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egins by applying the R .
M”_,m_? R eynolds transport theorem to a material volume of fluid in the
dEq, d
.3 dr u\ FQEE\.T\ (pe)u-nds
EXAMPLE 11 ; <ant density flows are physically possible? A 9 st
Which of the following con . In this case Eiy is chosen to be the total linear momentum in the volume, for which th
W (pr— p2) 1 - NV oo=0andw=0 intensive counterpart is the linear momentum per unit mass ¢ = y By ZE.EQ._.._ W, :n
. A\|N|t|r\\| h ‘ time rate of change of linear momentum within the material <oi:_n equals :_un .“Er_sm
R:(p1 — p2) r\? the body and surface forces acting on the volume: )
pP — Tl =
= =0, andv:(r) = Al Ax. a
B. v, =0, v " F \5 MN.QEE?T\ Q_::.:&H\ ofdV + 3 ds
i3] Str) R() sy
Note that the momentum equation for a material v 1 is identi
SOLUTION : - - . olume is identical to Eq. 7.18 for
The velocity components must satisfy the m_ac_._mma no_.:_zc_c\n_wm:m:o: for a constany aCV; Em:mo<n_.. we have used the fact that the total body force is given as usual by the
density fluid. This is Eq. 11.4a or 11.4b, depending on the coordinate system in yse, volume integral (Eq. 4.7) Fp = .\E: pfdV . while the total surface force is given by
s — u(y) and (v = w = 0), substituting the three velocity con, 7 the surface SS.WB_ A“mn. 421) Fg . b,:. X dS. To derive the differential momentum
A. Since we have u = u(y) equation, we will write the surface integral in terms of the stress tensor r
; 11.4a gives q ! & or rather than the
ponents into Eq. 11.4a g 3 stress vector, using Eq. 4.32 10 write Fs = [; (n - @) dS. Next we use Gauss's theotein
au v dw \ml @O + hﬁov +Zm=0 7 to write the surface integral in terms of the volume integral of the stress divergence
= + = + e 3y 3= (V - ), as defined by Eqs. 4.392-4.39¢ in Section 4.7. Thus, the surface force is now
; . v i o v lume integral Fs = [, (V. 0)dV. Substituting this result into th
. ; i ssible. In fact, you may h . given by the vo 5 8 s R() g result into the
Equation :.aﬂ,m mw"_wmna. a0k 00w psst Sh o may e e W momentum equation for a material volume, we have
ognized it as channel flow. |
. ion is Eq. 11.4b: [ d
B. In this case the relevant equation is Eq 4 W \ .AIQ_:«:\ + .\ (pu)u-ndS = \ ofdV +\. (V.a)dV
13(rv,) + 13v, + L 0 g B8 s " A
roor r 86 92 . | To derive a differential equation, we use Gauss’s theorem to transform the flux in-
Since we are told v, = 0 and vy = 0, this reduces o #v./dz = 0, ¢.<_=n: can Jn fegral into a volume integral, noting that we need the tensor form because (pu)uisaten-
seen to be satisfied by inspection. This flow is uiso possible; in fact, it is Next, we combine all the volume integrals into one, obtaining
Poiseuille flow in a round pipe. ,
d(pu)
#+<.€=5|bml<.q dv =0
R(1)
while in cylindrical coordinates the requirement is nce the volume is arbitrary, the integrand must be zero. Thus the differential equation
13(rv,) . (114b) expressing the law of momentum conservation is given by
— =Uu X
roor d(pu
%.Td.ﬁb:ﬂuﬂbw.fﬂ.q
1.3 MOMENTUM EQUATION . : 5
The preceding equation is referred to as the conservative form of the a._mmﬁ.n:cﬁ mo-
mentum equation. This form serves as the starting point E. many ::.En:nm_ algorithms
. : used to solve the governing equations in computational fluid dynamics. ) )
Lt CD/Dynamics/Newton's second law of motion/The momentum equation The traditional form of the momentum equation is obtained by expanding the time
derivative and divergence terms, then rearranging the remaining terms to obtain
tonian
The partial differential equation expressing conservation of momentum for a Newton! ou dp
s h = : i jon also o . i .V V.u|=pf+V-.0o
fluid is called the Navier-Stokes equation. The derivation of this vector equation & P ar +u-Vul+u ar +u-Vp+p 4

