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W
hich o

f the follow
ing constant dcnsity flow

s arc physically po
ss iblc? 

-
-
-

S
O

L
U

T
IO

N
 

(
/r2(p1 - pi)) [ 

(y)
2] 

A
. 

11 =
 

21 ,L
 

I -
h 

. v =
 0

. and w
 =

 o 

B
. 

v, =
 O

. 
v8 =

 0
. and v,(r) =

 ( Ri<:~~ Pi) ) [ I _ 
( ;

,, ) 2] 

T
he velocity com

ponents m
ust satisfy lhe sim

pH
fied c

ontinuity ~quation for
a constant 

den
sity fluid

. T
his is E

q. 11 .4a o
r 11.4b. dependm

g o
n thc co

o
rd

m
ate system

 in use. 

A
. 

Since w
e have u =

 u
(y

) and (v =
 w

 =
 0

). su
bstituting the three velocity com

. 

ponents into E
q. 11.4a g

ives 

a11 
av 

aw 
a 

a 
ä 

_ 
+

 _ 
+

 -
=

 -
(u

(y
)) +

 :-
(0) +

 -
(0) =

 0 
ax 

ay 
az 

ax 
ay 

a: 
E

quation 11.4a is satisfied, so
 this flow

 is p
ossib

le. In fact, you m
ay have rec­

ognized it as channel flow
. 

B
. 

In lhis case the relevant equation is E
q. 11.4b: 

I 8(rv,) 
I ö

vo 
a

v. 
-
-
-
+

-
-
+

~
=

0 
r 

a
, 

r a0 
a: 

S
ince w

e are told v, =
 0 and vo =

 0
, this redu

ce
, to ii1•, / iJ z =

 O
. w

hich can be 

seen to be satisfied 
by inspection. T

h
is flo

w
 

,, 
.:h

o 
possible; in fact. it is 

Poiseuille flow
 in a round pipe. 

w
hile in cylindrical coordinates the requirem

ent is 

I 8(rv,) 
I 8v

8 
a,,. 

-
-
-
+

-
-

+
-

-
=

0 
r 

ar 
r a0 

Ö
; 

(11.4b) 

11.3 M
O

M
E

N
TU

M
 E

Q
U

A
TIO

N
 

f j I C
D

/D
ynam

ics/N
ew

ton's second law
 of m

otion/T
he m

om
entum

 equation f r a N
ew

tonian 
T

he panial differential equation ex
pressin

g co
nserv

atio
n o

f m
o

m
entum

 
O

 
. 

0 also 

fluid is called the N
avier-S

tokes equation. T
h

e derivat io
n

 o
f this vector equauo 

1
1
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M
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M
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b
eg

in
s b

y
 ap

ply
in

g
 the R

ey
no

ld
s transpon lheorcm

 to
a m

aterial vofum
c o

f fluid in lhe 
fo

rm
: 

d
E

,y, 1 
a 

1 
T

 
=

 
a

(P
E)d

V
 +

 
(p

E)U
 • n

d
S

 
t 

R
(t ) 

I 
S

lt ) 

In this case E
,y, is chosen to be lhe total linear m

om
entum

 in the volum
e, for w

hich the 

intens ive co
u

nte
rpan

 is lhe linear m
om

entum
 per unit m

ass E
 =

 u
. B

y N
ew

ton
's law

, the 

tim
e rate o

f chang
e o

f lincar m
om

entum
 w

ithin the m
aterial volum

c equals lhe sum
 o

f 
the b

o
d

y
 and su

rface forces acting on the volum
e: 

{ 
f(

p
u
)d

V
+

 
{ 

(p
u

)u
,n

t1
S

=
1

 
p

fd
V

+
 f 

I
d

S 
1 R(r ) 

I 
j S

(l) 
R

(r ) 
} S(r) 

N
o

te that lhe m
o

m
cntum

 eq
uatio

n fo
ra m

aterial v
olum

e is idcntical to E
q. 7.18 fo

r 

a C
V

; m
oreovcr, w

e have used the fact th
at the total body force is given as usual by lhe 

vo
lu

m
e integral (E

q. 4.7) F
s =

 fR
u) p

f d
V

. w
h

ile the total surface force is given by 

th
e surface m

tcgral (E
q. 4.2

1) F
s =

 fs<r>
 I 

d
S

. T
o derive the differential m

om
entum

 

cquatio
n, w

e w
i ll w

rite the su
rface integral in term

s o
f the stress tensor rather than lhe 

stress vector. using E
q. 4.32 lo w

rite F
 s =

 fs (n
, u

) d S
. N

ext w
e use G

auss's theorem
 

to
 w

rite th
e surface integral in term

s o
f the volum

e integral o
f the stress divergence 

(V
 • rr) . as defined by E

qs. 4
.3

9
a-4

.3
9

c in S
ection 4.7. T

hus. the surface force is now
 

given b
y

 th
e volum

e integ
ral F

s =
 J

R
(f) (V

• u
)d

V
. S

ubstituting this result into lhe 
m

o
m

c
ntum

 eq
uation fo

ra m
aterial volum

e, w
e have 

{ 
.j!._ (p

u
)d

V
+

 
{ 

(p
u

)u
•n

d
S

=
/. 

p
fd

v
+

J
. 

