Classification Notes — No. 30.5

1. Introduction

1.1 General

LL1 This Classification Note gives guidance for description
of important environmental conditions as well as giving guid-
ance for arriving at environmental loads.

Environmental conditions are described in clauses 2—4 while
environmental loads are described in clauses 5—7.

1.2 Environmental conditions

1.2.1  Environmental conditions cover natural phenomena
which may contribute to structural damages, operation dis-
turbances or navigation failures. Phenomena of general im-
portance are:

® Wind
® Waves
e Currents.

Phenomena which may be important in specific cases are:

Ice
Earthquake
Soil conditions
Temperature
Fouling
Visibility
Tides.

1.2.2 The phenomena are usually described by physical var-
iables of statistical nature. The statistical description shouid
reveal the extreme conditions as well as the long- and short-
term variations.

1.2.3  The environmental design data should be representative
for the geographical areas where the structure will be situated,
or where the operation will take place. For ships and other
mobile units which operate world-wide, environmental data for
particularly hostile areas, such as the North Atlantic Ocean,
may be considered.

1.2.4 Empirical, statistical data used as a basis for evaluation
of operation and design must cover a sufficiently long time
‘Pperiod.

For operations of limited duration, seasonal variations must
be taken into account. For meteorological and oceanographi-

cal data, 3—4 years is a minimum. Earthquakes must be based
on long-term historical data.

1.3 Environmental loads

1.3.1 Environmental loads are loads caused by environmenta]
phenomena. e

Environmental loads to be used for design are to be based on
environmental data for the specific Jocation and operation in
question, and are to be determined by use of relevant methods
applicable for the location/operation taking into account type
of structure, size, shape and response characteristics,

2. Wind conditions

2.1 Average wind

2.1.1  Wind velocity changes both with time and with height
above the sea surface. For this reason the averaging time and
height must always be specified.

Common height level is z = 10 metres.
times are 1 minute, 10 minutes or | hour.

Wind velocity averaged over 1 minute is often referred to as
sustained wind velocity.

2.1.2  The average wind speed and the wind height profile
may be estimated by the formula

Common averaging

Uz =Ug,, c,)(x +0,137In 72;— 0,047 ln—:—)
1 T

where

z = height above the still water sea surface level.
z = reference height = 10m.

t = averaging time.

t = reference time = [0 minutes.

U(z, t) = average wind speed by specified z and t.

U (z.t;) = reference wind speed.

The ratio U (2, 1) [ U (2, t.} is given in Table 2.1 for:

Table 2.1 Wind speed ratios.
z (metres) Time
3 seconds 3 seconds 15 seconds 1 minute 10 minutes 60 minutes
1.0 0,934 0910 0.858 0,793 0.685 0,600
50 - 1.154 1,130 1,078 1,013 0.905 0.821
10,0 1,249 1,225 1,173 1.108 1.000 0916
20,0 1,344 1,320 1,268 1.203 1.095 1.011
30.0 1,399 1,375 1,324 1,259 1,151 1,066
40.0 1,439 1.415 1,363 1,298 1,190 1,106
50.0 1,469 1,445 1,394 1329 1,220 1.136
100,0 1.564 1.540 1,489 1.424 1315 1,231
2.1.3  The statistical behavior of the average wind speed Pr(U) = cumulative probability of U.
U (z, 1) referred to a fixed height and averaging time may be U = U (z, 1) = wind speed.
described by the Weibull distribution given as: Co = Weibull scale parameter.

Pr(U)=l—exp[—-(LlJJ )]

where

Weibull slope parameter.

2.1.4 The most probable largest wind speed for an exposure
time, T, may be obtained by: .
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T 1jc
Umu (z, t) = UO( In -_l—..—)

where

exposure time. }
average time period of constant wind speed, usually 3
hours.

T =
T, =

2.2 Gust wind

2.2.1 In the short time range the wind may be considered as
a random gust wind component with zero mean value, super-
posed upon the constant, average wind component.

222 Gust wind cycles with period shorter than about | mi-
nute, may be desribed by the gust spectrum

~

f
S =4xU%(z, ) —
@+ )%
where
S = power spectral density (m2/Hz).
f = frequency (Hz).
f = non-dimensional frequency, f=fL [ U (z, t).
L = length scale dimension (m); may be chosen equal
to 1800m.

K = surface drag coefficient; may be chosen equal to
. 0,0020 for rough sea and 0,0015 for moderate sea.
Uz, t) = average wind velocity.

2.2.3  Gust wind velocity, defined for instance as the average
wind velocity during an interval of 3 seconds, may normally
be assumed to follow the Weibull distribution law, see
2.1.3--2.14.

3. Wave conditions

3.1 Wave theories

3.1.1  Wave conditions which are to be considered for design
purposes, may be described either by deterministic design wave
methods or by stochastic methods applying wave spectra.

By deterministic methods the seas are described by regular.
periodic wave cycles, characterized by wave length (period),
wave height and possible shupe parameters.

The deterministic wave parameters may. however. be predicted
by statistical methods.

3.1.2  The kinematics of regular waves may be described by
analytical or numerical wave theories. Among these may be
mentioned:

® Linear wave theory. by which the wave profile is described
as a sine function.

® Solitary wave theories for particularly shallow water.

® Cnoidal wave theories which cover the waves above as
special cases.

® Srokes wave theories for particularly high waves.

® Strecam-function waves which are based on numerical

inethods and accurately describe the wave kinematics over
a broad range of water depths.

By spectral description of random seas. the linear wave theory
is almost always used,

For most practical purposes. the following wave theories are
recommended:

® Solitary wave theory:
h

T <0l
® Stokes’ 5th order wave theory:
h
0,l <—<0,
< Fi <03
® Linecar wave theory (or Stokes’ 5th order):
h
03—
=7
where
h = water depth.
A = wave length.
3.2 Short term wave conditions
3.2.1 Short term stationary irregular sea states may be de-

scribed by a wave spectrum; that is, the power spectral density
function of the vertical sea surface displacement.

Wave spectra may be given on table form, as measured spec-
tra, or on parametrized, analytic form.

322 The Jonswap spectrum and the Pierson-Moskowitz
spectrum are most frequently applied. The spectral density
function is:

S(w)=2a g2 (2= =3 exp

5 -4 1 @a—wy 2
“T(wi,,) +e"7(‘mp—) Iny

=
3]
a

€

angular wave frequency, w= 2af = 2x/T.

wave frequency, f = IJT.

wave period, T = 1/f.

angular spectral peak frequency wp = 2nf, = 2r[T,.
acceleration of gravity.

generalised Phillips’ constant.

spectral width parameter.

0.87 if w< wy,.

0.09 if w> wp.

peakedness parameter.

QRO wf™
h-]

O T I

Y
The Pierson-Moskowitz spectrum appears for y= i

3.2.3 The Pierson-Moskowitz spectrum is generally applied
for open. deep waters and fully developed seas. The Jonswap
spectrum is normally used for fetch-limited, growing seas and
without swell. -

3.24 The peak period T, may be related to the average
zero-crossing wave period T, by

12
S+y A
T.= TP( it +7 )
The parameter z is given by
H. o}
=22 P (1 _0287ny)
16 g

where
H( = significant wave height,

If no particular values are given for the peakedness parameter
7 the following value may be applied:
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TP
y=S5for <36
H

S
T
y=e>T5= LISToHS ¢ 3.6 <P

s

<35

TP
NEa
where T, is in seconds and H, is in metres.

If the period is not given for a particular sea-state, a tentative
estimate

7= Ifor5<

v

T,=6H?
where T, is in seconds and H, is in metres.

3.2.5 The spectral moments M, of general order n is defined
as

M, =f " S{w) do
0

where
n =-101,2, ..

The Jonswap spectrum above has approximately

1 2 —1 472+7
Mor=qg ey =5
1 .2
Mo =~ H;
1 2 6,8 +y
Mi=Tg oy
1 2 2 14y
Ma=qg w33y

Quantities that may be defined in terms of spectral moments
are among others:

® Significant wave height:

H;=4M,
® Average wave period:
T, =2n( Mo )”2
z = M,
@ Significant wave slope:
S =2 M2 ~ %—

@ Spectral width:

3.2.6 If the power spectral density S(f} is given as a function
of the frequency f rather than as the function S{w) of cu. the
relationship is

S(f) = 2n S(w)

Similarly, if the moments of the circular frequency spectrum
S(f) are denoted M,(f). the relationship to M, in 3.2.5 is

M. = f 'S(0df = 2r)~ "M,
~0

3.2.7 Dircctipnal short-crested wave spectra may be derived
from the nondirectional wave spectra above as follows:

S(@, 2) = S(v) fla)

where

« = angle between direction of elementary wave traing
and the main direction of the short-crested wave
system.

S{w,«) = directional short-crested wave power density
Spectrum.

f(x) = directionality function.

Energy conservation requires that the directionality function
fulfills the requirement

“nax
I fla) da=1
Tmin
The directional function f(a) may have the general form
fla) = const.- cos* « where2<s<8

Due consideration is to be taken to reflect an accurate corre-
lation between the actual seastate and the power constant, s, -

The main wave direction may be set equal to the prevailing
wind direction.

3.2.8 The statistical distribution of individual wave crests Z
in an irregular short-term stationary seastate may usually be
described by the Rayleigh distribution. The cumulative proba-
bility function P(Z), that is the probability that a crest shall
be equal or lower than a value Z, is

2
z
Pa=1-c (%)
where
Az = H;f\/s—

The highest wave-crest Z,, within a time t is

Zopax = —fg.- H./In N

where
N =T,
To the first approximation one may put

ax=Hj

3.29 The peak-to-trough wave height H of a wave cycle is
the difference between the highest crest and the deepest trough
between two successive Zero-upcrossings.

The wave-heights are Rayleigh distributed with cumulative
probability function ’

—{-H
P!H):l——e (AH)

where
‘.-l > 5
Ag = —=2(l -2
8
¢ = aconstant ~| 0,

The highest crest-to-trough wave height Hp,, within a time t
is
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7
1 2.2 . j—1 i
Hpax = —= H, /(1 =cIn)In N i [ H, _(ﬁ-_)
V2 ' f(H‘)z—ﬁT H, e \H ) H;<H,
where 2
1 InHy — mon
N =T, ﬂHJ:_E—l—T C-Z( I1nH ) 0<1‘{‘<H2
To the first approximation one may put ™ Tk T
7=043 There are also constraints on the parameters of the two parts
such as to give continuity in cumulative probability and in
c=10 probability density at H; = Hj. '
Honax®118 Zinas This distribution is convenient for extreme seastates and in
prediction of persistence of low and medium seastates.
32.10 In evaluation of the foundation’s resistance against The two-parameter Weibull distribution is obtained by:

cyclic wave loading. the temporal evolution of the storm
should be taken into account. This should cover a sufficient
part of the growth and decay phases of the storm.

If data for the particular site is not available, the storm profile
in Fig. 3.1 may be applied.
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Fig. 3.1

Significant wave height relative to maximum value as a
function of time during a storm.

3.3 Long-term wave statistics

3.3.1 The long-term variation of the seas may conveniently
be described by a set of seastates, each characterized by the
wave spectrum parameters, that is. (Hs, T, or (@ Tp,7) de-
fined in 3.2.5 and 3.2.4 respectively.

3.3.2 There are currently three ways to describe the marginal
jong-term probability distribution of the significant wave-
heighs:

a) The three-parameter Weibull distribution with probability
density:

. j=1 H.~H i

: j Hy—Ho \ *( s o)
= - H,-H
fiH) H, - Hy ( H, - Hy ) ¢ 1=

(Ho < H)

This distribution has evident advantages in connection with
extreme seastate prediction.

b) The generalised gamma distribution with probability den-

sity:
iy () ()
YTTHVH, \ Hy *

T'(b) is a complete gamma function.

This di_stribution is most convenient for establishing long-
term distribution for individual crest-heights.

¢} The log-normal/Weibull distribution with probability den-
sity function:

@ Putting Hy =0 in a).
e Putting b=1inb).
® Patting H;=0inc).

® .u and oy are parameters fitted to the asymptotic parts
of the empirical data.

'3.33 To establish an extreme design storm in a time span t

(order 20 years), it is convenient to agree upon a design storm
duration 7, usually 3, 6 or 12 hours, in advance. The number
m of short-term intervals in the time span t is then

=t
The significant wave height in the extreme-design storm is then
a) By the three-parameter Weibull distribution:

H, max = Ho + (Hy — Ho) (ln m)'?

b) By It};c generalised gamma distribution (approximate for-
mula):

H, max = Hy{ In 2 1 m )"
25 max = l(ﬂr(b)+(b—l)nlnr(b))

¢) By the log-normal/Weibull distribution:

Hg max = Hy (‘“m)‘lj Ha < H; oy

_The other spectral parameters of the extreme seastate may be
chosen as advised in 3.2.

Design storms with a preferred value for the storm duration
are advised in 3.3.4 and 3.3.5 below.

3.3.4 If the time t covers a total of N wave cycles, a long-
term marginal distribution of the individual wave crests are
preferably obtained in terms of a general gamma distribution.
The probability density is

dk — 1 z k
k z (Z
fiz)= r(d)D(D) (5)

A two-parameter Weibull distribution is obtained for d=1.
Two methods may be advised, viz.

® The optimised elementary method.
® The saddle-poinmt method.

3.35 The optimised. elementary method is based on two-
parameter Weibull distributions.

The design storm duration advised is:

J
t=N2+; T,

where



