Lecture 11 Fast Fourier Transform (FFT)

Weinan $\mathsf{E}^{1,2}$ and Tiejun Li^2

¹Department of Mathematics, Princeton University, weinan@princeton.edu

²School of Mathematical Sciences, Peking University, *tieli@pku.edu.cn* No.1 Science Building, 1575

Outline

Examples

Fast Fourier Transform

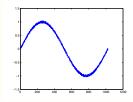
Applications

(日) (國) (종) (종) (종) (日)

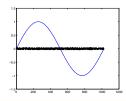
◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへぐ

Signal processing

Filtering: a polluted signal



High pass and low pass filter (signal and noise)



How to obtain the high frequency and low frequency quickly?

Examples

Applications

ション ふゆう メヨッ メヨッ マクシ

Solving PDEs on rectangular mesh

Solving the Poisson equations

$$-\Delta u = f$$
 in Ω
 $u = 0$ on $\partial \Omega$

in the rectangular domain

 After discretization we will obtain the linear system with about N² unknowns

$$-\frac{u_{i+1,j}+u_{i-1,j}+u_{i,j+1}+u_{i,j-1}-4u_{i,j}}{4h^2}=f_{ij}$$

► The FFT would give a fast algorithm to solve the system above with computational efforts O(N² log₂ N).

Computing convolution (卷积)

Suppose

$$h(x) = \int_0^{2\pi} f(x-y)g(y)dy$$

is the convolution of f and g, where $f(x),g(x)\in C_{2\pi}$ are period 2π functions.

► Take $x_j = j\delta$, j = 0, 1, ..., N - 1, $\delta = \frac{2\pi}{N}$ and apply simple rectangular discretization

$$h(x_i) \approx \sum_{j=0}^{N-1} f(x_i - x_j)g(x_j) \cdot \delta$$
 $i = 0, 1, \dots, N-1$

▶ Define f_i = f(x_i), g_i = g(x_i), and let f_i is period N respect to the subscript i, define

$$h_i = \sum_{j=0}^{N-1} f_{i-j}g_j \cdot \delta$$
 $i = 0, 1, \dots, N-1$

• The direct computation is $O(N^2)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ · □ = · · · ○ Q @

Fast Fourier Transform

Fast Fourier Transform is one of the top 10 algorithms in 20th century.

But its idea is quite simple, even for a high school student!

Outline

Examples

Fast Fourier Transform

Applications

◆□▶ <圖▶ < E▶ < E▶ 로 のQ@</p>

ション ふゆう メヨッ メヨッ マクシ

Fourier Transform

► Suppose f(x) is absolutely integrable in (-∞, +∞), then the Fourier transform of f(x) is

$$\hat{f}(k) = \int_{-\infty}^{+\infty} f(x)e^{-ikx}dx.$$

• Moreover if f(x) is square integrable, then the inverse Fourier transform of $\hat{f}(k)$ is

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(k) e^{ikx} dk.$$

ション ふゆう メヨッ メヨッ マクシ

Properties of Fourier transform

Some important properties of Fourier transform:

1. Derivative to coefficient:

$$\widehat{(f'(x))}(k) = ik\widehat{f}(k);$$

2. Translation property:

$$(\widehat{f(x-a)})(k) = e^{-ika}\widehat{f}(k);$$

3. Convolution to multiplication:

$$\widehat{(f\ast g)}(k)=\widehat{f}(k)\widehat{g}(k);$$

where $(f * g)(x) = \int_{-\infty}^{+\infty} f(x - y)g(y)dy$.

4. Parseval's identity:

$$\int_{-\infty}^{+\infty} |f(x)|^2 dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |\hat{f}(k)|^2 dk.$$

Discrete Fourier transform (DFT)

► Suppose we have $\boldsymbol{a} = (a_0, a_1, \cdots, a_{N-1})^T$, define DFT of \boldsymbol{a} as $\boldsymbol{c} = (c_0, c_1, \cdots, c_{N-1})^T \triangleq \hat{\boldsymbol{a}}$, where $c_k = \sum_{j=0}^{N-1} a_j e^{-jk\frac{2\pi i}{N}}, \qquad k = 0, 1, \dots, N-1.$

Here i is the imaginary unit, $e^{-\frac{2\pi i}{N}} \stackrel{\Delta}{=} \omega$ is the N-th root of unity.