(V
,u

)d
V

 
f R

(r ) 
Ö

l 
f Sir) 

R
(r ) 

R
(r ) 

T
o

 deri ve a differential equation. w
e use G

auss·s theorem
 lo transform

 the flux in-

1cg
ra l into a vo

lum
e in

teg
ral, no

ting !hat w
e need the tensor form

 because (p
u

)u isa
 ten­

,o
r. N

ext. w
e co

m
b

in
e all the volum

e integrals into o
ne, obtaining 

!. (
a

(p
u

) 
) 

-
-

+
V

, (p
uu

) -
pf

-
V

. u
 

d
V

 =
 0 

R
(r ) 

8
t 

S
,nce the volu

m
e is arbitrary, the integrand m

ust be zero. T
hus the differential equation 

,·x
p

ressing the law
 o

f m
om

entum
 conservation is g

iven by 

il(p
u) 

-
-

+
 V

 , (p
u

u) =
 p

f +
 V

• u 
ar 

T
h

e p
reced

in
g

 eq
uatio

n
 is referred to as the conservative form

 o
f the differentia! m

o­

m
entu

m
 eq

u
atio

n. T
his fo

rm
 serves as the staning po

int in m
any num

en
cal algonlhm

s 

used
 to so

l ve the g
o

v
em

in
g

 eq
uation

s in com
putational fluid dynam

ics. 
. 

. 

T
h

e traditional form
 o

f lhe m
om

entum
 equation is obtained by expandm

g lhe t1m
e 

d
crivative and divergence term

s, then rearranging the rem
aining term

s lo obtain 

p c~ + u. V
u

) +
 u [ ~ +

 u
. V

 p +
 p

V
 • u

] =
 p

f +
V

· u
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The tenn in the square bracket is the left-hand side of lhe co 
t' 

. 
• 

n m
ui ty 

Eq. 11 . lb). T
hus th1s tenn 1s equal to zero. and w

e can w
rite lhe d'ff 

equatio 
equation as 

I 

erential m
o 

n (see 
m

en1uil\ 

p ( ~~ +
 u • Vu) =

 p
f +

 V
 . o 

a es us t 
. 

U
sing the m

aterial derivative, lhe differential m
om

entum
 equation t k 

. 
fonn: 

rad11iona! 

D
u

_
 p

f +
V

· o 
pD

t -

In deriving the m
om

entum
 equation, w

e have em
ployed the fl uid density fl . 

. 
b 

h 
. 

d 
. 

, 
u1d v,. 

1 
•iy and stress tensor as vanables 

ut 
ave not restn

ctc 
thc d1scussion to 

. 
oc1 , 

. 
l'k 

h 
. 

. 
a cellain 

type of flu
id. T

hus the m
om

entum
 equat1on. 1 ·e t e co111m

ui1y equatio
n. is appl' 

b 
· 

· 
' bl 

N
 

·. 
ct 

• 
ica le10 

all fluids. com
press1ble and m

com
press1 e. 

ew
tom

an an 
no

n-N
ew

tom
an, and for the 

w
hole range of ftow

 speeds. A
s one of the three fundam

ental govem
ing equat· 

. 
1ons of 

fluid m
echanics. it expresses lhe law

 ?f conservat1on of m
orncntun~ at each point in the 

fluid. A
lthough every phys1cally poss1ble _flu1d flow

 m
ust sau

sfy 1h1s equation, il cannot 
be solved unless w

e introduce a const1tut1ve m
ode! th

at prov1des relationships bet 
the stress tensor and the velocity field. W

e w
ill discuss thc constitutive m

odel wfeen 
. 

m
a 

N
ew

tonian fluid in the next sectm
n. 

Let us now
 consider w

hat the various term
s in the m

o
m

entum
 eq

uation represem
 

R
ecalling that the m

aterial derivalive o
f velocity delinc, thc fl uid acceleration, we ~

 
that the left-hand side of the m

om
entu

m
 equation is thc prod

uct of density and fluid ac­
celeration. Thus w

e could w
rite the m

om
entum

 equ
ation as 

pa =
 p

f +
V

. cr 

The left-hand side o
f this equation represenls the ine

n
w

l h
•r~c per unit volum

e. The two 
term

s on the right represent lhe body and surface fo
r,:e, per unit volum

e (the !alter in 
tenns of the stress divergence). T

hus, lhe m
om

entum
 cyu,1tion represents a balance of 

inenial, body, and surface force per unit volum
e at cacl, p

o
;n

l in a fluid. Y
ou m

ay find it 
w

onhw
hile at this point to reread Section 4

.7 and re'1C
\\ th

c effects o
f stress variation 

in a fluid. 
U

sing the definition ofthe stress divergence, E
qs. -1 .l9

. w
e can w

rite the three corn· 
ponents of the m

om
entum

 equatio
n in e

artesian coordi1w
1es as 

(
Ö

II 
au 

a11 
a11 ) 

(aa" 
Ö

O'y., 
U

O'o,· ) 
p 

-
+

u
-

+
v-

+
w

-
=

pf 
+

 
-
-

+
-

-+
-

ar 
ax 

ay 
az 

-' 
ö

x 
öy 

az 
(11.5a) 

(
av 

av 
av 

av
) 

(iJa,." 
Ö

O
'yy 

aa,,.) 
p 

-+
1

1
-

+
v
-
+

w
-

=
pf ,. +

 
-

-+
-
-
+

-
a, 

ax 
ay 

az 
· 

ax 
ay 

az 
(I t.5b) 

(
aw

 
aw

 
aw

 
ilw) 

(ila,. 
aa

). 
Ö

O':, ) 
p 

-a 
+
u

-a 
+

v
-a

 +
w

-
=

 p
f. +

 
_

._. +
 -a - +

 -az 
I 

X
 

)' 
az 

. 
ax 

)' 
( t t.5cl _....._ 

1
1
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A
M

P
L

E
 

1
1 . 4 

~
an infi nitesim

al e
v filled w

ilh fluid as show
n in Figure 11.3A

. A
pply a m

o­
o ntum

 balance in the x direction lo this e
v

 to derive the x com
ponent of the m

om
en-

m
e 

. 
d

' 
tum

 equatio
n in eartes1an coor m

ates. 

