DNV·GL

SOFTWARE

Sesam user course

HydroD Hydrostatics & Stability

DNV GL 12 May 2016

Ungraded

1 DNV GL © 2016

SAFER, SMARTER, GREENER

Scope of presentation

Describe features & commands for performing a hydrostatic analysis, and their concepts

- >Analysis setup
- Code-checking
- ➢ Reporting

Why HydroD for Hydrostatics and Stability?

Some highlights

- Flexible and easy to do hydrostatic and stability computations in intact or damaged condition
- Variable filling or flooding of internal tanks (by specifying filling fraction)
- Automatic computation of trim, heel and draft to balance mass and buoyancy
 - No need for remodelling if non-zero trim and heel
- Automatic filling of tanks to balance mass and buoyancy in different loading conditions
 - No need to remodel with different fillings
- Stability codes for ships and mobile offshore structures

Main features

- Computation of draught, trim and heel
- Computation of GZ-curves and metacentric height
- Balancing vessel and maximizing GM by filling of n tanks
- Report, including tables and plots, of
 - buoyancy information (including block coefficient)
 - trim moment
 - flooding openings distance to waterline
 - righting and heeling moment curves, righting and heeling arm areas etc.
 - code check results
- Computation of calm sea sectional force and moment curves.
- Computation of wind heeling moment
- Max KG (AVCG) analysis
- Watertight/Weathertight integrity plan

Hydrostatic computations

- Accurate computations (no interpolations or approximations)
 - Exact level of free surface in internal tanks computed at every heel angle
 - Exact draught of model computed at every heel angle (ensuring constant displacement during the heel motion)
 - Option to iterate on trim balancing out trim moments
 - Elements cut in the waterline/free surface level to give exact volume and mass computations
 - Mass and centre of gravity of tank fluid computed by an analytically exact method

Flooded tanks

HydroD will find new equilibrium position

Results – Righting arm (GZ) curve – Flooded tanks

- Computing GZ-curve with flooded tanks
 - For each angle in computation (here -60 deg -> 60 deg) the free surface in all tanks are computed

Results – Strength Analysis – Still water sectional loads

Results

 A high number of results from the strength and stability analyses may be plotted and tabulated

Gen	eral				
Caption 💡 Stability analysis					
Sh	ow unit on header 🛛 🖗 🔲				
Flip	p 🦞 🛄				
Du	iplicate first column 🛛 💡 📃				
Sou	rce				
Co	ncent 🤗 🗛 StabilityAnalysi	52		-	00
		_			
Da	ta set 🦞 Ballast / A0 deg res	ults			
Colu	umns				
1	Field	Header	Format	Unit	Width
1	RotationAngle(H) 🔹	Н		deg	
2	RightingArm(GZ)	GZ		m	
3	RightingMoment	RightingMoment		N*m	
4	RightingMomentArea	RightingMomentArea		N*m*rad	
5	HeelingArm	HeelingArm		m	
6	HeelingArmArea	HeelingArmArea		m*rad	
7	LateralTrim	LateralTrim		deg	
8	WaterlineZ	WaterlineZ		m	
9	RightingArmWithoutDeckTanks	RightingArmWithoutDeckTanks		m	
10	RightingArmFromDeckTanks	RightingArmFromDeckTanks		m	
11	RightingArmWithoutFreeSurfaceCorrection	RightingArmWithoutFreeSurfaceCorrection		m	
12	FreeSurfaceRightingArmCorrection	FreeSurfaceRightingArmCorrection		m	
13	MinimumOpening	MinimumOpening			
14	MinimumUnprotectedOpening	MinimumUnprotectedOpening			
15	MinimumOpeningHeight	MinimumOpeningHeight		m	
16	MinimumUnprotectedOpeningHeight	MinimumUnprotectedOpeningHeight		m	
17	MinimumWeathertightOpening	MinimumWeathertightOpening			
18	WinimumWeathertightOpeningHeight	MinimumWeathertightOpeningHeight		m	
19	Displacement/Weight(DISPM)	DISPM		N	
20	KightingArmArea	KightingArmArea		m^rad	
- F (E)	ivietacentricHeight(Givi)	GIVI		m	
22	Heeling/loment	HeelingMoment		IN. m	

