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An external flow occurs whenever an object moves through @ fluid or a fluid passes by
the surface of a structure. Such flows are present everywhere in the world Ec.:_a us,
both in nature and as a result of modern technology. Nearly all living creaturcs, :o_z.za
smallest bacterium to the largest mammal, encounter air or water in motion. In fact,
some animals, such as pelicans and other diving birds, are equipped to deal é:_:oﬁ.u.
motion in both fluids. Humans have often looked to the animal world for 5%..2%: “s
their desire for enhanced mobility on land, sea, and air. Despite some success in V.E_% w
copying natural designs, the development of aircraft, ships, and to a Jesser extent, a“;
vehicles such as automobiles could not have occurred without a good ::amq.f.sa_:m__a
external flow. Today, in technical problems ranging from how particles settle @8 e
surface of the lung to the effects of wind blowing over a building, ::ao_.mﬁ%@:moé
Interaction between an object moving through a fluid (or equivalently fluid moving

an object or adjacent to a structure), remains of great practical importance.
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Some aspects of external flow have been mentioned in earlier chapters, both be-
cause they are fundamentally useful in engineering design and to provide a foundation
for this chapter. Before continuing you may find it helpful to revisit the case studies in
Sections 3.3.4 (flat plate boundary layer). 3.3.5 (drag on cylinders and spheres), and
3.3.6 (lift and drag on airfoils). as well as those dealing with fluid force exerted on a
body in an external flow in Sections 4.5.1 (flow over a flat plate). and 4.5.3 (lift and
drag). An experienced engineer can often obtain a good feel for the forces generated by
external flows by using flow visualization. Thus you may also wish to review the flow
visualization concepts in Chapter 10. Have you seen commercials featuring a car or
other vehicle in a wind tunnel with streamlines of smoke passing over the surface, as
shown in Figure 14.1? The streamlines reveal regions of flow separation that contribute
to drag. A number of other things you have learned are also relevant to your study of ex-
ternal flow. Examples include the analytical and computational fluid dynamics solutions
for flow over a cylinder presented in Chapter 12, and the brief discussion of turbulence
in that same chapter. As you will learn, turbulence plays a critical role in external flow.
The presence or absence of turbulence strongly influences boundary layer development.
flow separation, and the forces exerted by a fluid on an immersed object.

CD/Video library/Flow past cars

the concept of a boundary layer. a thin

i ion of external flow begins with ; - R
Our discussion e no-slip condition and viscosity

layer of moving fluid near a solid surface in which th . e 4
oO«BE:o ﬂoonnmmmﬁ a velocity gradient. That velocity m:ﬁ_oa Qﬁzﬁ a m:mwn_v MH—__ M””,\c#:.“_w
adjacent surface in the direction of the nearby flow. mE..nm .%,m fio pzﬂw : fisiin -
can be laminar or turbulent, we will discuss the n:uana:m:o%w mmm , cﬁwm% a._mn:m,ﬁ ol
selves at first to the simplest case of flow along & e v_mﬁ.n:%m_mma of the surface and
boundary layer on airfoils and other objects for which H<<.w conclude the chapter with
angle of incidence of the freestream are important. We
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Figure 14.2 Geometry for flow over a flat
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; d to the discussion of drag nonmmoﬁim_ J:Q@ lift u=_a drag of ity

sections %,88. s in these gections aré pased on empirical observations that hqy, m__m,
Many of the res? ts | analysis into lists of the familiar lift and drag coefy; been
collapsed by ies. Examples of the use of those coefficients in g ICieng

. . O~<._:m
introduced in ¢ e provided. Throughout this chapter you wi| ava.

; w problems are p ill algg
ety o &aﬂ.sm_hm%ﬂ of how lift and drag are generated by the flow field. we ;n_ﬁg
p n:w_,:m”_%o:_ to help you understand how changes in the flow field about an imper....
this disC

dy can have dramatic effects on the force applied to the body by the fluid, sed
body can

cD/Boundary _m<m_.m\moc=an layer concepts

When a body is jmmersed in a moving fluid, the fluid <m:wn:< along a line perpendicy.
lar to any point on the body surface 18 observed to vary from zero on the .mc_.m_oa 0a
maximum value some distance away: At small Reynolds numbers, the distance over
which the velocity yariation occurs may be of .Ew same magnitude as :..o dimensions of
the body itself. However, at large Re the variation 0CCUTS over a relatively small dis-
tance. and the body is said to have a boundary _mu.\ob meaning that there is a layer of fluid
near the surface of the body in which the velocity changes from zero on the surface to
the freestream value. Prandtl’s insight into this v.ro:o_:m:o: and his mccmwacma devel-
opment of boundary layer theory are milestones in the development of fluid 3.2358_
The characteristics of 2 boundary layer aré affected by the shape of the solid surface

of interest, the orientation of the surface relative to the freesiream, and many other fac-
tors. However, we can illustrate the basic concepts by examining the boundary layer on
a thin flat plate aligned with the freestream. Consider the boundary layer on the upper
surface of such a plate at large Reynolds number as shown in Figure 14.2. The flow is
steady, and we can define a Reynolds number for the flow by using the _osm% L of the
plate and freestream velocity U to write Rep = UL/v. In 2 fluid of relatively small
kinematic viscosity such as air or water, the requirement of a large Reynolds number
means that the freestream velocity U is large. Observation chows that at large Reynolds
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numbers the boundary layer is relatively thin, and the (i
) e thic

creases in the downstream directi knes

i by Tayer is camnzﬁnnwuﬂ_oﬁ Moreover, just acssﬁzwwm,,%wsgcsawé layer in-
s 0 be lam; s € nose of

occurs and the boundary Tayer aoooa_wa_zﬁ. but at the plate

some point downstrez i
. es turbule: nstream transition
At any location x along the plate, there i nt.

locity component u along a line uaéms&os_aw m””ooﬂw variation in the streamwise ve-
of x and y inside the bound: 0 the plate surface. Thus, u is i
component, v, is also oaw_wwqu layer, but a constant U outside. The E:V_UM, .w ?:_n:o:
it is zero outside The tran 1 10be a function of x and y inside the qu.,am;n_ " onﬁ_va‘
d : sverse velocity component v in a bound Shoc e
compared to u. Thus one boundary layer cha ndary layer is very small

dosid . racteristic is v ) ;
ic is based o . s U < u. A second characteris-
X n the observation that the velocity changes rapidly in a a:on:oﬂsmqowﬂwﬂﬂo

the surface, but slowly in irecti :
velocity in the flow awmnsﬁm ﬁmﬁm&%ﬂaﬁ%ﬁ%:ﬁ_Emmzw that spatial derivatives of the
tial derivatives in the normal direction. Ay Tayer are small in comparison to spa-
. The .mncSmns of the streamwise velocity component u to the freestream value is
asymptotic. Nevertheless, we can define a boundary layer thickness § as the hei
wco«o ?n plate at s:._o.r u = 0.99 U, meaning that the streamwise ”w“mn_w, r.cm,ww__wﬂ”
W MMMMMmOMWoﬂmohsw MM MMJWMMWM: ,._\MW_“M%W%QES: shows that the boundary layer
, gion, another rate in the transition region.,

and yet another rate in the turbulent region. Since the thickness of a boundary E«M—‘ de-
pends on the location x along the plate, we write = §(x) and recognize that this func-
tion is an important characteristic of a boundary layer, since it defines the edge where the
boundary layer and freestream meet. Note that this edge (dashed line in EW:R 142)1s
not a streamline. In fact, streamlines enter the boundary layer all along its length.

It is customary to define two additional quantities that also characterize the thick-
ness of a boundary layer. The first of these, called the displacement

thickness and repre-
sented by 8%, is defined by the following integral

~

3= 1——\dy (14.1)
0 u) -

This integral takes a different value at each location x along the Eam. so we ,.,.:E
§* = 8*(x). One rationale for defining the displacement thickness in this way is illus-
trated in Figure 14.3, where we have overlaid the /..m_c.cw: _,_,:Em in :ﬁ ?.:_:,a.,:./v __56_,.
on top of the uniform velocity profile that would exist ; the fluid were inv _.{,l,a,‘,sm_.zz.r
to slip by the plate. The shaded area can be So«_mf of as the ,.oEEa _r;m _.,:H, _J.r,,, ﬂd:
width w into the paper thatis missing because of the presence .,: :7 co,:,,: ,:w _Mr _ ! 7”..
difference in volume flowrate carried by the two velocity @_Ao.“_a.,,_,,, _”_”r,q._.ﬂ,m ﬁw ﬂ‘.,_ ” 3
AQ=w .?8 Udy—w ?? u dy. With aliule rearrangement we @

= ~ / g :Nr.:_&.
« l A/.nll
—u)ydy=wU ‘,‘,
Ag=w 0 w e Jo L
. P . oiven by
m m i ary layer is seen O be given by
%D:@cmﬂﬁro i moézznﬁ_: Ewm _ﬂu%w_”_m:l( bww:,@‘.ﬂ::: this analysis. and
1581 3 rate 18 = ,
", and the missing T i Clines carries 4 certain volume
j o e .Ms ssage moqqama by two adjacent streamlines .r:_:ﬁﬁ_,H 3 mo_%.j,,:: ©
recalling that the pa ﬁnm_m: &msﬁm%ms..:._,ﬁncmaai to say tha e
. - o digplaces StrearmiImnes € EEe
mnm o .Eo.ﬁoﬂ_w wover the Eam.pgs_aaé layer displaces s
a fictitious inviscid 10
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layer
Figure 14.3 Definitions of boundary
i ¥ i ;
M:_ma &%_wnnn_m_: thickness

Area = .ﬂ w

= u)dy
Us* = .—.H (U — w)dy

i f describing 8™ is to say that the b

. cous effects. Another iwu\. e} . hat the bound.
* away oé:wmo Mo»<mw 4y appear 5° thicker owing to the ommwoﬁm of VISCOsity in slowing
w& _mﬂ%“ﬂ MS" the body surface. That is, the body surface is effectively defined by the

own
dary layer. ) .

edge %M ﬁmn”m_ﬁ:mww:owm_ quantity that is used to characterize the thickness of a bound-
ary _B‘M. is © = O(x), called the momentum thickness. The momentum thickness is de-
fined by

®©u u
= Z(1==)ay
o= [T (- 1)a
A streamwise momentum balance can be used to show that in woanwzmoz to an E,m.;qa
flow, the missing streamwise momentum flux in the co::am_.w jayer is equal to .bc wé.
Each of the three thicknesses, 8 = 5(x), 8" = 8*(x),and © = x) plays an important
role in discussions of boundary layers.

Additional quantities of importance in boundary layc:
stress, Tw = Tw (X), which is a function of position along the
ing streamwise velocity profile, and the total force exerted b e fluid on the plate. _

The total force on the plate can be thought of as consisti: of lift and drag. The lift
component of this force is defined by Eq. 4.25b as Fo=[f,(-pn+T)-m dS, where
the unit vector ny, is normal to the plate. For a flat plate aligned with the freestream, the
wall shear stress acts along the plate, i.c., in the streamwise direction, SO there can be _5.
contribution to lift from the shear stress. In addition, the symmetry of the moé,m.:wcav
that the pressure distribution on both sides of the plate is the same. Thus the lift1s wao
and the total force on a flat plate aligned with the freestream consists solely of drag. The
drag force on the plate is defined by Eq. 4.26b as Fp = [g (—pn+ 7) - Do dS: zsm_ﬂm
the unit vector n,, points in the flow direction. Since the pressure acts normal tot

. E . a
plate, it cannot contribute to the drag, and the drag on each side of a plate of width wan
length L is given by

(14.2)

cory are the wall shear
e because of the chang- |

i

. ,
14.3)
Fp=w Twi(x)dx (

0
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p vestigate th .
layer parameters b . & e relations
QWmSWEQ to nsoowoﬂﬂ% ~o<=._m a_Em__.w_o:E analysis. In %M“Gw_uﬂsosm Aheas bodary
the plate L. The DA i mvm:& coordinate x as the length wnmm S poicas, 1613
. 15 otherwise routine and yields the mo,sosmr Mﬁwﬂ&ws %6 length of
ations 1ps
W iy Ux
x T\ )= filRey (14.4)
wo_ Ux
Uz = 2 4v = f2(Re) (14.5)
where the Reynolds number based on x is given by
Ux
b =2 (14.6)

Introducing the skin friction coefficient C; = tyy /L pU2, we can write Eq. 145 as

Ux
Cr=1fi A|~- = fi(Rey) (14.7)
DA alone cannot tell us the form of these unknown relationships, but as shown in the
next two sections, theory and empirical data can.