1 d: 

0 
IX

,_\'.:) 

( au., dy) 
o:u-

~
T

 

U
.u

 
dx 

-

( au .. 4!.) 
U

o
 

-
cl .\ 

2 

( au,. dy) 
O:n + 

d
y

T
 

't _ 11 
lj! 

(A
) r 

f
-
-
-
-
d

y
-
-
-
,
 

+
 (au., !ff.) 

~
 

1 
( au

0
, 

~
) 

u
:.{ -

a:. 
2 

(8
) 

Figure 11
.3 Schem

atic for E
xam

ple 11.4
: (A

J infinitesim
al ftuid volum

e and (B
) stress valucs. 

S
O

LU
T

IO
N

 

W
e m

·~ askcd to derive the x com
ponent of the m

om
enlum

 equation in ean
esian coordi­

natc, for
a specified volum

e offluid. Figure 11.3 serves as the sketch for this system
. R

e­
call i,-c thc proced

ure used lo p erfom
1 a m

ass balance for this e
v

 in E
xam

ple 11.2. w
e 

w
ill : , 

a T
ay

lo
r series expansion lo relate the values of density, velocity, and stress o

n 
eaci> 

::c to the values al the center o
f this cube. To apply a m

om
entum

 balance, w
e 

w
ri1, 

·I· 7. 18): 

{ 
..'.!_(pu

)d
V

+
1 

(p
u

)(u
•n

)d
S

=
1 

pf d
V

+
1 

I.d
S 

l ev ar 
cs 

ev 
cs 

A
s u , .. ,ssed earlier. w

e w
ill w

rite the surface force in tem
1s of the stre.ss tensor ralher 

than ,; , .• stress veclor, using E
q. 4.32, F

 s =
 fs (n • cr) d S

. T
he resulling m

om
enlum

 bal­
ance

: 1 _aa (pu
)d

V
 +

 1 
(p

u
)(u

- n)
d

S
 =

 1 
p

fdV
 +

 1 
(n

•c
r) d

S
 

c
v

f 
cs 

ev 
cs 

T
he 

x 
com

po
nent 

o
f 

this 
eq

uation 
is fevCa/ar)(p11) dV

 +
 fcs(pu

)(u • n) dS =
 

fc;:v P
 f, d

V
 +

 fes (n
 • u

).,dS
, w

here the integrand of the stress integral, (n
 • cr)x

, 
gives the stresses lhal act on lhe faces in the x direction as show

n in Figure 11 .3B
. 

N
otice in lhis fig

ure thal a firsl order T
aylor series expansion has been used to relate the 

value of a stress o
n a face ta the value al lhe center of the cube. 

-
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Each of the integrals in the x com
ponent m

om
entum

 balance h 
. 

I
. 

ra1
· 

asacon
t 

grand. W
e can therefore w

nte the vo um
e m

teg 
s m

 term
s of the values of 

s. ant inte. 

al the center of the cube m
ultiplied by the volum

e of the cube (d
x d

y d ) 
tbe 1ntc&rand 

z 'to
obt

. 

L a 
a 

( 
a 11 

a 
) 

ain 
-(p

u
)d

V
=

-
(p

u) dx
d

y
d

z
=

 
p

-+
1

1
_

!!_
 

d 
d 

and 

ev a, 
a, 

a, 
a, 

X
 

y d
z 

[ 
p

f,
d

V
 =

 p
f,

d
x
d

y
d

z 
lev 

(A
) 

(B) 

The stress integral J, 
(n

. a
), d S =

 (n • a
), A

 is evaluated by using the stress 
cs 

'd 
. 

h 
. 

ff 
. 

. 
va]. 

ues show
n in Figure 11 .3B

 and eons.i enng
eac 

pairo 
aces m

 tum
. Forexam

ple,onthe 
near and far races w

e find, respecuvely, (n
 • a

)., A
 =

 [a.u +
 (a

a
,,/a

x)(d
x/2

))d d 
and (n

. a
), A

 =
 -[a,, -

(ö
a

,,/o
x)(d

x/2
)] d

y d
z. T

he net surface force on th
i/ ' 

of races is therefore (n
, a

)., A
 =

 (aa,,/a
x
) d

x d
y d

z . T
he contribution from

 tb p
air 

m
aining iw

o pairs of faces is found to be (aa
y,/ay) d

x d
y d

z +
 (a

a,.,/ö
z) dx d

e
t 

thus the total surface force on the cube is to first order 
Y

 z, 

-
-
-

x
y
·
 

( aa,, +
 öayx +

 a
a,., ) 

d 
d 

d 
ax 

ay 
az 

.. 
(C) 