y
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; ft-hand side of the continyiy _ \\\\ e
: bracket is the le i . Y equayj
Eg. L1.1b). m
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| CAMPLE 11.4 |
equarlan 5 i g Consider an infinitesimal CV filled with f id
0 i 1th Tuid as shown in Fi
P mm 4u- d:v =pf+V-.0o | mentum balance in the x direction to this CV to derive ”__”_ We_wﬁn u:.mm?%w_”_.u_z a mo-
" | _ tum equation in Cartesian coordinates, ’ Ponent of the momen- ﬁ
; Jvati ifferential momentum equation takes itg s q:.. | |
y | derivative, the di traditio i
Using the matera " ,
form: | a,
mv|= =pf+V.0o _ =
Dt
In deriving the momentum equation, we have employed the fluid density, fiyjg v Oy = A
n L

. d stress tensor as variables but _._m<.o not qnm:_w?ﬁ the &mo,cmmmon 10 a cengy
locity, and Thus the momentum equation, like the continuity equation, is applicablet, , - h
type o.m fluid. P incompressible, Newtonian and non-Newtonian, and for the
all fluids, noo:% flow speeds. As one of the three fundamental governing equat; i of
Mhﬂﬂ.ﬂﬁﬂﬂ_nm. it expresses the law of nosm.oEmao: of Eo:.ﬁ:EB at nui._ POoint in the
fluid. Although every physically vOmm_Em.m:a flow must .,.u:_,.fQ .::m equation, it canpg
be solved unless we introduce a constitutive Bﬂ,am_ .5.,: .n:: ides E_‘u:m.sm_:? between k ™ K (B) x
the stress tensor and the velocity field. We will discuss the constitutive mode] for; |

, 7 Figure 11.3 Schematic for Example 11.4: (A) infinitesimal fluid volume and (B) stress values.
ian fluid in the next section. ) .
Zmimw_”_”” now consider what the various terms in the momentum equation represent, r
Recalling that the material derivative of velocity defines the fluid acceleration, we see SOLUTION
that the left-hand side of the momentum equation is the pr »duct of density and fluid ac- i We arc asked to derive the x component of the momentum equation in Cartesian coordi-
celeration. Thus we could write the momentum equation s _ a specified volume of fluid. Figure 11.3 serves as the sketch for this system. Re-
=of+V.o : the procedure used to perform a mass balance for this CV in Example 11.2, we
PA= a Taylor series expansion to relate the <&cwmm of g.w_a.:w. velocity, n”M_ stress on
: : - s Saf — i e to the values at the center of this cube. To apply a momentum balance, we
The left-hand side of this equation represents the inertial force per unit volume. The two
ﬁ:m—.mn on the right Ev_dmn_w the body and surface f 1 unit volume (the latter in q.7.18):
terms of the stress divergence). Thus, the momentu on _.m?n_mnEm a cm_m__,mo a [ 9
inertial, body, and surface force per unit volume at cac} 1t in a fluid. You may Ea it e (pu)dV + (pu)(u-n)dS = - ofdV + s Y dS
worthwhile at this point to reread Section 4.7 and review the effects of stress variation Jev Cs . :
in a fluid. As ¢ «ussed earlier, we will write the surface force in terms of the stress tensor rather
Using the definition of the stress divergence, Egs. 4 39, we can write the three con- thar, ¢ stress vector, using Eq. 4.32,Fs = [; (n+ ¢) dS. The resulting momentum bal-
ponents of the momentum equation in Cartesian coordinaies as ance
; d .
u  Ow . Bu o Bw\_ doy %) (159 \ — (puw)dV + :Ex:.a&n\. b?_<+\ (n-0)dS
P ﬂ+zm|+zw|+5m' = pfx Iy + %z oy Ot - - .
x y Z 3 2z ) . ) B
. The x component of this equation is ,ﬁn&m\?xb:w.:a;\ + .\.nmgiﬁ . M: m.mvl
M Ty B By doy | 2% ) (15 i Joy P fudV + [ (n+0).dS, where the integrand of the stress integral, (n- )y,
— T _ y 27 5 v f ds, nd of egr:
H ar tu Ax * cma ® Smlm = pf; ay * z gives :”w m:ammnmﬂrﬂ act on the faces in the x a:an:o.s as shown in Figure 11.3B.
d a 9 50) Notice in this figure that a first order Taylor series expansion has been used to relate the
w w dw w ﬁ:( 7
P\ Ftu—+v—+uw

value of a stress on a face to the value at the center of the cube.