▶ *a* is the inverse discrete Fourier transform of *c* defined as

$$a_j = \frac{1}{N} \sum_{k=0}^{N-1} c_k e^{jk \frac{2\pi i}{N}}, \qquad j = 0, 1, \dots, N-1.$$

DFT is closely related to the trigonometric interpolation for 2π-periodic function

$$T(x) = \sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}} b_k e^{ikx}.$$

such that at $x_j = \frac{2j\pi}{N}$, $T(x_j) = a_j$, j = 0, 1, ..., N - 1. The readers may find the relation between c_k and b_k .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark on DFT

- DFT can be considered as a linear transformation.
- Define Fourier matrix

$$F = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \omega & \cdots & \omega^{N-1} \\ \cdots & \cdots & \cdots & \cdots \\ 1 & \omega^{N-1} & \cdots & \omega^{(N-1)^2} \end{pmatrix} = (\omega^{jk})_{j,k=0}^{N-1}$$

where ω is the N-th root of unity.

c is the Fourier transform of a can be represented as

 $\mathbf{c} = F\mathbf{a}$

Remark on DFT

- Inverse DFT can also be considered as a linear transformation.
- Define inverse Fourier matrix

$$F^{-1} = G = \frac{1}{N} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1} & \cdots & \omega^{-(N-1)} \\ \cdots & \cdots & \cdots & \cdots \\ 1 & \omega^{-(N-1)} & \cdots & \omega^{-(N-1)^2} \end{pmatrix} = (\omega^{-jk})_{j,k=0}^{N-1}$$

where ω is the N-th root of unity.

▶ *a* is the inverse Fourier transform of *c* can be represented as

 $\boldsymbol{a} = G\boldsymbol{c}$

Properties of DFT

Convolution to multiplication:

$$\widehat{(f*g)}_k = \widehat{f}_k \widehat{g}_k \quad k = 0, 1, \dots, N-1$$

where

$$(f * g)_l = \sum_{j=0}^{N-1} f_{l-j}g_j \quad l = 0, 1, \dots, N-1,$$

and f_l is period N with respect to index l, i.e.

$$f_{-1} = f_{N-1}, f_{-2} = f_{N-2}, \dots$$

Parseval's identity:

$$N\sum_{j=0}^{N-1} |a_j|^2 = \sum_{k=0}^{N-1} |c_k|^2$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─ のへで

FFT idea

- FFT is proposed by J.W. Cooley and J.W. Tukey in 1960s, but the idea may be traced back to Gauss.
- The basic motivation is if we compute DFT directly, i.e.

$$c = Fa$$

we need N^2 multiplications and ${\cal N}({\cal N}-1)$ additions. Is it possible to reduce the computation effort?

• First consider the case N = 4

$$F = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{pmatrix}, \quad F\mathbf{a} = \begin{pmatrix} (a_0 + a_2) + (a_1 + a_3) \\ (a_0 - a_2) - i(a_1 - a_3) \\ (a_0 + a_2) - (a_1 + a_3) \\ (a_0 - a_2) + i(a_1 - a_3) \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

ション ふゆう メヨッ メヨッ マクシ

FFT idea

- ▶ From the concrete form of DFT, we actually need 2 multiplications (timing ±i) and 8 additions (a₀ + a₂, a₁ + a₃, a₀ - a₂, a₁ - a₃ and the additions in the middle).
- This observation may reduce the computational effort from $O(N^2)$ into

 $O(N \log_2 N)$

Because

$$\lim_{N \to \infty} \frac{\log_2 N}{N} = 0$$

It is a typical fast algorithm.

 Fast algorithms of this type of recursive halving are very typical in scientific computing.

Construction of FFT

• Consider $N = 2^m$ and denote

$$p(x) = a_0 + a_1 x + \dots + a_{N-1} x^{N-1},$$

divide p(x) into odd ($\hat{\Phi}$) and even (\mathfrak{K}) power parts

$$p(x) = (a_0 + a_2 x^2 + \dots) + x(a_1 + a_3 x^2 + \dots)$$

= $p_e(x^2) + x p_o(x^2)$

where

$$p_e(t) = a_0 + a_2t + \ldots + a_{N-2}t^{\frac{N}{2}-1}, p_o(t) = a_1 + a_3t + \ldots + a_{N-1}t^{\frac{N}{2}-1}$$

▶ Define $\omega_k = e^{-\frac{2\pi i}{k}}$ (k-th root of unity), then when $j = 0, 1, \dots, \frac{N}{2} - 1$

$$\begin{cases} c_{j} = p_{e}(\omega_{N}^{2j}) + \omega_{N}^{j}p_{o}(\omega_{N}^{2j}) \\ c_{\frac{N}{2}+j} = p_{e}(\omega_{N}^{2(\frac{N}{2}+j)}) + \omega_{N}^{\frac{N}{2}+j}p_{o}(\omega_{N}^{2(\frac{N}{2}+j)}) \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Construction of FFT