T
hem

om
entum

fluxintegralisoftheform
fes (pu)(u

• n)d
S

 =
 (p11)(u•n)A

and 
m

ay be evaluated by using a Taylor series expansion (see E
xam

ple 11 .2) to definc tbe 
appropriate values of p

, u
, (u • n) and the area A

 on the six faces. For exam
ple, tbe m

o­
m

entum
 flux on the ncar face, w

here Pnear =
 P

 +
 (a

p
/a

x)(d
x
/2) and (u

, n) is given 

by +
unw

 =
 u +

 (öu/öx)(dx
/2), takes the form

 

(p
u

)(u
• n)A

 =
 [P + (::) (d;) ][u +

 (::) ( d~t) I-· ~ (::) ( d;) ]dyd, 
( 

au 
I 

ap
) 

=
pu11dy

d
z+

 
p

1
1

-+
-2
u

1
1

-
d

x
d

y
,i· 

ax 
ax 

,o first order 

w
here w

e have neglected higher order term
s as usual. O

,: _,-~ far face, w
here (u • n) 

takes the value -u
rar =

 -u
 +

 (ö
u/ö

x)(d
x/2

), w
e find 

(p
11 )(u

•n
)A

 =
 [p-(::) (d;)][u -(::) (d;) ][-,, + (::) (d;)]dydz 

( 
au 

I 
ap

) 
=

-p
u

u
d

y
dz

+
 

pu
-
+

-
u

u
-

d
x
d

y
d

z 
ax 

2 
ax 

The sum
 of these tw

o term
s is 2

p
u

-
+

u
u

-
d

x
d

y
d

z 
( 

au 
ap

) 
ax 

ax 

10 first order 

1
1

.4 
C

O
N

S
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or cquivalently 

[ 
811 

( 
au 

ö
p

) ] 
P

11-0
. +

 Il 
P

- +
 u

-
d

xd
yd

z 
X

 
ax 

ax 

T
he 1w

o rem
aining pairs of faces contribute fluxes of 

[ 
au 

( 
au 

öp
)]

 
[ 

811 
( aw

 
ap)] 

-
+

11 
p

-
+

u
-

d
x
d

y
d

z 
and 

p
w
-
+

11 
p

-
+

w
-

d
xd

yd
z 

p
va

y 
a

y 
ay 

az 
öz 

öz 

T
hus. after som

e rearrangem
ent. the total m

om
entum

 flux is 10 first order 

a I 
au

) 
[
(
 

ap 
öp 

öp
) 

(
a11 

av 
aw)]l 

{ 
( 

a 11+
v_

:_
+

w
-

+11 
1

1
-+

v
-a

 +
w

-a 
+

p
 
-
+

-+
-;-

dx
d

y
d

: 
p "ax 

a
y 

a
: 

ax 
y 

z 
ax 

ay 
öz 

(D
) 

G
athering te011s A

-D
, rearranging, and dividing by the com

m
on factor d

x dy d
z )~elds 

(
au 

au 
au 

au
) 

[
(

ap 
ap 

öp 
ap

) 
(a

" 
av 

a
w

)
] 

p 
-
+

1
1

-
+

v
-
+

w
-

+
11 

-
+

1
1

-
+

v
-
+

w
-

+
p

 
-
+

-
+

-
åt 

a
x 

öy 
az 

a, 
ax 

ay 
a: 

ax 
ay 

az 

( aa.. 
aa..... 

aa~, ) 
=

 p f , +
 
a

7
 +

 a
y
 +

 Tz"" 

T
hr tina! step is 10 realize that since the term

 in square brackets is the continuity equa-
1ion 111 the fom

1 o
f Eq. 11.2a, it hasa value ofzero. Therefore the final result is 

(
au 

au 
011 

011) 
f 

(a
a.u 

0'1yx 
aa~, ) 

p 
-

+
1

1
-+

v
-
+

w
-

=
P

, +
 -

+
-

+
-

åt 
a

x 
ay 

az 
. 

ax 
ay 

a, 

w
h1-: i, 1~ identical to Eq. 11.5a, as expected. 

11.4 C
O

N
S
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E
xam

ination of the three C
artesian com

ponents of the m
om

entum
 equation (I l.5a­

l I .5c) show
s that they involve three velocity com

ponents. tem
poral and spatial deriva­

ti ves of these velocity com
ponents. and spatial derivatives of the six independent com

­
ponents of the stress tensor. In their present form

 these govem
ing equations are incom

­
plete: therc are 100 m

any unknow
ns and not enough equations. W

hat is m
issing is a 

relationship betw
een stress and rate of strain for the particular fluid involved. This rela­

tionship is part of w
hat is know

n as a constitutive m
ode! fora fluid. The key function of 

a constitutive m
odet is 10 provide the necessary relationships betw

een the com
ponents 

-
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I d h I ihe deriva1ives of the various strcsses obey the follow· 

We conc u e I a 
1ng equat· 

) 

lons• 

(
ilaxx + ilayx + ila,., = 

0 
· 

ax ily az 

(
aaxy aayy ila,y) 

p(-g)+ ax+ ay + ~ = o 

( 
ila,,, + aay, + ila,,) 

0 
ax ay ~ = 

I Sening lhe slresses found earlier into these reduced momentuin equaiions 

n 
, we find 

( aax.,· + aay., + aa,,) = [i_(-p) + i_ (µ.U) + i_(O)] = _ ap 

ax ay az ax ay h il z ax "'0 

p(-g)+ (8;;)' + a;;)' + a;;)' ) = p(-g) + Ux ('.lt) + :y<-p) + ico)] 
ap 

=-pg - - =0 
ay 

( aa,, + aay, + aa" ) = [i_(O) + i_(O) + i_(- p)] = _ ap = 
0 

ax ay az ax ily az az 

From the firsl and last of !hese equations wi: conclude !hat thc pressure does not vary in 

the x or z directions. lntegratm~ the remammg equ_a11on il p I a y = - pg, noting !hat the 

density is constant, and evaluatmg the constant of mtegra11on on the top plate at y = h 

we find p(y) = Ph - pg(y - h). Thus, the momentum equations have shown that th~ 

pressure distribution in this shear flow is unchanged from the hydrostatic pressure dis­

tribution that would exist in the absence of flow. Notice !hat both the momentum equa­

tions and the constitutive relations are needed to solve this (typical) flow problem. 