Properties	- D)
Data	
Concept source	🖗 🐼 StabilityAnalysis2 🔹 🔹 😜 🚭
Data source	Ballast / A0 deg 🗸 🗸
Sub Source	Ballast_A0 degResults 🔹
X — Data field	RotationAngle
Unit	deg 🗸
V Data fields	RightingArm,MinimumOpeningHeight
Data Plot X-axis	RotationAngle RightingArm RightingMoment RightingMomentArea HeelingArm HeelingArmArea LateralTrim WaterlineZ RightingArmWithoutDeckTanks RightingArmFromDeckTanks RightingArmWithoutFreeSurfaceCorrection FreeSurfaceRightingArmCorrection V MinimumUnprotectedOpeningHeight MinimumUnprotectedOpeningHeight MinimumUnprotectedOpeningHeight DisplacementWeight RightingArmArea MetacentricHeight HeelingMoment HeelingMomentArea DeckHeight
Data Plot X-axis	

Units

Workspace browser	- ₽ ×	Properties			→ ₽ ×
🔺 藚 Workspace	^	Workspace			
🔺 🚢 Environment		Input upits			
💼 Location1		Input units	0	Basic units A change	•
Properties		Length			
🔺 📥 StabilityProperties		Mass	Y	here will change all	•
💥 HeelAngles1		Time	9	s units below.	•
🔺 🕌 Models		Force	9	N	•
🔁 Vessel		Angle	0	deg	
📴 Hull	=	Angie			
🔺 🛐 HydroModels		Acceleration	Y	m/s^2	•
4 🖪 HydroModel1		Density	9	kg/m^3	•
PanelModel1		Velocity	9	m/s	•
MassModel1		Area	0	m^2	
🖶 LoadCrossSections1		Alca			
CompartmentModel1		Volume	Y	m^3	•
4 📥 LoadingConditions1		KinematicViscosity	9	m^2/s	•
4 📥 LoadingCondition1		Fraction	9	%	•
CompartmentContents	:1	Moment	0	N*m	•
HydrostaticsTable1		Moment	6		
🔺 🛅 DamageCases1		Length angle	Y	m*rad	•
DamageCase1		Moment angle	9	N*m*rad	•
Openings1		Pressure	9	Pa	•
A A LoolingForceModel1					

Number accuracy

Number setting in Workspace.

You can define your preferred default in File, Options.

Workspace setting may be modified for individual columns in a table

Set-up of wanted features

HydroModel Concepts

- A HydroModel will contain many concepts, depending on the wanted features and results for the analysis.
- Some concepts may be added directly from the Wizard
 - Wizard setup found at the bottom of the browser
- All concepts can be added from the browser, by RMB click

Efficient definitions of load cases

- Simplified user input for large damaged analyses no need to generate 200 loading conditions and manually edit damages in each of those
- Define a set of intact loading conditions
- Define a set of damage cases
- HydroD will evaluate all combinations of intact conditions and damage cases
- This is implemented for stability analyses, rule checks and KG/AVCG