o Yax TVay T ) =T
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nent momentum balance has a constan

(3
Cgrang
an

: s in the x compo .
Each of the 56%&218 the volume integrals in terms of the values of the iy

grand. We can Ewamo_mw multiplied by the volume of the cube (dx dydz), 1o opy
at the center of the cu! ° -

m ltl |
m l\ka&mmln+=
\w,\ .MmQSE\ ot (pu) .,:m:

dx &%&N A>u

and

b\.a dv = .o&_‘ dx &({ dz Qwv
cv
= is evaluated by using the

: n.0)dS = (- O)x Aisevalz R
The E.am ..:Mﬂ.w.ﬁ Mua no_.wannpm each pair of faces in turn. For example, on th,
uesshownin BN L respectively, (n+ @)x A = o & (000 /00)(dx/D]dyd,
near and far fac ax)(dx/2)1dy dz. The net surface force on this pajr

— (o — (0%c/ ce ke
and (m+ .m_.vx& M-Moahaﬁﬂ. QMH >, .u (80, /0x) dx dy dz. The contribution from the re.
ﬂwﬂﬁw _M,B pairs of faces is found to be (30,/3y) dx dy dz + (30%/82) dxdyd,

thus the total surface force on the cube is to first order

dx Rv_ dz Aﬁv

) ; .n)dS = (pu)(u-n)A and
tum fiux integral is of the form \om.QSE n)

. M”nnﬂmﬂﬂma by using a Taylor series expansion nmn.a m,xm._:_u_n 11.2) to define the
%Hw%amﬁ values of p, u, (u+n) and the area Aon the six faces. For example, 5 .
mentum flux on the near face, where fear = £+ (8p/3X)(dx/2) and (u - m) is given

by +itnear = ¥ T a:\mavﬁa\mv. takes the form

oo (VT () (V1 (29 (22)]ve
Abt:ﬂ.ﬂu\»" p+ MM |Mu u+ ax 2 1", fmh 2 ya
du 1 9p
= M yuE)dxdyq: ofirstorder
= pundydz + | pu P + m:: A )
where we have neglected higher order terms as usual, Ox ¢ far face, where (u+n)
takes the value —ugy = —4 + (u/0x)(dx/2), we find
ap\ [dx au (dx du {dx s
. =lo-[—=]l= (=)= + =)= ]|dree
e@-ma= o= 5 )||*“ 5]\ 2 ut iz )2
] 1 @
=—puudydz+ b:|= + l_Elm dxdydz o first order
ax 2 odx
The sum of these two terms is
du ap
2pu— — ) dxdyd
0 mu.v::mu xdydz

|

11.4 CONSTITUTIVE MODEL FoR A NEWTONIAN FLUID | 671

or equivalently

du
pu——tu %l: ..

ax TU3; )| drdydz

The two remaining pairs of faces contribute fluxes of

ou dv dp
Zrulp—+v—|)|dxdydz u dw k)
"y +ulpgr Vg y and P tu Abﬂ . g% dxdydz
Thus, after some rearrangement, the total momentum flux is to first order
du du i/ dp ap du v
T rv—+w— | tullu—+v—Fw— L dw ¢
tmk 3z ax mvu 3z ._..bAmw + 3y +ﬂ dxdydz
(D)
Gathering terms A-D, rearranging, and dividing by the common factor dx dy dz yields
u du au du ap ap ap 3 3 P P
—tu—+rv—tw— | tu — 4 u— === lb h rm |W
Pl ox ay az ot :w.« * cm.«. +Emu P Am.,. + 3y * 3z

al step is to realize that since the term in square brackets is the continuity equa-
the form of Eq. 11.2a, it has a value of zero. Therefore the final result is

du +=m= + _mz + ou
= —+v—+tw—
Par =y e

QQ; + mQ.ﬂ_ + EQ:
ax dy az

= pfr +A

whi=ii is identical to Eq. 11.5a, as expected.