Did you recognize !hat the flow in lhis last 

example is the basis for the definition of 

viscosity? Notice that the fluid is sheared 

in the thin gap between parallel plates, 

and since v and w are zero, we have 

r = ayx = µ.(ilu/ay+ av;ax) = µ.(au;ay), 

which is lhe defining equation used in our 

discussion of Newton's law of viscosity 

(Eq. 1.2c) in Chapter 1. 

11.5 NAVIER- STO!<ES EOUATIONS 

J' CD/Dynarr:;c ,:,t~avier-Stokes equations 

When the constitu1i ve relationships for a Newtonian 

fluid (Eqs. 11.6) are used to replace the stresses in the 

differential momenrum equations (Eqs. 11.5), lhe result 

is the Navier-Stokes equations in Cartesian coordinates. These equations, which de· 

scribe the behavior of a Newtonian fluid with variable density and viscosity, are apphc· 

able lo laminar and turbulent flows of liquids and gases throughout the entire range of 

11 .5 NAVIER-sr 

OKEs EQ \ 
flow speeds. They are th . UATIONs 5

79 
solve the most generat I 

e basic equa1ions th 
d. c ass of ft ·d a1 an co 

are excee mgty compl' ui nnechan· nnnnercial CFQ 

can be modeled as ha~~:ted and difficu11 lo ~~ltob~enns. The Navier~Odes ennploy to 

IS, however, possibte I g co~stant density and e. S1nce the flows of . lokes_ equa11ons 

V . u = 0, and s ati . n . th1s casc, the co . co_nstan1 viscosi1 ' lnlerest in lh1s text 

into all the detail~ w:lc~~:ahves of the (co:~~~ti equa'.ion i;::~ ~mp~fica1ion 

ponant case of a constant ~le thc continuity and N v1scos11y are zero Wfihou; I I_ .3, 

av/ay + ilw/az = 0 and ens11y, constan1 viscosa1v1erft-S1okesequaiions for1hgo1ng 

' 
1 Y Utd as ( e 1m. 

(
au a Eq. I 1.4a) au/öx + 

p -a +Il_!: + V au + au) a 
r ax a w- - f P (a2 

Y az - P r - - + µ -.!!_ a2u aiu) 
ax axi + ai +, (I l.lOa) 

( 
av av a y a(,-

p - + 11- + V V av) 
ar ax ay + W~ = Pfy - ~+Il (alv a2v a2v) 

ay ax2 + ayi + a"2 (I l.lOb) 

(
aw aw aw 

p - +u-+v-+waw) a 2 

a" ax2 -a i+-
Y az2 

ar ax ay ~ ""'Pf: - J!. + µ (~ + a2w aiw) 

In interpreting !hese equations 
(11.IOc) 

, , we note that th 
,orce balance on the fluid We can . . ey are ac1uatly the lhree conn f 

· wnte this balance in v t f ponents o a 
ec or orm as 

Du 
PDt:: pf-Vp + µVlu 

(11.11) 

You should be able to recognize !hat th . . 

pa = P(Du/ Dr) , are balanced by the su: 
0
~"::;al forces per unit volunne, given by 

sure . forces per unit volume as given b -V Y force_s per um1 volume, pf, lhe pres­

as given by µ. v2u Thus the vector y . p, and v1scous forces per unit volunne 

· ' equatton p(Du/Dr) - r 2 

other way to write the Navier-Stokes . f - P - V P +µV u is an-

fluid. equa11on or a constant densi1y, constan1 viscosity 

-; D/Dynamics/Newton's second law of nnotion/F = ma fora Newtonian Fluid 

In cylindrical coordinates, the continuity and Navier-Stokes equations for a eon­

:: :,,it dens11y, constant viscosity fluid are (1 /r)å(rv,)/ar + (1 /r)av
8
/a0 + av.Jaz = 

(,. wh1ch 1s Eq. (I 1.4b), and 
· 

p - v,-+--+v,---
(

iJV, + av, V9 av, OV, V~) 
ar a, r ae - öz r 

= pf, _ ap + µ (ö2
u, +~av, + _I_ ö

1v, + å2v, _~_~avs) 

a, a,2 , a, ,2 a02 öz2 , 2 , 2 ae 

(11.12a) 
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HISTORY BOX 11 .1 

(1785- l 836) entered the prestigious Ecole Polytechnique in 180'.2 a 

Claude Nav1er . h •t d th I f th 
1 

. s a ma • 

d t the top of his dass. He in en e e ro e o e ead1n9 schal rg1nai 

student but emerge a . h d f · d ar of 

. d engineering in France from h1s teac er an nen Jean Baptist F math-

emat1cs, science, an . t 
I 

d 'b d e our' 

1822 he resented a paper that for the first lime accura e y escn e . the role of lriction _1er.1n 

. p f t' f r a flu'id His analysis started from a molecular v1ew of fluid It 1n the 

equat1ons o mo 10n o · . . . · Was I It 

Jean-Claude de Saint-Venant to explam th1s result based on the v1scous stresses in the flui~ lo 

to identify the viscosity as the key material property. and 

( CD/History/Claude Navier and Sir George Stokes 

George Stokes (1819-1903) held the Lucasian chair at C_ambridge University, the same 

sition held by Sir Isaac Newton. Thus, he was one of the leadmg schalars in England. H Po­

many contributions to flu1d mechanics and the nature of light. With no knowled
9

e of the e made 

France in 1845 Stakes published a derivation of the equations that bear his name work 10 

, . . , us1ng an 

analysis based on the interna! friction of flu1d much like we have presented here. 

(
av, av, Vo av, av, ) 

p -+v,-+--+v.-
ar ar r a0 • az 

(11.12b) 

= pf. - - + /.L - · + ---'. + ap (a2v. I ilv. , 

. a, ar2 /' ar r (11. llc) 

The continuity and Navier-Stokes equations ju~1 :,• , :, provide a complete set o[ 

governing equations to determine the velocity and pre".,rr .,t cvery point in a flow. It i1 

not necessary in this case to solve the energy equatio1, '.n dctermine the velocity and 

pressure fields, because we have four equations and fol!l unknowns: three componenIs 

of velocity and the pressure. 

We have often mentioned that solving the governing cquations isa difficult task. In 

Chapter 12 we will demonstrate how to construct analytical solutions fora numberof 

imponant flows. Here we emphasize that saying we have obtained a solution to the gol'· 

erning equations means one of two things. In an analytical solution, the functions de· 

scribing the velocity and pressure fields must satisfy all four equations simultaneously. 

as well as the boundary conditions, when the functions are insened into the equanons 

11.5 NAVI ER- sroK 

and the various spatial d . . Es EQUATIONs I sa1 
process. In a CFD solur· enval!ves evaluated ...., 

. h ton the s . • ne next 
tutmg t e solution on som' et of numerical two examples d 

equations representing th e n_umber of spatial ~alues for vel0city and emonstratc this 

conditions to sorne d e dtscretized fonn rmts satisfies a mas . pressure consti-

about a CFD solutio~g:: of approxirnationo ~i: goveming equa:::~tC:n~f :gebraic 

approach used by the CFD ause the details depe dis abou1 all we can sa . undary 

rnoctel, n lo a great d Y •n general 
egree on thc type of 

EXAMPLE 11 .6 

SOLUTION 

In the channel flow of a const d . 
ant ensIIy 

suppose the complete descripti f • co~stant viscositv fl . d . . 

loci ty field 11 = l[l,2(Pi on ° the flow Is given in C~e ui shown in F1gure 11.5. 

sure field p (x) = p + [(- P2)J /2µLl[l -(y/ l,)ll v -o s1ancoordina1esby1hcvc-

. . t P2-p )/L]( . • - , andw::Q d 

md1cated locations, and the sli ~t h .t - x t). Here Pt and p, are the ' an the pres-

has been ignored. Show that thg fl ydrostat1c Variation in pres-su pressures at the 

. ts ow sat' fi re across the h 
1 

Navter-Stokes equations in Cori . is. es the constant density c anne 

- ,es1an coord1nates. with th ' eons tant vIscosi1y 

Yeloci1y 
profile 

Fluid with 
viscosity µ. 

and density p 

Pressure drop, t,p = P, _ Pi 

Figure 11 .5 Schematic for Example 11 _6_ 

e body force neglected. 

Channel 
hcigh1. 2/1 

Wc_ i•, l,l ti rst substitute the three velocity components into the continuity e uation for 

an in,, :npress1ble fluid, Eq. I I.4a. then substitute the velocity coruponent; and pres­

s_ure m'.'' the constant density, constant viscosity fom1s of the Navier-Stokes equa­

ttons Eqs. I_ I. !Oa-11.!0c. Since we have 11 = u(y) only, with vand w zero, the conti­

nutty cquatton, 'd11 / 'dx + av/ay + 'dw/az = 0, is satisfied by inspection. Tenns in 

Eq~. I LI Oa-11 .10c that contain the velocity coruponents v and w are zero. as are time 

denva11ves and spatial derivatives of II with respect to x and~- Writing only the remain­

mg nonzero terms, and setting the body force terms 10 zero, we find 

0 - ap + a
2
u O = -~, and 0 = -~ 

- - ax /.L ay2' ay a, 
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The last two equations are consistent ~ ith the given pressure distribution. Subsr . 
the x velocity component and pressure mto the first pressure equauon yields ttUhng 

a ( (P2 - PI) ) !_ [!_ (("2
(JJ1 - /12) ) [ ( 2] 

O== -ax Pi+ -L- (x-x1) +µay ay 2µL 1- f) )] 

(
p2 - p1) (h2

(/11 - P2) ) !_ (!_ [1 -(l'.)2
]) 

0 == - - L- + µ. 2µ L ay ay h 

(
P2 - /11) (h2

(P1 - JJ2) ) ( -
2) == 0 

0 == - -L- + µ. 2µ.L /12 

We see that the velocity and pressure do satisfy the appropriate forms of the co 1. . 
. . h f d I n mu1ty 

and Navier-Stokes equations. It 1s also straig t orwar to s 10w that the veiocit fi 
. d' . h h I 11 y eld satisfies the no-slip, no-penetrauon eon ll!ons att e c anne w a s. 

