum

p. E
ngineers also deal w

ith m
any 

im
portant externa! flow

s, i.e., flow
s in w

hich a fluid m
oves around an object. A

n ex
ter­

na! flow
 also occurs w

henever a body such as a vehicle m
oves through a flu

id
. T

he next 
three case studies deal w

ith externa) flow
s. 

C
onsider w

hat happens w
hen flow

 occurs over a flat plate. A
s show

n 
111 F

igure 
3. 16, the fluid at the plate surface does not m

ove relative to the plate. A
 sho

n
 distance 

aw
ay from

 the plate, how
ever, the fluid is m

oving at the free stream
 velo,:ity. T

he 
effect of viscosity is to create a boundary layer near the plate in w

hich thc velocity 
changes sm

oothly and continuously from
 zero on the plate to the free strearn value. 1 

T
he boundary layer thickness increases dow

nstream
 o

f the Ieading edge, and the flow
 

in the boundary layer eventually changes from
 lam

inar to turbulent (see Figurc 3.17). 
B

ecause there is a transverse velocity gradient at the plate surface, the fluid exerts a 
shear stress on the plate that results in a drag force (recall that N

ew
ton 's Iaw

 o
f vis­

cosity relates the shear stress to the velocity gradient via the fluid viscosity). 

I C
 J I CD

/H
istory/Ludw

ig P
randtl 

~
 

A
 quantity o

f great interest in the flat plate boundary Jayer is the w
all shear stress. 

lf w
e know

 how
 the w

all shear stress varies along the plate, w
e can calculate ibe 

1G
iven that the fluid velocity and viscous effects are Iikely 10 be im

portant, w
hich dim

ension~ 
less group do you expect 10 see play a m

ajor role in the m
ode! for the flat plate boundary Iayer · 

---

Frecs1rcam
 

vclocity, V
 

y 

3
.3 

C
A

S
E

 S
T

U
D

IE
S

 
\ 

1
2

9
 

V
elo

city 
profilc 

Flat plale 

B
oundary 
laycr 

Figure 3
.1

6
 O

evelopm
ent of the boundary layer on a flat plate. 

Frecstrcam
 

velocity. V
 

y 
Lam

inar 

X
 

I : T
ransition 

I I I 

T
urbulent 

Fig
u

re 3
.1

7
 L

am
inar-to-turbulent transition of the boundary layer on a flat plate. 

The con
ce

p·t of a bou
ndary layer w

as con
­

ceived 
by LL!dw

ig 
P

randtl, w
ho reasoned 

that in a high R
eynolds num

ber flow
 ove

r a 

I body, viscouf, e
ffe

cts w
ould be sign

ifican
t 

only w
ith

in the bou
ndary layer. H

is bound
­

ary laye
r th

e
o

ry w
as on

e o
f the m

ost im
­

portan
t co

n
tributions lo

 fluid m
echanics in 

the tw
e

n
tie

th
 ce

n
tury. 

frictional force applied by the fluid to the plate. T
he flat 

plate boundary layer m
ay be used 1

0
 m

ode! flow
 over 

relatively flat surfaces such as ship hulls and the w
alls 

o
f various structures. and as a crude approx

im
ation to 

the m
ore com

plex boundary layers on airplane w
ings. 

fuselages, and sim
ilar surfaces. 

O
bservations suggest 

that in 
an 

incom
pressible 

flow
 at high R

e the shear stress rw
 on the w

all in a flat 
plate boundary layer (Figure 3.18) depends on the dis­

tance from
 the leading edge x

, the freestream
 velocity V

, and the fluid density and vis­
cosity. T

hus w
e propose a relationship betw

een these variables o
f the form

: 

rw
 =

 f(x
, V

, p
, µ

) 

D
im

ensional analysis reveals that this relationship can be expressed as 

~
 =

 g (pVx) 
½

 P vi 
µ. 

(3
.2

6) 
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Figure 3.1
8

 Shear stress due 
to flow

 over a flat plate. 