114 CONSTITUTIVE MODEL FOR A NEWTONIAN FLUID

Examination of the three Cartesian components of the momentum equation (11.5a-
11.5¢) shows that they involve three velocity components, temporal and spatial deriva-
tives of these velocity components, and spatial derivatives of the six independent com-
ponents of the stress tensor. In their present form these goveming equations are incom-
plete: there are too many unknowns and not enough equations. s?a is Emmm:”_m isa
relationship between stress and rate of strain for the particular m_.ma involved. ._.EM rela-
tionship is part of what is known as a constitutive model for a fluid. The key function of
a constitutive model is to provide the necessary relationships between the components

o
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flow speeds. They are

Ive th € basic =
. solve the most gene, CQuat;
We conclude that the derivatives of the various stresses obey the f0110wing Squa £eneral clagg i

i

|

i 0ons that g COMmerg; |
on, are eg‘cee ingly complicyeq and dif?\echamcs Problemg Tfhﬂal CED codes employ 1o
o | 00y | 30y ) can be modeled as having con, lcult to Solve, Since ¢ E Na\rler-smkes equati
ax + By + 3z )= 0 ‘ is, however, possible, In thi;m“t density ang mns‘::tﬂ‘? OWs of interest i 1hiq‘?:1
i @ V-u=0, and spatial der: , the P Viscosity, il
) d i contipy ; » Some simp| i

3oy + d0yy N doy\ i into all the details, we Crivatives of ULy equatioy ; Plification

P (—g ) + ax 9 y a9 z -

. e ®Quation is gy,
can write the con: (CQHStam) Viscos 8iven by

portant case of a g

Eq. 113
Ntinyj COSIty are zerg, Wi L
nst; : ty and N ithout
Bv/9y + dw/az = ( acll'll density, comstant v, a_Vler—Stokes €quations for “_iﬂ.mg
B0 | 8oy | B0 _ o O Ruid a5 (Bq. 1.42) 9 3
ax * ay oz ) \ p(a_u +ua_“+v3u du o
\ 3t ax a‘+w~)= _9 R
; jer i reduced moment ; y  ar) Seh-—4 Uy p
Inserting the stresses found carlier into these ntum equations, e f,q \ ) a ax TH it t __a:) (11.102)
3 (uU 3 v v 9y -
dore | 80w aa:“) = [i(—P) = (——) + ——(0)] = <P p (— fu— v 4, 3
hont - =l | = . s o R — W—| = P 2 2
( ax T ay 0 = Ak % 8 =" \ U ay T (a 3 2 ahu) (11.10b)
R N ;
; a U P \ ) z
doyy | B0y 801.‘) = o= L[ B2 ] W dw  Jw
RS R AR =p(—-8)+ + —(— 9 — e p—
P(—g)+( ax + E_V 9z dx h ay( pP)+ az(o) p ot +uax +Uay +w‘a_z = pf, __P+u(32w+azw w
4 e Tty 2)
=—pg— 3 =0 l
\ In interpreting these equations, we not (11.10¢)
. » e that the
. 9 ] 9 force balance on the fluid, Y are actually the thre
30 + Boy; + 3"‘1) = \:— 0+ —0O+ —(—P)i\ =0 = \ uid. We can write this balance in v, S o
9x ay 0z ox ay 0z 3z |

From the first and last of these equations we conclude that the pressure does not vary in
the x or z directions, Integrating the remaining equation 9p/3y = —pg, noting that the |
density is constant, and evaluating the constant of integration on the top plate at y = \
we find p(y) = px — pg(y — h). Thus, the momentum equations have shown that the ‘
pressure distribution in this shear flow is unchanged from the hydrostatic pressure dis.
tribution that would exist in the absence of flow. Notice that both the momentum equa-
tions and the constitutive relations are needed to solve this (typical) flow problem.