EXAMPLE 11 .7 

SOLUTION 

In the Poiseuille flow of_ a const~t d~nsity_, constam viscosity _fluid in a round pipe, 
(Figure 11 .6), the veloc!ly field 1s given m cyhndncal coo\dmates by u == v,e, + 
v8ei, + v,e, with componentsv, == 0, vo == 0, and v,(r ) == IIR;,( /J1 - P2)]/4µL}[1-
(r / Rp )2]. Find the pressure distribution in this flow if body forccs are neglected. 

1+-------- Length. L - - ----- -1 

'L 
' l 

Vcloci1y 
profile 

Fluid with 
viscosity µ 

and density p 

Pressure drop. llp = P1 - Pi 

Figure 11 .6 Schematic for Example 11 .7. 

t: 
I i 

hu~, Rp 

The velocity field must satisfy the continuity equation, Eq. 11.4b, and the velocity field 
and pressure distribution must satisfy Eqs. ll .l2a-I l. l2c. Wc begin by checkinglhe 
continuity equation: 

• 

11.6 EULER EQUATIONS 1683 

Sincc we know v, = o and 
• Vo = O th' 

be sallsfied by inspection . • ts reduces to av I" 
E 11 12 l , smce v _ ( , vz = O wh· h 

qs. · a- 1.12c. we have ' - v, r) . Writing onl · •c can be scen to 
y thc nonzero terms . ap ,n 

0= -- 0 - l ap 
a . - - - a 

r r ao, and O=-J!. (a1v. I a a + µ -....: + v, 
Thus the pressure is a function of z 82 r ; a;) 

. z only Inse · 
last equat1on and taking derivat' · nmg the given ve! . 

ives we find ocuy cornponent into the 

ap (R2( [ - - µ P Pi - P2) 2 

az - 4µ L ) (- RJ + H- ~.)] 
=µ(Ri(P1- p2))(- 2 2 ) 

. . . . 4µL Ri - Ri 
wh1ch, after s1mphficatton, yields a ;a _ 
resulting constant of integration at: = z - (Pi - Pi)/ L. lntegrating and evaluati 

O 
lh 

Thi • 1. Z1, we find p(z) [ n~ e 
s 1s a mear drop in pressure down th . = P1 + (pz - p1)/ L](z _ - ) 

· e pipe Can you se b · <i · 
no-penetrat1on conditions are satisfied on th · . e Y mspection lhat lhe no-slip 

e p1pe wall? · 

< I CD/Dynamics/Potential Flow 

11.6 EULER EQUATIONS 

Th~ formidable Navier-Stokes equations have generated ff . . · I' 1. • . . many e ons to mtroduce 
s11np_ I ymg approx1mauons. One of the earliest and rnost valuable of th 
1mat1ons is that of an inviscid fluid defined in Chapter g to be fl .d h ese approx­
. . ' . . . : a UI w ose VISC0Sl!y 1~ L~I o. Upon subst1tutmg µ = 0 mto the constitutive mode! for a Newtonian fluid 
l '1' · I 1.6a-l l.6f). we find the state of stress in an inviscid fluid in Canesian coordi-
1,;1·~, to be 

a.u = -p. ayy = -p, a" = - p 

Oxy = Oyx == 0, 0:_1· = (J)'C == 0. a,., = Ox: = 0 

( ll .13a-<:) 

(ll. 13d-l) 

-'" cxpected, we see that an inviscid fluid is incapable of exening a shear stress. This is 
anuther way lo define an inviscid fluid. The absence of shear stress indicates that an in­
, i,,id fluid does not obey the no-slip condition and therefore must slip along a solid sur­
ta~l'. The state of stress in an inviscid fluid, with its absence of shear stresses, is given 
by a pressure distribution alone, just as is the case in a static fluid. However. as we will 
see in a moment, in an inviscid fluid, the pressure distribution is related to both the body 
force and the inertial force created by the velocity field, rather lhan to just the body force 
as in a static fluid . 
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For problems that involve the mixing of dit- Since it is tedious, we wilCI not Wnte out these tw 

fe rent fluids, or the transport of some sub- o~ the energy equallon m anesian coordinates ~ folltis 

stance in a fluid, the Reynolds transport w1ll lind_ these equat1ons wntten in various c , u1 You 

theorem may be used to derive add1t1onal systems m ma_ny _advance_d texts. 00rd1naie 

. föns that describe the The contmuity, Nav1er- Stokes and 
govermng equa I d . h . h h N · energy 

, . transport processes involve , uons, toget er w11 t e ewtonian consti·t . equa. 
m1x1ng or . . 1 

. Uhve 

Th. 1 k . beyond the scope of th1s intro- consutute a comp ete mathemat1cal descr" rnocteJ 
1s as 1s . . CFD d h 1pt1on Offl · 

d I I I but the process of denving flow. co es use t ese thrce equa1ton Utd 
uc ory ex , d . . f d .b. fl s as the 

th q ations is very sim1lar lo thal e- mg pomt or escn mg u1d flows. As rn . stan. 
ese e u . h . . ent1oned 
.b d in th is chapter for mass, momen- her, owever, 11 1s not necessary 10 solve th ear. 

sen e . . h fl f e en 
I and energy. equauon m t e ow o a constant dcnsity c ergy 
um, . . d N . S k , onstant , 

cosity fluid. In that case, the contmu11y an avier- to es equation_s are sufficientto~s-

tennine the velocity and pressure lields. However, 1f a flow of thts type tn I 
e. 

d. "b . h f vo Ves he 
transfer, one may lind the temperature 1stn ut1on m t e lu1d by solving th at 

equauon after the velocity and pressure lields have been obtamed. e energy 

11.8 DISCUSSION 

We conclude this chapter with a brief discussion of sevcral concepts that have be 

menti_oned in earlier chapters and have direct relevance to solving the govcrni~; 

equauons. 