L 
F

o
 

~ 

It is custom
ary in boundary layer analysis to define the skin friction coefficient C

 I as 

rw
 

C
J =

 ~
V

' 
(3.27) 

2P 
-

and to define a R
eynolds num

ber based on the distance x from
 the leading edge as 

p
V

x 
Rex =

 µ 
(3

.28) 

From
 the dim

ensional analysis w
e can also conclude that there isa

 relationship betw
een 

the skin friction coefficient and the R
eynolds num

ber of the form
 

C
J =

 C1(R
ex) 

(3
.29) 

The force exerted by the shear stress on one side of a plate of w
idth w

 and !c:ngth L 
show

n in Figure 3.18 is found by integrating the (variable) shear stress along the length 
ofthe plate. This frictional force, ord

rag (since it acts in the flow
 direction). is g

iven by 

Fo =
 w

 1L rw
(x

)d
x 

and can also be w
ritten in term

s of the skin friction coefficient as 

1
L 1 

F
o

=
w

 
-

p
V

2C
1(x)dx 

0 
2 

(3.30) 

W
e can calculate the drag on a Hat plate due to a lam

inar or turbulent boundary layer 
by using Eq. 3.30, provided w

e have an expression for the appropriate skin friction 
coefficient. 

f 
, I C

D
/Special Features/B

lasius B
oundary Layer G

row
th 

Lam
inar B

oundary Layer: H
. B

lasius, a student of Prandtl's, developed an appr~xi­
m

ate solution 
for the 

lam
inar flat plate boundary 

Jayer 
that 

gave 
the 

follow
tng .. ......... 

A
 1am

inar boundary 
layer 

usually transi­
tions to turbulence very close to the lead­
ing edge o

f a plate
, so close !h

a
t in calcu­

lating the drag, the lam
inar portion o

f the 

I boundary layer can often be ignored and 
the w

hole boundary layer treated as if it 
w

ere turbulent from
 the lead

ing edge. 

3
.3 

C
A

S
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T

U
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expression for the skin friction coefficient: 

0.664 
C

1 =
 .Jl[e; 

(3.31) 

From
 em

pirical observation w
e know

 that the transition 
to 

turbulence 
occurs 

at 
about 

R
e, =

 5 x I 0
5

, 
so 

Eq. 3.31 is lim
ited to R

e, <
 5 x 105. 

T
urbulent B

oundary Layer: A
n approxim

ate m
ode! of the velocity distribution in tur­

bulent flow
 (see Figure 3.17) yields an expression for the skin friction coefficient of the 

form
: 

c
1 =

 
0.0594 

(R
ex)l/5 

(3.32) 

E
X

A
M

P
L

E
 3

.9 

S
O

LU
T

IO
N

 

A
 cruise m

issile 5 m
 long and I m

 in diam
eter is cruising at 200 m

/s at an altitude of 
500 m

. If the boundary layer on the m
issile skin is m

odeled as that over a Hat plate, w
hat 

is the drag force on the m
issile due to skin friction

? 

F
rom

 
A

ppendix 
A

 
w

e 
lind 

for 
air 

at 
500 m

, 
p =

 
1.17 kg/m

3 
and 

µ, =
 

1.77 x 
! 0-· 5 (N

-s)/m
2. First w

e use the critical R
eynolds num

ber of 5 x 
IQ

5 to Iocate the tran­
•;ition to turbulence: 

µ, 
[1.77 x w-

5 (N
-s)/m

2
] 

X
cr =

 R
ec,

-
=

 5 X
 la5 

3 
=

 0.04 m
 

p V
 

( 1.17 kg/m
 )(200 nvs) 

T
he lam

inar region is sm
all enough 10 be neglected. W

e w
ill use Eq. 3.32 for the skin 

t1ir.:•ion coefficient and calculate the drag force on the w
etted surface by using Eq. 3.30. 

. 
1 

21L 
I 

? 
( 

0.0594 
I 

2 {L
 

0.0594 
f-v =

 w
2

p
V

 
o 

C
1

d
x =

 w
2

p
V

-lo (R
ex)'l5 d

x =
 w

2
p

V
 lo 

(p
V

x
/µ,)'15 d

x 

. 
_ 

I 
2 ( 

0.0595 
) 

{L 
_

115 
. _ 

~ 
2 [ 

0.0595 
] (

x
415 IL) 

F
v -

w
2

p
V

 
(pV

/µ,)t/5 
lo 

x 
b 

-
w

2
p

V
 

(pV
/µ,)

1/5 
4

/5 o 

In this case the "w
idth" is the circum

ference of the m
issile, rr D

. Substituting appropri­

ate num
erical values yields: 

I 
0.0594 

(5 m
) 415 

F
o

=
rr(lm

)-(l.1
7

k
g

/m 3)(200nvs)2 
3 

., ][ 
IN

 
]}1/5 ~
 

2 
{

[(l.l7
k

g
/rn

)(200nu
s) 