u

PDr =P=Vp+uviy (1.1
You should be able to recognj inerti

gnize that the inertial force. i

a S Per unit volume, gj
,:ure f(;)) r(sz)su/ Zt?l, g:e ballanced by .the sum of body forces per unit volunlxlgn ;l‘ g‘;‘:f: nr:sy-
. p! 2m volume as given by -V P, and viscous forces r' un:u f

as given by uV=u. Thus, the vector equation (Du/Dt) = pf — N
other way to write the Navier-Stokes equati sl i ot e
e quation for a constant density, constant viscosity

Did you recognize that the flow in this last
example is the basis for the definition of
viscosity? Notice that the fluid is sheared

in the thin gap between parallel plates, - '
and since v and W are zero, we have C ! | CD/Dynanic s/Iavier-Stokes equations
T =0y = p(dufdy + 8v/5x) = p(du/dy), : ,

WhiCh is. fire defining e‘quation useq in our When the constitutive relationships for a Newtonian

dlscussmn‘ of Newton's law of viscosity fluid (Egs. 11.6) are used to replace the stresses in the

(Eq. 1.2c)in Chapter 1. differential momentum equations (Egs. 11.5), lh? restl
is the Navier-Stokes equations in Cartesian coordinates. These equations, which :18
scribe the behavior of a Newtonian fluid with variable density and viscosit}’: aré appclgf
able to laminar and turbulent flows of liquids and gases throughout the entire rang

115 NAVIER-STC{ES EQUATIONS

b o
L € | “D/Dynamics/Newton's second law of motion/F = ma for a Newtonian Fluid

In cylindrical coordinates, the continuity and Navier-Stokes equations for a con-

v:ai density, constant viscosity fluid are (1/r)3(rv,)/0r + (1/r)dvg /30 +0v./0z =
. which is Eq. (11.4b), and

p(ﬁﬂﬂﬁ_eaﬁﬂaﬁ_ﬁ
"or roe az r

_ ap v, ldy, 18, 0 v 2aug>
R Gl b R m i T = R R X T

(11.12a)
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HISTORY BOX 11.1

. : Polytechnique in 1809

d the restlglous'Ecole e
Claude Navier (1782;1?::106pn§f;5 clasps. He inherited the role of the leading scholar o
student but emerge:
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v

iElrgmal

and the various spatjq) derivagiye,
process. Ina CFD solution, the set :
tuting the solution on somg 0! MiMerical y
equations representing

two €Xampleg ¢
T of
conditions to some de

emonstrate this
" T veloej °
A OF spatia] g .. clocity and
the discreyi,, i Ffm“ s

» Nd pressure const-

govemin [ onassive set of algebraic
XiMation, Th;s ; € Cquations ang 1,

N becauge the oo LS s abgy Oundary

el all we cap Say in general
A great degree on the type of

suppose the complete descriptj
locity field u = {[h?(p,

i = PI/2uL)[1 — (v ey Stan coordinates by the VL
sure field p(x) = py + [(py ~ pyy/1 ) _i).f ot 0= 0, and e
indicated locations, and the gJ; ;

Velocity Fluid with
profile viseosity u
and density p

‘l’l

Pressure drop, Ap = P

]
Figure 11.5 Schematic for Example 11.6.