C ~ I CD/Dynamics/Boundary conditions 

11.8.1 Initial and Boundary Conditions 

The continuity, Navier-Stokes, and energy equations, 1,, . , ',~r with the appropriatecon­

stitutive relationships and state equations, provide a co1o1_ •·.:.c mathematical description 

of the flow of a Newtonian fluid. To obtain a solution , ,11,, complex set of goveming 

equations, we must specify an appropriate set of bounJ<1:v and initial conditions for the 

flow problem being analyzed. The basic set of unknown, Jor which a solution is sought 

in the general case includes the three components of velocity. pressure, density, and tlte 

temperature of the fluid. 
A complete discussion of the required boundary conditions depends on the exart 

nature of the problem, the approximations employed, and the set of equations 10 be 

solved. Although this discussion is beyond the scope of this text, the boundary con_di· 

tions associated with the fluid velocity lield are generally the no-slip, no-penetrauon 

conditions as discussed in Section 6.6. In an unsteady flow problem, the initial cond1· 

tions take the form of the specilication of the spatial distribution of the unknowns (l'e; 

loci ty, pressure, etc.) at an initial instant of time. The selection of appropriate bound_3ll
1 

d · · ·a1 d" · · be f analyuca 
an 1ru11 eon 1hons w11l be demonstrated in Chapter 12, where a num r 0 

solutions to simplilied fonns of the goveming equations will be discussed. 

( ' 

11.a o 1scu ss10 N j 103 

CD/Dynamics/Reynolds nu . . 
Equation mber. lnert,a and viseosity/Scar 

ing the Navier-Stokes 

11.8.2 Nondimensionai· t· 1za 10n 

In Scction 3.2 we described 
h . . I . many of the com d" 

mec anics mc udmg the Reynold mon 1mensionless groups . ft .d 
F,. - V I ,Ji[, h E s nurnber Re - V L/ m u1 

- 8 • 1 e uler number Eu = ( ~ 1 P 
2 

µ , the Froude number 

St= _wL/_V. We showed that these and ot:er ctio) / 2_PV 'and the Strouhal number 

applymg d1mens1onal analysis (DA) to ftow r mens1onless groups naturally occur in 

cuss1on of DA to describe the process k P oblems. In th1s sect1on we extend our dis-
. T nown as nondirn · 1. . 

equat1ons. he value of this proc . th ens1ona 1zauon ofthe goveming 
( ess 1s at complete s · .1. d 

systems e.g., a prototype and the f Il 1 d . 1m1 Itu e between two physical 
· 1 u -sca e ev1ce of int t) · 

mens1on ess goveming equations and bo d . . eres 1s guaranteed if the di-

are identical. Another advantage of th dun ary_condnions for the two different systems 
· h 1 . . e 1mensmnless fonn of th . 
1s t at a so utmn 1s applicable over a an f . e govemmg equations 

thc values of those parameters leav: thgedo geometnc and flow parameters, provided 
• e 1mens1onless coeffiic· · th . 

equat1ons unchanged. ients m e govemmg 

Nondimensionalization of a govemin . . . 
dependent and independent variable t ·n thg equation is accomphshed by dividing every 

e equat1on by an appropri I b" . 
characteristic dimensions, thereby makin e h . . . a e com mauon of 

dimension is a physical dimension that i~ i~\o vanable d1hmensmnl~ss. A characteristic 
d · • . me way c aractensuc of the ftow field 

un er mves1tgat1on. Common examples of characte . ti ct· . . 
1 · 1· I h I L ns c 1mens1ons mclude a charac-
ens te engt sca e ' usually derived from the geometry· a characten· 1· I ·1 
U · ]I d li d • s te ve oc1ty sca e 

• usua Y_ e ne as the average fluid velocity; a characteristic pressure P· anda char-
actenst1c t1me scale T. · 

, We will illustrate the p~ocess of obtaining nondimensional goveming equations for 
1 nc case of a cons_tant dens1ty, constant viscosity, ftow of a Newtonian fluid. lf we as­

<t11_11e that gra~1ty 1s the only body force, and lake the z axis upward as usual, the conti­

·1u11y and Nav1er-Stokes equations. (Eqs. 11.4a and 11. IOa-<:), are 

au au aw 
- + - +- =0 ax iJy i)z 

( a
u au au /Ju) iJp (a2u a2u a2u) 

p -+11-+u-+w- =- - +µ - + - +-
ar ax ay az ax ax2 ay2 az2 

(
au au au au) ap (a2

u a2u a2u) 
p -+11- +u- +w- ---+ µ - + - +-

åt åx åy åz - åy iJx2 iJy2 /Jz2 

(
aw åw aw aw ) iJp (a2w iJ

2w a2w) 
p a, +"ax"+ U iJy + Waz = - pg - i)z + µ iJx2 + ay2 + i)z2 

Recall that for this case it is not necessary to solve the energy equation to detennine the 

velocity and pressure lields. 
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