1.77 x 10-5 (N
-s)/m

2 
I (kg-rn)/s 2 

=
7

4
4

N
 

~
 

~
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Figure 3
.19 Free body diagram

 
of a nonaccelerating body show

­
ing that the drag and thrust are 

cqual. 
Fluid w

ith 
propenies p 
and I' 

3.3.5 D
rag on C

ylinders and Spheres 

Fo 

w
 

O
ne of the m

ost im
portant problem

s in fluid m
echanics is to determ

ine the drag on a 

body im
m

ersed in a m
oving fluid. D

rag is the com
ponent of the total retarding force act­

ing on the body in the direction of the oncom
ing stream

. A
 bit of thought show

s that drag 

can be due to unbalanced pressures on the fore and aft surfaces of a body as w
ell as to 

skin friction in the fonn of shear stress on the w
etted surface. A

pplying N
ew

ton's sec­

ond Iaw
 to the body show

n in Figure 3. I 9 show
s that the thrust and drag forces acting 

on a nonaccelerating body are equal and opposite. T
hus, estim

ating the force (thrust) 

needed to m
ove a body through a stationary fluid at constant velocity requi res estim

at­

ing the drag. The pow
er required to m

ove the body through the fluid is the produ
ct o

f the 

m
agnitude ofthe thrust (or drag) and the speed of the body. 

The ability to calculate drag isa
 critical elem

ent in the design of virtually all m
od­

em
 m

odes of transportation. H
istorically, problem

s of this type have been investigated 

E
X

A
M

P
L

E
 3

.1
0

 

S
O

L
U

T
IO

N
 

W
hat is the pow

er required to fly the cruise m
issile in E

xam
ple 3.9? A

ssum
e th,!t the 

drag is prim
arily due to skin friction. 

The pow
er required is the product of the thrust and the flight speed. Since the m

issile is 

at constant velocity the thrust is equal to the drag 720 N
 and the flight speed is 200 m

/s, 

the pow
er required is 

P
 =

 (720 N
)(200 m

ls) (
-

- 11-
)
 (
~

)
 =

 144,000 W
 =

 144 kW
 

I N
-m

 
I J/s 

A
nother approach to this problem

 w
ould be to find a drag coefficient that includes both 

the effects of skin friction and the pressure distribution as discussed shortly. 

p 

( 

• 

/ 

3.3 
C
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experim
entally by using a w

ind tunnel to provide a flow
 over a scale m

ode!, w
ith the 

results presented in term
s of the drag coefficients. A

nalytical results are avai lable 
10 

estim
ate the drag force in a very few

 cases, but generally engineers rely on a !arge body 

o
f em

pirical results. In this section w
e discuss the drag in steady, incom

pressi ble flow
 

for tw
o very sim

ple geom
etries: an infi nitcly long circular cylinder and a sphere. For 

sim
plicity, the flow

 approaching the cylinder is required 10 be perpendicular to the axis 

o
f the cylinder, and neither the cylinder nor the sphere is rotating. 

C
D

N
ideo Library/Flow

 Past a C
ylinder 

C
ylinder 

T
he circular cylinder is a com

m
on structural shape. Exam

ples include bridge cables, 

chim
ney pipes, w

ing struts, and fl agpoles. A
lthough the geom

etry o
f a circular cylinder 

is sim
ple, the w

ake of a cylinder can be qui te com
plex (see Figure 3.3). 

N
ow

 consider the steady flow
 over a cylinder. W

e are interested in the drag force 

F
 O

 on a cylinder of diam
eter D

 and length L
. The drag w

ill depend on these tw
o geo­

m
etric param

eters as w
ell as on the velocity. density and viscosity of the fluid. W

e sum
­

m
arize the proposed relationship m

athem
atically as F

0 =
 f(

D
, L

, V
. p

, µ
). D

im
en­

sional analysis (details to be provided in C
hapter 9) then show

s that the relationship 

betw
een these groups is 

Fo 
( 

L
) 

-
-

=
 g 

R
e -

(3.33) 
, 

-
, D

 

w
here the R

e is based on the cylinder diam
eter. T

he standard w
ay to present this result 

is to w
rite: 

Fo =
 C

o
f p

V
2D

L
 

w
here the drag coeffi cient for a cylinder is defi ned as 

Fo 
C

o
-
-
-
­

-
fp

V
2D

L
 

(3.34) 