Stability of single loading condition

The loading condition may contain damaged compartments

Stability analysis of multiple loading conditions and damages

Or combine a single loading condition with a set of damages

Stability properties – Options tab

Quick and easy definition of damages

Robust hydrostatic equilibrium calculation

Any orientation and damage condition will find equilibrium

Mass		
Total mass	Ŷ	2.592E+07 kg
Centre of gravity X	Ŷ	1.281E-06 m
Centre of gravity Y	Ŷ	-1.1033E-08 m
Centre of gravity Z	Ŷ	7.6782 m
Dry mass	Ŷ	2.1259E+07 kg
Compartment contents	Ŷ	4.6615E+06 kg
LCG	Ŷ	1.281E-06 m
TCG	Ŷ	-1.1033E-08 m
VCG	Ŷ	7.6782 m
KG	Ŷ	7.6782 m
Balance — The loading condition is in hydrostatic equil	ibriu	m.
Mass error	Ŷ	1.8626E-08 kg
Relative mass error	Ŷ	7.186E-14 %
X alignment error	9	-1.281E-06 m
Relative X alignment error	Ŷ	9.8859E-07 %
Y alignment error	Ŷ	1.1033E-08 m
Relative Y alignment error	9	8.5149E-09 %

Beams contribute to buoyancy

In hydro statics and stability analysis – the beams contribute to buoyancy

Wind heeling moment calculations

Method	Example	HydroD 4	HydroD 5
User defined	Results from wind tunnel tests	For single wind azimuth angle	For multiple wind azimuth angles and drafts
Projected area	Ship stability rules	N/A as curve	HydroD calculates projected area and heeling moment curve
Shape coefficients	Offshore stability rules	N/A*	Shape coefficients are specified by the user, HydroD calculates heeling moment curve

* HydroD 4 implements a method based on a blocked empiric grid and drag/block coefficients

User defined wind heeling moments

- The user will be able to input multiple wind directions for AVCG analyses (or KG)
- 3-dimensional input table (Waterline, azimuth, heel angle)
 - Select which parameter to keep fixed
 - Give table for each specified value of the "fixed" parameter
 - Example shows table for azimuth/heel for a given waterline
- Specify the heeling moments
- HydroD will interpolate (linear interpolation) Properti needed Use Use
- Copy from Excel is supported

		UserDe	efinedWin	dHeeling	Moments1		
		Туре ——					
		Туре	💡 🔘 Az	zimuth			
า			() W	aterline Z			
'7			© H	eel angle			
	[Properties					
		🖄 UserDe	finedWin	dHeelingN	/lomentTak	ole1	
		Rotation ax	is ———				
		Azimuth angle 💡 0 deg					
)		Waterline –					
		Waterline	z 💡	15 m			
		Heel angle					
		Heel angle	e 💡				
Drapartia							п 🗸
Properties	5					•	+ >
User[Defined	WindHeelin	gMomen	tTable1			
	HO	deg	H10 deg	H	20 deg	H30 c	leg
A0 deg	10	N*m	0 N*m	C) N*m	0 N*	m
A45 dea	10	N*m 🗍	0 N*m	0) N*m	0 N*	m

tall as a new second second

Ungraded

A90 deg

0 N*m

0 N*m

0 N*m

0 N*m

Wind heeling moments by projected area

- Used by stability rules for ships
- The user must specify grid resolution for projected area calculation
- Wind heeling lever

Containership - projected area (red)

$$l_{w_1} = \frac{PAZ}{1000g\Delta}$$

	Ρ	Wind pressure	Defined by the rules
	A	Projected area	Calculated by HydroD
	Z	Vertical distance*	Calculated by HydroD
	g	Gravity	Defined by the rules
Ung	Δ	Displacement	Calculated by HydroD

Projected area grid resolution

- Low grid resolution gives conservative heeling moment, but it is quick to run higher resolutions
 - Resolution 30: 10 sec
 - Resolution 400: 16 sec
 - Resolution 1600: 68 sec

26 DNV GL © 2016 12 May 2016

Wind heeling moments by shape coefficients

- Used by offshore stability rules
- Wind force (IMO MODU 3.2.3 / DNV OS C301 B101)

 $\mathbf{F} = 0.5 \, \mathbf{C}_{\mathbf{s}} \cdot \mathbf{C}_{\mathbf{h}} \cdot \mathbf{P} \cdot \mathbf{V}^2 \cdot \mathbf{A}$

C _s	Shape coefficient	Defined by the user
C_h	Height coefficient	Defined by the rules
Р	Air mass density	Defined by the rules
V Wind velocity		Defined by the rules
А	Projected area	Calculated by HydroD