Pay attention that

$$\omega_N^{2j} = \omega_{\frac{N}{2}}^j, \quad \omega_N^{\frac{N}{2}+j} = -\omega_N^j, \quad \omega_N^{N+2j} = \omega_{\frac{N}{2}}^j$$

then

$$c_j = v_j + \omega_N^j u_j, c_{j+\frac{N}{2}} = v_j - \omega_N^j u_j \qquad j = 0, 1, ..., \frac{N}{2} - 1$$

where

$$v_j = p_e(\omega_{\frac{N}{2}}^j), u_j = p_o(\omega_{\frac{N}{2}}^j)$$

► The formula above show that the DFT of N components vector a could be converted to compute the DFT of two N/2 components vectors a_e, a_o and some simple additions and multiplications. This is called Danielson-Lanczos algorithm. The recursive application of this idea gives FFT.

A simple example: N = 8

Suppose the array

 a_0

 a_4

$$\boldsymbol{a} = (a_0, a_1, \cdots, a_7)^T$$

Step A: Splitting (reordering) (odd parts and even parts):

Step 1

a_e = (a₀, a₂, a₄, a₆)^T, a_o = (a₁, a₃, a₅, a₇)^T;

Step 2

a_{ee} = (a₀, a₄)^T, a_{eo} = (a₂, a₆)^T, a_{oe} = (a₁, a₅)^T, a_{oo} = (a₃, a₇)^T;

Step 3

a_{eee} a_{eeo} a_{eoe} a_{eoo} a_{oee} a_{oeo} a_{oeo} a_{ooe} a_{ooo} a_{ooe}

 $a_2 a_6$

 a_1

 a_5

 a_3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のくぐ

 a_7

A simple example: N = 8

Step B: Combination:

Step 1

$$\begin{aligned} \boldsymbol{c}_{ee} &= \left(a_0 + \omega_2^0 a_4, \ a_0 - \omega_2^0 a_4\right)^T, \\ \boldsymbol{c}_{eo} &= \left(a_2 + \omega_2^0 a_6, \ a_2 - \omega_2^0 a_6\right)^T, \\ \boldsymbol{c}_{oe} &= \left(a_1 + \omega_2^0 a_5, \ a_1 - \omega_2^0 a_5\right)^T, \\ \boldsymbol{c}_{oo} &= \left(a_3 + \omega_2^0 a_7, \ a_3 - \omega_2^0 a_7\right)^T, \end{aligned}$$

Define the notations

$$\boldsymbol{w}_{4} \triangleq (w_{4}^{0}, w_{4}^{1})^{T}, \boldsymbol{w}_{8} \triangleq (w_{8}^{0}, w_{8}^{1}, w_{8}^{2}, w_{8}^{3})^{T},$$

and

$$X \circ Y \triangleq (x_j y_j)_j$$

as the vector product through multiplication by components.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ · □ = · · · ○ Q @

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

A simple example: N = 8

Step B: Combination:

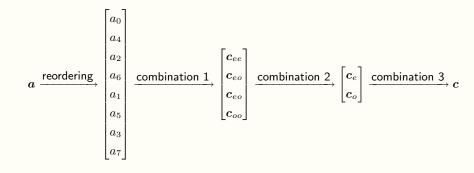
► Step 2

$$oldsymbol{c}_e = egin{bmatrix} oldsymbol{c}_{ee} + oldsymbol{w}_4 \circ oldsymbol{c}_{eo} \ oldsymbol{c}_{ee} - oldsymbol{w}_4 \circ oldsymbol{c}_{eo} \end{bmatrix}, \qquad oldsymbol{c}_o = egin{bmatrix} oldsymbol{c}_{oe} + oldsymbol{w}_4 \circ oldsymbol{c}_{oo} \ oldsymbol{c}_{oe} - oldsymbol{w}_4 \circ oldsymbol{c}_{oo} \end{bmatrix},$$

Step 3

$$oldsymbol{c} = egin{bmatrix} oldsymbol{c}_e + oldsymbol{w}_8 \circ oldsymbol{c}_0 \ oldsymbol{c}_e - oldsymbol{w}_8 \circ oldsymbol{c}_0 \end{bmatrix}$$

A simple sketch of FFT (N = 8)



A remark on the reordering

If we map e to 0, and o to 1, we can find the binary representation of the indices after reordering is just the bit reversal before reordering

$0 = 000_2$		$000_2 = 0$
$1 = 001_2$		$100_2 = 4$
$2 = 010_2$		$010_2 = 2$
$3 = 011_2$	Bit reversal	$110_2 = 6$
$4 = 100_2$,	$001_2 = 1$
$5 = 101_2$		$101_2 = 5$
$6 = 110_2$		$011_2 = 3$
$7 = 111_2$		$111_2 = 7$

Outline

Examples

Fast Fourier Transform

Applications

ション ふゆう メヨッ メヨッ マクシ

Compute the convolution

From the discretization at the beginning, we have

$$h_i = \sum_{j=0}^{N-1} f_{i-j}g_j \cdot \delta$$
 $i = 0, 1, \dots, N-1$

thus

$$\boldsymbol{h} = (\hat{\boldsymbol{h}})^{\vee} = (\delta \cdot \hat{\boldsymbol{f}} \circ \hat{\boldsymbol{g}})^{\vee}$$

► After using FFT, N² + N multiplications and N(N - 1) additions are reduced to ³/₂N log₂ N + 2N multiplications and 3N log₂ N additions.

Solving the linear system with loop matrix

Let

$$L = \begin{pmatrix} c_0 & c_{N-1} & \cdots & c_1 \\ c_1 & c_0 & \cdots & c_2 \\ \cdots & \cdots & \cdots & \cdots \\ c_{N-1} & c_{N-2} & \cdots & c_0 \end{pmatrix}$$

Solving Lx = b. L is a loop matrix.

We have

$$(L\boldsymbol{x})_i = \sum_{j=0}^{N-1} c_{i-j} x_j$$

where we assume c is period N with respect to the subscripts, and $\boldsymbol{x} = (x_0, x_1, \dots, x_{N-1})^T$.

-20

Solving the linear system with loop matrix

▶ First consider the Jordan form of *L*. From the formula before

$$L\boldsymbol{x} = \boldsymbol{c} \ast \boldsymbol{x} = \lambda \boldsymbol{x}$$

Take DFT we have

$$\hat{c} \circ \hat{x} = \lambda \hat{x}$$

then eigenvalues

$$\lambda_k = \hat{c}_k$$

The eigenvectors

$$\hat{\boldsymbol{x}}_{j}^{(k)} = \delta_{kj}, \ (j,k=0,1,\ldots,N-1)$$

where δ_{kj} is Kronecker's δ .

Take inverse transform we obtain

$$\begin{aligned} \boldsymbol{x}^{(0)} &= (1, 1, \dots, 1)^T, \\ \boldsymbol{x}^{(1)} &= (1, \omega^{-1}, \dots, \omega^{-(N-1)})^T, \\ & \dots \\ \boldsymbol{x}^{(N-1)} &= (1, \omega^{-(N-1)}, \dots, \omega^{-(N-1)^2})^T \end{aligned}$$

ション ふゆう メヨッ メヨッ マクシ

Solving the linear system with loop matrix

Spectral decomposition of L

$$L = (\boldsymbol{x}^{(0)}\boldsymbol{x}^{(1)}\cdots\boldsymbol{x}^{(N-1)}) \begin{pmatrix} \lambda_0 & & \\ \lambda_1 & & \\ & \ddots & \\ & & \ddots & \\ & & & \lambda_{N-1} \end{pmatrix} (\boldsymbol{x}^{(0)}\boldsymbol{x}^{(1)}\cdots\boldsymbol{x}^{(N-1)})^{-1}$$
$$= (NF^{-1})\Lambda (NF^{-1})^{-1} = F^{-1}\Lambda F$$

- Solving Lx = b is equivalent to $F^{-1}\Lambda Fx = b$, i.e. $\Lambda(Fx) = Fb$. Then it is composed of three steps:
 - Step 1: Compute Fb i.e. apply FFT to b to obtain \hat{b} ;
 - Step 2: Compute Λ i.e. apply FFT to c to obtain ĉ;
 - Step 3: Compute $\hat{x}_k = \hat{b}_k / \hat{c}_k$, and then compute $(\hat{x})^{\vee}$ to obtain x.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Homework assignment

- ► Familiarize the "FFT" and "IFFT" command in MATLAB;
- Compute the convolution for

$$h(x) = \int_0^{2\pi} \sin(x-y) e^{\cos y} dy$$