(3.35) 

N
ote that from

 E
q. 3.33 the drag coefficient is C

0 =
 g(R

e. L
/ D

). or sim
ply 

C
o

 =
 C

o ( R
e, i) 

(3.36) 

From
 E

q. 3.36 w
e conclude that the drag

o
n a cylindrical body depends on the R

eynolds 

num
ber and on the aspect ratio of the cylinder. A

s the length of the cylindrical body ap­

proaches infinity, the flow
 over the cylinder anyw

here along its length m
ust bccom

e in­

dependen
t o

f position. In this lim
iting case of long cylinders, the drag coefficient fora 

cylinder is only a function of R
e: 

C
o =

 C
o

(R
e) 

(3.37) =
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CDMdeo Library/F\ow Past a Sphere 

Sphere The drag on a sphere is needed to predict the behavior of spherical objects of all siz 
including pollen and the particles in mists and smoke, as well as the balls used in go~: 
soccer, and baseball. The drag force F D on a smooth sphere of diameter D will d ' 
pend on this single geometric parameter as well as on the fluid velocity, density e~ 

viscosity. ' an 
In this case we postulate the relationship as 

Fv = f(D, V. p. µ,) 

and find !hat the drag is given by 

I rrD2 
Fv = Cv-pV

2
--

2 4 

The drag coefficient is defined for a sphere by 

Fv 
Cv = !PV2(rrD2/4) 

(3.38) 

(3.39) 

Since there is only one length scale in the flow, namely the sphere diameter, thc drag co­
efficienl for a sphere depends only on the Reynolds number: 

Cv = Cv(Re) (3.40) 

where Re is based on the sphere diameter. 

Drag Coefficient 
Al this point the problem of calculating the drag on a cylinder or sphere is rcduced lo 
finding information on the variation of the drag coefficient with Re. Reynolds numbers 
ofinterest may range from near zero to 108 or even larger, depending on the application: 
contrast the Re for wind flow over a strand of a spiderweb with that fora guide wire on 
an early biplane in flight at 90 mph. 

Flows for which Re « I are called creeping flows. A creeping flow is dorninated by 
viscous forces. There are analytical results for creeping flows over cylinders and 
spheres, and we can take advantage of these to deduce the drag coefficients for Re « I. 
An approximate solution due to Oseen for creeping flow over a very long cylinder gives 
the folJowing formula for the drag coefficient: 

4rr 
Cv=--~~-~ 

Re[1n(2~)-o.12] 
or 

8rr 

Cv = [ (7.4)] Re log10 Re 

(3.41) 

......... 

3.3 CASE STUDIES \ 135 

The exact solution for creeping flow over a sphere was derived by Stokes. This solution 
gives the drag coefficient for a sphere in the creeping flow regime as 

24 
Cv = -(3.42) 

Re 

For higher Reynolds numbers we can take advantage of empirical data and read the 
drag coefficients for flow over a sphere or cylinder from Figure 3.20. The interesting vari­
ations in drag coefficient with increasing Reynolds number reflect changes in the flow 
structure. These changes will be discussed in more detail in Chapter 14 on externa! flow. 

G' 

10-1 10° 101 102 103 10• 105 106 

DVp 

(A) Re = I' 

100 

cJ 

0.1 I I I 1 11 I I I i I 1 \ \) \ I I ' I I i 

10-1 10° 101 102 103 10
4 

1a5 10
6 

(B) 

DVp 
Re=--;;:-

Figure 3.20 Drag coefficient for (A) a smooth sphere and (B) an infinite cylinder as a func­

tion of Reynolds number. 
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EXAMPLE 3.11 
What is the drag force on a spherical partide I µm in diameter settling in air at v = 

0.1 m/s? 

SOLUTION 
From Appendix A we find for air at 20°C: p = 1.204 kg/m

3 
and µ. = 1.82 x 

10-5 (N-s)/m2. The first step is to calculate the Reynolds number: 

p VD ( 1.204 kg/m3)(0. l m/s)( I x 10-
6 

m) 6 6 
o-3 

Re = --= -'----='----------= . x I 
µ. 1.82 x 10-5 (N-s)/m2 

Since Re « I. we can use Eq. 3.42, C0 = 24/Re, for the drag coefficient. Finally, we 

use Eq. 3.38 to calculate the drag force: 

F _ C I V2rrD
2 

(24) I 2rrD
2 

D -v-P --= --pV --
2 4 Re 2 4 

( 
24 ) I rr(l x 10-

6 
m)

2 

Fo= 6.6x10-J 2(1.204kg/m3)(0.lm/s)2 . =l.7xlo-1'N 

EXAMPLE 3.12 

SOLUTION 

A radio transmission tower is 1000 ft tall and employs 0.5 in. diameter wire cables to 

stabilize and strengthen the structure as shown in Figure 3.21. What is the normal force 

on a cable in the highest expected wind of 100 mph (146.7 ft/s)? 

Cable 
1000 ft 

Tower 

j 

Wind velocity = I 00 mph 

Wind componcnt 

nonnal to cable 

" 
Figure 3.21 Schematic of radio transmission tower for Ex­

ample 3.12. 

From the geometry, the length of the lon gest cable is 14 I 4 ft, and the wind ve­

locity is 146.7 ft/s. The component of wind velocity normal to the cable IS 

• 

.. 

3.3 CASE STUDIES 1137 

( 146.7 ft/s cos 45°) = 103.7 flis. From Appendix A we find for air at 70°F: 

p = 0.002329 slug/ft
3 

andµ.= 3.82 x 10-7 (lbrs)/ft2. Next calculate Reynolds num­

ber as 

R pV D (0.002329 slug/ft3)(103.7 ft/s)(0.S/12 ft) 
4 

e = --= ----=--=~:--::--:;:------,,----'. = 2.63 X 10 

µ. 3.82 x 10-7 (lbr-s)/ft2 

From Figure 3.20b we read a drag coefficient fora cylinder of ~ 1.2. Next we compute 

the force acting normal to the cable with Eq. 3.34: 

F O = c O ½ p V
2 
DL = ( 1.2)(0.5)(0.002329 slug/ft3)(103.7 ft/s)2 (0.5/ 12 ft)( 1000 ft) = 626 lbr 

The aspect ratio of the cable is over 3 x 104, so the assumption, implicit in using Fig­

ure 3.20b, that it is an infinite cylinder is appropriate. 

( I CD/Video Library/Flow Past an Airfoil 

3.3.6 Lift and Drag on Airfoils 

A wing _isa specially shaped body designed to produce lift when exposed 10 a stream of 

tlu1d. Ltft tS defined to be the component of fluid force acting on a body at a rioht an<>le 

lo the oncoming stream. Thus, lift isa vertical force fora vehicle or object in le:el fliiln 

and may be thought of as being created by unbalanced pressures acting on the top and 

bottom of the object. The pressure on a wing, for example, is much higher on the bottom 

surface than on the top surface. The total lift developed by a wing supports the weight of 

an atrcraft. 
Many factors influence the design of a wing. The cross section at any given point 

along a wing has the form known as an airfoil. This airfoil shape is carefully designed to 

maximize lift and minimize drag. There are many different airfoil shapes for different 

applications such as airplane wings, propellers, and impeller blades in turbomachines. 

Example airfoil shapes are shown in Figure 3.22. In this section we discuss the problem 

of calculating the total lift and drag produced by a wing with a constant airfoil shape all 

along its length under the assumption that the wing is effectively infinitely long. Real 

wings of finite length are subject to end effects, which lower their performance. Airfoils 

are discussed in more detail in Chapter 14 on elltemal flow. 

The standard nomenclature for airfoil geometry is illustrated in Figure 3.23. In 

steady subsonic flow the lift and drag forces, Fi and F o, respectively, are each found to 

depend on the thickness t, span b, chord length c, and angle of attack rx. They also de­

pend on the freestream velocity V, and on the fluid density and v1scos1ty. lf we postulate 

the dependence of lift and dragon the physical parameters as 

FL=f(t,b,c,V,p.µ.) and Fv=f(t,b,c.V.p,µ.) 
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Wright 1908 ~-----
Göttingen 387 1919 ~ 

Bleriot 1909 
_e ______ Clark Y 1922 ~ 

M-6 1926 ~ 
R.A.F.61912 

R.A.F. 15 1915 -==--R.A.F. 34 1926 ~ 

U.S.A. 27 1919 c=:::---------
NACA 2412 1933 ~ 

Joukowsky 1912 c=:-----------
NACA23012 1935 

Göttingen 398 I 919 c==:::-:------. 
NACA23021 1935 ~ 

Figure 3.22 Imponant airfoil shapes in the history of aerodynamics. 

Planfom1 
area= be 

Angle of 
attack 

~-r ---------/Y b =; span 

V -

c~~hord--/ 
Figure 3.23 Airfoil nomenclature. 

dimensional analysis leads to the following standard relationships among dimension less 

groups: 

FL ( I b ) 
~V2b =g1 Rec, -, -,a 
2P C C C 

and Fo ( I b ) 
i---v2b = 82 Rec, -, -, IX 
'i_P C C C 

where Rec is the Reynolds number based on chord length, i.e., Ree = p V c/ µ,. The lift 

and drag coefficients for an airfoil section are defined as 

CL= CL [Rec, ~. ~.a] and C0 = C0 [Rec, ~. ~. a] 
C C 

C C 

thus the lift and dragare given by 

FL = Ct4pV2bc 
and Fo=Co½PV2bc (3.43a,b) 

· of 
where the product be is called the planform area. For an infinitely long wing, the ratli° de 

span to chord, b I c, disappears from the expressions for CL and CD, and we conc u 

• 

~ 

~ ;;;:---
NACA 2412 airfoil 

I I I 
2.0 

1.6 

1.2 

0.8 ~ I J;'.-Lift coefficient 

0.4 

0 

-0.4 °6 
-0.8 Moment coefficient 

-1.2 o Re = 3.1 X 106 

□ Rc = 8.9 X 106 

-8 0 8 16 24 

(A) Anglc of atlack. a (degrees) 

0 

-0.1 

-0.2 

-0.3 

-0.4 

(B) 

0.024 

0.020 

0.016 

0.012 

0.008 

0.004 
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Figure 3.24 Experimental (A) lift and (8) drag coefficients as a function of angle of attack for a NACA 2412 

airfoil. 

that the lift and drag coefficients of a long wing area function only of Reynolds number. 

the geometry of the airfoil as expressed by the ratio of thickness to chord, and the angle 

of attack. 

Lift and drag data were made available fora !arge number of airfoils by the prede­

cessor to NASA, the National Advisory Committee for Aeronautics (NACA). Fig­

ure 3.24 shows lift and drag coefficients fora typical airfoil shape, NACA 2412. 

EXAMPLE 3.13 

SOLUTION 

Calculate the lift force on a Cessna 150 wing cruising at an airspeed of 120 mph al an aJ­

titude of 5000 ft. The wing is construcled of a NACA 2412 airfoil at an angle of attack 

of 2°. Its span is 32 ft., 8 in., and the wing planform area is 157 ft
2

. 

From Appendix B we find for air at 5000 ft (T = 41 °F): p = 2.048 x I o-
3 

slug/ft
3 

and 

µ, = 3.637 x 10-7 (lbrs)/ft2. The lift coefficient for the NACA 2412 at 2° angle of at­

tack is ~0.3 from Figure 3.24. Next, use Eq. 3.43a to calculate the lift as 

FL = CdpV
2
bc 

I [ ( ft/s ) ] 
2 

, _ 

= (0.3)-(2.048 x 10-3 slug/ft3) 120 mph 1.4667 -157 Ft-= I.:> x l0
3 

lbr 

2 mph 
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Note that the Reynolds number based on the chord length (calculated as area divided by 

length) is 

pVc 
Rer = -­µ 

( 
ft/s) (2.048 x 10-3 slug/ft') (120 mph) 1.4667 -( I 57 rt2 /32.667 ft) 

mph 

3.637 x 10-70br-s)/ft
2 

= 4.8 X l0
6 

which is within the range of the experimental data given in Figure 3.24. 

3.4 SUMMARY 

In this chapter several case studies were introduced. Each case_ study had_ two parts, a 
brief description of the flow field of interest and the mtroductton of design formula, 
used to calculate important quantities of engineering interest. These formulas rely pri­
marily on results obtained using experimental methods, and in particular on thc dimen­
sional analysis and modeling tools, which you will leam about eventually, in Chapter 9. 
The amount of information given in a case study is not unlike what you might find in an 
engineering handbook. 

The case studies included frequent references to dimensionless groups. A dimen­
sionless group is an algebraic combination ofthe parameters describing a partietdar flow 
problem that proves to be both dimensionless as a whole and significant in terms of 
understanding the flow field. The use of dimensionless groups allows an cngineer to 
classify a fluid mechanics problem, relate it to work by others, and select an effectivc 
solution method. Although a !arge number of dimensionless groups occur in fluid me­
chanics, only a limited number of them are used on a regular basis. We list live example,. 

1. Reynolds number, Re = p V L/ µ, is the mast common dimensionle~s group in 
fluid mechanics. It can be interpreted as the ratio of inertial forces to viscous 
forces. lf the Re is small, viscous forces dominate the flow and inertial forces 
can be neglected. Conversely, if Re is !arge, inertial forces dominate outside of 
boundary layers. 

2. Euler number, Eu = 6.p I p V
2

, is the ratio of pressure forces 10 inertial forces. 

3. Froude number, Fr = V
2 

/ g L, is the ratio of inertial forces 10 gravity forces. Il 
1s 1mportant m the classification of free surface flows. 

4
· Mach number, M = V fe, is the ratio ofthe velocity scale to the speed of sound 

m 
th

e flmd. The Mach number is important in compressible fluid mechanics and 
is used 

10 
determme when compressible effects must be considered. 

5. Weber nurnber We -p V2Lj · h · · · 
i ' -. . a, is I e ratm of mertial forces to surface tenswn 
or~es. The Weber number 1s important in a limited number of instances such as 

cap11lary flows. 

-

,. 

• 
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This chapter concludes with six important case studies: fully developed flow in 

pipes and ducts, flow through sudden area change, pump and fan laws, flat plate bound­
ary layer, dragon cylinders and spheres, and lift and dragon airfoils. These case studies 
represent a substantial amount of the material with which an engineer could practice 
design after a single course in fluid mechanics. Each of these problems may be studied 
theoretically, but the majority of useful results have been obtained empirically. In this 
chapter we have introduced each flow, indicated the important dimensionless groups 
that can be used lo understand the flow, and provided formulaic solutions to each flow. 
These problems were designated as case studies to emphasize the relevance of the sub­
sequent theoretical chapters lo everyday engineering problems. We do this by revisiting 
these problems throughout the book. 

PROBLEMS 

Section 3.2 

3.1 For each of the common dimension less 
groups listed, demonstrate that the group is. in 
fact, dimensionless. In addition. offer a physi­
cal interpretation of each dimensionless 
group. 
(a) Reynolds number, Re 
(b) Froude number, Fr 

(c) Euler number. Eu 
(d) Prandtl number. Pr 

3.2 For each of the common dimension less 
groups listed, demons1rate thal the group is. 
in fact. dimensionless. In addition. offer a 
physical interpretation of each dimensionless 
group. 
(a) Rcynolds number. Re 
(b) Mach number. M 
(c) Weber number. We 

(d) Strouhal number. St 

3.3 Air initially al STP is flowing over an 
airplane wing with a chord of 2 m. lf lhe air ve­
locity is 300 km/h. detem1ine the Reynolds 
number and Mach number for this flow. Al 
what speed must the plane fly in a standard 
atmosphere at an altitude of 3000 m for the flow 
over the wing to have the same value of Re? 

3.4 A sphere of diameter 2 mm is moving 
through glycerin at a velocity of 5 mm/s. 
(a} Catculate the Reynolds number for this 

flow. 

(b) Would you charac1erizc this flow as 1ur­
bulen1. laminar. or creeping flow·> 

(c) Do you think viscous effects arc impor­
tant in this flow' 

(d) Do you think incnial effects are impor­
tant in 1he previous ftow' 

3.5 As mentioned in Chapter 2. an enginecr 
must consider compressibility effects when 
1he Mach number cxceeds 0.3. What is lhe 
Hight speed for an aircrafl flying in a standard 
a1mosphere at I 0.000 ft necessary to achieve 
this Mach number? 

3.6 As mentioned in Chapter 2. an engi­
neer must consider compressibility effects 
when the Mach number exceeds 0.3. For water 
al STP. whal velocity mus1 the fluid reach 
10 achieve this Mach number? lf the water 
is moving through a I in. diameter pipe al 
M = 0.3. what is the corresponding Re 
number? 

3. 7 A 1hin film of SAE 30W oil is expe­
riencing a velocity of 0.75 m/s at a depth of 
1.5 mm below its l'ree surface. Calculate the 
Froude number and the Weber number for 1his 
flow. What is the significance of the relative 
values of Fr and We in this flow? 

3.8 In open channel ftows the charac1eristic 
dimension in the Froude number is the depth 
of the fluid. Whal is the minimum fluid ve loc­
i ty necessary to achicve supcrcritical flow in a 
channel thal is I 00 fl deep? What does it mean 
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