Heel angle input

- Defined as a stability property
- Used in the stability analysis

Pro	Properties 👻 🗖 🗙					
康	✤ HeelAngles1					
	From	То	Step			
1	-60 deg	60 deg	5 deg			
2	-10 deg	10 deg	1 deg			
+	+					
General						
General						
	📑 Properties 📲 Results					

Shape coefficient input

- Assign to set (as predefined in GeniE)
- Assign default to element type

Properties		- ¶ ×	ViewSetting1 × Plot1 Plot1
🛃 ShapeCoe	fficientWindHeelingMoments1		
Default			
Beam 💡	1		4
Plate 💡	1		
Solid 💡	1		K A
Custom			ALT
🖌 Set	Description	Value	
1 DERRIC	K	1	

Thrusters

- Define thruster
 - Part of a Heeling force model
 - One resulting thruster in one model
 - Maximum force given
 - Give position

Properties		→ ₽ ×
🗱 ThrusterFord	el	
Force		
Maximum force	💡 10000 N	
Force position —		
Х	💡 27,36 m	
Y	🢡 -35,5 m	
Z	💡 -2 m	

CompartmentModel1				
🛚 📥 LoadingConditions1				
🛚 🛅 DamageCases1				
▲ 📐 HeelingForceModel1				
🖄 ShapeCoefficient	Add ThrusterForce			
🕐 Openings1 📃	Rename			

Opening Concept

- One or more flooding openings may be defined.
- The distance between the waterline and the opening will be computed and displayed for different heel angles.
- An opening may be connected to a tank. The tank will be flooded when the opening is submerged

		ingrorcemode	11						
	🕐 Oper	nings1						O	
	🛛 📃 Rules								
	🛛 🎒 Analyses								Ŧ
E	Workspace brow	ser							
Pro	operties							т ф	×
()) Openings1								
	Name	Туре	Position X	Position Y	Position Z	Connected	Visible	Direction	
1	SingleOpening1	Unprotected	14,36 m	0 m	33,5 m	LC10_TAN	1	1;0;0	
2	SingleOpening2	Unprotected	27,36 m	0 m	33,5 m	LC12_TAN	1	0;0;1	

MaximumKG analysis (AVCG analysis in HydroD4)

Workspace browser 👻	Pro	operties	▲ ġ	×			
🖻 📥 LoadingConditions1	1 10	MaximumKgAnalysis1		-			
🕑 🛅 DamageCases1		- 4-1		*			
UserDefinedWindHeelingMoments1	IVIC	ocation					
Opening1		ocation					
$arepsilon^{<}_{<}$ ShapeCoefficientWindHeelingMoments1 \sim	н	Hydro model	Multiple HydroModel1 🔹				
4 🎒 Analyses	Ori	rientation					
🔷 StabilityAnalysis1 🛕	н	Heel	💡 0 deg		Intact stability ———		
📑 StabilityRuleCheck1 🛆	Tr	ſrim (0 deg		Rule	9	NMA intact stability criteria 🔹
LoadAnalysis1	w	Waterlines	Waterline Z		Deference	0	ABS MODU intact stability criteria
📅 MaximumKgAnalysis1 🦄			1 10 m		Reference	¥	DNV intact stability criteria
🔷 StabilityAnalysis2 🔔 🗧 🥥			2 11 m				IMO general stability criteria
▲ 🕍 Plots			3 12 m	=			MARPOL intact stability criteria
A M Plot1			4 13 m 5 14 m				NMA intact stability criteria
🔯 Total			6 15 m		Damage stability —	~	
🔛 Gravity			7 16 m		Include damage cases	Y	V
🗠 Bouyancy			8 17 m		Damage	9	🖪 DamageCases1 🔹 🌏 🛟
GravityDistribution			*		Bula	0	NIMA domogod stability gritaria
BouyancyDistribution					Rule	v	NMA damaged stability criteria
Tables	Sta	ability analysis settings —	Arimuth		Reference	Ŷ	ABS MODU damaged stability criteria
A 📳 Reports	A	Azimuth angles	1 0 deg				IBC damaged stability criteria
Report1	_		2 10 deg				IGC damaged stability criteria
Section1	_		*				IMO MODU damaged stability criteria
Picture1					Model Options		NMA damaged stability criteria
T Text1	Н	leel angles	🥐 💥 HeelAngles1 🔹 🌍 🛟				L
Der Plot1	He	eeling moments ———					
Plot2	W	Wind heeling moments	🖓 🖃 UserDefinedWindHee 🔻 😜 🛟				
Section2	н	Heel angles	HeelAngles1				
Plot1							
ViewSettings	Inta	tact stability —					
ViewSetting1	L R	vuie		*			
A NUZAROS	* Mo	lodel Options					