14.2.1 Laminar Boundary Layer on a Flat Plate

f1. Blasius, one of Prandtl’s students, analyzed the steady, laminar boundary layer on a
smooth flat plate aligned with the freestream in 1908. We can derive his result, known
25 the Blasius solution, by using Cartesian coordinates with the plate aligned with the x
axis as shown in Figure 14.4. In general, the equations of motion for a steady, constant
density, constant viscosity flow are given by Egs. 12.1a-12.1d. However, there is no rea-
son to expect a cross-stream velocity component w in the flow over a tlat plate. nor any
variation of a flow property in the z direction. Thus the flow is 2D. Inserting w = 0, and

Freestream
velocity, U

=

Figure 14.4 The geome-
try of the boundary layer
over a flat plate.

u(x.y)

e Boundary
layer

Boundary layer
thickness, 8(x) -~

e

Flat plate

2]
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CD/Boundary _m<ma=.m35mﬂ poundary layers

Further simplification of these equations can be made by wnn&::m that the flowina
boundary layer is E&oi:&.& parallel to the m:.mwom. on E?n:. it on.”Q.ﬁ. .:E,,,.sn can
assume v K . Furthermore, the boundary layer 18 thin, which ,5,_2_9 that derivatives
f flow variables with respect to X ar® much smaller than ﬁ.:ovm 4:: respect (o y. By
m&:m these two assumptions t0 simplify the preceding set of equations, we obtain

w0 _y (1480)
ax 9y
ou ou o\
. (14.8b)
M orv— :
P U T Ty :
.. _dp (14.80)

These are the Prandtl boundary layer equations. They can be Jiown ,.o be E%:na.u_m MM
boundary layers on moderately curved as well as flat suriaces, a0 jmportant poit
keep in mind throughout the rest of our discussion. e ellsus
Before we worry about solving these equations, notice that the last o@:p:o_u: E. o
that the pressure in the boundary layer does not vary across the poundary layer: AQ, o
conclude that the pressure inside the boundary layer on flat and moderately ﬂ:.,a, very
faces is the same as it is in the inviscid flow outside the boundary 1ayer This aﬁwmm:a
important aspect of Prandtl’s boundary layer equations, for it shows that Em w._% i
gradient in Eq. 14.8b may be considered to be known and determined Y fincife
pressure distribution in the inviscid flow over the same surface shape-
Blasius was able to solve the Prandtl boundary layer equations for
recognizing that since the pressure in an inviscid flow over a flat plate 1% o layer is
pressure gradient dp/dx in Eq. 14.8b is zero. Thus the flat plate poundary
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described by: i
ou . v
ax | ov
dx By (14.92)
p :ml::..fcmz wu:
0 e TRl
By By2 (14.9b)

These two equations, wi
, With :
unknown velocity ncavoswﬁmww%nsaa vcEa»J. conditions, must be solved for th
describe the fl + 1he no-slip, no-penetrati = JEST R B IIE
| gE_MM o,uﬂ a flat plate are u(x, 0) = % gsaq”ﬁ:owocs% "MQ g T
ayer soluti ; x,0)= X Al
exists upstream M %M Ewwcwﬂu: pm match the inviscid freestream moﬂ:.o:v =o,|,._,%m,”_=uo
two conditio ¢ and above the plate outside the bound: e
ns can be written as 1 — U, v — 0 for x co:s ary layer. These last
: x<0,and u— U,v

y > 8, i.e., outside the boundary | — 0 for
: ; ayer. i .
velocity. ry layer. Here U is the magnitude of the freestream

Alth i . .
ough there is no known solution to Eqs. 14.9a and 14.9b that satisfies these

Ooﬁzwwﬁ.—o.ﬂw @XUOH—% W~Nw._=m mTOE@Q : imi T
- A E] that a m:.s:ﬁ y SC i S ions
i - w var — ity solution Oﬂ, ﬁjovm oﬂﬁuﬁ:u:., can be

U 12
=1zl ? (14.10a)

and employing a streamfunction
Uix,y) = (Uv) 2 f(n) (14.10b)

The word “similarity” used to describe this solution indicates that when properly scaled
in the similarity variable, n = (U Jvx)!2y, the velocity profiles at every location along
the flat plate collapse onto a single universal curve. Thus the profiles are similar.

Now by the definition of a streamfunction we have u = v /dy and v = —ov/ox,
thus Eq. 14.9a is automatically satisfied. The velocity components are found to be
given by

d A2 o
m.,l,:cr: fnl= a3y

and

N

oy _ o= = (1L -7)
Y (Uvx) " uﬂ - ﬁ PO
ox i o) \'0

: % Hino. 4 g > key
Substituting these velocity components into EG: 14.9b, simplifying, and making the key

» 1 A function of x, we obtain the
similarity assumption that the function /18 not separately a function of x, We € y
: s Fferenti ation:
following nonlinear, third-order, ordinary differential equd

Il

V=

i &1 g [
“in dn
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TABLE 14.1 Blasius Solution

—_—

&/

A 2
f an %
1 0 av5~
0
0 i 0.1659 033
0.5 . 03298 03309
0.1656 a3
18 0.3701 0.4868 .
b 06500 0.6298 03026
20 . 07513 0266
- 0.9963 0217
" 13968 0.8460 c,. %
30 i 09130 o._,o:
33 5 3057 0.9555 o
256 2.303 0.0642
27901 0.9795 0.034
.M.w 32833 09915 0 o JM
- 37806 0.9969 0 Yoo
- 42796 0.9990 0.0024
65 47793 0.9997 0.0008
70 52792 0.9999 0.0002
75 57792 1.0000 0.0001
80 62792 1.0000 0.0000

The boundary conditions for this equation are f =df/dn=0 at n=0, and
df fdn— 1asn— o0.

The function f(n) that satisfies this equation and boundary conditions defines the
Blasius solution. This function must be obtained numerically. Table 14.1 contains values
of f, df /dn, and d* f /dn?. These are readily found by using Muthematica or another
symbolic code to solve the differential equation. Notice that tho edge of the boundary

layer, defined as the location at which df /dn = u/U = 0.99. occurs atn = 5.0,

CD/Special features/Virtual labs/Blasius Boundary Layer Gr

owin

The streamwise velocity profiles at various locations, shown in Figure 14.34,
exhibit the growth in the thickness of the boundary layer at locations away from the

nose of the plate. When properly scaled in the similarity variable, all the profiles in Fig-
ure 14.5A collapse onto a single universal curve

u /U =df [dn as shown in Figure 14.5B. We see the expected boundary layer co_:z..
1or: a zero velocity on the wall with a gradual approach to the freestream value near
n=>5.0.

: the boundary layer velocity profile

Because the governing equations have been simplified to derive the Blasius solv-

tion, it is necessary to confirm experimentally that the velocity profiles in the ot
boundary layer do exhibit similarit

) 4 ; y. Figure 14.6A shows the similar profiles in the _,ﬁw
inar flow region beginning just downstream of the nose of the plate. In the Brotiort

FS

u
T=09an=s

/2

7 = W/r0)' 7y

2%}

(=]

()

(B
. [y =u/u

Figure 14.5 Flow over a flat plate: (A) bound
larity profile.

—_ 1
04 0.6 08 1.0

ary laye i
Yy layer velocity profiles along the plate and (B) the equivalent simi-

corner of Figure 14.6B the lamin
lence the velocity profiles are n
which is valid for the laminar fio
the boundary layer.

ar profile 7 _w___wo present. But after the onset of turbuy-
0 longer similar. Thus the By

asius similarity solution,
W boundary layer, confirmed

Prandtl's basic ideas about

{

_ CD/Demonstrations/Blasius and Falkner-Skan solutions

Figure 14

A 6 Flow visualization of flow over a flat plate using hydrogen bubbles to create material lines.
) Lamip

turh ar boundary layer near the nose of the plate, and (B) A wider view showing the transition into a
ulent boundary layer.
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also provides information about the shear stress distrip,

The Blasius solution alsO P! 11.6d as Oxy = Oyy = Utig,
ress is given bY Eq. 1L ) yx = 1(du/gy non
the plate. The shear § ion by using #= U@f/on) and v = &&%Mv\ﬁwt

. : express & . =
“mwﬁ“ N\,w“m lﬁﬂw Rmcﬂm in a complicated expression involving £, 87 /3y, ana'g2 ¢ .
T

= sion for the shear str 9 f [
¢ ‘the wall y=0. the expres €SS simp; d
However &y JUTox (3 /317 1y=0- 0 only the value (3% f/an?)| _, m__wmm X
) F=U = UL N_
i ded to calculate Tw- R
is unmm Mnm \ransition to a turbulent poundary is observed at roughly Re, x5 5 14s
Blasius solution is valid for a <m_:.o of x greater :;.5 ZEro but smaler ,z“:n
55 X 105/ U). However, the precise _oomzon of qm:m:_o:. ina co::am@ % p.:
roﬁ as certain as this appears 0 indicate. Thus this range of validity is wg_,oismumﬂ is

o force the transition to & turbulent boundary layer near x = () gn. In

fact it is possible t ; tod <,
mo:::nw:m. including a trip wire of artificial roughness. ar

Within these constraints, the Jaminar flat plate boundary .Eoc_o_d may be congig
ered solved. The n:m:&:nm of interest calculated from the Blasius solution may be mca,

marized as follows:

Oxy = Oyx = tq

Re, = m\_\\n (14.129)
mwb = 5.0(e:) ™" (14.125)
%Wv — 1.721(Re,) "' (14.120)
e (14120
o] = 055002 Ry~ (14.12¢)
Cr(x) = 0.664(Re,) " (14.129)

By comparing these results and those obtained by DA in the Section 14.2
(Egs. 14.4-14.7), we can see that the Blasius solution provides the unknown functional
dependence on Rey. In addition, it is evident that the sirnilarity of the Blasius solution
justifies the use of x as the length scale in the dimensional anatvsis. The important char-
acteristics of the laminar flat plate boundary layer are found in s 14.12: the boundary
layer thickness grows at a rate 8(x) /2. and this is also true of the displacement and
momentum thicknesses; the wall shear stress decreases at a rate Ty (x) & x~ /2, as does

the skin friction coefficient.

It is possible to define a drag coefficient for a flat plate. Consider the drag con-
tributed by the boundary layer on one side of a plate of width w and length L. Inserting
Eq. 14.12¢ into the equation defining the drag force, Eq. 14.3, and substituting
Re, = Ux/v, we obtain

p L ux\~""?
Fp=w | twh)dx= E\. 0.332pU% [ — dx
0 0 Vv

C(CZCPN< _rD
Y .
Completing the integrati, - CEPTS | 893
nd

Fp = O.mgbcwsh

e —— o
which R
corresponds to g drag coefficient by )M,ﬂ R
sed on the plate
area wl of
o i 28
Although some of these reg, VRe, (14.12h)

. ults
further illustrates the character; appeared in Sectjop 33.4, the example ty
t plate bounds, ple that follows
ry layer.

EXAMPLE 14.1

\\

SOLUTION

A thin flat plate, 10 ft tall and 1 ft wi ng edge of a banne €
. A t wide, forms the lead; d b d by an
~ \ 0 F:
_= x. aft at _o.o mph on a 70 day. How far from the leading ;  th ek €
_ _ o—u_ By edge of the plate does the

G / is the boundary layer thi S
e laminar boundary layer? Find the drag forc i
rag force on the plate con-

tributed by the laminar boundary layer, and the corresponding drag coefficient
ent.

e

The physical arrangement is shown in Fig

i gure 14.7. Alaminar boundary layer is expecte
to u m:.w_:oa .mﬁ Re, <5 x 10°. ,;:.m we can solve for the distance .mm ﬁw E_memw.ﬂ%
cm:: y using Eq. E._mw.s write: xc = (5 x 10%)/U. Using U = 100 3 h =
146.7 ft/s and, from Appendix A, v = 1.64 x 107* t*/s for air, we find ne

ro — 5 x 10°[1.64 x 107* (f¥/s)]

=0.56 ft

146.7 /s

w=1 :J
C\ﬂv,

Flat plate

L=10ft
Tow cable

—

U = 100 mph

Figure 14.7 Schematic for Example 14.1.
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t beyond the midpoint of the plate, and the reg, Portion o8
0

" i cur jus .
Transition begins to occur] ary layer. To find the laminar boundary layer 5593
S at

as a turbulent bound.

the plate h ickness as
y = x¢ we use Eq. 14.12b to caleulate B = 5\—1/2 o 06
() = 5.0xc(Rey) ™2 = 50056 ) x 107777 = 0.00396 ft = 0,043, i
> 04

. is only 0.048 in. thick when transition occ
Thus the laminar boundary layer 1s on . urs. To g ,
the drag force on both sides of the plate due to the laminar vocaam_‘w layer, we :..—”M _
multiply Eq. 14.12g, which gives the drag on one side, by 2 and gpyy _ 02
/+/Rey. In this case, we must also be careful to insert 7 " ,

Fp = 1.3280U%wL %,

since this defines the portion of the plate moﬁ:.& by .Sn laminar boundary layer. Using .

p=2.329 x 1073 m_cm\.mm from Appendix A, inserting the other data, and noting thg 0 =

Re; =5 x 10, we obtain i.c. Lo

1.328pU°wL
Fo = We cannot com
Re e pute a waj] ;

’ relationship between shear gy shear stress jn turbulent flow pecgyse g,

S€ the constitutjve

1.328 -3 3 2 €ss and ay :
2.329 x 1073 slug/ft’)(146.7 ft/s)“(10 ft)(0.56 ft) = 0.53 I Instead, we make use of .- dverage velocity jp _
( & f of the mo:oEEm empirical Rm:_w‘ﬂ,_%ﬂﬂ”_,_ﬂmsw:_ma flow is unknown,

= x 10

.. all shear stress
The total drag on the plate is actually much larger than this since we have not accounted ()

for the drag of the turbulent boundary layer. The drag coefficient for the laminar portion -~ . h
of the boundary layer, which refers to one side of the plate only, is given by Eq. 14,124

This allows us to write the skin frictj
n friction coeffjci 5
Shasne e icient as
N4
Cr(x) = 0045 ( L
5 Us (14.14b)

OWeVver, nei i i W W y
H VeI, ne n—._ﬁn. H.O:EC_N 18 :wn:__ as 1§ Umnmcma e do not WSO / the GO::QD 1
Yy layer

H:mn—ﬂb SS m = % X). A O_0<n_ SO —..A n to nrv d HO—.: Ol ts of kine e of

; [ D A v. Is di ma consists of makir g use a
streamwise momentum ~um—m=hm on Hrm UO_.SQN; _m%mﬁ c(:.:O g i _ 1 HO the d : .f
: ; k . ut going int e details
Mﬂﬁﬁw. ;, ﬁ—.)_m ﬁOEm_ _ms Gn_e,Q: _uv\ mn. _L_.w and the w_ﬂnmﬂ stress W:.ﬂ: Gv mn 14.14a are
ns € streamwise momentum UEP:OG the fi i y . Y : ick-

Ser ._QA_ 1(0 s ollow ay
e ” owing UOCDQE. layer thick

€ CD/Boundary layers/Instability. transition, and turbulence

14.2.2 Turbulent Boundary Layer on a Flat Plat:
i 1/
) = YY) s
There is no analytical solution available for a turbulent bounc: - ‘ayer on a smooth flat 8(x) =0.370 7) (14.15)
plate, so we are forced in this case to rely on empirical observ:.ios. It is customary to Comparig this to th i . , .
; . . ary fayer for 0 < y/8 <1, -Omparing this to the corresponding laminar result, mm. 14.12b, we see that the thick-
model the streaniwise veloaity’profile inithe turbulent boundary tayer for ! ness of the laminar layer grows at the rate §(x) o x'/%, while the turbulent boundary

layer grows at the faster rate §(x) oc x*°.,

u Y (14.13) We can now use Eq. 14.15 to evaluate the wall shear stress, and since the velocity pro-

U 8 . file is known, we can also compute the displacement and momentum thicknesses for the
locity. The turbulent boundary layer. The important characteristics of a turbulent boundary layer ona

B MEIpEENC ¢ i eloci i del are summarized as follows:

¥ Iso be de- flat plate predicted by the power-law velocity profile model are summarized as

by the power law

with u = U for y/8 > 1. Since the flow is turbulent, « is th

boundary layer thickness is a function of x as usual, hence 8§ = §(x) and :Emm a ;
termined. Figure 14.8 compares the turbulent velocity profile with the Jaminar mamw Re, = |Ql< (14.16a)
Note that the turbulent profile is fuller and the velocity gradient at the wall is larger th =T

s in a higher stream- 5) i ﬁo%m_%_,\.ﬂ (14.16b)

in a laminar flow. The increased mixing due to the turbulence result

; ; : ’ : le.
wise velocity at any given distance from the wall in comparison to the laminar profi x

B W \lllll
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8 _ 0.0463(Re)”'*
X :A._ac

™) _ 0.0360(Re,)”""

X B (1a
£ (x) = 0.0288pU° (Rey) ™" 16,
& (14,
C;(x) = 0.0577(Rex) /3 l6c)
2 - (14 1 ¢
Fp= 0.036pU " wL(Rey.) 1/5 -16g)
(14,
Cp = 0.072(Re) ™" ) I6g)
~ A. —0
These results are known to be accurate for Reynolds numbers j, " h)
5x 105 < Re, < 107. We see that in the turbulent flat plate Uoc:muJ\ layer ¢ ring
placement and momentum thicknesses also _m\moi at arate vﬂomonwosm_ to x¥/5 . Hﬂo dis.
shear stress decreases at a rate Ty (x) oc x~'/2, as does the skin friction oogf_.o " € Wal|
Note that a power-law model for the turbulent boundary layer oy a flag s_ﬂ
not the only possible choice. Another model, based on a logarithmic velocity E.m _M_gm is
<, is

advantage of providing accurate results for the much wi

said to offer the S i
_The boundary layer characteristics of this mode] are:

ﬁ_Q. rang,
10° < Re, < 10° e

80 _ 0.14(Re)™""

5 :L.:E
w(x) = 0.01250U°(Rex) ™" (14.17h
Crx) = 0.025(Rer) ™ (14,17

Fp = 0.0150U%wL(Rer) ™" (14174

Cp = 0.030(Re) """ (14.1%)

EXAMPLE 14.2

]

SOLUTION

A box-shaped truck body 2.5 m wide, 3 m high, and 7 m long (Fi
at 20 m/s in 20°C air. Calculate the contributions to the total drag

sides and top of the truck body. Assume that a sheet metal seam ne:r (e leading edge of
each panel causes the boundary layer to be turbulent for the full ler 3 of the panel. Also
find the wall shear stress and boundary layer thickness along the 1 ; »nel, and the max-
imum value of the wall shear stress and boundary layer thicknes: <+ *liis panel.

: 14.9) is traveling
e truck from the

We will first use Eq. 14.16a to calculate the maximum Reynold
stream edge x = L of each panel. With viscosity data from Appci

ber at the down-
% A, we obtain

UL
Re, = —— = _CEs)Tm) =93x 10°

v 151 x 1075 m¥/s

Figure 14.9 Schemaric for Example 145 W=25p,

This is just within the applicable range of

anel i i X
p is calculated by using Eq. 14.16g, _uoﬂm_mm _H“@_ ou;_“._%. The dr.
We obtain

Fo,, = 0.036p02 1, Re,)~1's

ag force on each

_ 0.036(1.204 kg/m’)(20 myg)?(
(9.3 x 106)173

2.5 m)(7 m)

=123N

The drag on each s i i

mw_mﬁgﬂ% NMW Mm_nc_»aa as .ﬁc =2Fp,, + Fp,, naw:#.w N)+ 123N =419N. T,

o L m_“_ n_E_w _Mmovaq ::nw%mw and .s_.m: shear stress on the Sw_ Esm_..:m .c,,m
1 <108, respectively. Writing these explicitly in terms of x we have

w =3 minstead of
1w = 14.8 N. The drag of all three

\-1/5 .
5o =03700 [YE) T Cpaggf2ms

v 1.51 x 1075 m¥s

45 s 1)
X7 =0,022x4 !

2 "Ux -ls
Ty (x) = 0.0288pU° | —
v

= 0.0288(1.204 kg/m*)(20 m/s)* "

20 m/s VL . 05
1.51 x 1073 m¥/s

= 0.83x""° (N/m*)(m'”?)
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; ¢ ly to the side panels, Ty,
s for 8(x) and Ty (x) also app 1s. The mg
zmma EWHLM_MMMHM%MM M:a boundary layer thickness on each panel wij] oceur a¢
value 0

i d:
Inserting the data we fin
5(L) = 0.022L*°m'/* = 0.022(7 m)*Sm'/S = 0.104 m = 10.4 ¢y

XWE—.:.S
X = L

1 (L) = 0.83L~ (N @') = (083)T M)~ N (m'1%) < 0,56 /.2
Y0,

. blem, using the logarithmic model to define the ya-:
he calculations of the last pro i L el e
M,Mm”mmhm_wwwﬁoﬂmaoﬁm:m:nm. We will calculate values at Rep = UL/v =03 106 Us

| t lculate the drag, Eq. 14.17a to calculate the boundary layer ?.nx:mmw Mww

! alcu , Eq. dar |

” MM dwﬁwﬂaﬁoonma_unc_mﬁm the wall shear stress. The drag on the top panel is given by n
| 0.015pU%wlL  0.015(1.204 rm\Bmeo m/s)?(2.5 m)(7 m) 1og

_,, Fo, = (Re)'7 (9.3 x 108)1/7 =128N

i _ ibutes Fp,, = (3/2.5) Fp,, = 15.4 N, yielding a total drag of 436 This |
\ mm_muﬁzw_ﬂ_uwawwww_._mm%ﬂﬂ%ﬁ.@ ZDQSQ calculated with ﬁjm%mwém?_wé :._o.am_. T..Q the boun s
| thickness we use Eq. 14.17a to write 8(x) = o.KxﬂmmL ) m__ﬁ, m@mq inserting qum am_;w
< 8(x) = 0.14x(Ux/v)~"/7 = 0.14(20 m/s/1.51 x@:m ,ﬁ /s) 1 x H%q.ofm\w m'/7. which
! yields a thickness at L =7 m of §(L) = o,odwx_\ m/7T =0.019(7 m)%" m"7 = 0.1 m= 10¢m.
i This is a slightly smaller value than that obtained with the power-law model. From Eq. 14.17p the wall
shear stress is given by

i 20 m/s i

,.,,‘” tw(x) = 0.0125pU2 % = 0.0125(1.204 kg/m?)(20 m/s)? BT 0 L

i =0.80x"" (N/m?)(m"/")

dary layer
» We obtain

Il

XA:.N

and the wall shear stress at L = 7 m is found to be
tw(L) = 0.80L="" (N/m2)(m"/") = 0.80(7 m)~"/T(N/m2)(rn """ = 0.61 N/m?

which is slightly larger than that calculated with the power-law model. o 2ngineering purposes
¢ these values are equivalent to those found with the power-law model.

14.2.3 Boundary Layer on an Airfoil or Other Body

Consider the high speed flow over an airfoil at a small angle of attack as shown in Fig-
ure 14.10A. The upper and lower surfaces of the airfoil are curved, and neither surface
is aligned with the freestream. Thus the results obtained earlicr for the boundary _uwmﬂ
on an aligned flat plate cannot be expected to apply to the boundary layer on this Em_.o_
or, for that matter, to other objects of finite thickness. In fact, observation of bourx .Nz
layers on airfoils and other bodies show that the shape of an object and its angle & _”_,:
dence to the freestream have a significant effect on the characteristics of both lanti nw.
and turbulent boundary layers. For reasons that will become clear in a moment, thiS
fect is described as the effect of a pressure gradient on the boundary layer.

r W

Figure 14.10 Flow around a NACA 4412 airfoj| section visualized with sn
there is no boundary layer separation. (B) At a 15° angle of attack there is si
(C) Slightly increasing the angle of attack over 15° results in stall. In an
lift such that the aircraft would begin to fall,

noke. (A) Ata 2 angle of attack
| nificant boundary layer separation.
airplane this would result in 2 loss of

Although a complete discussion of laminar and turbulent boundary layers on air-
foils and other bodies is beyond the scope of this text, some insight into the effects of
body shape and angle of incidence can be gained by considering a laminar boundary
layer. Recall that a laminar boundary layer is described by the Prandtl boundary layer
equations (Egs. 14.8a-14.8¢):

¢ ( ( ( il s ap
@+w|cno. 0 :mu_ffeﬁvurﬁ.f:ﬁn :u and cHlH

ay

These equations apply to the laminar boundary layer on a curved .,:.:,n.ar... 1._5‘,.“%&.5”,
thickness of the boundary layer is small in comparison to the radius of r.c:,z_ﬁn _c
the surface. It is also necessary for the boundary _32 ‘8 ?,.2598. _52__“_%,”,,” i ﬂo
boundary layer must follow the contour of the surface. This _w _.ﬁﬁ ,ﬂw,_”rj__:;:fa:,; n_,“;
ration occurs. These constraints are :Eum« Em,,%w _H”,”Hm&.mwn,%ﬂ:rf, ,S,na,._fmﬁ_. o
i in Fi wever, gle of altack 15 1n

attack, as is the case in m,mmam_ﬁwwa.;mos sepurate, the E:EE layer is not .r,.o_s.
shown in Figure 14.10B, the TN S .. At higher angles of attack the airfoil is said o
pletely attached, and recirculation 0CCULS. - m..,%a o ) decroases significantly when
stall, as illustrated in Figure 14.10C. The lift of the a

an airfoil stalls.
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Inviscid region

14.11 Boundary layer

i Boundary  __
m_omh Smnoana over 2 curved e
surface: g N _,
ax

; irfoil or other moderately cypy,
equations to an at . g
To apply the ._u_.uun__h_q_:ou 10 lie along the surface and the y coordinage s ace,
: X .
x coordinate axis 18 as

;- Fieure 14.11. Eq. 14.8¢ shows that com 1S they, Nor,
mal to the surface 25 wswﬂsmﬁcﬂwm surface, 8p/dy. is negligible, just MMMM”wom the . N
pressure gradient norma flat plate. However, the component of the Pressy € cage plu— 4, mlz 1y 2la)
with the boundary layer on @ dp/x, which is zero for a flat plate aljgpeq € Brag;. 4 ox TGy )= 3P gl o, (P
ent in the streamwise direction, amE\?..un sl varieswity %, Thiigithe ey With g, { An inter, esting solution 1 i X t P (14215,
freestrea, is nonzero on & S0 fies the following equations: ™ layer on trates the effect of 5 pressure m:a.wn cuations, cyjjoq the Fyli, .
the curved surface of a body satis surface velocity is of the form , o laming; "¢t-Skan solution illus-
LML Since [dus(x)]/dx = pypm " i
x| Ay (14,18, m < 0. From Bernou]jj’g equation
3 2u is falling, and vice versy ) _
o(ume vy ) =55+ a0y (1418, decreasing in the flow ._:M_,_%;. e D/ <0, g g PSS
o ’ i reasons explained shortly, m:::u% ,z ' aomm._._.&.s 3 a favorable _w_.o,,cancwﬂm.mwca ,
The streamwise pressure gradient, which may Wn _voﬂ”.:.n M_. _smmmm_éwanun:% on the FSE.za pressure gradient. Fo, :,N wwc m%n__m &V\S > 0, which js ¢ %BMAMM” _qu
body shape and angle of incidence, as snz.mﬁ e loca _oﬁs =M o:m e body r.i%n. To co::a.__Q layer on a ma plate, > el reduce 1o qhgge describing the
solve Egs. 14.18a and 14.18b for the <o€o:<.no=%o=oﬁ M % om H”Q the %w:.& char- A :._o:m: the details of the Falkner-Skqp solution
acteristics of the boundary layer ME& as its thickness and the wall shear stress, i i nec- E PRI s are important, The favorable nzmm EC.E e scope oftis ey
essary to know the pressure gradient. h is th . freestream tends to thip 4 laminar boundary layer %.Q. aﬂ mvneg_ oan e ety
An essential part of Prandt’s boundary layer theory is the assumption that (he nearer the surface, while the unfavorable pressyre sl ring Nigher momentum fluid
ise pressure gradient 3p/dx is determined 3 the inviscid nos. Just outside the tends to do the opposite. Thys, on an airfoj] sradient of a decelerating freestream
anmﬂi_mWqu This can be explained as follows. Since the effects of viscosity are ¢op. a laminar boundary layer to pe thin and Bﬁmo_._ﬁ ‘_:o%aa_w curved body, we expect
M”MM MQBnﬂo.::aE layer, the flow .oEmEn is an inviscid moé” ﬂ_wa 1S 10 pressure <.<:ma the flow is accelerating, but to become ”ﬁw_mmw ””M:wmmm_m._ﬂ”_ma%.ﬂ.ﬁ;m ElGE
gradient dp/dy normal to the surface in the boundary _w«on B:E._osmm.u thus the pressure tions of the m_:,@nm where the flow i decelerating. The way| shear ﬁ.:%,ﬂm%_.ﬁ“u:wwﬂ.
distribution inside the boundary layer is the same as that just oca%m. %::na_oau inan point of separation, and downstream of this poin the flou near the wall seversz &Eoﬂ.
unseparated flow at the high Reynolds E_B.coa, of interest, .Sn. %:s_ ary _mwan._m very tion. This also occurs with .E:E_ma boundary layers, although the latter are a% resis-
thin and may be considered in a first NEUEEEN.:O: Slrm<n vamshingly small thickness | tant to .mos separation OWIng 1o the increased amount of higher momentum fiuid near
insofar as the inviscid flow is concerned. Thus in solving the Efm‘na,moi E.ozoa. we | the surface mmmosawa with the more blunt turbulen velocity profile.
can neglect the presence of a boundary layer and its :.ESoi: ._:._nr_ﬁvw m:.a simply con- These ocmm:,\m:o:w are confirmed by flow visualization studies. To illustrate bound-
sider the inviscid flow over the same body at .Em desired freestream <n_ﬂ.un:,z. . ary layer separation, consider Figure 14,12 showing velocity profiles over an airfoil at
After obtaining a solution for the inviscid mos.q we can W rite the inviscid surface
pressure distribution on the body using the Bernoulli equatic s Figure 14.12 Tllustration of boundary layer flow
1 s (14.19) over an airfoil: A, a favorable pressure gradient; B,
ps(x) + MEGCS =C an unfavorable pressure gradient; C, the separation
where ps(x) is the pressure on the surface, us(x) is the v=l.~ity on the surface as pre-

point; D, separation and flow reversal.
: 5 e ¥
dicted by the inviscid flow solution, and C is a constant. The p:essure distribution ps(x)

S i ine
is assumed to be the pressure acting on the boundary layer, zeu /e can use 1t to %ﬁﬁﬂ:m
the streamwise pressure gradient needed to solve the boundsry layer equations,

p _dpstx) _ 1 d (1420

= = ——p—us(x)’]
ax dx 2 a\«?i
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Figure 14.13 Flow visualization by the
spark tracing method (timelines) of veloc-
ity profiles in the boundary layer.

HISTORY BOX 14-2

The boundary layers on the airfoils of early
airplanes were turbulent over much of the
wing because of the presence of an unfa-
vorable pressure gradient over 90% of
that surface. Eastman Jacobs, an engineer
for the National Advisory Committee on
Aeronautics (NACA), designed an airfoil
shape with the intent of producing a favor-
able pressure gradient over as much as
60% of the wing, thus maintaining laminar
flow, reducing the friction drag, and in-
creasing fuel economy. He developed the
NACA-66 series of laminar flow airfoils
and published his results in 1939. Those
results were put to use by North American
Aircraft to produce the first airplane with a
laminar flow airfoil, the P-51 Mustang.

an angle of attack. At position 4, the fi
ated over the front of the airfoil and the v, el
reflects the favorable pressure gradient %9@ Profile
the effects of the unfavorable pressyre m.zaA POsition g
parent in that the flow has slowed in the b, 1ent are ap-
and the velocity profile has become stee vmw_%mé ._35
the velocity profile clearly shows thy n {point ¢
which indicates that this is the point of se :\&. =),
position D the flow has reversed near the mmnw“.nw:o:. At
Figure 14.13 is a flow visualization of I Surface,
in a boundary layer on an airfoil.

id hag accele;.

velocity Profileg

143 DRAG: BASIC CONCEPTS

For a stationary object immersed in a moving streg

drag is the component of force exerted on the object _w
the fluid in the direction of the freestream. An m:q__sow
often needs to account for the effect of drag in mchnEE_
design and stability analysis, since for stationary objects
ranging from buildings and trees exposed to wind to

bridge piers in a river, the drag exerted by the moving fluid can be significant. For an air-
craft or other object moving through a stationary fluid, the drag acts in the direction
opposite to the motion of the object. The power required to piopel an object through a

fluid at constant speed is given by the product of drag and sp«

ws drag not only lim-

its the performance of man-made vehicles of all types and a
ation but exerts its effects in the natural world as well.
The drag on an object is defined by Eq. 4.26b as

15 the economy of oper-

wcu\ﬂlw=+.:.=8mm
5

where the unit vector n, points in the flow direction. From this we see that the total drag
force arises from two mechanisms: pressure and shear stress. The contribution (0 the
total drag due to the pressure is referred to as form drag because the shape or form of the
object determines the pressure distribution on its surface. The contribution to the total
drag due to the shear stress acting on an object is called friction drag. In a high Reynolds

-

::E._ua_. flow, frictig
as discussed Carljer,

n n:.mm Can be 5
An effectiye

(A)

©

Fi ) -

A%,”M 14.14 Tllustraion of the types of drag using flow over a flat plate (A) aligned with the flow, friction drag only:
mal to the flow, form drag only; and (C) friction and form drag, present for the plate at an angle to the flow.
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body immersed in a freestream, the total drg

14 4 D
RAG
£ will 1 pRAG COEFFICIENTS COEFFICIE1q -
. Will hay I}
e of V€ ey 14.
Pacacs oEM_.H Wanaoz and form drag. >==9ﬁ= ﬁrﬁmohwm e cw 8lven, 5:» ,. Although COMputationy
tributions from BOT % - rag on bluff bodies. SHATe Some of he oy determining the g floid dyny .
high Reynolds number o al to the freestream, tends to be dominated by form ac. g8 g 148 on objecy of er s is 5.2325; bein
eristics of a flat plate :M_ﬂ mm:mwa the flat plate aligned with the freestream, (g, ds %m. oF %855”“ ” %m Méa:sasa mzuvm“on:sm intereg acm nww_.nm 10 the problem of
in bodies, s G i s e w : w
The drag on long H_%_n:os, “Streamlining” is a term used mo describe the attempy ¢, %m. set of physical par Tag on ap € apply gip,
dominated by m_ﬂ_ms%m for a bluff body in a high Reynolds number flow by i
sign an optimun

A —ij.:._c
L arag, It generally takes the form of elongating the rear of the body, gy, b
the total drag.

; friction drag, it lowers the m.oz.z drag, and the total drag is re duceq, o
this raises the :no tion mmnﬁsnmmza. the friction drag eventually vnnma s large ang 2
course, if %n n_ws.u%cnma at all. The airfoil at an angle of attack described ip the
total drag is not ré

instead g4 0 Fofpur2, however it i
Preceg.
s e drag. F
; i eriences both friction drag and form drag Cp= ,_JD/J
ing section eXp 3pUA 1427
where the area A normally refers ¢ (14.22q)
introduced to produce 5 0 the frongy

3 | areq of .
denoy . of the object, 4 , N
. upstream flow { o2 Minator that js (p, s o ¢
i treamlining
i /Demonstrations/S
CD/Special Features

S the produc A 318
times the front Ctof the dynamic pregg 2
the area is said to be al area, (| pressure of the

- (In definip he dr-

the planform gre, - & the drag coefficient for g i

, 1e., the - 2 rawing,

The DA further shows th (e drag gzﬁ area of the wing g g

ini linder is illustrated in Fig.

ine the concept of streamlining 6 acy s

The result oMMmﬂv\%ﬂm cylinder and airfoil shape in Figure 14.15 :E&. the same

ures 14.15 and : .H %.n drag on the airfoil shape is a fraction of EE on the cylinder. This

frontal Mnnm :mﬁ: w?:& _M 16. where we see a cylinder and airfoil shape having the
is emphasize g .16,

cen from above.)
Nt may be writtep 4

Co = Cp (Re. M, Fr. 5, g, m,u

L (14.22b)
which shows that the drag co

efficient for an object of a oiy P
w&:._o_% number, Mach number. Froude =ca_unm m:ch_.,”__n__#”_”_ﬂr%,ﬁwmﬂ,wz %ﬂﬁa. :“
ﬁ_mfn. roughness. In some cages the drag coefficient may even %EEH ::c _,H_n_m:H w s._
dimensionless groups, For example, if the object js rotating, the drag coefficie ~: q _,“__
depend on a dimensionless rotation group. From your éefo.. DA ,,.: i
mere presence of a group in Eq, 14.2 : il g

J :r::,::.._::a
up in | 22b does not mean that all groups are equally im-
portant. For example, it is difficult to i

. see how the effect of surface tension, which is
characterized by the value of the Weber number, would be

are wondering about the relevance of this, early Ec_mjmw used wire ca-
st q %Mﬂ connect the two wings, but it was eventually recognized that the drag
Ctur: > 3 < 4 e ;
EJ%%ﬂMSQ&ﬁw using streamlined airfoil shaped struts instead of cables.
cou

. . significant in engineering
applications involving ships and other large objects moving on or through an air-water
2 Aol f wdth W P— interface. On the other hand, if we were asked to estimate the drag experienced by a
Cylinder of wi ; such RSy
2 into the paper sucl gy
w 5_%,““,” Wmﬁ L that total frontal
Suci al

frontal area is wL

water strider or other aquatic insect, the effect of surface tension would likely be quite
important. In the next four sections we present empirical results for the drag coefficient,
area is also wlL

beginning with low Reynolds number flows.

(A) (B) —---

> # -
Figure 14.15 The cylinder (A) and the airfoil (B) have the same frontal area, but the drag
greater.

n the cylinder is much

_". CD/Dynamics/Low Reynolds number flows
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14.4.1 Low Reynolds Number Flow

o
U lY./Nn\Qu//.g(l\...lf U
—_—

i i s, for which
serine interest include creeping flows, for wh
r flows of engineering interest inc g T
et meso_aw%:mw%im in which the Reynolds number is not large :_ﬂ_o.:.wsﬁ”m, mcz i
Mmzwwmmwmwm%“ HM be observed. The R =E_§J~Esmﬂmﬁwq_ﬁ=,ﬂﬁ“w Reynolds num-
is indisti i stimated as 0.1 < Re < F5- N
i Sa_wcswnﬁ.:zmg UM:%%MWN:@ Reynolds number is usually small because
ber flows involving air )

Diameter = D

S s have the
Figure 14.16 The cylinder has much less frontal area than the airfol, yet the two shape
same drag.



906 14 qumxz,p_. FLOW
ircular disk Circular disk e
h=n=_ to flow Eﬁ.:o_ to flow p
Object
\\\.\\\\\\\\\\\\\\\
= _ b
27 12 E.\Nv
C1ad A 4
Figure 14.17 Drag coefficients for creeping flow. (Re = ULy & 1)

and both friction and

drag. Drag coefficients de
of simple shape in creeping

bers can also be found for cylinders and
not available for the shape of interest, 1
namics to determine the flow over an obj

Reynolds numbers. The drag coefficient €

flows. Expe!

Hemisphere

- cous effects in 10W Reynolds number flows are
form drag contribute to the :”,.2
alytical solutions can be found for many ogm%
rimental data for slightly larger Reynolds scsm
spheres. If analytical or experimental results a-
t is also possible to use computational fluid am
ect in both creeping flow and at slightly EEW:
an then be calculated directly from the solution
e 14.17 for a geveral shapes in creeping mos_.

Drag coefficients are shown in Figur
on the inverse of the Reynolds number can be

dence of these drag coefficients

The depen
inertial forces,

explained by recalling that
gible in creeping flows- This means that 2 dimensional analysis

ing flow would not include density: rather, it W

is the length scale defining @ wwanc_m_‘ smooth

eter leads to F p/uUL = C. where Cis a constan

coefficient for creeping flow should not contain density.- Howe

forming the drag coefficient in the customary way gives
Fp Hn UL -

s P coctodO

2= ToueL? =CTp Re

object. Choosin

2C

We see that all objects in creeping flow have drag coefficic

Re~". Note carefull r
Reynolds number applies only to creeping flow, Re &« 1, not

bers. The drag on an object in a creeping flow increases linear

EXAMPLE 14.3

A playful child left alone has run a vacuum cleaner in revers

the cloud consists of 0.001, 0.01, and 0.1 mm diameter particles, an
ss by dusting the furniture D

near the ceiling must

is 700 kg/m®, will the child be able to clean up the me:

’

her mother returns an hour later? Assume that the particles

which depend on the

t. This correctly indi

y, however, that this decrease in drag cot
(o larger Reyno

ly with velocity.

ould assume Fp = f(L, U, p),

fluid density, are negli-

applicable only to creep-

where L

gLasa repeating param-

ver, since Fp =

2.3 iti :
m before depositing on various surfaces, and that the air temperature is 20°C.

cates that a drag

CuUL,

that are Eowonwoma to
tficient with increasing

1ds num-

e, creating 2 dust ¢ :
d the particle density

loud. If

efore
settle

g OFC.—._OZ
For a particle settlin
£ at terming]
| velogit
Y,

T ,uc.

a vertic
here W . al force balance sho
w m__..oa ‘ = ppg¥ is the weight = Fu ws that
applied by the air to th Cight of a parj
that accounts for the _.nm_ummw”sm. The moqon_w_on
ancy force F that acco motion of the nart:
un parti
Because the buoyancy mo”wmrwq the effects of ;HMM hwacm: the wa:“”w%m drag force F,)
§ not includ rostati v airand a buov
n@ C pressure va Uoy-

of densit
. Y pp, and :
plied by the air noswh. air 15 the total force

drag coefficient, w
, we i o
3 foe i e oy b nation in the air
S calculated by usi :
Y using a
W=F
Another i i,

( way to think about this problem js w s
reveal s

ed by r
Y TC. 3 :
cciihs arranging this equation
€ as measured as

W — Fg = Fp.Si
p.Since W — Fpi
the force balance equates ﬂEM ﬂ% ﬁa weight of the P
. 1 1 hi
that resists the settling motion.) wm cr f:.n: causes the partic] ir, we see that
+) Substtuting for each term - n:E settle, to the drag *.2“ /
in the force ag 1orce
prg¥ = Cplp,U2A 4 e bfimos (Aages )
b b,.:.wf \

Solving for the terminal velocity we obtain /

Tl/
U = 4 lAbw - Dszvrmf.
ﬁh.b.p:} (B)

We will assume :
a sphe i
Cp = 24/Re. N p :.na particle and a creeping f} i
. Note that since Cp = 24/Re = 24/ g flow drag coefficient given by

velocity al i s T
y also occurs 1n the drag coefficient in (B). The ,m% ,a_: ,,_rs ol 75
2 area and volume are A = 7 D
g =7 4
/

and ¥ = mD3/6, respecti
’ @Gn 2 o
shows that th espectively; hence ¥/A =2D/3. Inserting thes .
e terminal velocity is given by erting, thse A St

(pp— bELmUu

U=
““te time needed f 18 i
eded for a particle to settle from a hei
il p settle from a height H is t = H/U. Thus the settling
18uH

= —mmmm
(D)

(pp — Par)8 D

ce the di i ; A
diameter occurs in the denominator, the smallest particles take the longest time
7.5 m. Inserting data for

s settle. The maximum settling time fma is found using H = 2.3

at L= 3 5 3
\ir pair = 1.2 kg/m’, g = 1.81 x 107> (N-s)/m”, and other values into (B)~(D), we car
for each particle size:

construct the following table showing fmax

\\\\
D(mm) U (m/s) f gy (MNULES) Re
0.001 21%107° 2000 14% 107"
0.01 21%107 20 14x107
0.1 21 %107 02 14
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Note that since Pair

14 EXTERNAL FLOW

bers confirm the validity of the creeping flow assumpiq,,
um _

d Reynolds UL which take ~33 hto settle, will pose a prope

_ 0.7% pp, buoyancy !

ow past 2 cylinder

CcD/Video library/Fl

14.4.2 Cylinders

yal aspects of the flow field over 5

ua . Fi
. , The VI° strong function of 8ure 14.20, Foerie «
) g re a g of the Sl OCUS your At
14.18 provides drag coefficient data for m_.m_Mocﬂ”MM__._M wﬂwommq g _mnm_w fange of i Q__nm.m_.mmm:cﬂawmr Consider the obvioys M_;:_E_:oz and =o€V ﬁshﬂ,_.””ew“am On the true presgyr,
Figues:: = tal area of the cylinder € rag cCoefficien; ,, { Reyn0'®> ~. flows illustrated in Fig- AYCT MOVes from the frore o¢.r. id N the boyng,
Byt ==agw Mﬁnwm__nﬁ of the cylinder and ﬂﬂm. _m_wm.: w Ithough the dqy i, | ._aammow %M j_m 23, In the na%_:_m M% " accelerteg by g wﬁww_i e inderto e é,:w_
A = DL, where ol to a cylinder of infinite length, the informag, - c12: O eVer, as the fi: € pressure graq; ;
: rinciple to a ¢y! o 10n jg ures 2.9 (Re=0.03 » a8 the fluid pages gradient, Hoy.
Figure 14 wﬁn uﬁ__wan%wm_”%maa length cylinders. The error made will increase the shown [N Figure | ( 8), there becomes :im(_on__w_w,ﬂ e L. the Pressure: gradieny
used to estimate A

5. In applications for which L/D < 4, it is better to g the

« no wake pehind the cylinder. However, in
is

ndi : ;
As long as the flujg s N2 10 slow the flyig down,

io L/ D decrease . ) 3 (Re=19), awake has formed as enough mg .
Mmmmﬂw%ah given later (Section E‘a.ﬁﬂ. ,,aww“oa_nwwuwr&mama s a complex m_@cﬂMmMm :oﬁé separation Nes Dtcime Hmzw forward: but viscous ommz, ”_____”_@Hw_”ﬂ.n_h,wg still
. al S n | i ntt SSUIE gra-

Examination of Figure 14,18 S1ovs chon e is no boundary layer - i

and the influence of Re on Cp, consider Figure 14.19 4
s on a cylinder. As you follow the flow argyng

of Reynolds number. To underst

though there
m<m=%¢ At much larger Reynolds numbers

exert a decelerating

n_)q,r_ﬁ.m,n_::._:,.
. . ._. ally all
ard momentun i dissipated and the flow re-

the forw

1 of the velocity profile o

flow visualizatio i
the cylinder, notice tha

i erses
deformed until the noi. reve :
both the inviscid approximation and the empl

verses direction (see Figure 14.19), This i
enon that was evident i the F :
cussed earlier.

( the laminar boundary layer <m_a..o:< profile is gradually
direction. The corresponding pressure distributiong.
rically observed distribution, are shown jp

' the size of the wake is determined by
! boundary layer separation, and as noted
earlier, this influences the pressure drag,

the p
alkner-Skan «

If the pressure distribugio
tegrated for the inviscid ¢ i
. g ase, the net force is zero, Tt
. i 2 : neet o 3 § ﬁ
is, the pressure drag in the inviscid model is identically zero. In Figure 14.20
can be seen that the actual pressure recovery is much less than that
case. Thus, for the real viscous flow we find a net force et
der. This is the source of the pressure drag (or form drag) on 4 oylinder.

We are now in a position to explain the dependence of Cp on Re for

1d the ¢y

acylinder, as
| illustrated in Figure 14.18. In the low Reynolds number regime. the drag coefficient is
f proportional to the inverse of Reynolds number a

ies with Re in much the same way that it did for laminar flow over an aligned flat
nlate (i.e., Cp & Re~'/?). In the range 10° < Re < 10°, Cjy has only a weak depen-
nce on Re and the total drag is dominated by the pressure or
is similar to that displayed by “bluff bodies,” as described later (Section 14.44).

Over the range 10° < Re < 10° the cylinder drag coefficient falls dram |
about 80%. At this critical point the drag actually decreases with increa o speed.
Imagine increasing the speed of your car while letting up on ?. gas. Wh ,p_c,,,.,_gg_.,~,
this extraordinary behavior? You might attribute it to the laminar-to-turbulent transi

AT ; elocity
{ ” of the boundary layer. Recall Figure 14.8, which shows laminar and t velocity

" - orhulent flow
. —— " . . flux near the surface for turbu fic
0.1 : y § . The higher velocity and momentum fiu: e
10-12 4610°2 461002 46 172 461002 46 10°2 46 1002 460 profiles q : m@ olﬂ_n:om%% but results in a substantial decrease in pres :__i the
Be=ptibin. - 7 at the boundary layer separates when HiC

How is this possible? Well, remember th

. areame the adverse pressure
streamwise momentum of the flow is sufficient to overcome the adVerse |
Stri ‘WIS £

=

Figure 14.18 Drag coefficient for a smooth cylinder.

l
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Figure 14.20 Comparison of the pressure distribution i el
around 4 cylinder based on inviscid theory and empiri- 08 " ‘
cal observations. " [ Fixed suppon
0.6 = ‘
i 2T
04 Measured pressure ’l
distribution (turbul,
cnu_‘\rl . ‘ > Twin SUPPOIT cableg ’
e 0.2 7 ;\Iu ’ each with lension 7
—%J 0 | ‘ AF, Y
= Measured pressure
';: _02 distribution (laminar) ‘ i
2 ‘ <
! . | \ > ‘i,; \
= -04 2 ,,/— \ A\L=1m F
" ; U=25km/h  C¥linder with \ \
[8) ~06 R weight W=gN |\ 3
‘ v
il “D=10en
-08 " Theoretical ; F
it distributic | igure 14.21 Schematic for Example 144
=0 ,I §= Sepu.rilhnn_n
Cqal I We expect that the angle will be larger for a g
020 40 60 30 100 120 140 lou 1) can never exceed 90°. For small angles coul - 1 i -cout
# (degrees) i approximate result ) = DL. we abtain the
—_— |
\ ‘ i
#=sin”! ‘ ; R
EXAMPLE 14.4 | | =
A modern sculpture includes a wind gage in the form of a cir-vlar cylinder suspended \ »ssuming 20°C air for which p = 1.2 kg/m' and SEx 1077 mess, the Re
from two fine wires as shown in Figure 14.21. If the presence of the wires is assunmed (0 \ vumber is
have a negligible influence on the flow field, at what angle will the cylinder hang in a i |
wind of 25 kmv/h? The cylinder weighs 6 N and its dimensions are D = 10.cm and ‘ R UD (25 km/h)(1000 m/km)(h/3600 51(0.1 m) B
_ == — = = =46 0
L=1m. v L3Lx 1075 m's
SOLUTION ‘ From Figure 14.18, at this Reynolds number C; = 1.2. Inserting the data into (A) we
; ; . . ) . \ must iterate or use a sy ic code to solve
Since the wind applies a lift and drag to the cylinder, after neglecting the tiny buoyancy | e a symbolic code to solve
force onAlhe cylinder, and writing a force balance on the cylinder in the x and y directions ; y 3600 ) POImm]
we obtain | §ing — [(1.2)(1.2 kg/m?)[(25 km/h) (1000 mvknn (h/3600 s)(O-Fm)ttm) ) o
) ) . R 26N)
(Fpcos6 + Fysinf) —~Wsing =0  and 2T — Wcosé + (Fp cos® — Fpsinf) =1 ‘
. oAy . . eliver good accuracy 1n
Nm:"g that lhe, x component of force of the wind (Fpcost + Frsint)= 1 The result is § = 27.2°, It is easy to confirm that (B) does not Mmfm it y : -:1 ’\
1 a2 - = &l < i . acted > sculpture siie, it ma
Cp3puir(U cos8)? A, the force balance in the x direction shows that 1 this case. Depending on the range of wind speeds :’\pullLb ;_“["I‘!L \1\ “,5 :\t hould also
| i 2 lareer angle of deflection. yve SO <
| \ be bes iohter cylinder to obtain a larger angle OFdetice he
o ( Diﬂa}rUZA) (cos? 8) @ best to employ a lighter F) e o linder affets the drag coefficient so it may be best
sinf = ~—2"17" "7/ ‘ be aware that the aspect ratio of the cylinder ¢ jon experiments

w to validate a design based on (A) or (B) by careful calibrat
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- P— 2T 1 ] T
Figure 14.22 Lift nd drag co- ! ‘ P,
efficients for a spinning cylinder. i ‘ PLE 14.5
\ ) | EXAM :
L
1 The Flettner rotor-powereg aki |
. Data bang % diameter and 15 m ty)], Ifo & 1P showp i, Figue | ‘
| 30 km/h, find th = 200 tpm 234 '
¢ | e force applieq to E;E h ri;‘(()i tll:e SPeed of e l‘.;‘sdlwo FOlOrS, each 3
I by th Telatiy )
& 6 ‘ 50LUT|0N ¢ Wind Yetothe rotor js
E ‘ |
Su ) | To find the force generateg by each ‘
_______ } 1 as showr_l in Figure 14,27 to de[; rotor, we wi)) Use the ‘
~¢, | the rotational velocity fine the lify g4 © TESUIES for 3 spinpino cor
2 \ Yas drag coefigjoy F! "IN cylinder
, ‘ _ S FITSt we caleylate
Vo = Rw = (0.0015 km)(20 e ¢ calculate
e . ~ V2R radirey :
) Dividing this value by the wind speeq giye 60 minsh) < 15 kvt
SIVES us e o . )
| ; S the spin ragi, WD/, Thy
i Y 113 km/h - 1hus we have
~ L__,——_—R‘ | ] T A = 7
20 | 2 3 4 ;_\7; From Fi U™ 30kmp =37
: igu
Spin ratio, wD/2U e 1522 fd Cl‘ =89 and C, 38, Th
» = J.0. Thus the lift an
Fp = CLlPUzDL = ! T and drag forces gre
: ‘ ' the boundary layer in turbulent flow c: : =@9(3)02 ke/m)(8.33 mys)2(3 m 15
gradient. The increased momentum in the boun ary layer in turbulent flow causes sepa- Fp =Cp3pUDL = (38! L = 167k
ration to be delayed, and the resulting wake is smaller. The pressure on the downsircam ’ =GB 121gmys ws)*(3
; . let - < D2 1Y Gm(I5m) —71un
side of the cylinder is therefore not quite as lhow as itis with a large wu_ke. and the result where we have assumed air at 20°C e
is a much lower form drag. This is evident in the changed pressure distribution on the wind to each rotor is thus i‘i Chm o culting te dnsty.Th fore o lied
: ; " S given by Fooo =77 s 13- e force applied by the
cylinder surface as shown in Figure 14.20. . . . ure 14.23B. This force acts at '1L‘ }i*F”‘m e 107N s shown n Fg
Spinning a cylinder in a freestream results in an increase in drag if the rotation rate relative wind direction T ol0 = arI67/1.1) = 67 the | fiof e
is sufficiently large. The rotation also creates a side force or lift on the cylinder. This is - S
known as the Magnus effect. The lift and drag coefficients for a spinning cylinder are e
shown in Figure 14.22. In this case the lift coefficient is defined as Cp = Fi / %/’U»DL' .. 1 = ]

Over the years a number of interesting uses for spinning cylinders have been proposed,
including a rotor-based wind-powered ship (Figure 14.23).

-~

CD/Video library/Flow past a sphere

14.4.3 Spheres

The frontal area of the sphere enters the drag coefficient as A = 7 D*/4. Spheres exhibit
drag coefficient behavior with Reynolds number that is similar to that of cylinders, for
much the same reasons. The change in separation point due to the transition from a lam-
inar to turbulent boundary layer is evident in Figure [4.25.

It is interesting to note that golf balls in flight have Reynolds numbers near the point
at which the laminar-to-turbulent boundary layer transition occurs. To ensure that the
boundary layer is turbulent, roughness 1s added to the surface of the ball in the form of
dimples. These dimples reduce flow separation, thereby lowering the drag zmdl {nm:.l\:
ing the flight distance. The effect of roughness on Cp for spheres near the turbulent tran
sition is shown in Figure 14.26.

@J Figure 14.24 shows drag coefficient data for a smooth sphere over a broad range of Re.

F, = 16.7kN

(B)

___—
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Figure 14.24 Drag coefficient for a smooth sphere.

(A) (B)

: : . bulent
Figure 14.25 Boundary layer separation on a sphere for (A) laminar flow and (B) tw
flow caused by roughing the nose.

l’/D:”'l\rnmtl'n
'E/D=5}.(|Ofl \
/

e/D=15x 103

BB e

Rf"ﬂ“)y k10

Figure 14.26 The effect of roughness on the ¢

Irag on a sphere

EXAMPLE 14.6

To make a car easier to find in crowded parking lots,
plastic ball is attached to the end of the vehicle's 3 ft antenna as shown in Figure |
What is the bending moment on the antenna due to the ball if
50 mph?

a colorful 2 in. diameter

the car is moving at

D=2in

Figure 14.27 Schematic for Example 14.6.

sowrion

moment.

H ~-ndine
e resulting bending
would be without having

7 en find th
We will calculate the drag force on the ball, then fin

A1l is the same as il
We will assume that the flow over the ball is the

—
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antenna nearby. Assuming air at 70°F, .
up (50 mph)[1.47 ftl(mph—s)].(72 in.)(ft/12 in.) —ns

=T 1.64 x 10 ft?/s

From Figure 14.24 we find Cp = 0.5. The drag force on the ball is calculated nexy from

Fp = CplpU?A, where A = m D?/4. Inserting the data, we find

L, m(0.1667 ft)2
Fp = (0.5) (%) (2.329 x 1077 slug/ft®)(73.3 fu/s) S

x 10

Re

=6.83x 1072 Iby

Ignoring any curvature of the antenna, the bending moment is
M = FpL = (6.83 x 1072 1bp)(3 ft) = 0.2 ft-Ib,

Would you recommend adding roughness to the ball?

L C CD/Boundary layers/Separation

No discussion of the external flow over a sphere would be complete withou! in-
cluding the effect of rotation, which plays a prominent role in the flight of sport bulls
of all types. As was the case with a cylinder, rotation of a sphere not only affccts the
drag but also produces a sideforce or lift. The lift and drag coefficients for rotating
spheres are shown in Figure 14.28. The lift coefficient {or a sphere is defined by
CL = F /LpU%A, where A = T D?/4.

14.4.4 Bluff Bodies

Suppose you were asked what feature buildings, billboards, and beams have in common
that might strongly affect their drag? If you recognized that each of these objects hisa
relatively flat face with sharp edges, you are correct. These and other nonstreamlinicd ob-
jects are called bluff bodies. More formally, “bluff body” refers to an object that ¢ peri-
ences flow separation at a relatively low Reynolds number and has a flow field aficr sep-
aration occurs that is relatively unchanged as Re increases. As a result, the drag
cocfficient for a bluff body after separation is nearly independent of Reynolds number
(over a large range of Re). The separation process on a bluff body is often, but 10! l-
ways, associated with a sharp corner or other change in geometry.

From our discussions, you know that the onset of flow separation generally corre-
sponds to an increase in total drag resulting from a substantial increase in the form Jrig
and that form drag can be reduced by streamlining. Consider the tractor trailor tiuch

N

14.4
DRAG COEFFICIENTS

0.8 917

Figure 14 3
; .28
cients for a gpip Ll and drag coeq,

F, :
ning sphere

CD:~|—~LT
Lo
[

/' < /
N U
—
O Stiouth \Phcrq.
|

0.6

C5.C;

EXAMPLE 14.7

SOLUTION

& baseball pitcher throws his curve ball at 80 mph with a rol
“The ball has a mass of 5 0z and a 9 in. circumference. Fsy »w much this pitch will
treak as it travels a distance of 55 ftina spring game in New York, when the air tem-
perature is 50°F. What is the break in a summer game when the temperature is 90°F? In
vour calculation, assume that the rotation axis of the ball is vertical

tional speed of 1800 rpm.

in the coordinates shown in Figure 14.29, the rotation of the ball will cause a force tend-
ing to move the ball in the v direction. The equation of motion for the ball in the v di-
rection of break is Ma, = Y F,. The drag on the ball acts in the x direction and
to slow the ball down slightly during its travel to the plate. We will neglect
and assume for the ball a;cmia(.uu velocity of 80 mph. The time of flight of the ball is
therefore given by

- (A)

Viall

) s 5] . erting the data,
where § is the distance to the plate and Vg is the speed of the ball. Inserting the

we calculate a flight time

S iin') ( 714”_1[_1117 ) —047s
P=a (30 mph | \ 1467 fu's

NE i §
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0 = 1800 rpm ’é

/= 80 mph P
! me -~ Baseball with
W= 35ozand
A~ C=9in.
§=551
,‘//

Figure 14.29 Schematic for Example 14.7.

Gravity acts on the ball in the negative z direction and causes the ball to drop as it
travels to the plate. We will assume this effect acts independently of the lift force created
by the rotation of the ball: hence the drop can be calculated as approximately 2.9 fi. The
lift force for a rotating smooth sphere is given by

1, aD?

F.=5pVoa—~Co (B)
and acts in the y direction. A baseball has raised stitches that arc known to affect the tro-
jectory of a pitch. Since we have lift and drag data only for 4 smooth sphere as given in
Figure 14.29, we will use the smooth sphere data in our calculation. Finally, note that 1!

the rotational speed of the ball is assumed constant, then the liit force is constant during
the flight.

We can write the equation of motion for the ball in the v direction as niu
m(d’y/dt*) = F, . Integrating this twice we obtain y(r) = (/7 /m)(t*/2) + Cot + ()
To evaluate the conslants, note that at time ¢ = 0, the ball is at an initial location 1.
thus Cy = yy, and we can write y(t) — yy = (Fy /m)(t?>/2) + Cot . The remaining coi-
stant is found by assuming that the ball has no velocity component in the y direction
when released by the pitcher. This allows us to set Co=0 and obtuw
¥(1) = yp = (Fp/m)(1*/2). Attime T the break or distance traveled in the y direction s
given by

F, T2 ™
ay=FrT” (©)
m 2

14.4 D
RAG COEFFICIEN TS

Inserting (A) and (B) we haye

L\_\‘ = M

then use the chart in Figyr,

; 5 gure 14.28 o fi at
dlff(il'em all“[emperalurcs. note thyt ,Ln .dlh:[ _fw[ '\:““S
107" slug/ft’. The diameter of the hulf =2420 % 19
0.2387 ft. Thus from (D) we fing the bre

ak at 50°F i

' o D*pC.§?
Y30 = 16m

T 1 |
| Avsp = (—-) (—— ———01‘_ Ay D
[ Y50 16 50z 1.943 % 102 \Iu; (0.2387 ft)°(2.420 «

Ayso = 0.42 ft

“slughe’, g, .
18 found 10 he p _‘N d oo = 2.244

919

|

| 16

[ . . n

i To determine the lift coefficient, we first caley) .
. > Caleulate the g
| I U - D(U [2865 in )(ft/19 ; N g
’ Vol 2V “—‘—4-71&_‘2_’(‘1_?{00 M) (272 )(60) i/

2(80 mph“fﬂﬁfh’in,[ min/h)
C)

To calculate the break at the

294 X

/T ft/12 40,

0035 ‘i-'\n,

| At 90°F the break is
|
| | / oo I
‘ | A_\'\Nl'—*('_l),\‘.:,‘:(j"’"_”
| 0 2420 x 10
| ' =039f
! - or about 8% less in the “lighter” summer uir. This break is not sufficient 1o fool 2 batter
. if the curve ball is thrown with the rotation axis vertical. as indicated in Figure 14.29,
_l ‘ instead the pitcher throws the ball so that the break is down, 1 ¢.. the rotation axis is
‘ nearly horizontal. Pitchers use a variety of spins (o induce movement of the ball. A
i i knuckle ball is thrown with no spin and darts erratically owing to flow separation. A dis-
E cussion of the physics of sports balls can be found in an article by R. D Mehta entitled
- “Aerodynamics of Sports Balls,” in Annual Review of Flurd Mechanics. volume 17

pages 151-189, 1985.

shown in Figure 14.
cab is a good example of a bluff body (the ca
it causes substantial drag, which reduc
with a wind deflector mounted on the roof of the cabi
ple and inexpensive streamlining device substantially

30A. The large flat section of the U :
b itself is somewhat streamlined); as such,
es gas mileage. Figure
n front of the

ailer exposed to the air above the
14.30B shows a similar ng
hluff body. This sim

educes the drag on the tratler and

el
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TABLE 14.2 Drag Coefficients for selected 3D objects.
. \
Geometry Reference Area, A | Drag Coeflicient, C,, and Remarks
Sphere nD? Re 100 10 10t 10° 10°  5x 100
T 4 Co 10 041 039 052 012 0.8
— D For Re < 1, Cp ~ 24/(Re[l + (3/16)Re]).
Hemisphere aD? Cp = 0.42 (Sphere side facing upstream) -
T KD Cp = 1.17 (Flat side facing upstream)
@i
Ellipsoid of Revolution aD? Cp =0.44(D/L) +0.016(L/D) +0.016(D/L)'?
4 1 <L/D <10
Re < 2 x 10°, laminar flow.
f— L —
Sphere in a Circular Duct nD? DA\YT
[ —— ] a Cp=|1+145 (_) Colpyp=n
T Dy
. @I Dy 0 < D/Dg < 092, Cp(Dy/D = o0} is that of sphere above.
————— l
Thin Circular Disk 7T4D' Re 1 2 5 10 15 10° 10° 10°
@T Cp 25 15 6 36 15 L1 L1 LIS
— D
Circular Rod Parallel to Flow aD? LD
4 ~0 1.15
0.5 1.10
1.0 0.93
15 085 R, = 10*
20 0.83
30 0.85
4.0 0.85
5.0 0.85
(cont wed)

. 4 (ABLE 14.2 (coninued)
/—

i Geome".y
.1 Rod Perpendicular LD
| C}'h"dncal R LD ¢,
| 1o Flo¥
10 064
l 198 0.68
296 (74
| 500 o
| 0. o8
200 g 91
0. 00
x 1.20
—
aDb- g
4 | (deg) ()
|10 0z
0 040
N 0ss
0 063
60 0x0
75 | 03
90 115
180 140
Thin Rectangular Plate LD LD
Perpendicular to Flow 0 10
T 20 1
— D >~ 40 L
_4,_ 0 1.0
100 1.2
| \ B ] 120 1.2
| ~.. 178 IR
¥ \ﬂ e 1.90
| Square Rod Parallel 10 ~low D* L G
1 D 0128
’ 05 13
| D 1.0 115
| 1.5 197
{ 20 087
! 15 [
30 (.93
oo 095
50 095
Average Man See data at right - " o
; M For Cp A product t “»" “‘ Sy
+CpA J

appropriate 10
different flow
directions and
posture

Referen )
y
ce Alea A [ Dr ag Cﬂelhﬂﬂlt, (r and Rﬂmﬂ[k.‘i

g =9 ftt (0.84m
£ (0,11 m)

=
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The Reynolds number of the floy, ;

Re = unD
Ty T 12,
1.64 10-4 :.4>l;f =3x |0

which is above the v 5 -
Al the value Re > 1y for which the oo ¢
are valid. Thus it is appropri ¢ daia for g quy,

ate to yse the
) t e drag coefficin
In ,ﬂw@_n 14.3 we see that for 3 square setion M_,8;__::: in this
" e A «the
the wind, thus the maximum force will oceyr for m

Section in Table 14 3
le for 0l

: )T our ;
aximum ;) = 3 4 7_ b

(B)

(A)

Figure 14.30 (A) Bluff body truck design. (B) Streamlined truck design.

* This is the force the column myg potentigl| 2 vind ha
s ; . we will assume 70°F air ang yse 1= i
therefore, increases fuel economy. A person riding a bicycle is another example of , , drag force is then found to ?,, A=
bluff body. Have you noticed that riders in the Tour de France generally wear helis Lo
designed to provide a more streamlined shape and reduce pressure drag? Fp = M.cQ-Lm.c = u:u_.dc . ,

Table 14.2 includes drag coefficients for a few common bluff bodies as adupieq -_
from a variety of sources. The data are for Re > 10* with accuracy of +5%. The inter-

ested reader is referred to Applied Fluid Dvnamics Handbook. by Robert Blevins for the reported Cpy values for s}y irp edged bl
e e : . . : s arp edoed b
a more complete listing of drag coefficients for bluff bodies. Notice that, as expecied, weak function of, Re over the rance indic. e ronly
] & caied
i Table 14.3 provides similar data for 2p .
o | be the (constant) cross section it CCION 1S Geline

f tions is based on force per unit span. Ti
Re > 107 with accuracy of +5

You may have not
streamlined in appearance. ¢
rors seen on early automobiles

EXAMPLE 14.8

As shown schematically in Figure 14.31, square columns 4 in. » 4 in. and 10 ft tall are 10
be used in the construction of a porch in south Florida. If the columns are exposed to hur- |
ricane force winds of 100 mph (= 147 ft/s), what force must cach column withstand’ _ |

P

siderable amount of drag. The
concern for fuel economy, as does tf

rated to a high speed by the sh:
| Thus if a protuberance is necessary (o

locate it in a region of ret
n value. In

L=4in | ,
. , above the freestr

. on many models moved

wia — | under the hood. getting them

Top view of
support column |

| mmna_m:c;

CD/Boundary layers/Separation/Ar

Side view of Wind
support column direction

ber and geome

CD/Dynamics/Dependence of forces on Rey
and geometry on flow

Figure 14,31 Schematic for Example 14.8.




924 | 14 EXTERNAL FLOW

TABLE 14.3 Drag Coefficients for selected 2D sections.

Geometry
Circular Cylinder

Ot
= D
4

Drag Coefficient, Cp, and Remarks
Re f W o1r 10t 108 100 10
¢l 14 10 11 12 04 08
For Re < 1, Cp =~ 8n/(Re log, (7.4/Re)].

Cylinder Near a Wall

Of
—_— D
E

E/D Cp Cr
0 0.8 0.6
0.25 1.1 0.25
0.5 1.2 0.15
1.0 1.3 0.05
15 1.2 0.02
2.0 1.2 0
4.0 Z 0
6.0 1.2 0
10* < Re < 10°

Lift foree is away from wall.

14

BLE 14.3 (continued)

1
| =5 . Drag nomn._am_.: (o
i Two Cylinders Side by Side E/D C) P =
| D C
| T 0 |
| v 025 o o
x 1.0 06
0.5 0.9 04
R 3 1.0 1.1 02
Mw 1.3 0. m
! . 1.2
| Ll 4.0 1.2 Mmm
6.0 12 gy
Cp. Cy for each cylinder. 0+
Inclined Square -\\Jl%\

Cylinder Downstream of Another T/D=0 T/D=05
Cylinder L/D Cp L/D Cp
T 10 —04 10 065
D 1.5 -0.2 1.5 0.50
4 20 0.0 20 045
= H,ﬁ 25 02 2.5 0.45
.......... 3.0 0.2 30 0.40
p—1Lr—+ 4.0 0.3 4.0 0.40

Drag on Downstream Cylinder T/D=1.0 T/D=2
L/D Cp L/D Cp
1.0 L1 1.0 1.1
1.5 1.0 1.5 1.0
2.0 0.70 20 1.0
25 0.70 2.5 1.0
3.0 0.65 3.0 1.0
4.0 0.65 4.0 1.0

104 < Re < 10°
Rectangle L/D Cp L/D Cp
ﬂ 01< 1.9 1.0 23
. 5 02 21 1.2 2.1
L. 04 235 1.5 1.8  Re=10*
0.5 2.5 2.0 1.6
L+ 0.65 29 25 1.4
0.8 23 3.0 13
6.0 0.89

E 50
C P E—

2 22 21
= o Re > 10°
9 ,A\U
Rounded Nose Section L/D IS
T 05 -
b D 1.0
I*l 2.0 Re > 10
fo—r— 4.0
6.0
Thin Flat Plate Inclined 7 Flow S —= = -
\ e , g | )
’ )0° > 8 > 12 K
[ s \J N 0.222+0.283/snf’
| Cp = Cycost
! ] Cp=
\7/4\ There is a discc )8 as
flow separates
— T<0.1D
Thin Plate mﬁn__&:w from a Wall Cp=14
141 Re = 10°
sy 5
_— —
e D/L Cp
| 0.125 0.22
> 0.25 03 .
] D 050 06 Re > 107
i nﬁ 1.0 1.0
— 20 1.6 tinue
L— o 2

> -

Laminar flow only
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TABLE 14.3 (continued)
—_
Geometry Drag Coefficient, Cj,, and Remarks
1 Shape Cp
T Flow L. Re > 104
D direction |05 | 10
1 -~ 205 16
f— F'.L t 09 1.9
|‘l’-’t

145 LIFT AND DRAG OF AIRFOILS

As discussed briefly in the case study of Section 3.3.6 (lift and drag on airfoils), 1 wing
is a specially shaped body designed to produce lift when exposed to a stream of fiyiq,
Lift is defined to be the component of fluid force acting on a body at a right angle to the
oncoming stream. Thus lift is a vertical force for a vehicle or object in level flight. The
total lift developed by a wing supports the weight of an aircraft. The spoiler, or upside-
down wing, on a racing car produces negative lift, a downward force intended to keep
the car on the track.

The cross section at any given point along the span of a wing has the form ku
as an airfoil. This airfoil shape is carefully designed to maximize lift and mini
drag. There are many different airfoil shapes for different applications. Before
cussing airfoil shapes and some of the characteristics of flow over an airfoil further,
sider the distribution of pressure and shear stress on a typical airfoil shape as shown in
Figure 14.32.

The lift applied by the fluid to this airfoil is defined by Eq. 4.25b as

F = .\ (—pn+7).n. dS
s

where the unit vector ny. is normal to the flow direction. The drag component of this s
force is

Fp= | (—=pn+1)nydS
s

the pressure and the shear stress contribute to the lift and drag of an airfoil. In practice.

Figure 14.32 Typical pressure
(normal stress) and shear stress /

distributions on an airfoil. - \
Flow e = /
—> —— .7 Shearon /I#I///P Y /
= ot /
surface e S

pa= Se—

Pressure on surkice

o

0.1

001

M8 LFr gy DR

)

AG OF alRrg) ¢
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Flat plate Figure ]
II’/ i E:rﬁ :
Circle .\.b e
. D
Ellipse (N1
(\ :
%, |
D~ |
O:A:
Airfoll T
Flat plate
= s
__ My “_ 4
L i
N_t

=
I

D X unit span

10*

Re = pUD/pt

the lift on an airfoil is f
stress contributing very
both the pressure and s
may be thought of as the end result of
off in elongating the shay
crease in friction d

ree orders of m

critically important
bers such as wing struts. Symm
sired. This geometry results in a symmetne prssi
of the airfoil, giving zero ils can pr
of attack to the airstream.
The standard geometry
study of Section 3.3.6, butitis ¥
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Figure 14.34 Airfoil geometry.
Planform

area, bc

—_

Angle of —_—
attack Qm /Mp: b

Applying dimensional analysis leads to the following relationships among dimensiop.
less groups:

F t b
——— =81 |Ree, —, — &
spVibe c ¢

Fp t b
— = Re., = —;
Wbe\w&ﬁ 82 i o

where Re. is the Reynolds number based on chord length.
The lift and drag coefficients for an airfoil section are defined by Egs. 3.43 as

F) F,
QP = _||~N| and nb = 2
M_Da\n@h

- Wb Vibe

where the product bc is called the planform area. Thus we conclude that the depend
of the lift and drag coefficients on the various dimensionless groups is given by

Cp = CL |Re, , and

b
c

a1~

For an infinitely long wing, the span does not enter the an:lysis, so the ratio of span
to chord, b/c, disappears from these expressions. We conclude that the lift and drag co-
efficients are a function of Reynolds number, the geometry of the airfoil as expressc 1 by
the ratio of thickness to chord, and the angle of attack. For engineering purposcs, cin-
pirical data for a given airfoil shape are presented in the form of lift and drag coefl 5
as a function of angle of attack for an infinitely long wing of the indicated shape. '
ample of lift and drag data as a function of angle of attack for the symmetric :
NACA 0018 is provided in Figure 14.35. Note that for this symmetric airfoil the |
zero at zero angle of attack (o = 0). i

A comparison of the NACA 0018 airfoil shape (Figure 14.35) and the NACA?
airfoil shape (Figure 14.36) shows that while the centerline of the former is str:
centerline of the latter is curved. An airfoil with a curved centerline is said to be canm-
bered. Camber provides lift at zero angle of attack by making the flow field
airfoil nonsymmetrical. Fluid moving over the top of a cambered airfoil at zero

L

Lift coefficient, C

\|II\|l|\|l|1IIl\\\\\\IIII\II\!\III\’IJI
20 Reynolds number I_ 0.096
— 65X 10° —=-36x10° #
25X 10° ——-30x 100 —
1.6 , | 0 [ 0.080
127
& (n 1200
08|
04— 8 .Jn. » iy
00— ) :
-04
-80 0.0 8.0 16.0 D e . N :

Figure 14.35 Lift and drag coeffici

Angle of attack, a

ts for the NACA

attack is moving at a hig
equation tells us that the pressure on tp is lo
ways, an ::nL::_ pressure di ion 1s the
as a function of angle of u
in Figure 14.36.

From the foregoing di
ing over the top of an uir
__.4

her velocity

for the cambere

creases, the separatic
the angle of attack becomes (oo &
top of the airfoil. Thi
can be viewed
o =30 and
will literally f:

Aircraft v

for all the operat
justable. Flaps, on b
can alter the amou
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NACA 23012 _ Camber line

2.0 0.048 000 ——MmMm————
Reynolds number | |
[ | , |
—70x10° | , | |
jgl— boxaed L L1 ik UL ] g04g 160.0 I S S S
-—--1.5x10% | ,
| 1
1.2 0.032 a 120.0 — - b
< S 5 |
= ] @) |
2 g £
£ 08 0.024 £ g 800 0.08
— V) =
5 E 2 <
- 0016 3 400 00 %
3
0.0 0.008 0.0 - —0.08 3
, s
—0.4 0.0 —40.0 —0.16
-8.0 0.0 8.0 16.0 24.0 -8.0 0.0 8.0 16.0 240
Angle of attack, & Angle of attick, « Figure 14.37 NACA 4412 airfoil section with a leading ¢

Figure 14.36 Lift and drag coefficients for the NACA 23012 airfoil: 2D test in tunnel on smooth surface at 0.02%
turbulence.

with flaps extended in a landing configuration. Figure 14.38B shows the cruise and take- : J ey
off configurations in comparison to the landing configuration. i

If you look closely at Figure 14.38A you can see slots between the flaps that allow i Cruse configurat
air from the lower surface to flow to the top, helping to delay flow separation. This is
only one of the sophisticated methods of boundary layer control that have been devel- ”
oped. Figure 14.39 shows the upper surface of a wing of a commercial aircraft. Note the
array of protuberances on the wing surface. We know they will increase the fricton
drag. However, by causing high momentum air to flow into the boundary layer, these
vortex generators keep the boundary layer attached longer, reducing pressure drag and/
or delaying the onset of stall.

So far, our discussion of the flow over an airfoil has been limited to 2D flow, such
as would occur if a wing were of infinite length. Real wings of finite length have ¢
drag than is predicted by 2D airfoil theory. The increase in drag is called induced diag
One cause is the leakage of high pressure air on the bottom of the wing to the low pres-
sure upper side around the wing tip. Figure 14.40 shows a flow visualization of the wing
tip vortices that are generated as a result of this phenomenon. -

The next time you are in an airplane, the view from your window should _.#. 4__ >
more interesting because you will be able to appreciate the complex physics of the
flow and the sophisticated design of the wing.

red mechanicd

cd

Figu
s&“.;.ww (A) Airfoil section at a 237 angle of 4

K. (B1Sop
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Figure 14.40 Wing tip vortex.

Figure 14.39 Vortex generators on a com-

mercial aircraft.

§

EXAMPLE 14.9 B

SOLUTION

A fully loaded aircraft weighing 900 kN has a wing area of 230 m". 1l the wing has the
characteristics of a NACA 23012 airfoil and during takeoff oper.ict at a 6° angle of
attack, what is the required takeoff speed at sea level? What is the t:kcoff speed at an

elevation of 2000 m?

To take off, the lift force must overcome the weight, so f, = W, 7

1pUPAC, =W
2W |
b= b\»ﬁ.b V

From Appendix B for the U.S. Standard Atmosphere p(0m) = 1.225 kg/m* and
(2000 m) = 1.007 kg/m>. From Figure 14.36 C; = 0.79. Substituting the data into

1§ SUMMARY

14,
6 mc_ssbm< 933

the preceding expression yields:

N
OZ;

(230 m?)(0.79; = 90 mys < 3

2(900 x
(1.225 kgim3)

ML
at sea level and at 2000 1, +km

29005 106N,

U= [ 2OWxioy
V (1.007 kg/m¥)(230 m3)0.79) = 99 mis =

Thus an increase of almost | (¢

356 knyh

In takeoff speed i required at h

\I‘\“

..m.ﬁm_.zm_.:os.: is the term used to descripe « he
fluid moving over an object. The study -
of fields including transportation 2
When a body is immersed i I
.&nEE to any point on its surface is :?z_,.,i 0 . H a,r
imum value some distance away. At laroe R s
distance, and the body is said 0 have 4 |
tics are affected by several f;
relative to the freestream.
The Blasius solution
plate aligned with the freestrea
sure inside the boundary layer is the s
ary layer; (2) the bounc
shear stress and skin |

There is no analytical sol
we are forced to rely on el
power-law model are given in Egs.
5 x 10° < Re, < 107. The bour
x*3 while the wall shear stress
proportional to x '

Observation of boundary layers
ject's shape and angle of attack have a1
laminar and turbulent boundary layers. For
angle of attack are equivalent (0 ¢
of the form dp/dx < 0, meaning |
erating) in the flow direction, is referred 104

e comespend
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dp/dx > 0 is termed an unfavorable pressure mam..:m:r The favorable pressure eradieny
of an accelerating freestream tends to thin a _ma,scn boundary layer and bring highe
momentum fluid nearer the surface, while the _SES_‘"_E..W pressure gradient of 5 ar.rnn_q
erating freestream tends to do the opposite. ,_.Em. onan E_?__.s laminar coc_ag@ _36“.
is relatively thin and remains attached on portions of the ,r...c_.:_nm.,,}na the flow i 5.
celerating. but becomes thicker and may separatc from portions of the surface where e
flow is ng_nEa:m. At the point of separation the wall shear stress is zero, ang down.
stream of this point the flow near the wall _.m<m_.mnv..&_.nc:o:. This also occurs v )
turbulent boundary layers, although they are more resistant to flow separation owing 1,
the increased amount of higher momentum fluid near the surface associated w .:_._,:a
more blunt turbulent velocity profile.

For a stationary object immersed in a moving stream, drag is the componen of
force exerted on the object by the fluid in the direction of the freestream. For an ahjeq
moving through a stationary fluid, the drag acts in the direction opposite to the object’s
motion. The power required to propel an object through a fluid at constant speed is given
by the product of the drag and the speed. Thus, drag limits the performance of vehicleg
of all types and affects their fuel economy. The total drag force arises from two mechy.
nisms: pressure and shear stress. The pressure contribution to the total drag is referred 1o
as form drag, and the contribution due to the shear stress acting on an object’s surface is
called friction drag. In a high Re flows the drag on bluff bodies tends to be dominated
by form drag. The drag on long thin bodies tends to be dominated by skin friction.
“Streamlining” is a term used to describe the attempt to design an optimum shape for a
bluff body in a high Re flow by minimizing the total drag. It generally takes the form of
elongating the rear of the body. Although this raises the friction drag. it lowers the form
drag, and the total drag is reduced.

Although CFD is increasingly being used to determine the drag on objects of cnai-
neering interest, much of what is known about drag is the result of experiments. Dimen-
sional analysis shows that the drag coeflicient may depend on Re, M, Fr, St, We, and ¢/D.

Drag coefficients are shown in Figure 14.17 for a number of shapes in creeping
flow. All objects in creeping flow have drag coefficients that are proportional to Re™.
Figure 14.18 provides Cp data for a smooth cylinder. For Re < 10° the friction drag of
the laminar boundary layer dominates, so Cp varies with Re as it did for Taminar flow
over an aligned flat plate (i.e., Cp o Re™'/2). In the range 10° < Re < 107, Cp has
only a weak dependence on Re and the total drag is dominated by pressure drag. Over
the range 10° < Re < 10°, Cpy falls dramatically by about 80%. The drag actu ly de-
creases with increasing speed as a result of the laminar-to-turbulent transition of
boundary layer. Spinning a cylinder can result in an increase in drag and also creates i
sideforce or lift on the cylinder. Figure 14.24 provides C), data for a smooth sphere. The
trends for the dependence of Cpy on Re for a sphere are similar to those for a cyli
for many of the same reasons. As was the case with a cylinder, rotation of a sphere
only affects the drag but also produces lift.

The term “bluff body" refers to an object that experiences flow separation at
tively low Re and for which the point of separation is essentially independent of Re
fixed point of separation is often, but not always, associated with a sharp cort or
change in geometry. Since the flow separation point is independent of Re. the drag :i..
ficients for a bluff body is also nearly independent of Reynolds number (over rr_
range of Re). Tables 14.2 gives the relevant geometry, characteristic area, and drag
coefficients for a few common bluff bodies.

> 9
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PROBLEMS

Section 14,2 I

—
14.1 . Assuming that (he wing on
plane is worms:m like a flat j_h__m wh,
length of the laminar bound .
flying at a speed 15
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—_—

an air-
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14.2 Calculate 8, 5", and © 1y gy,
ary layer flow described in Problep, 141

layer is modeled by
u NES
—=sm|==|4+C
U ﬁ 28 v ¢
where C is a constant. At 1+ =015
boundary layer thickness 15 =3
What are the boundary condin
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0.800 N
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0.600 | /
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Figure P14.1
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