i [ ; Math.
N S from his teacher and friend Jean Baptiste gy«
ematics, science, and englneermgf!n chr:nf?rzt time accurately described the role of frictic?:r}er‘ In
$100 ha prescisC & pap6[ t:a:%izranalysis started from a molecular view of fluig, 4 Was ;;‘f:he
equatig?s gi 30t]50£nf:\rl:n\;:t {o explain this result based on the viscous stresses in the fiyig a;g
-Claude de , .
;':?c?entify the viscosity as the key material property
CD/History/Claude Navier and Sir George Stokes
i ir at Cambridge University, the
~1903) held the Lucasian chair a : i Y, the same .
~ George Stgki;;f}qgevkgn. '?’hus. he was one of the leading scholars in Englang, e m;’de
sition held bg! t‘lrn 1o fluid mechanics and the nature of hght.Ith no know'ledge of the work in
many coptrl1 El;t;g ;mkes published a derivation of {he equations that bear his name, Using an
Francg. b d on the internal friction of fluid much like we have presented here.
analysis based on |
v, Uplp
dvy dug 'U_Haﬂ+U_ H_I_ r )
"(E“’EJ’ r e ez v
492 a2, \
1op (B 18w 1% Fu w2y
= Pfo= ,'-E“‘(ar? e TR iz At
(11.12b)
ov. dv. vy dv, Bv;)
—_ =Ly
p(a:+”’ar+rae oz
ap 8%, 10v. v, azv:) )
=Pl— - car Tram T (1L1%) SOLUTION
= pf: % +“(ar2 oot 50
The continuity and Navier-Stokes equations jusi ¢ provide a co.mplete sc: oi
governing equations to determine the velocity and press.re at every point in aIHQ\:J. : r:d
not necessary in this case to solve the energy equatic:: - determine the velocity

pressure fields, because we have four equations and four unknowns: three components
ity and the pressure. ) }

o Ve\l'\ofsllt]i:e often Ir)nemioned that solving the governing cquulions' isa dxfﬁcuhl::l;z lu"f
Chapter 12 we will demonstrate how to construct analytical .'soluuor'\s fqr :: :loulhe i |
important flows. Here we emphasize that saying we huvel uhlzuned_a sol:llﬂfumiom &

erning equations means one of two things. In an analym;.a! soluuqn, t ? taneoul
scribing the velocity and pressure fields must satisfy all mur.cquauoqh m:he quaions
as well as the boundary conditions, when the functions are inserted into

e

We vl first substitute the three velocity components into the continuity equation for
an inccmpressible fluid, Eq. 11.4a, then substitute the velocity components and pres-
sure info the constant density, constant viscosity forms of the Navier-Stokes equa-
tions. Egs. 11.10a-11.10c. Since we have u = u(y) only, with v and w zero, the conti-
nuity equation, du/dx + du/dy + dw/dz =0, is satistied by inspection. Terms in
Eqgs. 11.10a-11.10c that contain the velocity components v and w are zero, as are time
derivatives and spatial derivatives of u with respect to x and z. Writing only the remain-
ing nonzero terms, and setting the body force terms to zero, we find
a2

0 3p “au‘ —a—P, and 0=—?€

dx dy dy 3

<
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) . : sure distribug; . ‘ Since we know v, =0 ang 4, _ 0. thi
: consistent with the given pressure oution. Sypgy \ . : . Y8 =0, this reg ;
The last two equations ;rca  pressire ino the rst pressure equation yiegy. """ ltng | be satisfied by inspection, gince’ i (urc)es$ /82 = 0, whicy can be see
the x velocity compone \ ‘ Egs. 11.12a-11.12¢, we have T Y. Writing only the nonzero le'rmn o
d o [(h(;—py 2 \ T
- —_ £ d .
d [ ! x—xl))+#_'[ ((_E‘) l‘(z) 0:__]7 . ldP . 5
0:_5;(1,]4,( B )( ay | oy 2ulL h ‘ ar’ 0—‘;5(5’ and U:__[E:£+u(i)1’£+lal’:
3 ‘ . Z a2 “.“)
2 Thus the pressure is a functjop of z . h g
WRp-p)\ 3 (8|, (¥ A : S OLzonly. Inserting the oiv, )
= = (Elz—pl) +u (L%]HL‘I)_) 3y (@ =\ . last equation and taking derivatives we fipg = he given velocity component into the
2 28:# R?i’(pl_PE) 2 1 5
— R\ ( 2\ 2o dz  auL (“,)ﬂ—— i
=== lTk\ g h? Ry r\"R2
- L ¥ R '
. isfy the appropriate forms of the ¢opgir - =pu( 22— p) 2 9
t the velocity and pressure do satis Ntinuty -—_
satisfies the no-slip, no-penetration conditions at the channel walls. I thhj after S'mphﬁc.mmn’ y.lelds 9p/dz = (2= py/L. Integrating and evalyati
resylt_mg constant of.mtegranon Az =7z, wefind PR =p + [ ,g_ 6\2ua—ung the
This is a lmgar drop In pressure down the pipe, Can Yousee by s p;tioxﬁ;])/t !]‘(L - f!).
no-penetration conditions are satisfied on the pipe wall? pe at the no-slip,
EXAMPLE 11.7

In the Poiseuille flow of a constant density, constant viscosity fluid in a round pipe, (§ CD/Dynamics/Potential Flow
(;igure 11.6), the velocity field is given in cylindrical coordinates by u = e, + ‘

i = =0,and v.(r) = {[R}.(p1 — p))/4ul){i- | T e e v il V-
v.e, with components v, = 0, vp 0. an( 2 R} -
'(Jf/e;(j)zi f:md the pressure distribution in this flow if body forces are neglected. \ 1§ EULER E QUATIONS

p Length, L i | ‘ TIw l‘qnnidablc Navier-Stokes equations have generated many efforts to introduce
: ) ! ‘ simplifying approximations. One of the earliest and most valuable of these approx-

r === Fluid with i ' imations is that of an inviscid fluid, defined in Chapter 8 to be a fluid whose viscosity
L Velocity viscosity p R : is zero. Upon substituting s = 0 into the constitutive model for a Newtonian fluid
R profile and density p Yzdus, Rp \ (745, 11.6a-11.6f), we find the state of stress in an inviscid fluid in Cartesian coordi-
é \ niies to be
| O =—p, Op==p, Gyp=-p (11.13a—)
|P| Pressure drop, Ap = p; — p, P2

Figure 11.6 Schematic for Example 11.7.

\ Oy =0y, =0, 0y=0,,=0, 0 ,=0,,=0 (11.13d-f)

A expected, we see that an inviscid fluid is incapable of exerting a shear stress. This is
SOLUTION

‘ another way to define an inviscid fluid. The absence of shear stress indicates 1hat‘an in-
viscid fluid does not obey the no-slip condition and therefore must slip along a sx?lld sur-
tace. The state of stress in an inviscid fluid, with its absence of shear stresses, is given

; Ay, ¢ ity field
The velocity field must satisfy the continuity equation, Eq. [1.4b, dljd l:‘)le Z:Loccl::r);g the
and pressure distribution must satisfy Egs. 11.12a-11.12¢c. We begin by

S : : i ic flui , as we will
by a pressure distribution alone, just as is the case in a static ﬁ‘xmd.l l'log‘vlt’-vl&;rmﬂl o by
continuity equation: \ see in a moment, in an inviscid fluid, the pressure distribution 1.; rel ;1::' ! :)xhe it b
. : : s
19Grv) 19wy  dv: _ force and the inertial force created by the velocity field, rather than to j
roor T ‘ as in a static fluid.
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1 GOVERNING EQUATIONS OF FLUID DYNAM
1

| For problems that involve the m{uxmnggig_
ferent fluids, or the transport od s?ranspm
stance in a fluid, the Reyno‘1 s il
: theorem may be used to derive at_i i ]Othe
governing equations that descnbeowed
mixing or transport processes tTVintro-l
This task is beyotn?hthe scgs:sof); éserivmg
text, but the proce )
' ?hu;st:una‘lions is very similar to that de

Since it is tedious, we Will not write gy
of the energy equation in Cartesian coq,
will find these equations written ip v
systems in many advanced texts, 00rding,

The continuity, Navier-Stokes, and epe,
tions, together with the Newtonian cong
constitute a complete mathematical deSCTiption of el,
fiow. CFD codes use these three equatiopg as the fluig
ing point for describing fluid flows. Ag menti Start.

these tw :
r(.immes’ bug g
arious gqp . 0

5 Y e g
ttutive mq g

CD/Dynamics/Rey i :
" | Equation 4 . i i

11.8 Discussion 703

11.8.2 Nondimensionalization

In Section 3.2 we described

. many of th
mechanics including the Re y e comm

on dimens;j : .
ynolds number, Re ensionless groups in fluid

=V// =pVL/u, the F
o Oned ¢ Fr=V/JgL, the Euler numpe PVL/u, the Froude number
- i ever, it iS not necessary t ar- mber Eu = (p — 1.1
| scribed in this chapter for mass, momen :ggazz:’in the flow of a constanfd;lssi(:i'veco‘he g, " ]= @L/V. We showed that these ang other diﬁgészigrge;sa;:):s: Sl[r Ourlllzll s
] : _ » CONStant ;¢ applying dimensional naturally occur in
tum, and energy. cosity fluid. In that case, the continuity and Navier-Stokes equations are gufﬁciemm\:;: pplying analysis (DA) to flow problem:

i i . However, if a flow of this t
: locity and pressure fields However, if . e
terml;z' sz‘ev:nay %’nd the temperature distribution in the ﬂE"d by solvi
:::11;&0;1 after the velocity and pressure fields have been obtained,

involyeg hey

18 the Energy systems (e.g., a prototype and the full-sc

mensionless governing equations and bo
are identical. Another advantage of the

ale device of interest)
undary conditions for th

! _ e two different systems
dimensionless form of (

he governing equations
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equations unchanged.
o : ) Nondimensionalization i
We conclude this chapter with a brief discussion of several concepts that have been dependent and independent shfgb(:v?m’:l:g
: ance 9 H 5 anaple 1n the
" . . ave direct relevance to solving the N .
mentioned in earlier chapters and h 4 g the: goveming characteristic dimensions,
equations. dimension is a physical d
under investigation. Com
teristic le

equation is accomplished by dividing every
equation by an appropriate combination of
thereby making each variable dimensionless. A characteristic
imension that is in some way characteristic of the flow field
mon examples of characteristic dimensions include a charac-
ngth scale L, usually derived from the geometry; a characteristic velocity scale

U, usually defined as the average fluid velocity; a characteristic pressure P; and a char-
acteristic time scale T.

€ | | CD/Dynamics/Boundary conditions

We will illustrate the process of obtaining nondimensional governing equations for

the case of a constant density, constant viscosity, flow of a Newtonian fluid. If we as-

ume that gravity is the only body force, and take the z axis upward as usual, the conti-
nuity and Navier-Stokes equations, (Eqgs. 11.4a and 11.10a—c), are

11.8.1 Initial and Boundary Conditions

tinuity, Navier-Stokes, and energy equations, t7; <.z with the appropriate con-
;l;'i]tzg(\)/: rela:i}:)nships and state equations, provide a cor.: */ic mathematical description du dv  dw o
of the flow of a Newtonian fluid. To obtain a solution « s cqmplex set of govemut\lg A
equations, we must specify an appropriate set of bound.v and 1r?|t1al conditions for Lhel 1 2 q
flow problem being analyzed. The basic set of unknowns ior which a solunop is Soélihe u B ﬂ N wa_“) ~ _B_p (a_“ #u N Py )
in the general case includes the three components of velocity, pressure, density, an P an # L tv 3y 3= ox ax? | 8y! | 8z
temperature of the fluid.

PZ complete discussion of the required boundary conditions depends on lhi f:ﬂt;‘

nature of the problem, the approximations employed, and the set of equa(;!on ondi
solved. Although this discussion is beyond the scope of this text, lhe' boun al')’eu_amn ’ 7 1
tions associated with the fluid velocity field are generally the no-slip, nQ-P§“1 cond- - o S w 3 N P N #w . H)
conditions as discussed in Section 6.6. In an unsteady flow problem, the ml[(l):ns e . (a_, + "E + ”3_y n wa_z) = —pg - % T TR
tions take the form of the specification of the spatial distribution of the upk: boundaty
locity, pressure, etc.) at an initial instant of time. The selection of aPP“’P"‘“f analyticd
and initial conditions will be demonstrated in Chapter 12, where a number 0
solutions to simplified forms of the governing equations will be discussed.

=

2 2 2
v LY v dv ap (a'v v d v)
i — — — ]| =——t i == e
e (ar T tay +w32) ay a2 Ty Tz

i ine the
Recall that for this case it is not necessary to solve the energy equation to determine
velocity and pressure fields.

o R
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