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For a sinusoidal description of the wave kinematics, either of the two methods
can be used and should provide similar results.

10.8 FREE VIBRATION TESTS

Any test setup in the wave tank, whether for load tests or motion tests, may be
treated as a spring mass system. Therefore, valuable information may be obtained from
the free vibration of the system. For fixed structures, the vibration frequency determines
if problem will be encountered from the dynamic amplification of the system (Section
7.5.7). For floating structures, information regarding the system natural period and
damping may be determined from the vibration analysis. The data analysis is similar
in both cases and is described below.

10.8.1 Low Frequency Hydrodynamic Coefficients

The magnitude of damping determines the extent of motions and corresponding
mooring loads in a moored floating platform near its natural frequency (refer to Section
9.8). The free oscillation of the platform takes place at the natural frequency. In an
experimental setup, this oscillation may be easily measured when the platform is
disturbed from its equilibrium position. The platform returns to its equilibrium position
and the duration of oscillation depends strictly on the damping of the system.

10.8.1.1 Linear System
The low-frequency hydrodynamic coefficients of the platform in still water can

be determined from the recorded extinction curve. The equation of motion is described
by a second-order differential equation having a single degree of freedom:



446 Chapter 10 Data Analysis Techniques

(M, + M, )i+Ci+Kx=0 (10.79)

where x is the surge amplitude and dots represent first and second derivatives, and My
and K are the structure displacement (mass) and linear spring constant of the spring
set, respectively. These quantities are measured directly. The quantities My and C are
the added mass and linear damping coefficients, respectively. They are considered to be
functions of the frequency of oscillation, ®j. Note that in this case, ®4 is the
damped natural frequency of the system. Values for My and C are determined in the
following manner. By assuming a solution to Eq. 10.79 of the form x=¢$t and defining M
= Mg + M, the equation can be rewritten in the form

(f +%s+-§—)e" =0 (10.80)
and thus
C cY Kk
Sa =3t ( ZM) - (10.81)

The damping factor, {, is defined as the ratio of the amount of damping C
present in the system to that amount of damping, C., which will cause the part of the
equation under the radical to go to zero. Therefore,

C, K

2—ML= o =, (10.82)
and
c .
S Lo, (10.83)

In case of light damping, the radical is imaginary and Eq. 10.81 can be written as

52 = [-ciiﬁ ]m,, (10.84)
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The general solution to Eq. 10.79 is

x=x0exp(—C0)Nt)sin[ 1-g2m,,:+e] (10.85)

in which xg is the magnitude of oscillation at t=0 and € is its phase angle.

The solution of the equation of motion given by Eq. 10.85 represents harmonic
oscillation values of subsequent amplitudes of oscillation in which the amplitudes decay
exponentially. If two consecutive absolute values are given by Ixyl and Ixg_jl, then the
logarithmic decrement is defined as

8 =Inx,|-nlx, | (10.86)

which gives

5
= 10.87
4 Te (10.87)

should be 4pi*2, error / gloria

The logarithmic decrement may be quite accurately related to the damping factor
simply by

d=x{ (10.88)

For small values of { the error is small (for example, for { = 0.1, the error is about 0.5
percent).

The term xgexp(-CwNt) represents the curve that can be drawn through the
succeeding peaks of the damped oscillation. Strictly speaking, the curve does not pass
exactly through the peaks, but a small difference is usually neglected. If the natural
logarithm of these peaks is taken, the quantity {w) represents the slope, m, of the line
that can be drawn through the converted values. The frequency of the damped motion,
@4, is also obtained from Eq. 10.85, and thus we obtain two equations and two
unknowns:

m=-to, (10.89)
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W, =com/1—§2 (10.90)

The terms on the left hand side of Eqs. 10.89 and 10.90 are obtained by fitting
exponential curves to the decayed oscillation data (Fig. 10.16). Once the values of N
and { are known from the above equations, the added mass and damping coefficients are
computed:

N

and
C=2Mlw, (10.92)

Therefore, knowing the extinction curve for a moored floating structure, the damping of
the system may be established by a simple analysis. This is illustrated by an example
based on Fig. 10.16.
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FIGURE 10.16
EXTINCTION TEST OF A TANKER IN SURGE
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The extinction curve represents the free oscillation of a moored tanker. The
displacement of the tanker is Mg = 372.3 kg (25.5 slugs) and the spring constant K =
102 N/m (7.0 1bs/ft). The least square analysis described above gives an added mass
coefficient and a damping factor of 0.049 and 0.008 respectively. The natural period
between the positive peaks no. 2 and 3 in Fig. 10.16 is measured as 12.3 sec. Then,

M, =17.1kg(L.17slug) (10.93)
and
M,
C, = o = (.046 (10.94)

[4]

Also, the amplitudes of peaks 2 and 3 are 0.235 and 0.22 m (0.77 and 0.72 ft)
respectively. Therefore,

5 =%(m 0.235—1n0.22) = 0.03 (10.95)
so that

0.03

¢= Vr? +0.03

=0.01 (10.96)

This example shows that two peak values in the extinction curve determine the
unknowns. In general, a least square fit of all data peaks in the extinction curve is
desirable.

10.8.1.2 Nonlinear System

When nonlinear damping is present, the equation of motion for the damped free
oscillation of a moored floating vessel, e.g., a semisubmersible in surge, is given by

M5+ Cx+b,|i}x+ Kx =0 (10.97)

where M = total mass of the vessel in water, and by = nonlinear damping coefficient.
Since this equation is nonlinear, it is difficult to solve in a closed form. Therefore, the
following simplification is made. On the assumption that each half cycle of the
decayed oscillation is reasonably sinusoidal, the nonlinear term is linearized by a