Rule checks

Intact stability curves

- Criteria are typically related to:
 - Value of the angles
 - Area under righting moment curve vs. area under heeling moment curve
 - Distance from openings to free surface

First intercept (equilbrium with wind)

Damaged stability diagram

Typical criteria in the rules

- Maximum or minimum value of angles
- Relation between righting and heeling arm/moment
 - Values
 - Area under curve (=work)
- Example (NMA rules):

The static angle of heel due to wind shall not exceed 17 degrees in any condition.

The area under the righting moment curve to the second intercept, or any lesser angle, is not to be less than 30 % in excess of the area under the wind heeling moment curve to the same limiting angle.

All main rule sets supported

		Properties	→ ∏ ×
		StabilityRule1	
		Stability Rule	
		Stability rule category	 Intact rule Damaged rule
		Criteria source	 Predefined criteria list Custom criteria list
Properties		Stability criteria	·
StabilityRule1 Stability Rule Stability rule category	 	Reference	 IMO MODU intact stability criteria ABS MODU intact stability criteria DNVGL intact stability criteria NMA intact stability criteria for Mobile Offshore Units MARPOL intact stability criteria IMO general stability criteria
Criteria source	 Predefined criteria list Custom criteria list 		
Stability criteria	IMO MODU damaged stability criteria		
Reference	ABS MODU damaged stability criteria DNVGL damaged stability requirements NMA damaged stability criteria for Mobil MARPOL damaged stability criteria IGC damaged stability criteria IBC damaged stability criteria	le Offshore Units	

Watertight and weathertight integrity surfaces

Properties			
TimitSurface1			
Input	alvsis1		
Surface constraints		Namo	
1 WatertightIntegrity V	/A watertight into	egrity constraint ((§22.2.A) e
+ Parameters			· · · ·
+ Parameters Name	Value	Default Value	Unit
+ Parameters Name MinGZBeforeFlooding	Value 2.5	Default Value 2.5	Unit
+ Parameters Name MinGZBeforeFlooding MinDeckTankMargin	Value 2.5 1	Default Value 2.5 1	Unit m m
+ Parameters Name MinGZBeforeFlooding MinDeckTankMargin Option	Value 2.5 1	Default Value 2.5 1	Unit m m

Verification and reporting

> Verify models and input

> Create reports including pictures, plots and tables

– Automatically updated after reanalysis

Reporting engine

- Define templates for
 - Table
 - Plot
 - Report
- Report style
 - Created in Word format
 - Word templates can be used
- Customize report contents
- Copy/paste report structure
- Regenerate reports at any time
- Reports are part of the scriptable model
- Tables and plots are bound to analysis output

Automatic updating of reports

- Store plots, tables or pictures in separate folders
 - Reuse in many reports (by reference)
- Or store directly in the report
- Tables and plots are automatically updated when the analysis is run again
- Pictures may be static (a fixed picture) or dynamic (based on what is currently displayed in a defined ViewSetting)

Create reports in Word format using company/project template

The world-leading provider of software for a safer, smarter and greener future

DNV GL – Software software.support@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER